Einige Arbeiten stehen im PostScript- oder PDF-Format zum Download bereit.

Bücher

  1. A. Jüngel, L. Chen, and L. Desvillettes (eds.). Advances in Reaction-Cross-Diffusion Systems. Special Issue of Nonlinear Analysis, volume 159, 2017.
  2. A. Jüngel. Entropy Methods for Diffusive Partial Differential Equations. BCAM Springer Briefs, 2016.
  3. A. Jüngel. Transport Equations for Semiconductors. Lecture Notes in Physics No. 773. Springer, Berlin, 2009.
  4. A. Jüngel and H. Zachmann. Mathematik für Chemiker. Wiley-VCH, Weinheim, 2007 (6th edition), 2014 (7th edition).
  5. A. Jüngel, R. Manasevich, P. Markowich, and H. Shahgholian (eds.). Nonlinear Differential Equation Models. Proceedings of the "Vienna Workshop of Nonlinear Models and Analysis", Springer, Wien, 2004.
  6. M. Günther and A. Jüngel. Finanzderivate mit MATLAB. Mathematische Modellierung und numerische Simulation. Vieweg, Wiesbaden, 2003 (first edition), 2010 (second edition).
  7. A. Jüngel. Quasi-hydrodynamic semiconductor equations. Progress in Nonlinear Differential Equations, Birkhäuser, Basel, 2001.

Buchkapitel und Reviews

  1. A. Jüngel and L. Trussardi. Modeling of herding and wealth distribution in large markets. In: M. Ehrhardt, M. Günther, and J. ter Maten (eds.). Novel Methods in Computational Finance. Mathematics in Industry, Vol. 25, pp. 17-29. Springer, Cham, 2017.
  2. A. Jüngel. Semiconductor device problems. In: B. Engquist (ed.), Encyclopedia of Applied and Computational Mathematics, pp. 1317-1321, Springer, Berlin, 2015.
  3. A. Jüngel. Dissipative quantum fluid models. Revista Mat. Univ. Parma 3 (2012), 217-290.
  4. A. Jüngel. Diffusive and nondiffusive population models. In: G. Naldi, L. Pareschi, and G. Toscani (eds.). Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, pp. 397-425, Birkhäuser, Basel, 2010.
  5. A. Jüngel. Energy transport in semiconductor devices. Math. Computer Modelling Dynam. Sys. 16 (2010), 1-22.
  6. A. Jüngel and D. Matthes. Entropiemethoden für nichtlineare partielle Differentialgleichungen. Internat. Math. Nachrichten 209 (2008), 1-14.
  7. M. Brunk and A. Jüngel. Numerical simulation of thermal effects in coupled optoelectronic device-circuit systems. In: W. Jäger and H.-J. Krebs, Mathematics - Key Technology for the Future, pp. 29-38, Springer, Berlin, 2008.
  8. A. Arnold and A. Jüngel. Multi-scale modeling of quantum semiconductor devices In: A. Mielke (ed.), Analysis, Modeling and Simulation of Multiscale Problems, pp. 331-363, Springer, Berlin, 2006.

Preprints

  1. M. Herda, A. Jüngel, and S. Portisch. Charge transport systems with Fermi-Dirac statistics for memristors. Submitted for publication, 2024.
  2. L. Taghizadeh and A. Jüngel. Bayesian inversion for the identification of the doping profile in unipolar semiconductor devices. Submitted for publication, 2024.
  3. A. Jüngel, M. Vetter, and A. Zurek. A nonlocal regularization of a generalized Busenberg-Travis cross-diffusion system. Submitted for publication, 2024.
  4. S. Gómez, A. Jüngel, and I. Perugia. Structure-preserving Local Discontinuous Galerkin method for nonlinear cross-diffusion systems. Submitted for publication, 2024.
  5. L. Chen, A. Holzinger, and A. Jüngel. Fluctuations around the mean-field limit for attractive Riesz potentials in the moderate regime. Submitted for publication, 2024.
  6. A. Jüngel and K. Schuh. Long-time behavior for discretization schemes of Fokker--Planck equations via couplings. Submitted for publication, 2024.
  7. K. Hopf and A. Jüngel. Convergence of a finite volume scheme and dissipative measure-valued-strong stability for a hyperbolic-parabolic cross-diffusion system. Submitted for publication, 2023.

Wissenschaftliche Journale

  1. A. Jüngel and M. Vetter. Degenerate drift-diffusion systems for memristors. To appear in SIAM J. Math. Anal., 2024.
  2. A. Jüngel and B. Wang. Structure-preserving semi-convex-splitting numerical scheme for a Cahn-Hilliard cross-diffusion system in lymphangiogenesis. To appear in Math. Mod. Meth. Appl. Sci., 2024.
  3. A. Jüngel and Y. Li. Existence of global weak solutions to a Cahn-Hilliard cross-diffusion system in lymphangiogenesis. Discrete Contin. Dyn. Sys. 45 (2024), 286-308.
  4. J. Hu, A. Jüngel, and N. Zamponi. Global weak solutions for a nonlocal multispecies Fokker-Planck-Landau system. Kinet. Relat. Models 17 (2024), 939-970.
  5. A. Jüngel, S. Portisch, and A. Zurek. A convergent finite-volume scheme for nonlocal cross-diffusion systems for multi-species populations. ESAIM: Math. Model. Numer. Anal. 58 (2024), 759-792.
  6. A. Jüngel and M. Vetter. A convergent entropy-dissipating BDF2 finite-volume scheme for a population cross-diffusion system. Comput. Meth. Appl. Math. 24 (2024), 725-746.
  7. X. Huo, A. Jüngel, and A. Tzavaras. Existence and weak-strong uniqueness for Maxwell-Stefan-Cahn-Hilliard systems. Ann. Inst. H. Poincaré Anal. Non Lin. 41 (2024), 797--852.
  8. S. Georgiadis and A. Jüngel. Global existence of weak solutions and weak-strong uniqueness for nonisothermal Maxwell-Stefan systems. Nonlinearity 37 (2024), no. 075016, 32 pages.
  9. X. Chen, A. Jüngel, X. Lin, and L. Liu. Large-time asymptotics for degenerate cross-diffusion population models with volume filling. J. Differ. Eqs. 386 (2024), 1-15.
  10. A. Jüngel and A. Massimini. Analysis of a Poisson-Nernst-Planck-Fermi system for charge transport in ion channels. J. Differ. Eqs. 395 (2024), 38-68.
  11. M. Fellner and A. Jüngel. Existence analysis of a cross-diffusion system with nonlinear Robin boundary conditions for vesicle transport in neurites. Nonlin. Anal. 241 (2024), 113494, 15 pages.
