Presseaussendungen

Ultradünne Transistoren für schnellere Computerchips

Ein wichtiger Durchbruch in der Transistortechnologie gelang an der TU Wien: Mit Hilfe neuartiger Isolatoren können hochwertige Transistoren aus zweidimensionalen Materialien hergestellt werden.

Eine schematische Skizze des neuen Transistors: In rot-blau: der Isolator, darüber der Halbleiter

1 von 2 Bildern oder Videos

Transistor

Eine schematische Skizze des neuen Transistors: In rot-blau: der Isolator, darüber der Halbleiter (Download und Verwendung honorarfrei © TU Wien)

Der Transistor unter dem Elektronenmikroskop (Copyright: TU Wien, Abdruck honorarfrei)

1 von 2 Bildern oder Videos

Rasterelektronenmikroskop-Aufnahme

Der Transistor unter dem Elektronenmikroskop (Copyright: TU Wien, Abdruck honorarfrei)

Jahrzehntelang wurden die Transistoren auf unseren Mikrochips immer kleiner, schneller und billiger. Ungefähr alle zwei Jahre konnte die Anzahl der Transistoren auf handelsüblichen Chips verdoppelt werden – als „Mooresches Gesetz“ wurde dieses Phänomen bekannt. Doch seit einigen Jahren ist damit Schluss. Die Miniaturisierung ist an eine natürliche Grenze gestoßen, weil man auf einer Größenskala von wenigen Nanometern plötzlich mit ganz neuen Problemen zu kämpfen hat.

Nun könnte allerdings der nächste große Miniaturisierungsschritt möglich werden – mit zweidimensionalen (2D) Materialien, die nur aus einer atomdicken Materialschicht bestehen. Mit Hilfe eines neuartigen Isolators aus Kalziumfluorid gelang es nun an der TU Wien einen ultradünnen Transistor herzustellen, der ausgezeichnete elektrische Eigenschaften aufweist und im Gegensatz zu bisherigen Technologien wegen seiner geringen Dicke auch extrem stark verkleinert werden kann. Die neue Technologie wurde im Fachjournal „Nature Electronics“ präsentiert.

Dünne Halbleiter und dünne Isolatoren

Bei der Forschung an Halbleitermaterialien, wie man sie zur Herstellung von Transistoren benötigt, gab es in den letzten Jahren große Fortschritte: Mittlerweile lassen sich ultradünne Halbleiter als sogenannte 2D-Materialien herstellen, die nur noch aus wenigen Atomlagen bestehen. „Wenn man allerdings einen extrem kleinen Transistor bauen will, genügt das nicht“, erklärt Prof. Tibor Grasser vom Institut für Mikroelektronik der TU Wien. „Zusätzlich zum ultradünnen Halbleiter braucht man auch noch einen ultradünnen Isolator.“

Das liegt am grundlegenden Aufbau eines Transistors: Strom kann von einer Seite des Transistors zur anderen fließen – aber nur, wenn in der Mitte durch das Anlegen einer elektrischen Spannung ein passendes elektrisches Feld erzeugt wird. Zwischen der Elektrode, die für dieses Feld sorgt, und dem Halbleiter selbst braucht man eine isolierende Schicht. „Immer wieder gab es Transistor-Experimente mit ultradünnen Halbleitern, gekoppelt mit gewöhnlichen, dickeren Isolatoren“, sagt Tibor Grasser. „Doch das bringt wenig – erstens kann man nicht von einer Miniaturisierung sprechen, wenn der Transistor inklusive Isolator dann doch wieder eine größere Dicke hat, und zweitens zeigte sich, dass die sensiblen elektronischen Eigenschaften des Halbleiters von der minderwertigen Isolator-Oberfläche gestört werden.“

Daher verfolgte Yury Illarionov, Postdoc im Team von Tibor Grasser, einen neuartigen Ansatz: Wenn man nicht nur für den Halbleiter, sondern auch für den Isolator ein ultradünnes Material mit klar definierter Oberfläche verwendet, also zum Beispiel ionische Kristalle, dann lässt sich ein Transistor mit einer Größe von nur wenigen Nanometern bauen. Die elektronischen Eigenschaften werden verbessert, weil ionische Kristalle eine perfekt regelmäßige Oberfläche haben - ohne einzelne herausragende Atome, die das elektrische Feld stören könnten. „Konventionelle Materialien haben kovalente Bindungen in die dritte Dimension – also Atome, die oben und unten an Atome des Nachbarmaterials koppeln“, erklärt Tibor Grasser. „Das ist bei 2D-Materialien und ionischen Kristallen nicht der Fall, deshalb stören sie die elektrischen Eigenschaften des Nachbarmaterials nicht.“

Schon der Prototyp ist Weltmeister

Man entschied sich für einen Isolator aus einer atomar dünnen Schicht aus Kalziumfluorid. Die Kalziumfluorid-Schicht wurde am Joffe-Institut in St. Petersburg hergestellt, wo auch der Erstautor der Publikation, Yury Illarionov, geforscht hatte, bevor er an die TU Wien wechselte. Der Transistor selbst wurde dann am Institut für Photonik der TU Wien in der Gruppe von Prof. Thomas Müller gefertigt und anschließend am Institut für Mikroelektronik untersucht.

Schon der erste Prototyp übertraf alle Erwartungen: „Wir haben in den letzten Jahren immer wieder unterschiedliche Transistoren bekommen, um ihre technischen Eigenschaften zu untersuchen – aber so etwas wie unseren Transistor mit Kalziumfluorid-Isolator haben wir noch nie gesehen“, sagt Tibor Grasser. „Der Prototyp stellt mit seinen elektrischen Eigenschaften alle bisherigen Ergebnisse in den Schatten.“

Nun soll untersucht werden, welche Kombinationen von Isolatoren und Halbleitern am besten funktionieren. Bis die Technologie für handelsübliche Computerchips verwendet werden kann, werden wohl noch einige Jahre vergehen – die Herstellungsverfahren für die Materialschichten müssen noch verbessert werden. „Grundsätzlich besteht für uns aber kein Zweifel daran, dass Transistoren aus 2D-Materialien eine hochinteressante Option für die Zukunft sind“, sagt Tibor Grasser. „Aus wissenschaftlicher Sicht steht fest, dass die nun vorgestellten Fluoride die derzeit beste Lösung für das Isolatorproblem sind. Jetzt sind noch einige technische Fragen zu klären.“

Für die Computerindustrie soll durch solche kleineren, schnelleren Transistoren der nächste große Entwicklungsschritt möglich werden. So könnte das Mooresche Gesetz von der Verdopplung der Rechenkapazität bald wieder gelten.

Originalpublikation

Y. Illarionov et al., Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors, Nature Electronics 2, 230–235 (2019). , öffnet eine externe URL in einem neuen Fenster


Kontakt

Prof. Tibor Grasser
Institut für Mikroelektronik
Technische Universität Wien
Gußhausstraße 27–29, 1040 Wien
T: +43-1-58801-36000
tibor.grasser@tuwien.ac.at

Aussender:
Dr. Florian Aigner
PR und Marketing
Technische Universität Wien
Resselgasse 3, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at