The X-ray center houses numerous instruments for material characterization by X-ray diffraction methods of a wide variety of samples. We also provide space and utensils to prepare samples yourself.

Below is an overview of some of the equipment at the X-ray Center as well as the sample preparation room.

Our devices:

Scientist sitting next to single-crystal diffractometer and evaluates data on the computer.

© Klaus Ranger

Scientist places sample in single crystal diffractometer

© Klaus Ranger

Characteristics

  • Geometry: ¼ Euler cradle
  • Anode: Cu and Mo microfocus X-ray sources
  • Monochromatization: multilayer mirrors
  • Beam sizes: ∅ 0.2 mm (Cu); 0.2 mm (Mo).
  • Distance sample-detector (SD): 40-140 mm.
  • Sample movement: ¼ Euler cradle
  • Sample adjustment: video adjustment system
  • Detector: Dectris Eiger CdTe 1M

Non-ambient

  •     Oxford Cryostream 800 (90 - 400 K)
  •     Stoe Heatstream (400 - 1000 K)

Applications

  •     Structure elucidation of weakly scattering crystals
  •     Structure elucidation of complex structures (modulated, twinned)
  •     Diffuse scattering

Material diffractometer GADDS from Bruker Interior view

© Klaus Ranger

Scientists in front of X-ray diffraction device.

© Klaus Ranger

Characteristics

  •     Geometry: Θ/Θ- diffractometer; parallel beam
  •     Anode: Cu microfocus X-ray source
  •     Monochromatization: Montel mirror
  •     Beam sizes: 2x2 mm², ∅1, 0.5, 0.3, 0.08 mm
  •     distance anode-sample (AS): 100 - 300 mm
  •     Distance sample-detector (SD): 100 - 300 mm
  •     Sample movement: ¼ Euler cradle; xyz stage (load capacity 2 kg).
  •     Sample adjustment: video adjustment system with laser
  •     Detector: Vantec 2000 (angular range 2θ= 32°, ψ= 63° with SD= 220 mm)

Non-ambient

  •  Load frame (planned)

Applications

  • Qualitative/quantitative phase analyses (e.g. corrosion products, residual austenite analyses)
  • Stress analysis (bulk and thin film samples)
  • Texture analysis (bulk and thin film samples)
  • Microdiffraction (up to beam sizes > 80 μm)
  • "Reciprocal space mapping" thin films

Exterior view: Powder diffractometer from the front

© Klaus Ranger

Interior view of powder diffractometer: X-ray tube on the left, sample holder in the center and detector on the right.

© Klaus Ranger

Characteristics

  •     Geometry: Θ/Θ - diffractometer; Bragg-Brentano
  •     Anode: Cu - X-ray source
  •     Monochromatization: a) Ni filter; b) secondary monochromator graphite
  •     Beam sizes: variable beam apertures (primary/secondary automatic)
  •     distance anode-sample (AS): 240 mm
  •     distance sample-detector (SD): 240 mm
  •     Sample movement: spinner without sample environment
  •     Sample changer for 15 samples
  •     Detector: a) X'Celerator semiconductor detector (2.1°); b) alternatively proportional counter (0D) with graphite monochromator

no option for non-ambient measurements

Applications

  •     Qualitative/quantitative phase analyses under ambient conditions (e.g. routine measurements for synthesis control)
  •     Reflectance measurements/transmittance measurements

Exterior view: Powder diffractometer from the front

© Klaus Ranger

Interior view of powder diffractometer, X-ray tube on the left, sample holder in the center, and detector on the right.