  12. X. Huo and A. Jüngel. Global existence and weak-strong uniqueness for chemotaxis compressible Navier-Stokes equations modeling vascular network formation. J. Math. Fluid Mech. 26 (2024), no. 11, 19 pages.
  13. Braukhoff, F. Huber, and A. Jüngel. Global martingale solutions for stochastic Shigesada-Kawasaki-Teramoto population models. Stoch. Partial Differ. Eqs.: Anal. Comput. 12 (2024), 525-575.
  14. C. Jourdana, A. Jüngel, and N. Zamponi. Three-species drift-diffusion models for memristors. Math. Models Meth. Appl. Sci. 33 (2023), 2113-2156.
  15. M. Fellner and A. Jüngel. A coupled stochastic differential reaction-diffusion system for angiogenesis. J. Comput. Appl. Math. 438 (2023), 115570, 18 pages.
  16. P.-E. Druet, K. Hopf, and A. Jüngel. Hyperbolic-parabolic normal form and local classical solutions for cross-diffusion systems with incomplete diffusion. Commun. Partial Differ. Eqs. 48 (2023), 863-894.
  17. C. Helmer and A. Jüngel. Existence analysis for a reaction-diffusion Cahn-Hilliard-type system with degenerate mobility and singular potential modeling biofilm growth. Discrete Contin. Dyn. Sys. 43 (2023), 3839-3861.
  18. X. Chen, A. Jüngel, and L. Wang. The Shigesada-Kawasaki-Teramoto cross-diffusion system beyond detailed balance. J. Differ. Eqs. 360 (2023), 260-286.
  19. A. Jüngel and A. Zurek. A discrete boundedness-by-entropy method for finite-volume approximations of cross-diffusion systems. IMA J. Numer. Anal. 43 (2023), 560-589.
  20. C. Helmer, A. Jüngel, and A. Zurek. Analysis of a finite-volume scheme for a single-species biofilm model. Appl. Numer. Math. 185 (2023), 386-405.
  21. G. Di Fratta, A. Jüngel, D. Praetorius, and V. Slastikov. The spin-diffusion model for micromagnetics in the limit of long times. J. Differ. Eqs. 343 (2023), 467-494.
  22. L. Chen, A. Holzinger, A. Jüngel, and N. Zamponi. Analysis and mean-field derivation of a porous-medium equation with fractional diffusion. Commun. Partial Diff. Eqs. 47 (2022), 2217-2269.
  23. M. Bulicek, A. Jüngel, M. Pokorny, and N. Zamponi. Existence analysis of a stationary compressible fluid model for heat-conducting and chemically reacting mixtures. J. Math. Phys. 63 (2022), 051501, 48 pages.
  24. X. Huo, A. Jüngel, and A. Tzavaras. Weak-strong uniqueness for Maxwell-Stefan systems. SIAM J. Math. Anal. 54 (2022), 3215-3252.
  25. E. Daus, M. Fellner, and A. Jüngel. Random-batch method for multi-species stochastic interacting particle systems. J. Comput. Phys. 463 (2022), 111220.
  26. L. Barletti, P. Holzinger, and A. Jüngel. Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic Relat. Models 15 (2022), 257-282.
  27. A. Jüngel and N. Zamponi. Analysis of a fractional cross-diffusion system for multi-species populations. J. Diff. Eqs. 322 (2022), 237-267.
  28. A. Jüngel, S. Portisch, and A. Zurek. Nonlocal cross-diffusion systems for multi-species populations and networks. Nonlin. Anal. 219 (2022), no. 112800, 26 pages.
  29. A. Jüngel, U. Stefanelli, and L. Trussardi. A minimizing-movements approach to GENERIC systems. Math. Engineering 4 (2022), 1-18.
  30. L. Chen, E. Daus, A. Holzinger, and A. Jüngel. Rigorous derivation of population cross-diffusion systems from moderately interacting particle systems. J. Nonlin. Sci. 31 (2021), no. 94, 38 pages.
  31. A. Jüngel and A. Zurek. A convergent structure-preserving finite-volume scheme for the Shigesada-Kawasaki-Teramoto population system. SIAM J. Numer. Anal. 59 (2021), 2286-2309.
  32. E. Daus, A. Jüngel, and A. Zurek. Convergence of a finite-volume scheme for a degenerate-singular cross-diffusion system for biofilms. IMA J. Numer. Anal. 41 (2021), 935-973.
  33. G. Favre, A. Jüngel, C. Schmeiser, and N. Zamponi. Existence analysis of a degenerate diffusion system for heat-conducting fluids. Nonlin. Diff. Eqs. Appl. NoDEA 28 (2021), no. 41, 28 pages.
  34. G. Dhariwal, F. Huber, A. Jüngel, C. Kuehn, and A. Neamtu. Global martingale solutions for quasilinear SPDEs via the boundedness-by-entropy method. Ann. Inst. H. Poincare, Prob. Stat. 57 (2021), 577-602.
  35. M. Braukhoff and A. Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete Cont. Dyn. Sys. B 26 (2021), 3335-3355.
  36. X. Chen and A. Jüngel. When do cross-diffusion systems have an entropy structure? J. Diff. Eqs. 278 (2021), 60-72.
  37. C. Helmer and A. Jüngel. Analysis of Maxwell-Stefan systems for heat conducting fluid mixtures. Nonlin. Anal. Real World Appl. 59 (2021), no. 103263.
  38. F. Bonizzoni, M. Braukhoff, A. Jüngel, and I. Perugia. A structure-preserving discontinuous Galerkin scheme for the Fisher-KPP equation. Numer. Math. 146 (2020), 119-157.
  39. P.-E. Druet and A. Jüngel. Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient. SIAM J. Math. Anal. 52 (2020), 2179-2197.
  40. M. Braukhoff, X. Chen, and A. Jüngel. Corrigendum: Cross diffusion preventing blow up in the two-dimensional Keller-Segel model. SIAM J. Math. Anal. 52 (2020), 2198-2200.
  41. A. Jüngel, O. Leingang, and S. Wang. Vanishing cross-diffusion limit in a Keller-Segel system with additional cross-diffusion. Nonlin. Anal. TMA 192 (2020), no. 111698, 21 pages.
  42. E. Daus, A. Jüngel, and B. Q. Tang. Exponential time decay of solutions to reaction-cross-diffusion systems of Maxwell-Stefan type. Archive Rat. Mech. Anal. 235 (2020), 1059-1104.
  43. E. Daus, L. Desvillettes, and A. Jüngel. Cross-diffusion systems and fast-reaction limits. Bull. Sci. Math. 159 (2020), 102824, 25 pages.
