Assoc.Prof. Dr.techn. Dipl.-Ing. Stefan Löffler
Fakten
CV
2003 - 2009 Studium an der TU Wien & Uppsala University, öffnet eine externe URL in einem neuen Fenster
2009 Dipl.-Ing (MSc)
2009 - 2013 PhD an der TU Wien
2013 Dr. techn. (PhD)
2013 - 2015: PostDoc TU Wien
2015 - 2016: PostDoc Canadian Centre for Electron Microscopy, öffnet eine externe URL in einem neuen Fenster at McMaster University, öffnet eine externe URL in einem neuen Fenster
2016 - 2018: PostDoc TU Wien
2018 - 2023: Assistant Professor, TU Wien
2023: Habilitation (venia docendi)
seit 2023: Associate Professor, TU Wien
Publikationen
-
| Optimizing experimental parameters for orbital mapping auf reposiTUm , öffnet eine externe URL in einem neuen FensterEderer, M., & Löffler, S. (2024). Optimizing experimental parameters for orbital mapping. Ultramicroscopy, 256, Article 113866. https://doi.org/10.1016/j.ultramic.2023.113866, öffnet eine externe URL in einem neuen Fenster
-
| Current opinion on the prospect of mapping electronic orbitals in the transmission electron microscope: State of the art, challenges and perspectives auf reposiTUm , öffnet eine externe URL in einem neuen FensterBugnet, M., Löffler, S., Ederer, M., Kepaptsoglou, D. M., & Ramasse, Q. M. (2024). Current opinion on the prospect of mapping electronic orbitals in the transmission electron microscope: State of the art, challenges and perspectives. Journal of Microscopy. https://doi.org/10.1111/jmi.13321, öffnet eine externe URL in einem neuen Fenster
-
| 4D Energy-Filtered STEM: A New Approach for Mapping Orbital Transitions auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., & Ederer, M. (2023). 4D Energy-Filtered STEM: A New Approach for Mapping Orbital Transitions. Microscopy and Microanalysis, 29(Supplement_1), 376–376. https://doi.org/10.34726/5201, öffnet eine externe URL in einem neuen Fenster
-
| A quantum logic gate for free electrons auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., Schachinger, T., Hartel, P., Lu, P.-H., Dunin-Borkowski, R., Obermair, M., Dries, M., Gerthsen, D., & Schattschneider, P. (2023). A quantum logic gate for free electrons. Quantum, 7, Article 1050. https://doi.org/10.22331/q-2023-07-11-1050, öffnet eine externe URL in einem neuen Fenster
-
| Analysis of inhomogeneities in Nb₃Sn wires by combined SEM and SHPM and their impact on Jc and Tc auf reposiTUm , öffnet eine externe URL in einem neuen FensterPfeiffer, S., Baumgartner, T., Löffler, S., Stöger-Pollach, M., Hopkins, S. C., Ballarino, A., Eisterer, M., & Bernardi, J. (2023). Analysis of inhomogeneities in Nb₃Sn wires by combined SEM and SHPM and their impact on Jc and Tc. Superconductor Science and Technology, 36(4), Article 045008. https://doi.org/10.1088/1361-6668/acb857, öffnet eine externe URL in einem neuen Fenster
-
| Image difference metrics for high-resolution electron microscopy auf reposiTUm , öffnet eine externe URL in einem neuen FensterEderer, M., & Löffler, S. (2022). Image difference metrics for high-resolution electron microscopy. Ultramicroscopy, 240, Article 113578. https://doi.org/10.1016/j.ultramic.2022.113578, öffnet eine externe URL in einem neuen Fenster
-
| Unitary two-state quantum operators realized by quadrupole fields in the electron microscope auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S. (2022). Unitary two-state quantum operators realized by quadrupole fields in the electron microscope. Ultramicroscopy, 234, Article 113456. https://doi.org/10.1016/j.ultramic.2021.113456, öffnet eine externe URL in einem neuen Fenster
