• Numerics of PDEs
  • Finite Element Methods
  • contractive iterative solvers
  • optimal computational cost of adaptive FEM

  1. P. Bringmann, M. Feischl, A. Miraçi, D. Praetorius, J. StreitbergerOn full linear convergence and optimal complexity of adaptive FEM with inexact solver, Computers & Mathematics with Applications, accepted for publication (2024). [arXiv:2311.15738]
  2. P. Bringmann, M. Brunner, D. Praetorius, J. Streitberger: Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs, Journal of Numerical Mathematics, online veröffentlicht (2024). [www] (open access). [arXiv:2312.00489]
  3. M. Brunner, D. Praetorius, J. StreitbergerCost-optimal adaptive FEM for semilinear elliptic PDEs, akzeptiert zur Veröffentlichung in Proceedings of ENUMATH 2023 (2024).
  4. M. Brunner, D. Praetorius, J. StreitbergerOptimal cost of (goal-oriented) adaptive FEM for general second-order linear elliptic PDEs, akzeptiert zur Veröffentlichung in Proceedings of ENUMATH 2023 (2024).
  5. M. Innerberger, A. Miraçi, D. Praetorius, J. Streitbergerhp-robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, 58 (2024), 247–272. [www] (open access), [arXiv:2210.10415]
  6. P. Bringmann, C. Carstensen, J. Streitberger: Local parameter selection in the C0 interior penalty method for the biharmonic equation, Journal of Numerical Mathematics, 32 (2024), 257-273. [www] (open access), [arXiv:2209.05221]
  7. M. Brunner, P. Heid, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs, IMA Journal of Numerical Analysis, 44 (2024), 1560–1596 and 1903–1909. [www] (open access), [corrigendum] (open access), [arXiv:2212.00353]

  1. A. Miraçi, D. Praetorius, J. Streitberger: Parameter-robust full linear convergence and optimal complexity of adaptive iteratively linearized FEM for nonlinear PDEs, [arXiv:2401.17778], 2024
  2. M. Brunner, D. Praetorius, J. Streitberger: Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs, [arXiv:2401.06486], 2024
  3. P. Bringmann, M. Feischl, A. Miraçi, D. Praetorius, J. Streitberger: On full linear convergence and optimal complexity of adaptive FEM with inexact solver, [arXiv:2311.15738], 2023

  1. P. Bringmann, M. Brunner, A. Miraçi, D. Praetorius, J. Streitberger: Optimal complexity of goal-oriented adaptive FEM with nested iterative solvers, CMAM-10, Bonn, 12. Juni 2024 [slides]
  2. P. Bringmann, M. Brunner, M. Feischl, A. Miraçi, D. Praetorius, J. Streitberger: 2fast2converge - Optimal complexity of adaptive FEM for second-order elliptic PDEs, PhD Colloquium of the Vienna School of Mathematics, Wien, 15. April 2024 [slides]
  3. P. Bringmann, M. Brunner, A. Miraçi, D. Praetorius, J. Streitberger: Cost-optimal goal-oriented adaptive FEM for linear elliptic PDEs, ENUMATH 2023, Lisbon, Portugal, 04. September 2023 [slides]
  4. M. Brunner, P. Heid, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger: Adaptive FEM for linear elliptic PDEs: optimal complexity, 17th Austrian Numerical Analysis Day, Wien, 27.-28. April 2023 [slides]
  5. M. Brunner, A. Miraçi, D. Praetorius, J. Streitberger: Optimal cost of AFEM for linear elliptic PDEs, 2nd SFB International Workshop 2023 "Taming Complexity in Partial Differential Systems", Wien, 19.-21. April 2023

Thesis: Optimal complexity of standard and goal-oriented adaptive FEM for general second-order linear elliptic PDEs [www], opens a file in a new window [slides], opens a file in a new window

Dissertation: Optimal complexity of standard and goal-oriented adaptive FEM for general second-order linear elliptic PDEs [www], opens a file in a new window [slides], opens a file in a new window