  44. P. Holzinger and A. Jüngel. Large-time asymptotics for a matrix spin drift-diffusion model. J. Math. Anal. Appl. 486 (2020), 123887, 20 pages.
  45. A. Jüngel, U. Stefanelli, and L. Trussardi. Two structure-preserving time discretizations for gradient flows. Appl. Math. Optim. 80 (2019), 733-764.
  46. J. A. Carrillo, A. Jüngel and M. Santos. Displacement convexity for the entropy in semidiscrete nonlinear Fokker-Planck equations. Europ. J. Appl. Math. 30 (2019), 1103-1122.
  47. G. Dhariwal, A. Jüngel, and N. Zamponi. Global martingale solutions for a stochastic population cross-diffusion system. Stoch. Process. Appl. 129 (2019), 3792-3820.
  48. X. Chen and A. Jüngel. Global renormalized solutions to reaction-cross-diffusion systems. J. Diff. Eqs. 267 (2019), 5901-5937.
  49. X. Huo, A. Jüngel, and A. Tzavaras. High-friction limits of Euler flows for multicomponent systems. Nonlinearity 32 (2019), 2875-2913.
  50. A. Jüngel and M. Ptashnyk. Homogenization of degenerate cross-diffusion systems. J. Diff. Eqs. 267 (2019), 5543-5575.
  51. A. Jüngel and O. Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete Contin. Dyn. Sys. B 24 (2019), 4755-4782.
  52. L. Chen, E. Daus, and A. Jüngel. Rigorous mean-field limit and cross diffusion. Z. Angew. Math. Phys. 70 (2019), no. 122, 21 pages.
  53. A. Jüngel and O. Leingang. Convergence of an implicit Euler Galerkin scheme for Poisson-Maxwell-Stefan systems. Adv Comput. Math. 45 (2019), 1469-1498.
  54. A. Gerstenmayer and A. Jüngel. Comparison of a finite-element and finite-volume scheme for a degenerate cross-diffusion system for ion transport. Comput. Appl. Math. 35 (2019), 108, 23 pages.
  55. C. Cances, C. Chainais-Hillairet, A. Gerstenmayer, and A. Jüngel. Finite-volume scheme for a degenerate cross-diffusion model motivated from ion transport. Numer. Meth. Partial Diff. Eqs. 35 (2019), 545-575.
  56. X. Chen and A. Jüngel. Weak-strong uniqueness of renormalized solutions to reaction-cross-diffusion systems. Math. Models Meth. Appl. Sci. 29 (2019), 237-270.
  57. F. Achleitner, A. Jüngel, and M. Yamamoto. Large-time asymptotics of a fractional drift-diffusion-Poisson system via the entropy method. Nonlin. Anal. 179 (2019), 270-293.
  58. A. Gerstenmayer and A. Jüngel. Analysis of a degenerate parabolic cross-diffusion system for ion transport. J. Math. Anal. Appl. 461 (2018), 523-543.
  59. X. Chen and A. Jüngel. A note on the uniqueness of weak solutions to a class of cross-diffusion systems. J. Evol. Eqs. 18 (2018), 805-820.
  60. A. Jüngel, J. Mikyška, and N. Zamponi. Existence analysis of a single-phase flow mixture model with van der Waals pressure. SIAM J. Math. Anal. 50 (2018), 1367-1395.
  61. M. Braukhoff and A. Jüngel. Energy-transport systems for optical lattices: derivation, analysis, simulation. Math. Models Meth. Appl. Sci. 28 (2018), 579-614.
  62. X. Chen, E. Daus, and A. Jüngel. Global existence analysis of cross-diffusion population systems for multiple species. Archive Rat. Mech. Anal. 227 (2018), 715-747.
  63. A. Jüngel and W. Yue. Discrete Beckner inequalities via the Bochner-Bakry-Emery approach for Markov chains. Ann. Appl. Prob. 27 (2017), 2238-2269.
  64. A. Jüngel and S. Schuchnigg. A discrete Bakry-Emery method and its application to the porous-medium equation Discr. Cont. Dyn. Sys. 37 (2017), 5541-5560.
  65. A. Jüngel, P. Shpartko, and N. Zamponi. Energy-transport models for spin transport in ferromagnetic semiconductors. Commun. Math. Sci. 15 (2017), 1527-1563.
  66. A. Jüngel, C. Kuehn, and L. Trussardi. A meeting point of entropy and bifurcations in cross-diffusion herding. Europ. J. Appl. Math. 28 (2017), 317-356.
  67. A. Jüngel and N. Zamponi. A cross-diffusion system derived from a Fokker-Planck equation with partial averaging. Z. Angew. Math. Phys. 68 (2017), 28, 15 pages.
  68. A. Jüngel and S. Schuchnigg. Entropy-dissipating semi-discrete Runge-Kutta schemes for nonlinear diffusion equations. Commun. Math. Sci. 15 (2017), 27-53.
  69. N. Zamponi and A. Jüngel. Analysis of degenerate cross-diffusion population models with volume filling. Ann. Inst. H. Poincare AN 34 (2017), 1-29. (Erratum: 34 (2017), 789-792.)
  70. B. Düring, A. Jüngel, and L. Trussardi. A kinetic equation for economic value estimation with irrationality and herding. Kinetic Related Models 10 (2017), 239-261.
  71. N. Zamponi and A. Jüngel. Analysis of a coupled spin drift-diffusion Maxwell-Landau-Lifshitz system. J. Diff. Eqs. 260 (2016), 6828-6854.
  72. K. Rupp, J. Weinbub, A. Jüngel, and T. Grasser. Pipelined iterative solvers with kernel fusion for Graphics Processing Units. Trans Math. Software 43 (2016), Article 11, 27 pages.
  73. K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser, A. Jüngel, and S. Selberherr. ViennaCL - Linear algebra library for multi- and many-core architectures. SIAM J. Sci. Comput. 38 (2016), S412-S439.
  74. K. Rupp, C. Jungemann, S.-M. Hong, M. Bina, T. Grasser, and A. Jüngel. A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation. J. Comput. Electr. 15 (2016), 939-958.
  75. A. Jüngel and N. Zamponi. Qualitative behavior of solutions to cross-diffusion systems from population dynamics. J. Math. Anal. Appl. 440 (2016), 794-809.
  76. C. Chainais-Hillairet, A. Jüngel, and P. Shpartko. A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors. Numer. Meth. Part. Diff. Eqs., 32 (2016), 819-846.
  77. E. Daus, A. Jüngel, C. Mouhot, and N. Zamponi. Hypocoercivity for a linearized multi-species Boltzmann system. SIAM J. Math. Anal. 48 (2016), 538-568.
