Publikationen
- Kutscha R., Tomin T., Birner-Gruenberger R., Bekiaris P. S., Klamt S., Pflügl S. Efficiency of acetate-based isopropanol synthesis in Escherichia coli W is controlled by ATP demand. Biotechnology for Biofuels and Bioproducts, 2024, 17(1), 110. https://doi.org/10.1186/s13068-024-02534-0.
- Sitara A., Hocq R., Horvath J., Pflügl S. Industrial biotechnology goes thermophilic: Thermoanaerobes as promising hosts in the circular carbon economy. Bioresource Technology, 2024, 408, 131164. https://doi.org/10.1016/j.biortech.2024.131164.
- Hocq R., Bottone S., Gautier A., Pflügl S. A fluorescent reporter system for anaerobic thermophiles. Frontiers in Bioengineering, 2023, 11. https://doi.org/10.3389/fbioe.2023.1226889
- Mainka T., Herwig C., Pflügl S. Optimized Operating Conditions for a Biological Treatment Process of Industrial Residual Process Brine Using a Halophilic Mixed Culture. Fermentation, 2022, 8(6), 246. https://doi.org/10.3390/fermentation8060246
- Mainka T., Herwig C., Pflügl S. Reducing Organic Load From Industrial Residual Process Brine With a Novel Halophilic Mixed Culture: Scale-Up and Long-Term Piloting of an Integrated Bioprocess. Frontiers in Bioengineering and Biotechnology, 2022, 10, 896576. https://www.frontiersin.org/articles/10.3389/fbioe.2022.896576/full
- Vees C. A., Herwig C., Pflügl S. Mixotrophic co-utilization of glucose and carbon monoxide boosts ethanol and butanol productivity of continuous Clostridium carboxidivorans cultures. Bioresource Technology, 2022, 353, 127138. https://doi.org/10.1016/j.biortech.2022.127138
- Neuendorf C. S., Vignolle G., Derntl C., Tomin T., Novak K., Mach R. L., Birner-Grünberger R., Pflügl S. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction. Metabolic Engineering, 2021, 68, pp. 68-85. https://doi.org/10.1016/j.ymben.2021.09.004
- Boecker S., Harder B.-J., Kutscha R., Pflügl S., Klamt S. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Microbial Cell Factories, 2021, 20(1). https://doi.org/10.1186/s12934-021-01554-x
- Mainka T., Weirathmüller D., Herwig C., Pflügl S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics. Journal of Industrial Microbiology and Biotechnology, 2021. https://doi.org/10.1093/jimb/kuab015
- Novak K., Neuendorf C. S., Kofler I., Kieberger N., Klamt S., Pflügl S. Blending industrial blast furnace gas with H2 enables Acetobacterium woodii to efficiently co-utilize CO, CO2 and H2. Bioresource Technology, 2021, 323, 124573, https://doi.org/10.1016/j.biortech.2020.124573
- Novak K., Kutscha R., Pflügl S. Microbial upgrading of acetate into 2,3-butanediol and acetoin by E. coli W. Biotechnology for Biofuels, 2020, 13(1), 177. https://doi.org/10.1186/s13068-020-01816-7
- Novak K., Baar J., Freitag P., Pflügl S. Metabolic engineering of Escherichia coli W for isobutanol production on chemically defined medium and cheese whey as alternative raw material. Journal of Industrial Microbiology and Biotechnology, 2020, 47(12), pp. 1117–1132. https://doi.org/10.1007/s10295-020-02319-y
- Kutscha R. and Pflügl S. Microbial upgrading of acetate into value-added products—examining microbial diversity, bioenergetic constraints and metabolic engineering approaches. International Journal of Molecular Sciences, 2020, 21(22), pp. 1–30, 8777. https://doi.org/10.3390/ijms21228777
- Vees C. A., Neuendorf C. S., Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. Journal of Industrial Microbiology and Biotechnology, 2020, 47(9-10), pp. 753–787. https://doi.org/10.1007/s10295-020-02296-2
- Erian A. M., Freitag P., Gibisch M., Pflügl S. High rate 2,3-butanediol production with Vibrio natriegens. Bioresource Technology Reports, 2020. https://doi.org/10.1016/j.biteb.2020.100408
