Peter Filzmoser
Publikationen
-
| Robust sparse PCA for spatial data at reposiTUm , opens an external URL in a new windowPuchhammer, P., Wilms, I., & Filzmoser, P. (2024, July 29). Robust sparse PCA for spatial data. ICORS meets DSSV 2024, Fairfax, United States of America (the).
-
| Robust covariance estimation and functional anomaly detection based on the Minimum Regularized Covariance Trace estimator at reposiTUm , opens an external URL in a new windowOguamalam, J., Radojicic, U., & Filzmoser, P. (2024). Robust covariance estimation and functional anomaly detection based on the Minimum Regularized Covariance Trace estimator. In PROGRAM AND ABSTRACTS - Austrian Statistical Days 2024. Austrian Statistical Days 2024, Wien, Austria.
-
| Groupwise sparse PCA for spatial data at reposiTUm , opens an external URL in a new windowPuchhammer, P., Filzmoser, P., & Wilms, I. (2024, April 4). Groupwise sparse PCA for spatial data. Österreichische Statistiktage 2024 (2024, Wien), Wien, Austria.
-
| A performance study of local outlier detection methods for mineral exploration with geochemical compositional data at reposiTUm , opens an external URL in a new windowPuchhammer, P., Kalubowila, C., Braus, L., Pospiech, S., Sarala, P., & Filzmoser, P. (2024). A performance study of local outlier detection methods for mineral exploration with geochemical compositional data. Journal of Geochemical Exploration, 258, Article 107392. https://doi.org/10.1016/j.gexplo.2024.107392, opens an external URL in a new window
-
| Visual Interactive Parameter Selection for Temporal Blind Source Separation at reposiTUm , opens an external URL in a new windowCappello, C., Piccolotto, N., Mühlmann, C., Bögl, M., Filzmoser, P., Miksch, S., & Nordhausen, K. (2024). Visual Interactive Parameter Selection for Temporal Blind Source Separation. Journal of Data Science, Statistics, and Visualisation, 4(3). https://doi.org/10.52933/jdssv.v4i3.82, opens an external URL in a new window
-
| Spatially Smoothed Robust Covariance Estimation for Local Outlier Detection at reposiTUm , opens an external URL in a new windowPuchhammer, P., & Filzmoser, P. (2023). Spatially Smoothed Robust Covariance Estimation for Local Outlier Detection. Journal of Computational and Graphical Statistics. https://doi.org/10.1080/10618600.2023.2277875, opens an external URL in a new window
-
| Principal balances of compositional data for regression and classification using partial least squares at reposiTUm , opens an external URL in a new windowNesrstová, V., Wilms, I., Palarea‐Albaladejo, J., Filzmoser, P., Martín‐Fernández, J. A., Friedecký, D., & Hron, K. (2023). Principal balances of compositional data for regression and classification using partial least squares. Journal of Chemometrics, 37(12), Article e3518. https://doi.org/10.1002/cem.3518, opens an external URL in a new window
-
| Sparse Projected Averaged Regression for High-Dimensional Data at reposiTUm , opens an external URL in a new windowParzer, R., Vana Gür, L., & Filzmoser, P. (2023). Sparse Projected Averaged Regression for High-Dimensional Data. arXiv. https://doi.org/10.34726/5489, opens an external URL in a new window
-
| Improving Forecasts for Heterogeneous Time Series by "Averaging", with Application to Food Demand Forecast at reposiTUm , opens an external URL in a new windowNeubauer, L., & Filzmoser, P. (2023). Improving Forecasts for Heterogeneous Time Series by “Averaging”, with Application to Food Demand Forecast. arXiv. https://doi.org/10.48550/arXiv.2306.07119, opens an external URL in a new window
-
| Explainable outlier identification for matrix-valued observations at reposiTUm , opens an external URL in a new windowFilzmoser, P., Mayrhofer, M., Radojicic, U., & Lewitschnig, H. (2023). Explainable outlier identification for matrix-valued observations. In Book of Abstracts : International Conference on Data Science : ICDS 2023 : Multidimensional Perspectives: From Statistical Learning to Data Science Applications (pp. 13–13).