  78. C. Chainais-Hillairet, A. Jüngel, and S. Schuchnigg. Entropy-dissipative discretization of nonlinear diffusion equations and discrete Beckner inequalities. Math. Model. Numer. Anal. 50 (2016), 135-162.
  79. X. Chen and A. Jüngel. Analysis of an incompressible Navier-Stokes-Maxwell-Stefan system. Commun. Math. Phys. 340 (2015), 471-497.
  80. A. Jüngel and M. Winkler. A degenerate fourth-order parabolic equation modeling Bose-Einstein condensation. Part II: Finite-time blow-up. Commun. Part Diff. Eqs. 40 (2015), 1748-1786.
  81. A. Jüngel and M. Winkler. A degenerate fourth-order parabolic equation modeling Bose-Einstein condensation. Part I: Local existence of solutions. Arch. Rat. Mech. Anal. 217 (2015), 935-973.
  82. A. Jüngel and J.-P. Milisic. Entropy dissipative one-leg multistep time approximations of nonlinear diffusive equations. Numer. Meth. Part. Diff. Eqs. 31 (2015), 1119-1149.
  83. A. Jüngel. The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28 (2015), 1963-2001.
  84. N. Zamponi and A. Jüngel. Global existence analysis for degenerate energy-transport models for semiconductors. J. Diff. Eqs. 258 (2015), 2339-2363.
  85. A. Jüngel, C. Negulescu, and P. Shpartko. Bounded weak solutions to a matrix drift-diffusion model for spin-coherent electron transport in semiconductors. Math. Models Meth. Appl. Sci. 25 (2015), 929-958.
  86. X. Chen, A. Jüngel, and J.-G. Liu. A note on Aubin-Lions-Dubinskii lemmas. Acta Appl. Math. 133 (2014). 33-43.
  87. J.-F. Mennemann and A. Jüngel. Perfectly Matched Layers versus discrete transparent boundary conditions in quantum device simulations. J. Comput. Phys. 275 (2014), 1-24.
  88. A. Jüngel, C.-K. Lin, and K.-C. Wu. An asymptotic limit of a Navier-Stokes system with capillary effects. Commun. Math. Phys. 329 (2014), 724-744.
  89. M. Bukal, E. Emmrich, and A. Jüngel. Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation. Numer. Math. 127 (2014), 365-396.
  90. M. Bessemoulin-Chatard and A. Jüngel. A finite volume scheme for a Keller-Segel model with additional cross-diffusion. IMA J. Numer. Anal. 34 (2014), 96-122.
  91. P. Fuchs, A. Jüngel and M. von Renesse. On the Lagrangian structure of quantum fluid models. Discrete Contin. Dynam. Sys. A 34 (2014), 1375-1396.
  92. A. Jüngel and I. Stelzer. Existence analysis of Maxwell-Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45 (2013), 2421-2440.
  93. B. Schörkhuber, T. Meurer, and, A. Jüngel. Flatness of semilinear parabolic PDEs - a generalized Cauchy-Kowaleski approach. IEEE Trans. Autom. Control 58 (2013), 2277-2291.
  94. A. Jüngel, R. Pinnau, and E. Röhrig. Existence analysis for a simplified energy-transport model for semiconductors. Math. Meth. Appl. Sci. 36 (2013), 1701-1712.
  95. N. Zamponi and A. Jüngel. Two spinorial drift-diffusion models for quantum electron transport in graphene. Commun. Math. Sci. 11 (2013), 927-950.
  96. A. Jüngel and R.-M. Weishäupl. Blow-up in two-component nonlinear Schrödinger systems with an external deriven field. Math. Models Meth. Appl. Sci. 23 (2013), 1699-1727.
  97. M. Bukal, A. Jüngel, and D. Matthes. A multidimensional nonlinear sixth-order quantum diffusion equation. Ann. Inst. H. Poincaré Anal. non linéaire 30 (2013), 337-365.
  98. J.-F. Mennemann, A. Jüngel, and H. Kosina. Transient Schrödinger-Poisson simulations of a high-frequency resonant tunneling diode oscillator. J. Comput. Phys. 239 (2013), 187-205.
  99. J. A. Carrillo, S. Hittmeir, and A. Jüngel. Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model. Math. Models Meth. Appl. Sci. 22 (2012), 1250041, 35 pages.
  100. A. Jüngel and P. Kristöfel. Lyapunov functionals, weak sequential stability, and uniqueness analysis for energy-transport systems. Ann. Univ. Ferrara 58 (2012), 89-100.
  101. A. Jüngel and I. Stelzer. Entropy structure of a cross-diffusion tumor-growth model. Math. Models Meth. Appl. Sci. 22 (2012), 1250009, 26 pages.
  102. M. Dreher and A. Jüngel. Compact families of piecewise constant functions in L^p(0,T;B). Nonlin. Anal. 75 (2012), 3072-3077.
  103. A. Jüngel, J. L. Lopez, and J. Montejo-Gamez. A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach. J. Stat. Phys. 145 (2011), 1661-1673.
  104. L. Chen, X. Chen, and A. Jüngel. Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinetic Related Models 4 (2011), 1049-1062.
  105. A. Jüngel and J.-P. Milisic. Full compressible Navier-Stokes equations for quantum fluids: derivation and numerical solution. Kinetic Related Models 4 (2011), 785-807.
  106. A. Jüngel, S. Krause, and P. Pietra. Diffusive semiconductor moment equations using Fermi-Dirac statistics. Z. Angew. Math. Phys. 62 (2011), 623-639.
  107. C. Chainais-Hillairet, M. Gisclon, and A. Jüngel. A finite-volume scheme for the multidimensional quantum drift-diffusion model for semiconductors. Numer. Meth. Part. Differ. Eqs. 27 (2011), 1483-1510.
  108. M. Brunk and A. Jüngel. Self-heating in a coupled thermo-electric circuit-device model. J. Comput. Electr. 10 (2011), 163-178.
  109. S. Hittmeir and A. Jüngel. Cross diffusion preventing blow up in the two-dimensional Keller-Segel model. SIAM J. Math. Anal. 43 (2011), 997-1022.
  110. A. Jüngel. Effective velocity in Navier-Stokes equations with third-order derivatives Nonlin. Anal. 74 (2011), 2813-2818.
  111. A. Jüngel, R. Pinnau, and E. Röhrig. Analysis of a bipolar energy-transport model for a metal-oxide-semiconductor diode. J. Math. Anal. Appl. 378 (2011), 764-774.
  112. D. Matthes, A. Jüngel, and G. Toscani. Convex Sobolev inequalities derived from entropy dissipation. Arch. Rat. Mech. Anal. 199 (2011), 563-596.
  113. A. Jüngel and J.-P. Milisic. A simplified quantum energy-transport model for semiconductors. Nonlin. Anal.: Real-World Appl. 12 (2011), 1033-1046.
