Microkinetic Modeling and Simulation
Research directions
(FWF funded projects: COE MECS, opens an external URL in a new window, SFB TACO, OEAD)
The developments in operando methodology enable to relate the catalyst state to its performance under reactive conditions. However, in many cases the interpretation and verification of the obtained experimental spectra/images/patterns relies on theoretical support, e.g. by calculating structures, adsorption and activation energies for single crystal surfaces, nanoparticles and clusters, complemented by micro-kinetic reaction modelling. Clearly, if calculations are performed for realistic gas pressures (coverage) and temperatures, they are even more relevant for operando studies.
Group members
Dr. Alexander Genest (Postdoc)
Prof. Notker Roesch (Guest Scientist)
Parinya Tangpakonsab, PhD Student
Collaboration Partners
Prof. Henrik Grönbeck, opens an external URL in a new window (Centre for Catalysis and Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden): DFT calculations of the structure and adsorption/reactions on metal, oxide and metal-oxide surfaces and interfaces; microkinetic modeling of kinetic phase diagrams and oscillatory reactions
Prof. Dr. Dr.h.c. Notker Rösch, opens an external URL in a new window, FRSC (Department Chemie, Technische Universität München TUM, Garching, Germany): DFT and microkinetic modeling of isomerisation/hydrogeantion on model catalysts
Prof. Konstantin Neyman, opens an external URL in a new window (Departament de Química Física & Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Spain): DFT calculations of the structure and adsorption/reactions on bimetallic surfaces
Dr. Sergey M. Kozlov, opens an external URL in a new window (King Abdullah University of Science and Technology (KAUST), Saudi Arabia): DFT studies of CO adsorption on Cu clusters, steps and terraces
Prof. Peter Blaha, opens an external URL in a new window (IMC, TU Wien): DFT studies CO adsorption on metals and oxides
Publications
Lanthanum modulated reaction pacemakers on a single catalytic nanoparticle
Maximilian Raab, Johannes Zeininger, Yuri Suchorski, Alexander Genest, Carla Weigl, Günther Rupprechter
Nature Communications, 14 (2023) 7186 (9 pages)
https://doi.org/10.1038/s41467-023-43026-3, opens an external URL in a new window (Gold OA)
TU Vienna press release :https://www.tuwien.at/en/tu-wien/news/news-articles/news/zwei-dirigenten-fuer-eine-chemische-reaktion, opens an external URL in a new window
Kinetic and computational studies of CO oxidation and PROX on CuO/CeO2 nanospheres
Parinya Tangpakonsab, Alexander Genest, Jingxia Yang, Ali Meral, Bingjie Zou, Nevzat Yigit, Sabine Schwarz, Günther Rupprechter
Topics in Catalysis, (2023)
https://doi.org/10.1007/s11244-023-01848-x, opens an external URL in a new window
Active sites and deactivation of room temperature CO oxidation on Co3O4 catalysts: Combined experimental and computational investigations
Nevzat Yigit, Alexander Genest, Schamil Terloev, Jury Möller, Günther Rupprechter
Journal of Physics: Condensed Matter, 34 (2022) 354001 (10pp)
https://doi.org/10.1088/1361-648X/ac718b , opens an external URL in a new window
CO Adsorption and Disproportionation on Smooth and Defect-Rich Ir(111)
Xia Li, Thomas Haunold, Stefan Werkovits, Laurence D. Marks, Peter Blaha, Günther Rupprechter
Journal of Physical Chemistry C, 126 (2022) 6578–6589
https://doi.org/10.1021/acs.jpcc.2c01141, opens an external URL in a new window
The origin of the particle-size-dependent selectivity in 1-butene isomerization and hydrogenation on Pd/Al2O3 catalysts
A. Genest, J. Silvestre-Albero, W.-Q. Li, N. Rösch, G. Rupprechter
Nature Communications 12 (2021) 6098 (8 pages)
DOI: https://doi.org/10.1038/s41467-021-26411-8, opens an external URL in a new window
High-performance water gas shift induced by asymmetric oxygen vacancies: gold clusters supported by ceria-praseodymia mixed oxides
J. Shi, H. Li, A. Genest, W. Zhao, P. Qi, T. Wang, G. Rupprechter
Applied Catalysis B: Environmental, 301 (2022) 120789 (13 pages)
DOI: https://doi.org/10.1016/j.apcatb.2021.120789, opens an external URL in a new window
Catalytic transformations of 1-Butene over palladium. A combined experimental and theoretical studyV. Markova, J. Philbin, W. Zhao, A. Genest, J. Silvestre-Albero, G. Rupprechter, N. Rösch
ACS Catalysis 8 (2018) 5675-5685
DOI: https://doi.org/10.1021/acscatal.8b01013, opens an external URL in a new window
Recently studied topics
- Acive sites and (deactovation) mechanism of romm temperature CO oxidation on Co3O4: Journal of Physics: Condensed Matter, 34 (2022) 354001
- DFT calculations and microkinetic modeling of atmospheric pressure reaction kinetics of 1-butene hydrogenation/isomerization on Pd/Al2O3 model catalysts: Nature Communications, 12 (2021) 6098
- DFT modeling of the formation energy of oxygen vacancies, the binding energy of water, and the asymmetry of the O# site, explaining the effects on WGS on Au clusters supported by CePrOx mixed oxides: Applied Catalysis B: Enironmental, 301 (2022) 120789 in press
- 1-butene isomerization/hydrogenation on Pd single crystals (LEED, batch reactor kinetics (GC), DFT, mikrokinetic modeling) ACS Catalysis 8 (2018) 5675-5685