-
| Imaging the Spatial Distribution of Electronic States in Graphene Using Electron Energy-Loss Spectroscopy: Prospect of Orbital Mapping auf reposiTUm , öffnet eine externe URL in einem neuen FensterBugnet, M., Ederer, M., Lazarov, V. K., Li, L., Ramasse, Q. M., Löffler, S., & Kepaptsoglou, D. M. (2022). Imaging the Spatial Distribution of Electronic States in Graphene Using Electron Energy-Loss Spectroscopy: Prospect of Orbital Mapping. Physical Review Letters, 128(11), Article 116401. https://doi.org/10.1103/PhysRevLett.128.116401, öffnet eine externe URL in einem neuen Fenster
-
| A method for a column-by-column EELS quantification of barium lanthanum ferrate auf reposiTUm , öffnet eine externe URL in einem neuen FensterLammer, J., Berger, C., Löffler, S., Knez, D., Longo, P., Kothleitner, G., Hofer, F., Haberfehlner, G., Bucher, E., Sitte, W., & Grogger, W. (2022). A method for a column-by-column EELS quantification of barium lanthanum ferrate. Ultramicroscopy, 234, Article 113477. https://doi.org/10.1016/j.ultramic.2022.113477, öffnet eine externe URL in einem neuen Fenster
-
| Novel perovskite catalysts for CO2 utilization - Exsolution enhanced reverse water-gas shift activity auf reposiTUm , öffnet eine externe URL in einem neuen FensterLindenthal, L., Popovic, J., Rameshan, R., Huber, J., Schrenk, F., Ruh, T., Nenning, A., Löffler, S., Opitz, A. K., & Rameshan, C. (2021). Novel perovskite catalysts for CO2 utilization - Exsolution enhanced reverse water-gas shift activity. Applied Catalysis B: Environmental, 292, 1–12. https://doi.org/10.1016/j.apcatb.2021.120183, öffnet eine externe URL in einem neuen Fenster
-
| Imaging the spatial distribution of π* states in graphene using aberration-corrected and monochromated STEM-EELS: towards orbital mapping auf reposiTUm , öffnet eine externe URL in einem neuen FensterBugnet, M., Ederer, M., Lazarov, V., Ramasse, Q., Löffler, S., & Kepaptsoglou, D. (2021). Imaging the spatial distribution of π* states in graphene using aberration-corrected and monochromated STEM-EELS: towards orbital mapping. Microscopy and Microanalysis, 27(S1), 134–135. https://doi.org/10.1017/s1431927621001094, öffnet eine externe URL in einem neuen Fenster
-
| In Situ Growth of Exsolved Nanoparticles under Varying rWGS Reaction Conditions-A Catalysis and Near Ambient Pressure-XPS Study auf reposiTUm , öffnet eine externe URL in einem neuen FensterLindenthal, L., Huber, J., Drexler, H., Ruh, T., Rameshan, R., Schrenk, F., Löffler, S., & Rameshan, C. (2021). In Situ Growth of Exsolved Nanoparticles under Varying rWGS Reaction Conditions-A Catalysis and Near Ambient Pressure-XPS Study. Catalysts, 11(12), 1484. https://doi.org/10.3390/catal11121484, öffnet eine externe URL in einem neuen Fenster
-
| Novel Perovskite Catalysts for CO2 Utilization - Exsolution Enhanced Reverse Water-Gas Shift Activity auf reposiTUm , öffnet eine externe URL in einem neuen FensterLindenthal, L., Popovic, J., Rameshan, R., Huber, J., Schrenk, F., Ruh, T., Nenning, A., Löffler, S., Opitz, A., & Rameshan, C. (2021). Novel Perovskite Catalysts for CO2 Utilization - Exsolution Enhanced Reverse Water-Gas Shift Activity. Applied Catalysis B: Environmental, 292(120183), 120183. https://doi.org/10.1016/j.apcatb.2021.120183, öffnet eine externe URL in einem neuen Fenster
-