  114. M. Bukal, A. Jüngel, and D. Matthes. Entropies for radially symmetric higher-order nonlinear diffusion equations. Commun. Math. Sci. 9 (2011), 353-382.
  115. A. Jüngel and J.F. Mennemann. Time-dependent simulations of quantum waveguides using a time-splitting spectral method. Math. Computers Simul. 81 (2010), 883-898.
  116. K. Rupp, A. Jüngel, and T. Grasser. Matrix compression for spherical harmonics expansions of the Boltzmann transport equation for semiconductors. J. Comput Phys. 229 (2010), 8750-8765.
  117. A. Jüngel. Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J. Math. Anal. 42 (2010), 1025-1045.
  118. G. Ali, L. Chen, A. Jüngel, and Y.-J. Peng. The zero-electron-mass limit in the hydrodynamic model for plasmas. Nonlin. Anal. 72 (2010), 4415-4427.
  119. K. Aoki, A. Jüngel, and P. Markowich. Small velocity and finite temperature variations in kinetic relaxation models. Kinetic Related Models 3 (2010), 1-15.
  120. I. Gamba, A. Jüngel and A. Vasseur. Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations. J. Diff. Eqs. 247 (2009), 3117-3135.
  121. A. Jüngel and J.-P. Milisic. A sixth-order nonlinear parabolic equation for quantum systems. SIAM J. Math. Anal. 41 (2009), 1472-1490.
  122. A. Jüngel and I. Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete Cont. Dyn. Sys. B 12 (2009), 783-796.
  123. S. Gadau and A. Jüngel. A three-dimensional mixed finite-element approximation of the semiconductor energy-transport equations. SIAM J. Sci. Comput. 31 (2008), 1120-1140.
  124. M. Brunk and A. Jüngel. Simulation of thermal effects in optoelectronic devices using coupled energy-transport and circuit models. Math. Models Meth. Appl. Sci. 18 (2008), 1-26.
  125. B. Düring, A. Jüngel and S. Volkwein. A sequential quadratic programming method for volatility estimation in option pricing. J. Optim. Theory Appl. 139 (2008), 515-540.
  126. J. A. Carrillo, M. P. Gualdani, and A. Jüngel. Convergence of an entropic semi-discretization for nonlinear Fokker-Planck equations in R^d Publicacions Matematiques 52 (2008), 413-433.
  127. A. Jüngel and D. Matthes. The Derrida-Lebowitz-Speer-Spohn equation: existence, non-uniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39 (2008), 1996-2015.
  128. M. Brunk and A. Jüngel. Numerical coupling of electric circuit equations and energy-transport models for semiconductors. SIAM J. Sci. Comput. 30 (2008), 873-894.
  129. P. Amster, A. Jüngel, and D. Matthes. Non-homogeneous boundary conditions for a fourth-order diffusion equation. C. R. Acad. Sci. Paris, Ser. I 346 (2008), 143-148.
  130. S. Taguchi and A. Jüngel. A two-surface problem of the electron flow in a semiconductor on the basis of kinetic theory. J. Stat. Phys. 130 (2007), 313-342.
  131. S. Krause, A. Jüngel, and P. Pietra. A hierarchy of diffusive higher-order moment equations for semiconductors. SIAM J. Appl. Math. 68 (2007), 171-198.
  132. A. Jüngel and I. Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete Cont. Dyn. Sys. B 8 (2007), 861-877.
  133. A. Jüngel and I. Violet. The quasineutral limit in the quantum drift-diffusion equations. Asympt. Anal. 53 (2007), 139-157.
  134. A. Jüngel and J.-P. Milisic. Physical and numerical viscosity for quantum hydrodynamics. Commun. Math. Sci. 5 (2007), 447-471.
  135. L. Chen and A. Jüngel. Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering. Commun. Part. Diff. Eqs. 32 (2007), 127-148.
  136. A. Jüngel, D. Matthes and J.P. Milisic. Derivation of new quantum hydrodynamic equations using entropy minimization. SIAM J. Appl. Math. 67 (2006), 46-68.
  137. A. Jüngel and D. Matthes. An algorithmic construction of entropies in higher-order nonlinear PDEs. Nonlinearity 19 (2006), 633-659.
  138. A. Jüngel and S. Tang. Numerical approximation of the viscous quantum hydrodynamic model for semiconductors. Appl. Numer. Math. 56 (2006), 899-915.
  139. L. Chen and A. Jüngel. Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Diff. Eqs., 224 (2006), 39-59.
  140. A. Jüngel, H.-L. Li and A. Matsumura. The relaxation-time limit in the quantum hydrodynamic equations for semiconductors. J. Diff. Eqs. 225 (2006), 440-464.
  141. M Gualdani, A. Jüngel and G. Toscani. A nonlinear fourth-order parabolic equation with non-homogeneous boundary conditions. SIAM J. Anal. 37 (2006), 1761-1779.
  142. J. Dolbeault, I. Gentil and A. Jüngel. A nonlinear fourth-order parabolic equation and related logarithmic Sobolev inequalities. Commun. Math. Sci. 4 (2006), 275-290.
  143. J. Carrillo, J. Dolbeault, I. Gentil and A. Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete Contin. Dyn. Syst. B 6 (2006), 1027-1050. Erratum.
  144. B. Düring and A. Jüngel: A quasilinear parabolic equation with quadratic growth of the gradient modeling incomplete financial markets. Nonlin. Anal. 62 (2005), 519-544.
  145. A. Jüngel and D. Matthes. A derivation of the isothermal quantum hydrodynamic equations using entropy minimization. Z. Angew. Math. Mech. 85 (2005), 806-814.
  146. A. El Ayyadi and A. Jüngel. Semiconductor simulations using a coupled quantum drift-diffusion Schrödinger-Poisson model. SIAM J. Appl. Math. 66 (2005), 554-572.
  147. A. Jüngel and A. Unterreiter. Discrete minimum and maximum principles for finite element approximations of non-monotone elliptic equations. Numer. Math. 9 (2005), 485-508.
  148. B. Düring, R. Fournié and A. Jüngel, Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation. Math. Mod. Numer. Anal. 38 (2004), 359-369.
  149. S. Holst, A. Jüngel and P. Pietra: An adaptive mixed scheme for energy-transport simulations of field-effect transistors. SIAM J. Sci. Comp. 25 (2004), 1698-1716.
  150. L. Chen and A. Jüngel: Analysis of a multi-dimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004), 301-322.
  151. A. Jüngel and H. Li. Quantum Euler-Poisson systems: existence of steady states. Archivum Math. 40 (2004), 435-456.
  152. O. Hansen and A. Jüngel: Analysis of a spherical harmonics expansion model of plasma physics. Math. Models Meth. Appl. Sci., 14 (2004), 759-774.