-
| Data Type Agnostic Visual Sensitivity Analysis at reposiTUm , opens an external URL in a new windowPiccolotto, N., Bogl, M., Muehlmann, C., Nordhausen, K., Filzmoser, P., Schmidt, J., & Miksch, S. (2023). Data Type Agnostic Visual Sensitivity Analysis. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2023.3327203, opens an external URL in a new window
-
| Extending compositional data analysis from a graph signal processing perspective at reposiTUm , opens an external URL in a new windowRieser, C., & Filzmoser, P. (2023). Extending compositional data analysis from a graph signal processing perspective. Journal of Multivariate Analysis, 198, Article 105209. https://doi.org/10.1016/j.jmva.2023.105209, opens an external URL in a new window
-
| Data Type Agnostic Visual Sensitivity Analysis at reposiTUm , opens an external URL in a new windowPiccolotto, N., Bögl, M., Mühlmann, C., Nordhausen, K., Filzmoser, P., Schmidt, J., & Miksch, S. (2023, October 26). Data Type Agnostic Visual Sensitivity Analysis. IEEE VIS 2023, Melbourne, Australia.
-
| Robust statistical methods for high-dimensional data, with applications in tribology at reposiTUm , opens an external URL in a new windowPfeiffer, P., & Filzmoser, P. (2023). Robust statistical methods for high-dimensional data, with applications in tribology. Analytica Chimica Acta, 1279(341762). https://doi.org/10.34726/5289, opens an external URL in a new window
-
| New Mission Profile Model Using Functional Data Analysis at reposiTUm , opens an external URL in a new windowMayrhofer, M., Lewitschnig, H., & Filzmoser, P. (2023, October 19). New Mission Profile Model Using Functional Data Analysis. Infineon meets University 2023, Germany.
-
| Cell-wise robust covariance estimation for compositions, with application to geochemical data at reposiTUm , opens an external URL in a new windowRieser, C., Fačevicová, K., & Filzmoser, P. (2023). Cell-wise robust covariance estimation for compositions, with application to geochemical data. Journal of Geochemical Exploration, 253, Article 107299. https://doi.org/10.1016/j.gexplo.2023.107299, opens an external URL in a new window
-
| Outlier explanation based on Shapley values for vector- and matrix-valued observations at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Mayrhofer, M. (2023). Outlier explanation based on Shapley values for vector- and matrix-valued observations. In P. Coretto, G. N. Giordano, & M. La Rocca (Eds.), CLADAC 2023 : Book of Abstracts and Short Papers : 14th Scientific Meeting of the Classification and Data Analysis Group (pp. 156–158). Pearson Education Resources.
-
| Explainable outlier detection based on Shapley values at reposiTUm , opens an external URL in a new windowMayrhofer, M., & Filzmoser, P. (2023). Explainable outlier detection based on Shapley values. In PROGRAMME AND ABSTRACTS 25th International Conference on Computational Statistics (COMPSTAT 2023) (pp. 13–14).
-
| Spatial outlier detection using the spatially smoothed MRCD at reposiTUm , opens an external URL in a new windowPuchhammer, P., & Filzmoser, P. (2023, August 7). Spatial outlier detection using the spatially smoothed MRCD. 22nd Annual Conference of the International Association for Mathematical Geosciences 2023 (IAMG2023), Trondheim, Norway.
-
| The Impact of COVID-19 on Relative Changes in Aggregated Mobility Using Mobile-phone Data at reposiTUm , opens an external URL in a new windowHeiler, G., Hanbury, A., & Filzmoser, P. (2023). The Impact of COVID-19 on Relative Changes in Aggregated Mobility Using Mobile-phone Data. Austrian Journal of Statistics, 52(4), 163–179. https://doi.org/10.17713/ajs.v52i4.1510, opens an external URL in a new window
-
| Relationships between wellbeing and sustainable development in a group of selected developed countries at reposiTUm , opens an external URL in a new windowDrastichová, M., Filzmoser, P., & Gajanin, R. (2023). Relationships between wellbeing and sustainable development in a group of selected developed countries. Problemy Ekorozwoju, 18(2), 49–77. https://doi.org/10.35784/preko.3941, opens an external URL in a new window
-
| A New Look at Model Averaging of Differently Sized Time Series at reposiTUm , opens an external URL in a new windowNeubauer, L., & Filzmoser, P. (2023). A New Look at Model Averaging of Differently Sized Time Series. In DSSV 2023 : Book of Abstracts. DSSV-ECDA 2023, Antwerpen, Belgium.