| Exploiting the Acceleration Voltage Dependence of EMCD auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., Stöger-Pollach, M., Steiger-Thirsfeld, A., Hetaba, W., & Schattschneider, P. (2021). Exploiting the Acceleration Voltage Dependence of EMCD. Materials, 14(5), 1314. https://doi.org/10.3390/ma14051314, öffnet eine externe URL in einem neuen Fenster
-
| Nb3Sn Wires for the Future Circular Collider at CERN: Microstructural Investigation of Different Wire Layouts auf reposiTUm , öffnet eine externe URL in einem neuen FensterMoros, A., Ortino, M., Löffler, S., Alekseev, M., Tsapleva, A., Lukyanov, P., Abdyukhanov, I. M., Pantsyrny, V., Hopkins, S. C., Eisterer, M., Stöger-Pollach, M., & Bernardi, J. (2021). Nb3Sn Wires for the Future Circular Collider at CERN: Microstructural Investigation of Different Wire Layouts. IEEE Transactions on Applied Superconductivity, 31(5), 1–5. https://doi.org/10.1109/tasc.2021.3066541, öffnet eine externe URL in einem neuen Fenster
-
| Experimental realization of a 𝜋/2 vortex mode converter for electrons using a spherical aberration corrector auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchachinger, T., Hartel, P., Lu, P., Löffler, S., Obermair, M., Dries, M., Gerthens, D., Dunin-Borkowski, R., & Schattschneider, P. (2021). Experimental realization of a 𝜋/2 vortex mode converter for electrons using a spherical aberration corrector. Ultramicroscopy, 229(113340), 113340. https://doi.org/10.1016/j.ultramic.2021.113340, öffnet eine externe URL in einem neuen Fenster
-
| Electron energy loss spectroscopy and energy filtered transmission electron microscopy auf reposiTUm , öffnet eine externe URL in einem neuen FensterStöger-Pollach, M., & Löffler, S. (2021). Electron energy loss spectroscopy and energy filtered transmission electron microscopy. In A. Walter, J. G. Mannheim, & C. J. Caruana (Eds.), Imaging Modalities for Biological and Preclinical Research: A Compendium, Volume 1: Part I: Ex vivo biological imaging. IOP Publishing. https://doi.org/10.1088/978-0-7503-3059-6ch40, öffnet eine externe URL in einem neuen Fenster
-
| Using Čerenkov radiation for measuring the refractive index in thick samples by interferometric cathodoluminescence auf reposiTUm , öffnet eine externe URL in einem neuen FensterStöger-Pollach, M., Löffler, S., Maurer, N., & Bukvišová, K. (2020). Using Čerenkov radiation for measuring the refractive index in thick samples by interferometric cathodoluminescence. Ultramicroscopy, 214, Article 113011. https://doi.org/10.1016/j.ultramic.2020.113011, öffnet eine externe URL in einem neuen Fenster
-
| Entanglement and entropy in electron–electron scattering auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchattschneider, P., Löffler, S., Gollisch, H., & Feder, R. (2020). Entanglement and entropy in electron–electron scattering. Journal of Electron Spectroscopy and Related Phenomena, 241, Article 146810. https://doi.org/10.1016/j.elspec.2018.11.009, öffnet eine externe URL in einem neuen Fenster
-
| Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution auf reposiTUm , öffnet eine externe URL in einem neuen FensterLindenthal, L., Rameshan, R., Summerer, H., Ruh, T., Popovic, J., Nenning, A., Löffler, S., Opitz, A., Blaha, P., & Rameshan, C. (2020). Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution. Catalysts, 10(3), 268. https://doi.org/10.3390/catal10030268, öffnet eine externe URL in einem neuen Fenster
-