  153. A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani and C. Villani: Entropies and equilibria of many-particle systems: an essay on recent research. Monatsh. Math. 142 (2004), 35-43.
  154. A. Jüngel and H. Li. Quantum Euler-Poisson systems: global existence and exponential decay. Quart. Appl. Math. 62 (2004) 569-600.
  155. M. P. Gualdani and A. Jüngel: Analysis of the viscous quantum hydrodynamic equations for semiconductors. Europ. J. Appl. Math. 15 (2004), 577-595.
  156. J. A.Carrillo, A. Jüngel and S. Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete Contin. Dynam. Sys. B, 3 (2003), 1-20.
  157. G. Galiano, M. L. Garzón and A. Jüngel. Semi-discretization and numerical convergence of a nonlinear cross-diffusion population model. Numer. Math. 93 (2003), 655-673.
  158. A. Jüngel, S. Wang. Convergence of nonlinear Schrödinger-Poisson systems to the compressible Euler equations. Comm. Part. Diff. Eqs. 28 (2003), 1005-1022.
  159. G. Alì and A. Jüngel. Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas. J. Diff. Eqs. 190 (2003), 663-685.
  160. A. Jüngel and G. Toscani. Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation. Z. Angew. Math. Phys. 54 (2003), 377-386.
  161. A. Jüngel and R. Pinnau. Convergent semidiscretization of a nonlinear fourth order parabolic system. Math. Mod. Num. Anal. 37 (2003), 277-289.
  162. S. Holst, A. Jüngel and P. Pietra. A mixed finite-element discretization of the energy-transport equations for semiconductors. SIAM J. Sci. Comp. 24 (2003), 2058-2075.
  163. G. Galiano, A. Jüngel and J. Velasco. A parabolic cross-diffusion system for granular materials. SIAM J. Math. Anal. 35 (2003), 561-578.
  164. B. Düring, M. Fournié and A. Jüngel. Higher order compact finite difference schemes for nonlinear Black-Scholes equations. Intern. J. Theor. Appl. Finance 6 (2003), 767-789.
  165. M. P. Gualdani, A. Jüngel, and G. Toscani. Exponential decay in time of solutions of the viscous quantum hydrodynamic equations. Appl. Math. Lett. 16 (2003), 1273-1278.
  166. I. Gamba and A. Jüngel. Asymptotic limits in quantum trajectory models. Comm. P. D. E. 27 (2002), 669-691.
  167. A. Jüngel, M.C. Mariani and D. Rial. Local existence of solutions to the transient quantum hydrodynamic equations. Math. Mod. Meth. Appl. Sci. 12 (2002), 485-495.
  168. A. Jüngel and S. Tang. A relaxation scheme for the hydrodynamic equations for semiconductors. Appl. Num. Math. 43 (2002), 229-252.
  169. A. Jüngel and R. Pinnau. A positivity preserving numerical scheme for a nonlinear fourth-order parabolic equation. SIAM J. Num. Anal. 39 (2001), 385-406.
  170. J. I. Díaz, G. Galiano and A. Jüngel. On a quasilinear degenerate system arising in semiconductor theory. Part I: existence and uniqueness of solutions. Nonlin. Anal. RWA 2 (2001), 305-336.
  171. I. Gamba and A. Jüngel. Positive solutions of singular equations of second and third order for quantum fluids. Arch. Rat. Mech. Anal. 156 (2001), 183-203.
  172. P. Amster, M. P. Beccar Varela, A. Jüngel and M. C. Mariani. Subsonic solutions to a one-dimensional non-isentropic hydrodynamic model for semiconductors. J. Math. Anal. Appl. 258 (2001), 52-62.
  173. J. Carrillo, A. Jüngel, P. Markowich, G. Toscani and A. Unterreiter. Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatshefte für Math. 133 (2001), 1-82.
  174. A. Jüngel and Y.-J. Peng. A model hierarchy for semiconductors and plasmas. Nonlin. Anal. TMA 47 (2001), 1821-1832.
  175. P. Degond and A. Jüngel. High-field approximations of energy-transport models for semiconductors with non-parabolic band structure. Z. Angew. Math. Phys. 52 (2001), 1053-1070.
  176. A. Jüngel and Y.-J. Peng. A hierarchy of hydrodynamic models for plasmas: quasi-neutral limits in the drift-diffusion equations. Asympt. Anal. 28 (2001), 49-73.
  177. G. Galiano, M. L. Garzón and A. Jüngel. Analysis and numerical solution of a nonlinear cross-diffusion model arising in population dynamics.   Rev. Real Acad. Ciencias, Serie A. Mat. 95 (2001), 281-295.
  178. A. Jüngel. Nonlinear problems in quantum semiconductor modeling. Nonlin. Anal. TMA 47 (2001), 5873-5884.
  179. A. Jüngel. Regularity and uniqueness of solutions to a nonlinear parabolic system arising in nonequilibrium thermodynamics. Nonlin. Anal. TMA 41 (2000), 669-688.
  180. A. Jüngel and Y.-J. Peng. A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations. Annales H. Poincare 17 (2000), 83-118.
  181. M. T. Gyi and A. Jüngel. A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Diff. Eqs. 5 (2000), 773-800.
  182. A. Jüngel and Y.-J. Peng. Zero-relaxation-time limits in hydrodynamic models for plasmas revisited. Z. Angew. Math. Phys. 51 (2000), 385-396.
  183. P. Takac and A. Jüngel. A nonstiff discretization of the complex Ginzburg-Landau equation in one space dimension. SIAM J. Num. Anal. 38 (2000), 292-328.
  184. P. Degond, A. Jüngel and P. Pietra. Numerical discretization of energy-transport models for semiconductors with non-parabolic band structure. . SIAM J. Sci. Comp. 22 (2000) 986-1007.
  185. P. Bechouche and A. Jüngel. Inviscid limits of the complex Ginzburg-Landau equation. . Comm. Math. Phys. 214 (2000) 201-226.
  186. A. Jüngel and R. Pinnau. Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems. SIAM J. Math. Anal. 32 (2000), 760-777.
  187. T. Goudon, A. Jüngel and Y.-J. Peng. Zero-electron-mass limits in hydrodynamic models for plasmas. Appl. Math. Lett. 12 (1999), 75-79.
  188. A. Jüngel and Y.-J. Peng. A hierarchy of hydrodynamic models for plasmas. Zero-relaxation-time limits. Comm. P. D. E. 24 (1999), 1007-1033.