© Klaus Ranger

Characteristics

  •     Geometry: Θ/Θ- diffractometer; Bragg-Brentano
  •     Anode: Cu -X-ray source
  •     Monochromatization: a) Ni filter; b) secondary monochromator graphite
  •     Beam sizes: variable beam apertures (primary/secondary automatic)
  •     distance anode-sample (AS): 240 mm
  •     distance sample-detector (SD): 240 mm
  •     Sample movement: spinner without sample environment; fixed for sample environment
  •     Detector: a) X' Celerator semiconductor detector (2.1°); b) Scintillation detector (0D)

Non-ambient

  •     Closed-cycle cryostat (11K > T < 310 K)
  •     Anton Paar HTK 1200 N (T < 1200°C); air, nitrogen atmosphere
  •     Anton Paar XRK 900 reaction chamber (P < 10bar; T < 900°C); gas atmospheres (Ar, H2, CO, CO2, mixtures)
  •     Anton Paar TTK450 chamber (100K > T < 470K)

Applications

  •     Qualitative/quantitative phase analysis of crystalline fractions
  •     Amorphous phase fractions
  •     Crystallite sizes
  •     Residual austenite analysis

under non-ambient conditions:

  •     Reflection measurements/transmission measurements
  •     Capillary measurements

Exterior view of material diffractometer from the front.

© Klaus Ranger

Interior view of material diffractometer: Fixation of the sample in the diffractometer, the sample are 2 fingers of a statue.

© Klaus Ranger

Characteristics

  •     Geometry: Θ/Θ - diffractometer; Bragg-Brentano (focusing mirror; Cu(Kα1,2)), parallel beam geometry (mirror; Cu(Kα1,2)), channel-cut monochromator (CuKα1), GID; capillary/reflectance and transmission geometry
  •     Anode: Cu/Mo/Ag - X-ray source
  •     Monochromatization: a) filter (Cu, Mo, Ag); b) mirror (parallel geometry; focusing for Cu anode)
  •     Beam sizes: variable beam apertures (primary/secondary automatic)
  •     distance anode-sample (AS): 240 mm
  •     Distance sample-detector (SD): 240 mm
  •     Sample movement: spinner without sample environment; fixed for sample environment
  •     Tilting stage for stress and texture measurements
  •     Setup for GID measurements on thin films
  •     Reflectometer attachment
  •     Detector: a) PIXCel 3D semiconductor detector; b) scintillation detector (0D) for Ag radiation

Non-ambient

  • Currently not foreseen

Applications

  •     Qualitative/quantitative phase analysis of crystalline components
  •     Amorphous phase fractions, crystallite sizes, etc.
  •     Stress/texture measurements
  •     Reflectometry measurements
  •     GID measurements on thin films
  •     Measurements for PD analysis

under ambient conditions:

  • Capillary/reflection and transmission geometry

Malvern Panalaytical, opens an external URL in a new window

APEX II single crystal diffractometer interior view

© Klaus Ranger

Evaluation of diffractometer data on screen

© Klaus Ranger

Characteristics

  •     Geometry: 4-circle with kappa geometry
  •     Anode: Mo X-ray source
  •     Monochromatization: graphite
  •     beam size: variable collimators, 0.4-0.8 mm
  •     distance sample-detector (SD): 36-180 mm
  •     2D CCD detector

Non-ambient

  •     Cooling up to 90 K and heating up to 450 K in dry nitrogen atmosphere

Applications

  •     Structure elucidation (organics, organometallics and inorganics).
  •     Determination of absolute configuration (elements ≥ S)
  •     Structure function relationships (e.g., nonlinear optical materials)
  •     Crystallographically challenging problems: stacking fault orders, twins, modulation
  •     Phase transitions (e.g., magnetic or ferroelectric transitions)

X-ray fluorescence spectrometer from the front

© Klaus Ranger

Close-up view of inserting a sample into the spectrometer.