| Ca-doped rare earth perovskite materials for tailored exsolution of metal nanoparticles auf reposiTUm , öffnet eine externe URL in einem neuen FensterLindenthal, L., Ruh, T., Rameshan, R., Summerer, H., Nenning, A., Herzig, C., Löffler, S., Limbeck, A., Opitz, A., Blaha, P., & Rameshan, C. (2020). Ca-doped rare earth perovskite materials for tailored exsolution of metal nanoparticles. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 76(6), 1055–1070. https://doi.org/10.1107/s2052520620013475, öffnet eine externe URL in einem neuen Fenster
-
| A quantum propagator for electrons in a round magnetic lens auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., Hamon, A.-L., Aubry, D., & Schattschneider, P. (2020). A quantum propagator for electrons in a round magnetic lens. In M. Hÿtch & P. W. Hawkes (Eds.), Advances in Imaging and Electron Physics. Volume 215 (Vol. 215, pp. 89–105). Elsevier. https://doi.org/10.1016/bs.aiep.2020.06.003, öffnet eine externe URL in einem neuen Fenster
-
| High Temperature Water Gas Shift Reactivity of Novel Perovskite Catalysts auf reposiTUm , öffnet eine externe URL in einem neuen FensterPopovic, J., Lindenthal, L., Rameshan, R., Ruh, T., Nenning, A., Löffler, S., Opitz, A., & Rameshan, C. (2020). High Temperature Water Gas Shift Reactivity of Novel Perovskite Catalysts. Catalysts, 10(5), 582. https://doi.org/10.3390/catal10050582, öffnet eine externe URL in einem neuen Fenster
-
| Elastic propagation of fast electron vortices through amorphous materials auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., Sack, S., & Schachinger, T. (2019). Elastic propagation of fast electron vortices through amorphous materials. Acta Crystallographica Section A: Foundations and Advances, 75(6), 902–910. https://doi.org/10.1107/s2053273319012889, öffnet eine externe URL in einem neuen Fenster
-
| π/2 mode converters and vortex generators for electrons auf reposiTUm , öffnet eine externe URL in einem neuen FensterKramberger, C., Löffler, S., Schachinger, T., Hartel, P., Zach, J., & Schattschneider, P. (2019). π/2 mode converters and vortex generators for electrons. Ultramicroscopy, 204, 27–33. https://doi.org/10.1016/j.ultramic.2019.05.003, öffnet eine externe URL in einem neuen Fenster
-
| Convergent-beam EMCD: benefits, pitfalls and applications auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., & Hetaba, W. (2018). Convergent-beam EMCD: benefits, pitfalls and applications. Microscopy, 67(1), 60–71. https://doi.org/10.1093/jmicro/dfx129, öffnet eine externe URL in einem neuen Fenster
-
| 2D strain mapping using scanning transmission electron microscopy Moiréinterferometry and geometrical phase analysis auf reposiTUm , öffnet eine externe URL in einem neuen FensterPofelski, A., Woo, S. Y., Le, B. H., Liu, X., Zhao, S., Mi, Z., Löffler, S., & Botton, G. A. (2018). 2D strain mapping using scanning transmission electron microscopy Moiréinterferometry and geometrical phase analysis. Ultramicroscopy, 187, 1–12. https://doi.org/10.1016/j.ultramic.2017.12.016, öffnet eine externe URL in einem neuen Fenster
-
| The Role of Spatial Coherence for the Creation of Atom Size Electron Vortex Beams auf reposiTUm , öffnet eine externe URL in einem neuen FensterPohl, D., Löffler, S., Schneider, S., Tiemeijer, P., Lazar, S., Nielsch, K., & Rellinghaus, B. (2018). The Role of Spatial Coherence for the Creation of Atom Size Electron Vortex Beams. Microscopy and Microanalysis, 24(S1), 920–921. https://doi.org/10.1017/s1431927618005093, öffnet eine externe URL in einem neuen Fenster
-