  189. A. Jüngel. A steady-state potential flow Euler-Poisson system for charged quantum fluids. Comm. Math. Phys., Vol. 194 (1998), 463-479.
  190. J. I. Díaz, G. Galiano and A. Jüngel. On a quasilinear degenerate system arising in semiconductor theory. Part II: localization of vacuum solutions. Nonlin. Anal. TMA 36 (1998), 569-594.
  191. P. Degond, S. Génieys and A. Jüngel. A steady-state model in nonequilibrium thermodynamics including thermal and electrical effects. Math. Meth. Appl. Sci. 21 (1998), 1399-1413.
  192. I. Gasser and A. Jüngel. The quantum hydrodynamic model for semiconductors in thermal equilibrium. Z. Angew. Math. Phys., Vol. 48 (1997), 45-59.
  193. A. Jüngel. A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling. Math. Nachr., Vol. 185 (1997), 85-110.
  194. P. Degond, S. Génieys and A. Jüngel. An existence and uniqueness result for the stationary energy-transport model in semiconductor theory. C. R. Acad. Sci. Paris, Vol. 324 (1997), 867-872.
  195. A. Jüngel. A note on current-voltage characteristics from the quantum hydrodynamic equations for semiconductors. Appl. Math. Letters, Vol. 10 (1997), 29-34.
  196. P. Degond, S. Génieys and A. Jüngel. An existence result for a strongly coupled parabolic system arising in nonequilibrium thermodynamics. C. R. Acad. Sci. Paris, Vol. 325 (1997), 227-232.
  197. J. I. Díaz, G. Galiano and A. Jüngel. Space localization and uniqueness of vacuum solutions to a degenerate parabolic system of semiconductor theory. C. R. Acad. Sci. Paris, Vol. 325 (1997), 267-272.
  198. A. Jüngel and P. Pietra. A discretization scheme for a quasi-hydrodynamic semiconductor model. Math. Models Meth. Appl. Sci., Vol. 7 (1997), 935-955.
  199. P. Degond, S. Génieys and A. Jüngel. Symmetrization and entropy inequality for general diffusion equations. C. R. Acad. Sci. Paris, Vol. 325 (1997), 963-968.
  200. P. Degond, S. Génieys and A. Jüngel. A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl., Vol. 76 (1997), 991-1015.
  201. A. Jüngel and C. Schmeiser. Voltage-current characteristics of a pn-diode from a drift-diffusion model with nonlinear diffusion. Quart. Appl. Math., Vol. 55 (1997), 707-721.
  202. A. Jüngel. Asymptotic analysis of a semiconductor model based on Fermi-Dirac statistics. Math. Meth. Appl. Sci., Vol. 19 (1996), 401-424.
  203. A. Jüngel. Stationary transport equations for charge carriers in semiconductors including electron-hole scattering. Appl. Anal., Vol. 62 (1996), 53-69.
  204. A. Jüngel. The free boundary problem of a semiconductor in thermal equilibrium. Math. Meth. Appl. Sci., Vol. 18 (1995), 387-412.
  205. A. Jüngel. Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors. Math. Models Meth. Appl. Sci., Vol. 5 (1995), 497-518.
  206. A. Jüngel. Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. ZAMM, Vol. 75 (1995), 783-799.
  207. A. Jüngel. On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors. Math. Models Meth. Appl. Sci., Vol. 4 (1994), 677-703.

Proceedings

  1. M. Biswas and A. Jüngel. Global martingale solutions to a segregation cross-diffusion system with stochastic forcing.  To appear in Modeling, Analysis and Simulations of Multiscale Transport Phenomena, Proceedings ICMASMTP 2022, Springer, 2024.
  2. F. Achleitner, A. Arnold, and A. Jüngel. Necessary and sufficient conditions for strong stability of explicit Runge-Kutta methods. To appear in Particle Systems and PDEs X, Springer Proceedings Math. Stat., 2024.
  3. S. Georgiadis, A. Jüngel, and A. Tzavaras. Non-isothermal multicomponent flows with mass diffusion and heat conduction. In: C. Parés, M. Castro, T. Morales de Luna, and M. Munoz-Ruiz (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, Conference HYP 2022, SEMA SIMAI Springer Series, vol. 34. Springer, Cham, 2024, pp. 263--273.
  4. L. Barletti, P. Holzinger, and A. Jüngel. Quantum drift-diffusion equations for a two-dimensional electron gas with spin-orbit interaction. In: F. Salvarani (ed.). Recent Advances in Kinetic Equations and Applications, Springer INdAM Series, vol. 48. Springer, Cham, 2021, pp. 51--67.
  5. A. Jüngel and A. Zurek. A finite-volume scheme for a cross-diffusion model arising from interacting many-particle population systems. In: R. Klöfkorn, E. Keilegavlen, F. Radu, and J. Fuhrmann (eds.). Finite Volumes for Complex Applications IX -- Methods, Theoretical Aspects, Examples. Springer Proceedings in Mathematics and Statistics, vol. 323. Springer, Cham, 2020, pp. 223-231.
  6. A. Jüngel. Cross-diffusion systems with entropy structure. Proceedings of Equadiff 2017 (2017), 181-190.
  7. M. Bessemoulin-Chatard, C. Chainais-Hillairet, and A. Jüngel. Uniform L estimates for approximate solutions of the bipolar drift-diffusion system. In: C. Cances and P. Omnes (eds.). Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics, Springer, Cham, 2017, pp. 381-389.
  8. K. Rupp, P. Tillet, A. Jüngel, and T. Grasser. Achieving portable high performance for iterative solvers on accelerators. Proc. Appl. Math. Mech. 14 (2014), 963-964.
  9. K. Rupp, P. Tillet, B. Smith, T. Grasser, and A.~Jüngel. A note on the GPU acceleration of eigenvalue computations. Proceedings of the International Conference of Numerical Analysis and Applied Mathematics ICNAAM 2013, AIP Proceedings 1558 (2013), 1536-1539.
  10. K. Rupp, T. Grasser, and A. Jüngel. A GPU-accelerated parallel preconditioner for the solution of the Boltzmann transport equation for semiconductors. Proceedings of International Electron Devices Meeting IEDM 2010. In: R. Keller, D. Kramer, and J. Weiss (eds.), Progress in Industrial Mathematics at ECMI 2010, Springer, 2012, p. 147-157.
  11. K. Rupp, T. Grasser, and A. Jüngel. Deterministic numerical solution of the Boltzmann transport equation. Proceedings of International Electron Devices Meeting IEDM 2010. In: R. Keller, D. Kramer, and J. Weiss (eds.), Progress in Industrial Mathematics at ECMI 2010, Springer, 2012, p. 53-59.
