Publikationen (peer reviewed)

  1. Nannen, L., Wess, M. (2024) A Krylov eigenvalue solver based on filtered time domain solutions. Computers & Mathematics with Applications, 176: 179-188. [www]
  2. Nannen, L., Wess, M. (2022) Complex-scaled infinite elements for resonance problems in heterogeneous open systems. Advances in Computational Mathematics, 48(8): 1–35. [www]
  3. Nannen, L., Wess, M. (2018) Computing scattering resonances using perfectly matched layers with frequency dependent scaling functions. BIT Numerical Mathematics, 58(2): 373–395. [www]
  4. Halla, M., Nannen, L. (2017) Two scale Hardy space infinite elements for scalar waveguide problems. Advances in Computational Mathematics, pp 1-33. [www]
  5. Halla, M., Hohage, T., Nannen, L., Schöberl, J. (2016) Hardy Space Infinite Elements for Time Harmonic Wave Equations with Phase and Group Velocities of Different Signs. Numerische Mathematik, 133(1): 103-139. [www]
  6. Halla, M., Nannen, L. (2015) Hardy space infinite elements for time-harmonic two-dimensional elastic waveguide problems. Wave Motion, 59: 94-110. [www]
  7. Hohage, T., Nannen, L. (2015) Convergence of infinite element methods for scalar waveguide problems. BIT Numerical Mathematics, 55(1):215-254. [www]
  8. Nannen, L. , Hohage, T. , Schädle, A., Schöberl. J. (2013). Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems. SIAM J. Scientific Computing, 35(2): A1024-A1048. [www][arxiv][erweiterter abstract]
  9. Hein, S., Koch, W., Nannen, L. (2012). Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems. Journal of Fluid Mechanics, 692:257-287. [www]
  10. Nannen, L., Schädle, A. (2011). Hardy space infinite elements for Helmholtz-type problems with unbounded inhomogeneities. Wave Motion, 48(2):116-129. [www]
  11. Hein, S., Koch, W., Nannen, L. (2010). Fano resonances in acoustics. Journal of Fluid Mechanics, 664:238-264. [www]
  12. Hohage, T., Nannen, L. (2009). Hardy space infinite elements for scattering and resonance problems. SIAM J. Num. Analysis, 47:972-996. [www]

Andere Publikationen

  1. Nannen, L., Wess, M. (2024) A Krylov Eigenvalue Solver Based on Filtered Time Domain Solutions, preprint,  arXiv 2402.08515
  2. Nannen, L. (2017) High order transparent boundary conditions for the Helmholtz equation. Buchkapitel in Modern Solvers for Helmholtz Problems, Springer, Preprint
  3. Nannen, L. , Hohage, T. , Schädle, A., Schöberl. J. (2013). Hardy space method for exterior Maxwell problems. Oberwolfach Report.
  4. Halla, M., Hohage, T., Nannen, L., Schöberl, J. (2013) Hardy space method for waveguides. Oberwolfach Report.
  5. Hardy-Raum Methoden zur numerischen Lösung von Streu- und Resonanzproblemen auf unbeschränkten Gebieten (2008). PhD thesis, Universität Göttingen, Der Andere Verlag, ISBN 978-3-89959-742-4. [www]