| Entanglement and decoherence in electron microscopy auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchattschneider, P., & Löffler, S. (2018). Entanglement and decoherence in electron microscopy. Ultramicroscopy, 190, 39–44. https://doi.org/10.1016/j.ultramic.2018.04.007, öffnet eine externe URL in einem neuen Fenster
-
| Entanglement and entropy in electron-electron scattering auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchattschneider, P., Löffler, S., Gollisch, H., & Feder, R. (2018). Entanglement and entropy in electron-electron scattering. Journal of Electron Spectroscopy and Related Phenomena, 241(146810), 146810. https://doi.org/10.1016/j.elspec.2018.11.009, öffnet eine externe URL in einem neuen Fenster
-
| Selective phase formation in substoichiometric Al-Cr-based oxides auf reposiTUm , öffnet eine externe URL in einem neuen FensterKoller, C. M., Dalbauer, V., Kirnbauer, A., Löffler, S., Kolozsvári, S., Ramm, J., & Mayrhofer, P. H. (2017). Selective phase formation in substoichiometric Al-Cr-based oxides. Scripta Materialia, 139, 144–147. https://doi.org/10.1016/j.scriptamat.2017.06.039, öffnet eine externe URL in einem neuen Fenster
-
| Real-space mapping of electronic orbitals auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., Bugnet, M., Gauquelin, N., Lazar, S., Assmann, E., Held, K., Botton, G. A., & Schattschneider, P. (2017). Real-space mapping of electronic orbitals. Ultramicroscopy, 177, 26–29. https://doi.org/10.1016/j.ultramic.2017.01.018, öffnet eine externe URL in einem neuen Fenster
-
| Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy auf reposiTUm , öffnet eine externe URL in einem neuen FensterMüller-Caspary, K., Krause, F. F., Grieb, T., Löffler, S., Schowalter, M., Béché, A., Galioit, V., Marquardt, D., Zweck, J., Schattschneider, P., Verbeeck, J., & Rosenauer, A. (2017). Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy. Ultramicroscopy, 178, 62–80. https://doi.org/10.1016/j.ultramic.2016.05.004, öffnet eine externe URL in einem neuen Fenster
-
| EMCD with an electron vortex filter: Limitations and possibilities auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchachinger, T., Löffler, S., Steiger-Thirsfeld, A., Stöger-Pollach, M., Schneider, S., Pohl, D., Rellinghaus, B., & Schattschneider, P. (2017). EMCD with an electron vortex filter: Limitations and possibilities. Ultramicroscopy, 179, 15–23. https://doi.org/10.1016/j.ultramic.2017.03.019, öffnet eine externe URL in einem neuen Fenster
-
| Measurement of Atomic Electric Fields by Scanning Transmission Electron Microscopy (STEM) Employing Ultrafast Detectors. auf reposiTUm , öffnet eine externe URL in einem neuen FensterMüller-Caspary, K., Krause, F., Béché, A., Duchamp, M., Schowalter, M., Löffler, S., Migunov, V., Winkler, F., Huth, M., Ritz, R., Ihle, S., Simson, M., Ryll, H., Soltau, H., Strüder, L., Zweck, J., Schattschneider, P., Dunin-Borkowski, R., Verbeeck, J., & Rosenauer, A. (2016). Measurement of Atomic Electric Fields by Scanning Transmission Electron Microscopy (STEM) Employing Ultrafast Detectors. Microscopy and Microanalysis, 22(S3), 484–485. https://doi.org/10.1017/s1431927616003275, öffnet eine externe URL in einem neuen Fenster
-
| Real-space localization and quantification of hole distribution in chain-ladder Sr3Ca11Cu24O41 superconductor auf reposiTUm , öffnet eine externe URL in einem neuen FensterBugnet, M., Löffler, S., Hawthorn, D., Dabkowska, H., Luke, G., Schattschneider, P., Sawatzky, G., Radtke, G., & Botton, G. A. (2016). Real-space localization and quantification of hole distribution in chain-ladder Sr3Ca11Cu24O41 superconductor. Science Advances, 2(3).
