Forschung
© SS
© CS
Direct methane utilization through benzene dehydroalkylation catalyzed by Co2+ sites in ZSM-5 intersections
Martina Aigner, Stijn Van Daele, Delphine Minoux, Nikolai Nesterenko, Ruixue Zhao, Martin Baumgärtl, Rachit Khare, Andreas Jentys, Christian Schroeder, Maricruz Sanchez-Sanchez, Johannes A. Lercher, J. Catal. 2024, 438, 115686. DOI: https://doi.org/10.1016/j.jcat.2024.115686 , öffnet eine externe URL in einem neuen Fenster
Speciation and Reactivity Control of Cu-Oxo Clusters via Extraframework Al in Mordenite for Methane Oxidation
Lei Tao, Elena Khramenkova, Insu Lee, Takaaki Ikuno, Rachit Khare, Andreas Jentys, John L. Fulton, AlexanderA. Kolganov, Evgeny A. Pidko,* Maricruz Sanchez-Sanchez,* and Johannes A. Lercher*, J. Am. Chem. Soc. 2023, 145, 17710-17719. DOI: https://doi.org/10.1021/jacs.3c04328, öffnet eine externe URL in einem neuen Fenster
Structural evolution after oxidative pretreatment and CO oxidation of Au nanoclusters with different ligand shell composition: a view on the Au core
Truttmann, V., Schrenk, F., Marini, C., Palma, M., Sanchez-Sanchez, M., Rameshan, C., Agostini. G., Barrabes, N., Phys. Chem. Chem. Phys 2023, 25,3622-3628. DOI: 10.1039/D2CP04498F , öffnet eine externe URL in einem neuen Fenster
Speciation of Cu-oxo clusters in FER for selective oxidation of methane to methanol
Tao, L., Lee, I., Khare, R., Jentys, A., Fulton, J.L., Sanchez-Sanchez, M., Lercher, J.A., Chemistry of Materials 2022, 34, 10, 4355–4363. DOI: 10.1021/acs.chemmater.1c04249, öffnet eine externe URL in einem neuen Fenster
Vollständige Publikationslisten von Maricruz Sánchez-Sánchez sind hier zu finden: ORCID, öffnet eine externe URL in einem neuen Fenster SCOPUS, öffnet eine externe URL in einem neuen Fenster
10. Mechanistic differences between methanol and dimethyl ether in zeolite-catalyzed hydrocarbon synthesis
Kirchberger, F.M., Liu, Y., Plessow, P.N., Tonigold, M., Studt, F., Sanchez-Sanchez, M., Lercher, J.A., Proceedings of the National Academy of Sciences of the United States of America 2022, 119, art. no. e2103840119. DOI: 10.1073/pnas.2103840119, öffnet eine externe URL in einem neuen Fenster
9. Activity of Cu–Al–Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites
Lee, I., Lee, M.-S., Tao, L., Ikuno, T., Khare, R., Jentys, A., Hutwelker, T., Borca, C.N., Kalinko, A., Gutiérrez, O.Y., Govind, N., Fulton, J.L., Hu, J.Z., Glezakou, V.-A., Rousseau, R., Sanchez-Sanchez, M., Lercher, J.A., JACS Au 2021, 1, 1412-1421. DOI: 10.1021/jacsau.1c00196 , öffnet eine externe URL in einem neuen Fenster
8. Cu oxo nanoclusters for direct oxidation of methane to methanol: Formation, structure and catalytic performance
Tao, L., Lee, I., Sanchez-Sanchez, M., Catalysis Science and Technology 2020, 10, 7124-7141. DOI: 10.1039/d0cy01325k, öffnet eine externe URL in einem neuen Fenster
7. Design and synthesis of highly active MoVTeNb-oxides for ethane oxidative dehydrogenation
Melzer, D., Mestl, G., Wanninger, K., Zhu, Y., Browning, N.D., Sanchez-Sanchez, M., Lercher, J.A., Nature Communications 2019, 10, art. no. 4012. DOI: 10.1038/s41467-019-11940-0, öffnet eine externe URL in einem neuen Fenster
6. Critical role of formaldehyde during methanol conversion to hydrocarbons
Liu, Y., Kirchberger, F.M., Müller, S., Eder, M., Tonigold, M., Sanchez-Sanchez, M., Lercher, J.A., Nature Communications 2019, 10, art. no. 1462. DOI: 10.1038/s41467-019-09449-7, öffnet eine externe URL in einem neuen Fenster