© Klaus Ranger

Characteristics

X-ray tube SST-mAX

  • Anode: Rh standard

Goniometer

  • Type: θ/2θ decoupled with Direct Optical Position Sensing (DOPS)
  • Angular accuracy: 0.0025° θ and 2θ

Optical path

  • Primary collimators: 3 max.: 100, 150, 300, 550, 700 or 4000 μm
    Primary beamfilters 4 max.: One may be used as beam stop
    Crystals: 8 max.: LiF420, LiF220, LiF200, Ge111 (flat/curved), PE002 (flat/curved), InSb (flat/curved),TlAP coated, PX1, PX4, PX5, PX6, PX7, PX10
  • Detectors: Flow, scintillation, sealed Xe in tandem with flow counter as duplex counter (optional), Hi-Per Scint (optional)

Counting electronics

  • Type: Dual multi channel analyser with digital signal processor

Sample handling

  • Types: Solid, fused beads, filters, pressed/loose powders and liquids
  • Handling: All samples are fitted in sample holders during measurement. Liquids and loose powders in disposable (P2) liquid cells, which are fitted in liquid sample holders
  • Dimensions: 51.5 mm Ø x 40 mm height, maximum
  • Weight: Max. 400 g including sample holder
  • Sample changer: X-Y changer with priority position for 1 sample (detected) and 2 empty holders with capacity for 8 trays for 8 sample holders and 1 tray for 4 sample holders.
    Optional: High-capacity changer up to 209 uncupped samples of 32 mm or 140 uncupped samples of 40 mm diameter
  • Changer trays: for: 8 sample holders, 8 flex positions, 8 steel rings (Ø 51.5 mm), 21 samples (Ø 25 mm), 12 samples (Ø 32 mm), 10 samples (Ø 41 mm), or 4 sample holders (SPC/monitor tray)
  • Loading: Air lock with programmable pumping time, one or two position turret mechanism, sample-surface down, direct loading of unmounted samples in holder in loading position
  • Spinner: 0.5 rev/s

Applications

Wavelength dispersive X-ray fluorescence spectrometer for quantitative elemental analysis except Hydrogen, Lithium and Beryllium in solid state materials.

Overview

The Atomika 8030C spectrometer utilizes Total Reflection X-ray Fluorescence (TXRF) for qualitative and quantitative chemical analysis of liquid samples. Quantification is achieved by adding an internal standard of known concentration.

Sample Preparation & Measurement

  • Samples are pipetted onto quartz reflectors.
  • Automatic loading from sample magazines enables high-throughput analysis.

Excitation & Detection

  • Excitation Sources:
    • Mo-Kα, W-Lα, W-Lβ
    • Bremsstrahlung (32 and 35 keV) from a 2.5kW Mo-W X-ray tube
  • Monochromation: Achieved with a double multilayer monochromator.
  • Detection: Fluorescence signals are captured using a Si(Li) detector.

Enhanced Sensitivity

  • Helium atmosphere reduces scattering, enabling detection of Na, Mg, and Al.
  • High-energy bremsstrahlung photons allow measurement of high-Z elements via K-lines.
  • Detection limits reach the ppb – or pg range.

Overview & Design

  • Developed for macro-XRF scanning of areas up to A4 size (197mm × 310mm).
  • Designed for portable and flexible analysis of cultural heritage and technical samples.
  • Mounted on a breadboard for transportability outside the lab.

X-ray Source & Excitation System

  • End-window 4W air-cooled X-ray tube (AMPTEK Mini-X).
  • Rh or Ag anode, easily exchangeable.
  • Controlled via USB to PC for automated operation.

Detection & Imaging System

  • Peltier-cooled SDD detector (KETEK 150 mm²) for fluorescence detection.
  • Standard 45°-45° geometry between source, sample, and detector.
  • Integrated CCD camera provides a top-down view of the sample surface.
  • Two lasers for beamspot localization:
    • Automated height adjustment ensures precise alignment of the X-ray beamspot.
    • Corrects for curvature of the sample surface.
  • Additional laser prevents collisions with samples, using low-cost components.
  • Detection limit for Cu (500 ng sample, 40 kV, 100 µA, 100 s auf Kapton-Folie, extrapolated to 1000 s): 1,1 ng with a Sensitivity of: 0,305 cps/ng
  •  

Scanning & Motion Control

  • X-Y stage with stepper motors for automated scanning.
  • Software-controlled operation (developed in-house).
  • Collimators (1, 2, or 3 mm) enable adjustable spatial resolution.