  12. B. Schörkhuber, T. Meurer, and A. Jüngel. Flatness-based trajectory planning for semilinear parabolic PDEs. Proceedings of the IEEE Conference on Decision and Control (2012), 3538-3543.
  13. K. Rupp, C. Jungemann, M. Bina, A. Jüngel, and T. Grasser. Bipolar spherical harmonics expansions of the Boltzmann transport equation. In: Proceedings of the 17th International Conference on Simulation of Semiconductor Processes and Devices (2012), 19-22. ISBN: 978-0-615-71756-2.
  14. K. Rupp, P. Lagger, T. Grasser, and A. Jüngel. Inclusion of carrier-carrier scattering into arbitrary-order spherical harmonics expansions of the Boltzmann transport equation. In: The 15th International Workshop on Computational Electronics, IEEE Xplore (2012), 1-4. ISBN: 978-1-4673-0705-5.
  15. A. Jüngel and J.-P. Milisic. Quantum Navier-Stokes equations. In: M. Günther, A. Bartel, M. Brunk, S. Schöps, and M. Striebel, Progress in Industrial Mathematics at ECMI 2010, pp. 427-439. Springer, Berlin, 2012.
  16. K. Rupp, T. Grasser, and A. Jüngel. Deterministic numerical solution of the Boltzmann transport equation. In: M. Günther, A. Bartel, M. Brunk, S. Schöps, and M. Striebel, Progress in Industrial Mathematics at ECMI 2010, pp. 53-59. Springer, Berlin, 2012.
  17. K. Rupp, T. Grasser, and A. Jüngel. On the feasibility of Spherical Harmonics Expansions of the Boltzmann transport equation for three-dimensional device geometries. In: Proceedings of the 2011 IEEE International Electron Devices Meeting (2011}, 4 pages. ISBN: 978-1-4577-0505-2.
  18. K. Rupp, T. Grasser, and A. Jüngel. Parallel preconditioning for spherical harmonics expansions of the Boltzmann transport equation. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices SISPAD, (2011), 147-150.
  19. K. Rupp, T. Grasser, and A. Jüngel. Adaptive variable-order spherical harmonics expansion of the Boltzmann transport equation. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices SISPAD, (2011), 151-154.
  20. K. Rupp, T. Grasser, and A. Jüngel. System matrix compression for spherical harmonics expansions of the Boltzmann transport equation. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices SISPAD, (2011), 159-162.
  21. M. Brunk and A. Jüngel. Heating of semiconductor devices in electric circuits. In: J. Roos, L. Costa (Eds.), Scientific Computing in Electrical Engineering (Proceedings SCEE 2008), Mathematics in Industries, pp. 261-272. Springer, Berlin, 2010,
  22. A. Jüngel. Modeling and simulation of electron transport and heating in semiconductor devices and circuits. In: I. Troch and F. Breitenecker (eds.), Proceedings of MATHMOD 09 Vienna. ARGESIM Report no. 35 (2009), 101-116.
  23. A. Jüngel and J.P. Milisic. Macroscopic quantum models with and without collisions. Proceedings of the Sixth International Workshop on Mathematical Aspects of Fluid and Plasmy Dynamics, Kyoto, Japan. Bulletin Inst. Math., Academia Sinica 2 (2007), 251-279.
  24. S. Gadau, A. Jüngel and P. Pietra. A mixed finite-element scheme of a semiconductor energy-transport model using dual entropy variables. In: F. Asakura et al. (eds.). Hyperbolic Problems: Theory, Numerics and Applications (Proceedings HYP2004), Vol. 1, Yokohama Publisher, Yokohama, Japan (2006), 139-146.
  25. A. Jüngel, H.-L. Li, and A. Matsumura.. Global convergence from quantum hydrodynamics to quantum drift-diffusion. In: F. Asakura et al. (eds.). Hyperbolic Problems: Theory, Numerics and Applications (Proceedings HYP2004), Vol. 2, Yokohama Publisher, Yokohama, Japan (2006), 71-78.
  26. G. Galiano and A. Jüngel. Global existence of solutions for a strongly coupled quasilinear parabolic problem. In: Mathematical Modelling of Population Dynamics, Banach Center Publications Vol. 63 (2004), 209-216.
  27. A. Jüngel. Asymptotic limits in macroscopic plasma models. Dispersive Transport Equations and Multiscale Models, N. Ben Abdallah et al. (eds.), IMA, Minneapolis, USA, Vol. 136 (2003), 151-166.
  28. A. Jüngel, H. Li, P. Markowich, and S. Wang. Recent progress on quantum hydrodynamic models for semiconductors. In: T. Hou and E. Tadmor (eds.). Hyperbolic Problems: Theory, Numerics, Applications (Proceedings of Hyp2002), Springer, 2003.
  29. S. Holst, A. Jüngel and P. Pietra: Finite-element discretizations of semiconductor energy-transport equations. In: Modeling, Simulation and Optimization of Integrated Circuits, K. Antreich et al. (eds.), Intern. Series Numer. Math. Vol. 146 (2003), Birkhäuser, Basel, 49-64.
  30. G. Galiano, M. L. Garzón and A. Jüngel. Existence of solutions of a segregation model arising in population dynamics. Proceedings of the Fourth European Conference on Elliptic and Parabolic Problems, Rolduc and Gaeta 2001, J. Bemelsman et al. (eds.), World Scientific, New Jersey (2002), 113-125.
  31. A. Jüngel, P. Markowich and G. Toscani. Decay rates for solutions of degenerate parabolic systems . Electr. J. Diff. Eqs., Conf. 06 (2001), 189-202.
  32. A. Jüngel and Y.-J. Peng. Rigorous derivation of a hierarchy of macroscopic models for semiconductors and plasmas. in: B. Fiedler, K. Gröger, and J. Sprekels, International Conference on Differential Equations, World Scientific, Singapore (2000), 1325-1327.
  33. A. Jüngel and C. Pohl. Numerical simulation of semiconductor devices: energy-transport and quantum hydrodynamic modeling. Proceedings of the Sixth International Workshop on Computational Electronics in Osaka, Japan, IEEE (1998), 230-233.
  34. A. Jüngel. A nonlinear degenerate elliptic system arising in quantum semiconductor modelling. Proceedings of the GAMM 96 Conference, ZAMM, Vol. 77 (1997), S581-S582.
  35. A. Jüngel. The energy-transport model for semiconductors: some analytical and numerical results. Proceedings of the International Workshop on "Recent Progress in the Mathematical Theory on Vlasov-Maxwell Equations" in Paris (1997), 140-158.
  36. A. Jüngel. A degenerate quasi-hydrodynamic model for semiconductor devices. Proceedings of ICIAM 95, ZAMM, Vol. 76 (1996), 563-564.