-
| L0 Regularized Cellwise Outlier Detection and Covariance Estimation at reposiTUm , opens an external URL in a new windowMayrhofer, M., Rieser, C., & Filzmoser, P. (2023). L0 Regularized Cellwise Outlier Detection and Covariance Estimation. In Book of abstracts: Joint conference of Data Science, Statistics & Visualisation and the European Conference on Data Analysis (pp. 95–95).
-
| Functional Outlier Detection based on the Minimum Regularized Covariance Trace Estimator at reposiTUm , opens an external URL in a new windowOguamalam, J., Radojicic, U., & Filzmoser, P. (2023). Functional Outlier Detection based on the Minimum Regularized Covariance Trace Estimator. In Book of abstracts: Joint conference of Data Science, Statistics & Visualisation and the European Conference on Data Analysis (pp. 102–102).
-
| Combining New Dimension Reduction Tools for High-Dimensional Regression at reposiTUm , opens an external URL in a new windowParzer, R., Vana Gür, L., & Filzmoser, P. (2023). Combining New Dimension Reduction Tools for High-Dimensional Regression. In DSSV 2023 : Book of Abstracts (pp. 103–103).
-
| Robust and sparse multinomial regression in high dimensions at reposiTUm , opens an external URL in a new windowKurnaz, F. S., & Filzmoser, P. (2023). Robust and sparse multinomial regression in high dimensions. Data Mining and Knowledge Discovery, 37(4), 1609–1629. https://doi.org/10.1007/s10618-023-00936-6, opens an external URL in a new window
-
| A robust knockoff filter for sparse regression with microbiome compositions at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Monti, G. S. (2023, June 12). A robust knockoff filter for sparse regression with microbiome compositions. ODAM 2023, Olomouc, Czechia.
-
| Explainable Multivariate Outlier Detection based on Shapley Values at reposiTUm , opens an external URL in a new windowMayrhofer, M., & Filzmoser, P. (2023). Explainable Multivariate Outlier Detection based on Shapley Values. In Book of Abstracts Olomoucian Days of Applied Mathematics ODAM 2023 (pp. 53–53).
-
| Minimum Regularized Covariance Trace Estimator and Outlier Detection for Functional Data at reposiTUm , opens an external URL in a new windowOguamalam, J., Radojicic, U., & Filzmoser, P. (2023). Minimum Regularized Covariance Trace Estimator and Outlier Detection for Functional Data. In Book of Abstracs - Olomoucian Days of Applied Mathematics ODAM 2023 (pp. 57–57).
-
| Detecting Local Outliers Using the Spatially Smoothed MRCD Estimator at reposiTUm , opens an external URL in a new windowPuchhammer, P., & Filzmoser, P. (2023, June 12). Detecting Local Outliers Using the Spatially Smoothed MRCD Estimator. Olomoucian Days of Applied Mathematics ODAM 2023, Olomouc, Czechia.
-
| Outlier detection and explanation for matrix-valued data at reposiTUm , opens an external URL in a new windowMayrhofer, M., Radojicic, U., Lewitschnig, H., & Filzmoser, P. (2023, May 24). Outlier detection and explanation for matrix-valued data. International Conference on Robust Statistics (ICORS) - 2023, Toulouse, France.
-
| Robust and Sparse CCA: An Algorithm for Dimension Reduction via Sparsity Inducing Penalties. at reposiTUm , opens an external URL in a new windowPfeiffer, P., Alfons, A., & Filzmoser, P. (2023, May 24). Robust and Sparse CCA: An Algorithm for Dimension Reduction via Sparsity Inducing Penalties.. International Conference on Robust Statistics (ICORS 2023), Toulouse, France.
-
| A spatially smoothed MRCD estimator for local outlier detection at reposiTUm , opens an external URL in a new windowPuchhammer, P., & Filzmoser, P. (2023). A spatially smoothed MRCD estimator for local outlier detection. In ICORS 2023 - Book of Abstracts (pp. 58–59).
-
| Robust Sparse Multinomial Regression at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2023, April 18). Robust Sparse Multinomial Regression. DaSSWeb -- Data Science and Statistics Webinar, Portugal.