Applications & Performance

  • Suitable for cultural heritage analysis and technical sample evaluation.

Overview & Objectives

  • Confocal micro-XRF (μXRF) enables 3D spatial analysis of major, minor, and trace elements.
  • Traditional polychromatic excitation causes quantification challenges, higher background noise, and scattered bremsstrahlung.
  • The new setup aims to:
    • Improve quantification accuracy.
    • Enhance peak-to-background ratios.
    • Maintain high spatial resolution.
    • Offer flexibility for different excitation energies and portability to other sources.

X-ray Source & Beam Configuration

  • Water-cooled fine-focus X-ray diffraction tube , 2 kW molybdenum tube
  • Produces a quasi-parallel, monochromatic beam for improved signal quality.
  • Current setup:

Confocal Setup & Detection System

  • Two polycapillary half-lenses:
    • One on the source side.
    • One on the detector side, where a 50 mm² silicon drift detector (SDD) is mounted.
  • Focal spot size: ∼15 μm for Mo-Kα.
  • Flexible design:
    • The second polycapillary can be replaced with a custom collimator for non-confocal μXRF measurements.

Performance & Detection Limits

  • Detection limits established using NIST standard reference materials (SRMs) 621 and 1412.
  • Selected element detection limits:
    • Non-confocal mode: As detection limit of 1 μg/g.
    • Confocal mode: As detection limit of 20 μg/g.
  • Demonstrated performance on technical and biological samples.

Key Advantages

  • Improved quantification due to monochromatic excitation.
  • Lower background noise and reduced bremsstrahlung scatter.
  • High spatial resolution (∼15 μm focus).
  • Flexible system for different excitation energies.
  • Portable design for easy transport to other X-ray sources.

Overview & Purpose

  • Most micro-XRF spectrometers operate in air, limiting the analysis of low-Z elements (Z ≤ 14).
  • This custom-designed spectrometer extends the analytical range down to Z ≥ 6 (carbon and above).
  • Vacuum operation eliminates absorption of exciting and fluorescent radiation.
  • Automated sample mapping controlled by custom software developed at the Atominstitut.

X-ray Source & Beam Focusing

  • Air-cooled, low-power X-ray tube (50W) with molybdenum anode and a 125 µm thin exit window.
  • Optional beam filter to reduce spectral background.
  • Polycapillary X-ray optics focuses the beam onto the sample, achieving a 31 µm FWHM focal spot for Mo-Kα radiation.

Detection & Sample Positioning

  • Si(Li) detector with ultra-thin window for detecting low-energy X-rays.
  • High-resolution CCD camera & optical microscope for precise measurement positioning.
  • Motorized XYZ sample stage for automated positioning and scanning.

3D Elemental Imaging via Confocal Geometry

  • Recently adapted for confocal geometry by adding a second polycapillary X-ray optics in front of the detector.
  • Enables 3D elemental imaging of light elements in the laboratory.
  • Fig. 9: Shows the new spectrometer setup.
  • Fig. 10: Displays the result of a 3D measurement of a test structure.

Key Advantages

  • Enhanced excitation & detection conditions for light element analysis.
  • Wide energy range excitation using Mo L-lines and K-lines.
  • Improved low-energy X-ray detection due to the ultra-thin detector window.
  • Vacuum operation eliminates air absorption of X-ray signals.
  • Automated scanning with dedicated software.
  • Tab. 1 shows the achieved detection limits

X-Ray tube

  • Tube: Panalytical long fine focus with chromium anode (PW2278/20)
  • Operation: Typically at 30kV and 30mA
  • Power: 1.9kW, Max Voltage: 60kV
  • Window: 300 µm beryllium
  • Mounting: Directly on optical table, shielded with aluminum casing in vacuum chamber.