-
| Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory auf reposiTUm , öffnet eine externe URL in einem neuen FensterPardini, L., Löffler, S., Biddau, G., Hambach, R., Kaiser, U., Draxl, C., & Schattschneider, P. (2016). Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory. Physical Review Letters, 117(036801). https://doi.org/10.1103/physrevlett.117.036801, öffnet eine externe URL in einem neuen Fenster
-
| Quantifying Magnetism on the nm Scale: EMCD on Individual FePt Nanoparticles auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchneider, S., Pohl, D., Löffler, S., Kasinathan, D., Rusz, J., Schattschneider, P., Schultz, L., & Rellinghaus, B. (2016). Quantifying Magnetism on the nm Scale: EMCD on Individual FePt Nanoparticles. Microscopy and Microanalysis, 22(S3), 1674–1675. https://doi.org/10.1017/s1431927616009211, öffnet eine externe URL in einem neuen Fenster
-
| Magnetic properties of single nanomagnets: Electron energy-loss magnetic chiral dichroism on FePt nanoparticles auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchneider, S., Pohl, D., Löffler, S., Rusz, J., Kasinathan, D., Schattschneider, P., Schultz, L., & Rellinghaus, B. (2016). Magnetic properties of single nanomagnets: Electron energy-loss magnetic chiral dichroism on FePt nanoparticles. Ultramicroscopy, 171, 186–194. https://doi.org/10.1016/j.ultramic.2016.09.009, öffnet eine externe URL in einem neuen Fenster
-
| Impact of auxiliary capacitively coupled plasma on the properties of ICP-CVD deposited a-SiNₓ:H thin films auf reposiTUm , öffnet eine externe URL in einem neuen FensterDergez, D., Schalko, J., Löffler, S., Bittner, A., & Schmid, U. (2015). Impact of auxiliary capacitively coupled plasma on the properties of ICP-CVD deposited a-SiNₓ:H thin films. Sensors and Actuators A: Physical, 224, 156–162. https://doi.org/10.1016/j.sna.2015.02.013, öffnet eine externe URL in einem neuen Fenster
-
| Multiband Transport in CoSb₃ Prepared by Rapid Solidification auf reposiTUm , öffnet eine externe URL in einem neuen FensterIkeda, M., Tomes, P., Prochaska, L., Eilertsen, J., Populoh, S., Löffler, S., Svagera, R., Waas, M., Sassik, H., Weidenkaff, A., & Paschen, S. (2015). Multiband Transport in CoSb₃ Prepared by Rapid Solidification. Journal of Inorganic and General Chemistry, 641(11), 2020–2028.
-
| Peculiar rotation of electron vortex beams auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchachinger, T., Löffler, S., Stöger-Pollach, M., & Schattschneider, P. (2015). Peculiar rotation of electron vortex beams. Ultramicroscopy, 158, 17–25. https://doi.org/10.1016/j.ultramic.2015.06.004, öffnet eine externe URL in einem neuen Fenster
-
| Site-specific ionisation edge fine-structure of Rutile in the electron microscope auf reposiTUm , öffnet eine externe URL in einem neuen FensterHetaba, W., Löffler, S., Willinger, M.-G., Schuster, M. E., Schlögl, R., & Schattschneider, P. (2014). Site-specific ionisation edge fine-structure of Rutile in the electron microscope. Micron, 63, 15–19. https://doi.org/10.1016/j.micron.2014.02.008, öffnet eine externe URL in einem neuen Fenster
-
| Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction auf reposiTUm , öffnet eine externe URL in einem neuen FensterMüller, K., Krause, F. F., Béché, A., Schowalter, M., Galioit, V., Löffler, S., Verbeeck, J., Zweck, J., Schattschneider, P., & Rosenauer, A. (2014). Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nature Communications, 5(5653). https://doi.org/10.1038/ncomms6653, öffnet eine externe URL in einem neuen Fenster
-
| Crystal growth of intermetallic clathrates: Floating zone process and ultra rapid crystallization auf reposiTUm , öffnet eine externe URL in einem neuen FensterProkofiev, A., Yan, X., Ikeda, M., Löffler, S., & Paschen, S. (2014). Crystal growth of intermetallic clathrates: Floating zone process and ultra rapid crystallization. Journal of Crystal Growth, 401, 627–632. https://doi.org/10.1016/j.jcrysgro.2014.01.081, öffnet eine externe URL in einem neuen Fenster