-
| Robust statistical methods applied to high-dimensional data from tribology at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2023, April 13). Robust statistical methods applied to high-dimensional data from tribology. ANAKON 2023, Wien, Austria.
-
| High-dimensional Regression using Screening, Random Projection and Averaging at reposiTUm , opens an external URL in a new windowParzer, R., Vana Gür, L., & Filzmoser, P. (2023, March 8). High-dimensional Regression using Screening, Random Projection and Averaging. 16th German Probability and Statistics Days 2023, Essen, Germany.
-
| Improving Forecasts for Time Series of Different Lengths by "Averaging", with Application to Food Demand Prediction at reposiTUm , opens an external URL in a new windowNeubauer, L., & Filzmoser, P. (2023, March 7). Improving Forecasts for Time Series of Different Lengths by “Averaging”, with Application to Food Demand Prediction. 16th German Probability and Statistics Days Essen 2023, Essen, Germany.
-
| Massive Data Sets – Is Data Quality Still an Issue? at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Mazak-Huemer, A. (2023). Massive Data Sets – Is Data Quality Still an Issue? In B. Vogel-Heuser & M. Wimmer (Eds.), Digital Transformation (Vol. 1, pp. 269–279). Springer Vieweg. https://doi.org/10.1007/978-3-662-65004-2_11, opens an external URL in a new window
-
| enetLTS: robust and sparse methods for high dimensional linear, binary, and multinomial regression at reposiTUm , opens an external URL in a new windowKurnaz, F. S., & Filzmoser, P. (2023). enetLTS: robust and sparse methods for high dimensional linear, binary, and multinomial regression. Journal of Open Source Software, 8(82), Article 4773. https://doi.org/10.21105/joss.04773, opens an external URL in a new window
-
| TBSSvis: Visual analytics for temporal blind source separation at reposiTUm , opens an external URL in a new windowPiccolotto, N., Bögl, M., Gschwandtner, T., Muehlmann, C., Nordhausen, K., Filzmoser, P., & Miksch, S. (2022). TBSSvis: Visual analytics for temporal blind source separation. Visual Informatics, 6(4), 51–66. https://doi.org/10.1016/j.visinf.2022.10.002, opens an external URL in a new window
-
| Multivariate outlier explanations using Shapley values and Mahalanobis distances at reposiTUm , opens an external URL in a new windowMayrhofer, M., & Filzmoser, P. (2022). Multivariate outlier explanations using Shapley values and Mahalanobis distances. arXiv. https://doi.org/10.34726/3163, opens an external URL in a new window
-
| Timing of glacial - non-glacial stages in Finland: An exploratory analysis of the OSL data at reposiTUm , opens an external URL in a new windowSarala, P., Lunkka, J. P., Sarajärvi, V., Sarala, O., & Filzmoser, P. (2022). Timing of glacial - non-glacial stages in Finland: An exploratory analysis of the OSL data. Arctic, Antarctic, and Alpine Research, 54(1), 428–442. https://doi.org/10.1080/15230430.2022.2117765, opens an external URL in a new window
-
| Robust linear and logistic regression for high-dimensional compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2022, September 20). Robust linear and logistic regression for high-dimensional compositional data. Applied Statistics 2022, Ljubljana, Slovenia.
-
| Weighted LASSO variable selection for the analysis of FTIR spectra applied to the prediction of engine oil degradation at reposiTUm , opens an external URL in a new windowPfeiffer, P., Ronai, B., Vorlaufer, G., Dörr, N., & Filzmoser, P. (2022). Weighted LASSO variable selection for the analysis of FTIR spectra applied to the prediction of engine oil degradation. Chemometrics and Intelligent Laboratory Systems, 228, Article 104617. https://doi.org/10.1016/j.chemolab.2022.104617, opens an external URL in a new window
-
| Prediction of engine oil degradation based on FTIR spectroscopic data at reposiTUm , opens an external URL in a new windowPfeiffer, P., Ronai, B., Vorlaufer, G., Dörr, N., & Filzmoser, P. (2022, September 15). Prediction of engine oil degradation based on FTIR spectroscopic data. Symposium 2022 der Österreichischen Tribologischen Gesellschaft (ÖTG), Wr. Neustadt, Austria.
