News

Jupiters „Trojaner“ im Atom-Format

Berechnungen der TU Wien erfolgreich im Experiment umgesetzt: Ähnlich wie der Planet Jupiter Asteroiden auf stabilen Bahnen hält, lassen sich Elektronen in Kalium-Atomen durch elektromagnetische Felder stabilisieren.

Das Bohrsche Atommodell geht von Elektronen aus, die ähnlich wie ein Planet um den Atomkern kreisen. Durch technische Tricks wird das Elektron (grün) über lange Zeit zusammengehalten, ohne sich über die ganze Kreisbahn zu verteilen.

1 von 4 Bildern oder Videos

Das Bohrsche Atommodell geht von Elektronen aus, die ähnlich wie ein Planet um den Atomkern kreisen. Durch technische Tricks wird das Elektron (grün) über lange Zeit zusammengehalten, ohne sich über die ganze Kreisbahn zu verteilen.

Das Bohrsche Atommodell geht von Elektronen aus, die ähnlich wie ein Planet um den Atomkern kreisen. Durch technische Tricks wird das Elektron (grün) über lange Zeit zusammengehalten, ohne sich über die ganze Kreisbahn zu verteilen.

Prof. Joachim Burgdörfer (l) und Shuhei Yoshida (r) demonstrieren das Zusammenspiel von Sonne und Jupiter. (Maßstabsgerecht wäre der Abstand zwischen den Himmelskörpern allerdings viel größer.)

1 von 4 Bildern oder Videos

Prof. Joachim Burgdörfer (l) und Shuhei Yoshida (r) demonstrieren das Zusammenspiel von Sonne und Jupiter. (Maßstabsgerecht wäre der Abstand zwischen den Himmelskörpern allerdings viel größer.)

Prof. Joachim Burgdörfer (l) und Shuhei Yoshida (r) demonstrieren das Zusammenspiel von Sonne und Jupiter. (Maßstabsgerecht wäre der Abstand zwischen den Himmelskörpern allerdings viel größer.)

Links: Die Sonne, die inneren Planeten, der Asteroidengürtel und Jupiter. Auf der Jupiterbahn sind klar zwei Häufungen von Asteroiden zu erkennen (grün) - die "Trojaner" und "Griechen". Ähnlich wie die Asteroiden durch die Gravitation des Jupiter zusammengehalten wird, stabilisiert ein elektromagnetisches Feld (unten) das Elektron (rechts oben).

1 von 4 Bildern oder Videos

Links: Die Sonne, die inneren Planeten, der Asteroidengürtel und Jupiter. Auf der Jupiterbahn

Links: Die Sonne, die inneren Planeten, der Asteroidengürtel und Jupiter. Auf der Jupiterbahn sind klar zwei Häufungen von Asteroiden zu erkennen (grün) - die "Trojaner" und "Griechen". Ähnlich wie die Asteroiden durch die Gravitation des Jupiter zusammengehalten wird, stabilisiert ein elektromagnetisches Feld (unten) das Elektron (rechts oben).

Shuzhen Ye von der Rice University (USA) erzeugte hochangeregte Rydberg-Atome mit Hilfe eines Lasers. (Copyright: Jeff Fitlow/Rice University)

1 von 4 Bildern oder Videos

Shuzhen Ye von der Rice University (USA) erzeugte hochangeregte Rydberg-Atome mit Hilfe eines Lasers. (Copyright: Jeff Fitlow/Rice University)

Shuzhen Ye von der Rice University (USA) erzeugte hochangeregte Rydberg-Atome mit Hilfe eines Lasers. (Copyright: Jeff Fitlow/Rice University)

Milliarden Jahre können Planeten und Asteroiden regelmäßig rund um die Sonne kreisen. Auch Elektronen, die sich rund um einen Atomkern bewegen, stellt man sich gerne wie Planeten im Mini-Format vor. In Wirklichkeit verhalten sich Atome aufgrund quantenphysikalischer Effekte aber doch ganz anders als Planetensysteme. Nun ist es einem US-amerikanisch-österreichischen Forschungsteam gelungen, Elektronen in Atomen lange Zeit stabil auf planetenartigen Bahnen kreisen zu lassen. Den entscheidenden Trick dafür hat man sich vom Jupiter abgeschaut: Er stabilisiert die Bahnen von Asteroiden – den sogenannten „Trojanern“ - und auf ganz ähnliche Weise konnten nun Elektronen-Bahnen rund um den Atomkern durch ein elektromagnetisches Feld stabilisiert werden. Die Forschungsergebnisse wurden nun im Fachjournal „Physical Review Letters“ publiziert.