- Vees C. A., Veiter C., Sax F., Herwig C., Pflügl S. A robust flow cytometry-based biomass monitoring tool enables rapid at-line characterization of S. cerevisiae physiology during continuous bioprocessing of spent sulfite liquor. Analytical and Bioanalytical Chemistry, 2020. https://doi.org/10.1007/s00216-020-02423-z
- Mainka T., Mahler N., Herwig C. Pflügl S. Soft Sensor-Based Monitoring and Efficient Control Strategies of Biomass Concentration for Continuous Cultures of Haloferax mediterranei and Their Application to an Industrial Production Chain. Microorganisms, 2019. https://doi.org/10.3390/microorganisms7120648
- Erian A. M., Gibisch M., Pflügl S. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis. Microbial Cell Factories, 2018. https://doi.org/10.1186/s12934-018-1038-0
- Novak K., Pflügl S. Towards biobased industry: Acetate as a promising feedstock to enhance the potential of microbial cell factories. FEMS Microbiology Letters, 2018. https://doi.org/10.1093/femsle/fny226
- Novak K., Flöckner L., Erian A. M., Freitag P., Herwig C., Pflügl S. Characterizing the effect of expression of an acetyl-CoA synthetase insensitive to acetylation on co-utilization of glucose and acetate in batch and continuous cultures of E. coli W. Microbial Cell Factories, 2018. https://doi.org/10.1186/s12934-018-0955-2
- Kamravamanesh D., Kovacs T., Pflügl S., Druzhinina I., Kroll P., Lackner M., Herwig C. Increased poly-B-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Mutant generation and Characterization. Bioresource Technology, 2018. https://doi.org/10.1016/j.biortech.2018.06.057
- Mahler N., Tschirren S., Pflügl S., Herwig C. Optimized bioreactor setup for scale-up studies of extreme halophilic cultures. Biochemical Engineering Journal, 2018. 130: p. 39-46. https://doi.org/10.1016/j.bej.2017.11.006
- Kamravamanesh D., Pflügl S., Nischkauer W., Limbeck A., Lackner M., Herwig C. Photosynthetic poly-β-hydroxybutyrate accumulation in unicellular cyanobacterium Synechocystis sp. PCC 6714. AMB Express, 2017, 7(1). https://doi.org/10.1186/s13568-017-0443-9
- Nocon J., Steiger M. G., Pfeffer M., Sohn S. B., Kim T. Y., Rußmayer H., Pflügl S., Haberhauer-Troyer C., Ortmayr K., Koellensperger G., Gasser G., Lee S. Y., Mattanovich D. Metabolic model-based prediction of engineering targets for increased production of heterologous proteins. New Biotechnology, 2014. https://doi.org/10.1016/j.nbt.2014.05.947
- Nocon J., Steiger M. G., Pfeffer M., Sohn S. B., Kim T. Y., Maurer M., Rußmayer H., Pflügl S., Ask, M., Haberhauer-Troyer C., Ortmayr K., Hann S., Koellensperger G., Gasser G., Lee S. Y., Mattanovich D. Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metabolic Engineering, 2014, 24, pp. 129-138. https://doi.org/10.1016/j.ymben.2014.05.011
- Dragosits M., Pflügl S., Kurz S., Razzazi-Fazelli E., Wilson I. B. H., Rendic D. Recombinant Aspergillus ß-galactosidases as a robust glycomic and biotechnological tool. Applied Microbiology and Biotechnology, 2014, 98 (8), pp. 3553-67. https://doi.org/10.1007/s00253-013-5192-3
- Pflügl S., Marx H., Mattanovich D., Sauer M. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresource Technology, 2014, 152, pp. 499-504. https://doi.org/10.1016/j.biortech.2013.11.041
- Pflügl S., Marx H., Mattanovich D., Sauer M. Genetic engineering of Lactobacillus diolivorans. FEMS Microbiology Letters, 2013, 344 (2), pp. 152-158. https://doi.org/10.1111/1574-6968.12168
- Pflügl S., Marx H., Mattanovich D., Sauer M. 1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresource Technology, 2012, 119, pp. 133-40. https://doi.org/10.1016/j.biortech.2012.05.121