-
| Benford goes multivariate: A new fraud detection method, with application to music streaming data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2022, August 31). Benford goes multivariate: A new fraud detection method, with application to music streaming data. Models and Learning in Clustering and Classification, Catania, Italy.
-
| Efficient computation of robust multivariate maximum association at reposiTUm , opens an external URL in a new windowPfeiffer, P., Alfons, A., & Filzmoser, P. (2022, August 24). Efficient computation of robust multivariate maximum association. 24th International Conference on Computational Statistics, Bologna, Italy.
-
| A robust knockoff filter for sparse regression analysis of microbiome compositional data at reposiTUm , opens an external URL in a new windowMonti, G. S., & Filzmoser, P. (2022). A robust knockoff filter for sparse regression analysis of microbiome compositional data. Computational Statistics, 271–288. https://doi.org/10.1007/s00180-022-01268-7, opens an external URL in a new window
-
| Compositional cubes: a new concept for multi-factorial compositions at reposiTUm , opens an external URL in a new windowFačevicová, K., Filzmoser, P., & Hron, K. (2022). Compositional cubes: a new concept for multi-factorial compositions. Statistical Papers. https://doi.org/10.1007/s00362-022-01350-8, opens an external URL in a new window
-
| Outlier explanation using Shapley values and Mahalanobis distances at reposiTUm , opens an external URL in a new windowMayrhofer, M., & Filzmoser, P. (2022, July 6). Outlier explanation using Shapley values and Mahalanobis distances. International Conference on Robust Statistics (ICORS 2022), Waterloo, Canada.
-
| Robust multinomial regression in high dimensions at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2022, July 5). Robust multinomial regression in high dimensions. International Conference on Robust Statistics (ICORS 2022), Waterloo, Canada.
-
| Prediction of engine oil degradation based on FTIR spectra and weighted LASSO regression at reposiTUm , opens an external URL in a new windowPfeiffer, P., Ronai, B., Vorlaufer, G., Dörr, N., & Filzmoser, P. (2022, June 21). Prediction of engine oil degradation based on FTIR spectra and weighted LASSO regression. 5th Young Tribological Researcher Symposium (YTRS), Karlsruhe, Germany.
-
| Visual Parameter Selection for Spatial Blind Source Separation at reposiTUm , opens an external URL in a new windowPiccolotto, N., Bögl, M., Mühlmann, C., Nordhausen, K., Filzmoser, P., & Miksch, S. (2022, June 15). Visual Parameter Selection for Spatial Blind Source Separation. EuroVis 2022, Rome, Italy.
-
| Outliers and compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2022, June 7). Outliers and compositional data. SEMACRET kick-off meeting, Finland.
-
| The impact of the COVID‐19 pandemic on melanoma diagnoses at reposiTUm , opens an external URL in a new windowWeltler, P., Rappersberger, K., Filzmoser, P., & Vujic, I. (2022). The impact of the COVID‐19 pandemic on melanoma diagnoses. JEADV Clinical Practice, 1(2), 122–125. https://doi.org/10.1002/jvc2.15, opens an external URL in a new window
-
| Robust and sparse multinomial regression at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2022, May 31). Robust and sparse multinomial regression. Statistics and Econometrics Seminar, Berlin, Germany.
-
| Weighted LASSO feature selection for the analysis of FT-IR spectra applied to relate engine oil degradation patterns at reposiTUm , opens an external URL in a new windowPfeiffer, P., Ronai, B., Vorlaufer, G., Dörr, N., & Filzmoser, P. (2022, April 28). Weighted LASSO feature selection for the analysis of FT-IR spectra applied to relate engine oil degradation patterns. Tribology International Conference 2022, Barcelona, Spain.
-
| Classification of continuous distributional data using the logratio approach at reposiTUm , opens an external URL in a new windowPavlu, I., Filzmoser, P., Menafoglio, A., & Hron, K. (2022). Classification of continuous distributional data using the logratio approach. In P. Brito & S. Dias (Eds.), Analysis of Distributional Data (pp. 184–202). https://doi.org/10.1201/9781315370545-9, opens an external URL in a new window
-
| Statistik basierend auf absoluter bzw. relativer Information at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2022, April 7). Statistik basierend auf absoluter bzw. relativer Information. TUforMath, Wien, Austria.
