Presseaussendungen

Der Strahl, der unsichtbar macht

Eine neue Tarnkappen-Technologie wurde an der TU Wien entwickelt: Ein spezielles Material wird von oben so bestrahlt, dass es einen seitlich ankommenden Lichtstrahl ungestört passieren lässt.

Ein Material mit inneren Unregelmäßigkeiten streut einen einfallenden Lichtstrahl in alle Richtungen.

© TU Wien

1 von 2 Bildern oder Videos

Ein Material mit inneren Unregelmäßigkeiten streut einen einfallenden Lichtstrahl in alle Richtungen.

Schematische Darstellung

© TU Wien

1 von 2 Bildern oder Videos

Von oben wird das Material mit einem ganz bestimmten Muster beleuchtet, dadurch kann die Welle von links das Objekt ungestört durchdringen.

Wie macht man Materialien unsichtbar? Ein Forschungsteam der TU Wien hat mit Unterstützung aus Griechenland und den USA einen neuen Ansatz für Tarnkappen-Technologien entwickelt: Ein vollständig undurchsichtiges Material wird von oben oder unten mit einem ganz bestimmten Wellenmuster bestrahlt – und das führt dazu, dass Lichtwellen von links nach rechts völlig ungehindert durch das Material dringen können. Dieses überraschende Resultat eröffnet ganz neue Möglichkeiten für aktive Camouflage. Das Prinzip ist für ganz unterschiedliche Arten von Wellen anwendbar – nicht nur für Licht, sondern etwa auch für Schallwellen. Erste Experimente dazu sind bereits in Planung.

Die Lichtstreuung überlisten
„Komplizierte Materialien wie etwa ein Stück Würfelzucker sind undurchsichtig, weil die Lichtwellen in ihnen unzählige Male abgelenkt und gestreut werden“, erklärt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien. „Das Licht kann zwar eindringen und irgendwo wieder herauskommen, aber die Lichtwelle kann sich nicht geradlinig durch das Medium hindurchbewegen. Stattdessen wird sie chaotisch in alle Richtungen gestreut.“

Seit Jahren gibt es verschiedene Versuche, die Wellenstreuung zu überlisten und somit eine Art „Tarnkappe“ herzustellen. So kann man etwa aus speziellen Materialien Objekte herstellen, die bestimmte Lichtwellen außen um sich herumleiten. Es gibt auch Experimente mit Gegenständen, die von sich aus Licht abstrahlen: Wenn ein Bildschirm nach vorne genau das Licht aussendet, das er auf der Rückseite absorbiert, dann erscheint er unsichtbar – zumindest, wenn man ihn aus dem richtigen Winkel betrachtet.

An der TU Wien versuchte man nun allerdings, das Problem auf fundamentaler Ebene zu lösen. „Wir wollten die Lichtwelle nicht umleiten oder mit Zusatz-Displays wiederherstellen, sondern die ursprüngliche Lichtwelle auf geradem Weg durch das Objekt steuern, so als wäre das Objekt gar nicht da“, sagt Andre Brandstötter, ein Ko-Autor der Studie. „Das klingt merkwürdig, doch mit bestimmten Materialien und unserer speziellen Wellentechnologie ist das möglich.“

Laser-Material
Das Forschungsteam an der TU Wien beschäftigt sich schon seit längerer Zeit mit optisch aktiven Materialien, wie man sie zur Herstellung von Lasern verwendet. Damit ein Laser zu leuchten beginnt, muss ihm in Form von Licht Energie zugeführt werden. Tut man das nicht, verhält sich das Laser-Material wie die meisten anderen auch: Es absorbiert einen Teil des einfallenden Lichts.

„Der entscheidende Trick ist, dem Material punktgenau Energie zuzuführen und an anderen Stellen Absorption zu erlauben“, erklärt Prof. Konstantinos Makris von der Universität Kreta, der zuvor in der Arbeitsgruppe Rotter tätig war. „Von oben wird genau das richtige Punktmuster auf das Material gestrahlt – wie durch einen gewöhnlichen Videoprojektor, allerdings mit sehr hoher Auflösung.“

Passt dieses Muster genau zu den inneren Unregelmäßigkeiten im Material, an denen normalerweise das Licht gestreut wird, kann man durch das von oben zugeführte Licht die Streuung praktisch ausschalten und ein Lichtstrahl kann von links nach rechts völlig ungehindert und verlustfrei durch das Material gelangen.

„Dass es mathematisch überhaupt möglich ist, ein solches Punktmuster zu finden, ist auf den ersten Blick nicht sofort ersichtlich“, sagt Rotter. „Insbesondere muss jedes Objekt, das man durchsichtig machen will, mit einem eigenen Punktmuster bestrahlt werden – abhängig von der mikroskopischen Streuung in seinem Inneren. Wir haben nun eine Methode entwickelt, für ein beliebiges, zufällig streuendes Objekt genau das richtige Bestrahlungs-Punktmuster zu errechnen.“

Licht oder Schall
Dass die Methode funktioniert, konnte man in Computersimulationen bereits zeigen. Nun soll die Idee experimentell umgesetzt werden. Stefan Rotter ist zuversichtlich, dass das gelingen wird: „Wir sind bereits im Gespräch mit experimentellen Forschungsgruppen, mit denen wir das technisch umsetzen möchten. In einem ersten Schritt ist es wahrscheinlich einfacher mit Schallwellen anstatt mit Licht zu arbeiten – aus mathematischer Sicht spielt dieser Unterschied keine erhebliche Rolle.“


Originalpublikation:Wave propagation through disordered media without backscattering and intensity variations, K. G. Makris, A. Brandstötter, P. Ambichl, Z. H. Musslimani, and S. Rotter, Light: Science & Applications 6, e17035 (2017)., öffnet eine externe URL in einem neuen Fenster
Eine Diskussion des Papers von Patrick Sebbah in Nature Photonics finden Sie hier: http://rdcu.be/s87y, öffnet eine externe URL in einem neuen Fenster 

Bilderdownload


Rückfragehinweise:
Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Resselgasse 3, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at