In unserem Forschungsbereich nutzen wir ultrakalte Atome und Moleküle für die Grundlagenforschung in der Quantenphysik sowie für die Realisierung neuartiger Quantentechnologien.

Dabei erforschen wir zum Beispiel dipolare Moleküle, um damit neue Formen von Quantenmaterie zu erzeugen, oder um Einblicke in die Grundlagen von Molekülkollisionen und chemischen Reaktionen zu gewinnen. Darüber hinaus untersuchen wir Moleküle, die Präzisionsmessungen für die Suche nach neuer Physik jenseits des Standardmodells ermöglichen. Außerdem entwickeln wir auch kompakte Experimente zur Manipulation einzelner Atome und Moleküle für technologische Anwendungen.

Mehr Information zu unserer Forschung finden Sie unter: www.coldmolecules.at, öffnet eine externe URL in einem neuen Fenster

News

Characteristics of quantum emitters in hexagonal boron nitride suitable for integration with nanophotonic platforms

Logo

Single photon emitters in two-dimensional (2D) hexagonal boron nitride (hBN) are promising solid-state quantum emitters for photonic applications and quantum networks. Despite their favorable properties, it has so far remained elusive to determine the origin of these emitters. We focus on two different kinds of hBN samples that particularly lend themselves for integration with nanophotonic devices, multilayer nanoflakes produced by liquid phase exfoliation (LPE) and a layer engineered sample from hBN grown by chemical vapour deposition (CVD). We investigate their inherent defects and fit their emission properties to computationally simulated optical properties of likely carbon-related defects. Thereby we are able to narrow down the origin of emitters found in these samples and find that the C2CB defect fits our spectral data best. In addition, we demonstrate a scalable way of coupling LPE hBN to optical nanofibers that are directly connected to optical fibers. Our work brings us one step closer to specifying the origin of hBN's promising quantum emitters and sheds more light onto the characteristics of emitters in samples that are particularly suited for integration with nanophotonics. This knowledge will prove invaluable for novel nanophotonic platforms and may contribute towards the employment of hBN for future quantum technologies.

arXiv:2210.11099, öffnet eine externe URL in einem neuen Fenster

Goto publications...