5. Role of Spatial Constraints of Brønsted Acid Sites for Adsorption and Surface Reactions of Linear Pentenes
Schallmoser, S., Haller, G.L., Sanchez-Sanchez, M., Lercher, J.A., Journal of the American Chemical Society 2017, 139, 8646-8652. DOI: 10.1021/jacs.7b03690, öffnet eine externe URL in einem neuen Fenster
4. Formation of Oxygen Radical Sites on MoVNbTeOx by Cooperative Electron Redistribution
Zhu, Y., Sushko, P.V., Melzer, D., Jensen, E., Kovarik, L., Ophus, C., Sanchez-Sanchez, M., Lercher, J.A., Browning, N.D., Journal of the American Chemical Society 2017, 139, 12342-12345. DOI: 10.1021/jacs.7b05240, öffnet eine externe URL in einem neuen Fenster
3. Atomic-Scale Determination of Active Facets on the MoVTeNb Oxide M1 Phase and Their Intrinsic Catalytic Activity for Ethane Oxidative Dehydrogenation
Melzer, D., Xu, P., Hartmann, D., Zhu, Y., Browning, N.D., Sanchez-Sanchez, M., Lercher, J.A., Angewandte Chemie - International Edition 2016, 55, 8873-8877. DOI: 10.1002/anie.201600463, öffnet eine externe URL in einem neuen Fenster
2. Hydrogen Transfer Pathways during Zeolite Catalyzed Methanol Conversion to Hydrocarbons
Müller, S., Liu, Y., Kirchberger, F.M., Tonigold, M., Sanchez-Sanchez, M., Lercher, J.A., Journal of the American Chemical Society 2016, 138, 15994-16003. DOI: 10.1021/jacs.6b09605, öffnet eine externe URL in einem neuen Fenster
1. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol
Grundner, S., Markovits, M.A.C., Li, G., Tromp, M., Pidko, E.A., Hensen, E.J.M., Jentys, A., Sanchez-Sanchez, M., Lercher, J.A., Nature Communications 2015, 6, art. no. 7546.DOI: 10.1038/ncomms8546, öffnet eine externe URL in einem neuen Fenster
Vollständige Publikationslisten von Christian Schröder sind hier zu finden: ORCID, öffnet eine externe URL in einem neuen Fenster SCOPUS, öffnet eine externe URL in einem neuen Fenster
13. Direct methane utilization through benzene dehydroalkylation catalyzed by Co2+ sites in ZSM-5 intersections
Martina Aigner, Stijn Van Daele, Delphine Minoux, Nikolai Nesterenko, Ruixue Zhao, Martin Baumgärtl, Rachit Khare, Andreas Jentys, Christian Schroeder, Maricruz Sanchez-Sanchez, Johannes A. Lercher, J. Catal. 2024, 438, 115686. DOI: https://doi.org/10.1016/j.jcat.2024.115686 , öffnet eine externe URL in einem neuen Fenster
12. Use of Borosilicate Seeds to Synthesize Aluminosilicate SSZ-82, a Zeolite Containing Intersecting 12- and 10-Membered Ring Channels
Christopher M. Lew, Dan Xie, Kurt O. Jensen, Christian Schroeder, Jonas Blaser, Hubert Koller, and Stacey I. Zones, Chem. Mater. 2023, 35, 6141–6151. DOI: 10.1021/acs.chemmater.3c01274, öffnet eine externe URL in einem neuen Fenster
11. Spatial Proximities between Brønsted Acid Sites, AlOH Groups, and Residual NH4+ Cations in Zeolites Mordenite and Ferrierite
Schroeder, C.; Hansen, M.R.; Koller, H., J. Phys. Chem. C 2023, 127, 736-745. DOI: 10.1021/acs.jpcc.2c07346, öffnet eine externe URL in einem neuen Fenster
10. Cooperativity of silanol defect chemistry in zeolites
Chen, Y.-F.; Schroeder, C.; Lew, C.M.; Zones, S.I.; Koller, H.; Sierka, M., Phys. Chem. Chem. Phys. 2023, 25, 478-485. DOI: 10.1039/D2CP05218K, öffnet eine externe URL in einem neuen Fenster
9. Ordered Heteroatom Siting Preserved by B/Al Exchange in Zeolites