-
| Is magnetic chiral dichroism feasible with electron vortices? auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchattschneider, P., Löffler, S., Stöger-Pollach, M., & Verbeeck, J. (2014). Is magnetic chiral dichroism feasible with electron vortices? Ultramicroscopy, 136, 81–85. https://doi.org/10.1016/j.ultramic.2013.07.012, öffnet eine externe URL in einem neuen Fenster
-
| Imaging the dynamics of free-electron Landau states auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchattschneider, P., Schachinger, Th., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A., Bliokh, K. Y., & Nori, F. (2014). Imaging the dynamics of free-electron Landau states. Nature Communications, 5(4586). https://doi.org/10.1038/ncomms5586, öffnet eine externe URL in einem neuen Fenster
-
| Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses auf reposiTUm , öffnet eine externe URL in einem neuen FensterWolff, A., Hetaba, W., Wißbrock, M., Löffler, S., Mill, N., Eckstädt, K., Dreyer, A., Ennen, I., Sewald, N., Schattschneider, P., & Hütten, A. (2014). Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses. Beilstein Journal of Nanotechnology, 5, 210–218. https://doi.org/10.3762/bjnano.5.23, öffnet eine externe URL in einem neuen Fenster
-
| Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy auf reposiTUm , öffnet eine externe URL in einem neuen FensterFeng, Z., Löffler, S., Eder, F., Su, D., Meyer, J. C., & Schattschneider, P. (2013). Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy. Journal of Applied Physics, 114(18), 183716. https://doi.org/10.1063/1.4829021, öffnet eine externe URL in einem neuen Fenster
-
| A pure state decomposition approach of the mixed dynamic form factor for mapping atomic orbitals auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., Motsch, V., & Schattschneider, P. (2013). A pure state decomposition approach of the mixed dynamic form factor for mapping atomic orbitals. Ultramicroscopy, 131, 39–45. https://doi.org/10.1016/j.ultramic.2013.03.021, öffnet eine externe URL in einem neuen Fenster
-
| Comment on 'Quantized Angular Momentum Transfer and Magnetic Dichroism in the Interaction of Electron Vortices with Matter' auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchattschneider, P., Löffler, S., & Verbeeck, J. (2013). Comment on “Quantized Angular Momentum Transfer and Magnetic Dichroism in the Interaction of Electron Vortices with Matter.” Physical Review Letters, 110(189501). https://doi.org/10.1103/physrevlett.110.189501, öffnet eine externe URL in einem neuen Fenster
-
| Site-specific chirality in magnetic transitions auf reposiTUm , öffnet eine externe URL in einem neuen FensterEnnen, I., Löffler, S., Kübel, C., Wang, D., Auge, A., Hütten, A., & Schattschneider, P. (2012). Site-specific chirality in magnetic transitions. Journal of Magnetism and Magnetic Materials, 324(18), 2723–2726. https://doi.org/10.1016/j.jmmm.2012.03.050, öffnet eine externe URL in einem neuen Fenster
-
| Elastic propagation of fast electron vortices through crystals auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., & Schattschneider, P. (2012). Elastic propagation of fast electron vortices through crystals. Acta Crystallographica Section A Foundations of Crystallography, 68(4), 443–447. https://doi.org/10.1107/s0108767312013189, öffnet eine externe URL in einem neuen Fenster
-
| Transition probability functions for applications of inelastic electron scattering auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., & Schattschneider, P. (2012). Transition probability functions for applications of inelastic electron scattering. Micron, 43(9), 971–977. https://doi.org/10.1016/j.micron.2012.03.020, öffnet eine externe URL in einem neuen Fenster