Riesen-Atome
Es sind die wohl größten Atome der Erde: „Einen Hundertstel Millimeter beträgt der Durchmesser der Elektronenbahnen – für atomare Verhältnisse eine gewaltige Distanz“, erklärt Shuhei Yoshida. Die Atome sind damit größer als rote Blutkörperchen. Yoshida führte am Institut für Theoretische Physik der TU Wien die Berechnungen durch, an der Rice University in Houston (Texas) wurden die Ideen experimentell umgesetzt.

Ein Elektron ist kein Planet
Die Vorstellung, dass Atome und Planetensysteme einiges gemeinsam haben, ist nicht neu: Schon das erste Atommodell von Niels Bohr ging von Elektronen aus, die sich auf festen Bahnen rund um einen Atomkern bewegen. Dieses Bild gilt aber längst als veraltet. Quantenmechanisch wird das Elektron Quanten-Welle oder als „Wahrscheinlichkeitswolke“ beschrieben, die den Atomkern umgibt. Ein Elektron im niedrigsten Energiezustand befindet sich gleichzeitig in allen möglichen Richtungen rund um den Kern – von einem genauen Aufenthaltsort oder einer echten Umlaufbahn kann hier keine Rede sein. Erst wenn man das Elektron auf ein höheres Energie-Niveau anhebt, lässt es sich so präparieren, dass es planetenartigen Bahnen folgt. 

Jupiters Trick - auf Atome angewandt
Im Gegensatz zu Planeten bewegen sich die Elektronen aber nicht dauerhaft so weiter: „Ohne zusätzliche Stabilisierung würde sich die Elektronen-Welle schon nach wenigen Umläufen wieder gleichmäßig entlang der Bahn verteilen und hätte keine feste Position mehr“, sagt Prof. Burgdörfer, Vorstand des Instituts für Theoretische Physik. Eine mögliche Stabilisierung solcher Bahnen kennt man aus der Astronomie schon lange: Jupiter, der schwerste Planet unseres Sonnensystems, stabilisiert durch seine Anziehungskraft die Bahnen der „Trojaner“ – das sind tausende kleine Asteroiden, die sich mit Jupiter eine Bahn um die Sonne teilen. Auf den so genannten „Lagrange-Punkten“ werden sie festgehalten, und entlang dieser Bahn bewegen sie sich mit Jupiter mit – genau mit der selben Umlaufgeschwindigkeit wie Jupiter selbst, sodass sie nie mit dem Planeten kollidieren.

Im Atom-Experiment wird diese stabilisierende Wirkung des Jupiters durch ein raffiniert gewähltes elektromagnetisches Feld ersetzt:  Das Feld oszilliert genau in der Frequenz, die der Umlaufdauer des Elektrons um den Kern entspricht – es gibt dem Elektron also den richtigen Takt vor und hält die Quanten-Welle des Elektrons viele Umdrehungen lang in einem engen Bereich lokalisiert. Am Atom lassen sich sogar Manipulationen durchführen, die im Planetensystem nicht möglich wären: Das Elektron kann gezielt in eine andere Umlaufbahn überführt werden – so als würde man den Jupiter samt der Asteroiden auf die Saturn-Bahn schieben.

Das Kleine und das Große
Damit ist es gelungen, astronomische Gegebenheiten in einer quantenphysikalischen Miniatur-Version nachzubauen und Atome zu erzeugen, die dem historischen Bohrschen Atommodell erstaunlich nahe kommen. In Zukunft will das internationale Forschungsteam Atome präparieren, in denen sich gleich mehrere Elektronen auf planetenartigen Bahnen bewegen. Mit solchen Atomen soll es möglich sein, genauer zu erforschen, wie die Quanten-Welt der winzig kleinen Objekte mit der klassischen Welt unserer Alltagserfahrung zusammenhängt. 

Fotodownload: <link dle pr aktuelles downloads trojaner>

www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/trojaner, öffnet eine externe URL in einem neuen Fenster

  

Originalpublikation: <link http: link.aps.org doi physrevlett.108.043001>

link.aps.org/doi/10.1103/PhysRevLett.108.043001, öffnet eine externe URL in einem neuen Fenster


Rückfragehinweise:

Ao.Prof. Shuhei Yoshida
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
+43-1-58801-13611
<link>shuhei.yoshida@tuwien.ac.at


Prof. Joachim Burgdörfer
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
+43-1-58801-13610
<link>burg@concord.itp.tuwien.ac.at 


Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
<link>florian.aigner@tuwien.ac.at