Schroeder, C., Lew, C.M., Zones, S.I., Koller, H., Chem. Mater. 2022, 34, 3479–3488. DOI: 10.1021/acs.chemmater.2c00359, öffnet eine externe URL in einem neuen Fenster
8. Hydrogen Bonds Dominate Brønsted Acid Sites in Zeolite SSZ-42: A Classification of Their Diversity
Schroeder, C., Zones, S.I., Hansen, M.R., Koller, H., Angew. Chem. Int. Ed. 2022, 61, e202109313. DOI: 10.1002/anie.202109313, öffnet eine externe URL in einem neuen Fenster
7. Characterization of a Molecule Partially Confined at the Pore Mouth of a Zeotype
Grosso-Giordano, N.A., Schroeder, C., Xu, L., Solovyov, A., Small, D.W., Koller, H., Zones, S.I., Katz, A., Angew. Chem. Int. Ed. 2021, 60, 10239-10246. DOI: 10.1002/anie.202100166, öffnet eine externe URL in einem neuen Fenster
6. High Aluminum Ordering in SSZ-59: Residual 1H-27Al Dipolar Coupling Effects in 1H MAS NMR Spectra of Brønsted Acid Sites in Zeolites
Schroeder, C., Zones, S.I., Mück-Lichtenfeld, C., Hansen, M.R., Koller, H., J. Phys. Chem. C 2021, 125, 4869-4877. DOI: 10.1021/acs.jpcc.0c11379, öffnet eine externe URL in einem neuen Fenster
5. Disentangling Brønsted Acid Sites and Hydrogen-Bonded Silanol Groups in High-Silica Zeolite H-ZSM-5
Schroeder, C., Siozios, V., Hunger, M., Hansen, M.R., Koller, H., J. Phys. Chem. C 2020, 124, 23380-23386. DOI: 10.1021/acs.jpcc.0c06113, öffnet eine externe URL in einem neuen Fenster
4. A Stable Silanol Triad in the Zeolite Catalyst SSZ-70
Schroeder, C., Mück-Lichtenfeld, C., Xu, L., Grosso-Giordano, N.A., Okrut, A., Chen, C.-Y., Zones, S.I., Katz, A., Hansen, M.R., Koller, H., Angew. Chem. Int. Ed. 2020, 59, 10939-10943. DOI: 10.1002/anie.202001364, öffnet eine externe URL in einem neuen Fenster
3. Hydrogen Bond Formation of Brønsted Acid Sites in Zeolites
Schroeder, C., Siozios, V., Mück-Lichtenfeld, C., Hunger, M., Hansen, M.R., Koller, H., Chem. Mater. 2020, 32 1564-1574. DOI: 10.1021/acs.chemmater.9b04714, öffnet eine externe URL in einem neuen Fenster
2. Ultrastabilization of Zeolite Y Transforms Brønsted–Brønsted Acid Pairs into Brønsted–Lewis Acid Pairs
Schroeder, C., Hansen, M.R., Koller, H., Angew. Chem. Int. Ed. 2018, 57, 14281-14285. DOI: 10.1002/anie.201808395, öffnet eine externe URL in einem neuen Fenster
1. Outer-Sphere Control of Catalysis on Surfaces: A Comparative Study of Ti(IV) Single-Sites Grafted on Amorphous versus Crystalline Silicates for Alkene Epoxidation
Grosso-Giordano, N.A., Schroeder, C., Okrut, A., Solovyov, A., Schöttle, C., Chassé, W., Marinković, N., Koller, H., Zones, S.I., Katz, A., J. Am. Chem. Soc. 2018, 140, 4956-4960. DOI: 10.1021/jacs.7b11467, öffnet eine externe URL in einem neuen Fenster
1. Structural evolution after oxidative pretreatment and CO oxidation of Au nanoclusters with different ligand shell composition: a view on the Au core
Truttmann, V., Schrenk, F., Marini, C., Palma, M., Sanchez-Sanchez, M., Rameshan, C., Agostini. G., Barrabes, N., Phys. Chem. Chem. Phys 2023, Accepted Manuscript. DOI: 10.1039/D2CP04498F , öffnet eine externe URL in einem neuen Fenster
Coming Soon!
1. Dynamic behaviour of platinum and copper dopants in gold nanoclusters supported on ceria catalysts
Nicole Müller, Rareş Banu, Adea Loxha, Florian Schrenk, Lorenz Lindenthal, Christoph Rameshan, Ernst Pittenauer, Jordi Llorca, Janis Timoshenko, Carlo Marini, and Noelia Barrabés, Communications Chemistry 2023, 6, 277. DOI: 10.1038/s42004-023-01068-0 , öffnet eine externe URL in einem neuen Fenster