Monochromator

  • Source: Repurposed from older ATOMIC TXRF system
  • Bragg Angle for CrKα: 1.412° (determined by scanning in another spectrometer)

Detector & Cooling System

  • Detector: Amptek Fast SDD with CMOS preamplifier
  • Crystal Area: 70 mm², collimated to 50 mm²
  • Window: Ultrathin Si₂N₃ with 43.9% transmission for carbon K-line fluorescence
  • Energy Resolution: 122-129 eV FWHM at 5.9 kV
  • Cooling: Maintained at 220 K (-53°C)
    • Cooling System: Copper plating with Adaptive ET-063-10-13 Peltier element
    • Temperature Control: STC-1000 switch to prevent condensation
  • Electron Trap: Copper collimator with two permanent magnets to reduce noise from Auger electrons (effective area: 38.48 mm²).

Miscellaneous

  • Alignment Aid: CCD camera inside the vacuum chamber for beam and sample positioning, with video feed to PC for easy alignment monitoring.
  • Vacuum Pump: Hanning electric pump to maintain a pressure of 0.6-0.7 mbar in the chamber.
  • Detection limits: LLD(C)= 4 ng

Vacuum Chamber & Setup

  • Entire system enclosed in a vacuum chamber (300 × 300 × 340 mm³)
  • Reduces primary X-ray scattering in air and minimizes absorption of low-energy fluorescence X-rays
  • Silicon (Si) fluorescence at 1.7 keV is used for normalization in quantification and dose determination

X-ray Source & Beam Conditioning

  • 3kW Mo-anode X-ray tube with a 0.04 × 12 mm² focal spot (long fine focus)
  • Monochromatized primary beam (17.44 keV, Mo-Kα) using a multilayer monochromator
  • Beam intensity monitoring via an ionization chamber

Detector & Data Processing

  • Silicon drift detector (SDD, Vortex, Radiant) with 50 mm² active area
  • Energy resolution: 140 eV at 5.9 keV (Mn-Kα) with 12 µs shaping time
  • Maximum count rate: 100 kcps

Sample Stage & Movements

  • 3 linear translation stages (25 mm travel range each)
  • 1 rotation stage for angle scans (±0.28 rad, min. increment 1.35 µrad)
  • Stage tilts around the beam axis to align the sample parallel to the beam

Measurement Parameters

  • X-ray source: 3kW Mo-tube LFF (operated at 50 kV / 40 mA and 50 kV / 55 mA)
  • Monochromator: Multilayer
  • Detector: Vortex 50 mm² SDD with integrated electronics
  • Measurement time: Variable (20 – 120 seconds per point)
  • Angular resolution: Variable (23 - 115 µrad)
  • Measurement conditions: Performed in air and vacuum (<1 mbar)

     

    A sketch of the prototype spectrometer is shown in Figure 1.

Overview

The Epsilon 5 from PANalytical is a commercial Energy Dispersive X-ray Fluorescence (EDXRF) spectrometer. It features:

  • Water-cooled X-ray tube with a Tungsten-Scandium anode
  • Liquid nitrogen-cooled Germanium detector

Excitation & Elemental Detection

  • generator: Up to 100 kV, 24 mA, 600 W
  • Wide element range: From magnesium (Mg) to uranium (U)
  • Secondary target excitation:
    • Fluorescent targets: Use characteristic radiation of the target element to excite the sample.
    • Barkla targets: Use scattered tube radiation; polarization in a 3D optical path reduces spectral background compared to a 2D setup.