-
| Sub-nanometer free electrons with topological charge auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchattschneider, P., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A., Hell, J., & Verbeeck, J. (2012). Sub-nanometer free electrons with topological charge. Ultramicroscopy, 115, 21–25. https://doi.org/10.1016/j.ultramic.2012.01.010, öffnet eine externe URL in einem neuen Fenster
-
| Influence of the synthetic polypeptide c25-mms6 on cobalt ferrite nanoparticle formation auf reposiTUm , öffnet eine externe URL in einem neuen FensterWolff, A., Frese, K., Wißbrock, M., Eckstädt, K., Ennen, I., Hetaba, W., Löffler, S., Regtmeier, A., Thomas, P., Sewald, N., Schattschneider, P., & Hütten, A. (2012). Influence of the synthetic polypeptide c25-mms6 on cobalt ferrite nanoparticle formation. Journal of Nanoparticle Research, 14(1161). https://doi.org/10.1007/s11051-012-1161-5, öffnet eine externe URL in einem neuen Fenster
-
| Capturing EELS in the reciprocal space auf reposiTUm , öffnet eine externe URL in einem neuen FensterHébert, C., Alkauskas, A., Löffler, S., Jouffrey, B., & Schattschneider, P. (2011). Capturing EELS in the reciprocal space. The European Physical Journal Applied Physics, 54(3), 33510. https://doi.org/10.1051/epjap/2011100469, öffnet eine externe URL in einem neuen Fenster
-
| Impact of growth temperature on the crystal habits, forms and structures of VO₂ nanocrystals auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., Auer, E., Weil, M., Lugstein, A., & Bertagnolli, E. (2011). Impact of growth temperature on the crystal habits, forms and structures of VO₂ nanocrystals. Applied Physics A: Materials Science and Processing, 102(1), 201–204. https://doi.org/10.1007/s00339-010-5940-5, öffnet eine externe URL in einem neuen Fenster
-
| Breakdown of the dipole approximation in core losses auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., Ennen, I., Tian, F., Schattschneider, P., & Jaouen, N. (2011). Breakdown of the dipole approximation in core losses. Ultramicroscopy, 111(8), 1163–1167. https://doi.org/10.1016/j.ultramic.2011.03.006, öffnet eine externe URL in einem neuen Fenster
-
| Atomic scale electron vortices for nanoresearch auf reposiTUm , öffnet eine externe URL in einem neuen FensterVerbeeck, J., Schattschneider, P., Lazar, S., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A., & Van Tendeloo, G. (2011). Atomic scale electron vortices for nanoresearch. Applied Physics Letters, 99(20), 203109. https://doi.org/10.1063/1.3662012, öffnet eine externe URL in einem neuen Fenster
-
| A software package for the simulation of energy-loss magnetic chiral dichroism auf reposiTUm , öffnet eine externe URL in einem neuen FensterLöffler, S., & Schattschneider, P. (2010). A software package for the simulation of energy-loss magnetic chiral dichroism. Ultramicroscopy, 110(7), 831–835. https://doi.org/10.1016/j.ultramic.2010.02.044, öffnet eine externe URL in einem neuen Fenster
-
| Circular dichroism in the electron microscope: Progress and applications auf reposiTUm , öffnet eine externe URL in einem neuen FensterSchattschneider, P., Ennen, I., Löffler, S., Stöger-Pollach, M., & Verbeeck, J. (2010). Circular dichroism in the electron microscope: Progress and applications. Journal of Applied Physics, 107(9), 09D311. https://doi.org/10.1063/1.3365517, öffnet eine externe URL in einem neuen Fenster
-
| Ultrafast VLS growth of epitaxial β-Ga₂O₃ nanowires auf reposiTUm , öffnet eine externe URL in einem neuen FensterAuer, E., Lugstein, A., Löffler, S., Hyun, Y. J., Brezna, W., Bertagnolli, E., & Pongratz, P. (2009). Ultrafast VLS growth of epitaxial β-Ga₂O₃ nanowires. Nanotechnology, 20(43), 434017. https://doi.org/10.1088/0957-4484/20/43/434017, öffnet eine externe URL in einem neuen Fenster