Sample Handling & Measurement Conditions

  • Vacuum conditions for all measurements
  • Automatic sample changer
  • Compatible with pressed pellets and glass beads (up to 50 mm diameter)

Software & Data Analysis

  • Spectrum peak search and match routine
  • Quantification options:
    • Standard-based analysis
    • AutoQuantify software
    • Various matrix correction models for improved accuracy
  • Detection limits:
    • µg/g (ppm) range

[Translate to English:] Röntgenfluoreszenzspektrometer von vorne

© Klaus Ranger

[Translate to English:] Nahaufnahme beim Einsetzen einer Probe in das Spektrometer.

© Klaus Ranger

Charakteristika

Röntgenröhre SST-mAX

  • Anode: Rh-Standard

Goniometer

  • Typ: θ/2θ entkoppelt mit direkter optischer Positionserfassung (DOPS)
  • Winkelgenauigkeit: 0,0025° θ und 2θ

Optischer Pfad

  • Primäre Kollimatoren: 3 max.: 100, 150, 300, 550, 700 oder 4000 μm
  • Primäre Strahlfilter: max. 4: einer kann als Strahlblende verwendet werden
  • Kristalle: max. 8: LiF420, LiF220, LiF200, Ge111 (flach/gekrümmt), PE002 (flach/gekrümmt), InSb (flach/gekrümmt), TlAP beschichtet, PX1, PX4, PX5, PX6, PX7, PX10
  • Detektoren: Durchfluss, Szintillation, versiegeltes Xe im Tandem mit Durchflusszähler als Duplexzähler (optional), Hi-Per Scint (optional)

Zählerelektronik

  • Typ: Doppelter Mehrkanal-Analysator mit digitalem Signalprozessor

Handhabung von Proben

  • Arten: Feststoffe, Schmelzperlen, Filter, gepresste/lose Pulver und Flüssigkeiten
  • Handhabung: Alle Proben werden während der Messung in Probenhalter eingesetzt. Flüssigkeiten und lose Pulver in Einweg-Flüssigkeitsküvetten (P2), die in Flüssigkeitsprobenhalter eingesetzt werden
  • Abmessungen: 51,5 mm Ø x 40 mm Höhe, maximal
  • Gewicht: Max. 400 g einschließlich Probenhalter
  • Probenwechsler: X-Y-Wechsler mit Prioritätsposition für 1 Probe (erkannt) und 2 leere Halter mit Kapazität für 8 Tabletts für 8 Probenhalter und 1 Tablett für 4 Probenhalter.
  • Optional: Hochkapazitätswechsler für bis zu 209 unkupierte Proben von 32 mm oder 140 unkupierte Proben von 40 mm Durchmesser
  • Wechslertabletts: für: 8 Probenhalter, 8 Flexpositionen, 8 Stahlringe (Ø 51,5 mm), 21 Proben (Ø 25 mm), 12 Proben (Ø 32 mm), 10 Proben (Ø 41 mm) oder 4 Probenhalter (SPC/Überwachungstray)
  • Beladen: Luftschleuse mit programmierbarer Pumpzeit, ein- oder zweistufiger Revolvermechanismus, Probenfläche nach unten, direktes Laden von unmontierten Proben in Halter in Ladeposition
  • Drehvorrichtung: 0,5 Umdrehungen pro Sekunde

Anwendungen

Wellenlängendispersives Röntgenfluoreszenzspektrometer für die quantitative Analyse aller Elemente, ausgenommen Wasserstoff, Lithium und Beryllium in festen Proben.

Sample preparation:

Scientist prepares powder sample.

© Klaus Ranger

Scientist prepares powder sample.

© Klaus Ranger

Scientist prepares powder sample.

© Klaus Ranger

Scientist prepares powder sample.

© Klaus Ranger

Three prepared powder samples in sample holders.

© Klaus Ranger

Storage cabinet for dosimeters.

© Klaus Ranger

Storage box for utensils and chemicals on table.

© Klaus Ranger

Clock with mathematical symbols or formulas instead of numbers.

© Klaus Ranger