-
| Geochemical sourcing of chipped stone tools from Platia Magoula Zarkou. at reposiTUm , opens an external URL in a new windowBrandl, M., Hauzenberger, C. A., Filzmoser, P., & Martinez, M. M. (2022). Geochemical sourcing of chipped stone tools from Platia Magoula Zarkou. In E. Alram-Stern, K. Gallis, & G. Toufexis (Eds.), Platia Magoula Zarkou. The Neolithic Period. (Vol. 23, pp. 291–309). Austrian Academy of Sciences Press.
-
| Swieciechow in the south - geochemical provenance of a "flint" axe from Austria. at reposiTUm , opens an external URL in a new windowBrandl, M., Hauzenberger, C. A., Filzmoser, P., & Trnka, G. (2022). Swieciechow in the south - geochemical provenance of a “flint” axe from Austria. In M. Grygiel & P. Obst (Eds.), Walking among ancient trees. (pp. 533–546). Fundacja Badan Archeologicnych Imenia Profesora Konrada Jazdzewskiego.
-
| Scale Invariant and Robust Pattern Identification in Univariate Time Series, with Application to Growth Trend Detection in Music Streaming Data at reposiTUm , opens an external URL in a new windowMumic, N., Leodolter, O., Schwaiger, A., & Filzmoser, P. (2022). Scale Invariant and Robust Pattern Identification in Univariate Time Series, with Application to Growth Trend Detection in Music Streaming Data. In A. Steland & K.-L. Tsui (Eds.), Artificial Intelligence, Big Data and Data Science in Statistics (pp. 25–50). Springer Nature, Cham. https://doi.org/10.1007/978-3-031-07155-3_2, opens an external URL in a new window
-
| Visual Parameter Selection for Spatial Blind Source Separation at reposiTUm , opens an external URL in a new windowPiccolotto, N., Bögl, M., Muehlmann, C., Nordhausen, K., Filzmoser, P., & Miksch, S. (2022). Visual Parameter Selection for Spatial Blind Source Separation. Computer Graphics Forum, 41(3), 157–168. https://doi.org/10.1111/cgf.14530, opens an external URL in a new window
-
| A multivariate test for detecting fraud based on Benford's law, with application to music streaming data at reposiTUm , opens an external URL in a new windowMumic, N., & Filzmoser, P. (2021). A multivariate test for detecting fraud based on Benford’s law, with application to music streaming data. Statistical Methods and Applications, 30(3), 819–840. https://doi.org/10.1007/s10260-021-00582-6, opens an external URL in a new window
-
| Factors of Quality of Life in a Group of Selected European Union and OECD Countries at reposiTUm , opens an external URL in a new windowDrastichová, M., & Filzmoser, P. (2021). Factors of Quality of Life in a Group of Selected European Union and OECD Countries. Problemy Ekorozwoju, 16(2), 75–93. https://doi.org/10.35784/pe.2021.2.09, opens an external URL in a new window
-
| A robust method to classify high-dimensional microbiome compositions at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2021). A robust method to classify high-dimensional microbiome compositions. 63rd Session of the International Statistical Institute, Den Haag, Netherlands (the).
-
| Garbage in - garbage out: Die Auswirkungen der Datenqualität auf Machine Learning at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2021). Garbage in - garbage out: Die Auswirkungen der Datenqualität auf Machine Learning. Zukunftsfragen des Baubetriebes, Wien, Austria.
-
| Introduction to data analysis techniques and the CODA approach at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2021). Introduction to data analysis techniques and the CODA approach. Short course on Fingerprinting techniques in mineral exploration, Norwegen, Norway.
-
| Introduction to robust statistics at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2021). Introduction to robust statistics. Data Science Group of VNR Verlag, Deutschland, Germany.
-
| Relativ versus absolut: Eine Einführung in die Analyse von Kompositionsdaten at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2021). Relativ versus absolut: Eine Einführung in die Analyse von Kompositionsdaten. AC2T Student Camp, Vorau, Austria.
-
| Robust logistic zero-sum regression for compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2021). Robust logistic zero-sum regression for compositional data. Online Conference Data Science, Statistics & Visualization (DSSV) 2021, Rotterdam, Netherlands (the).
-
| Robustness aspects for the statistical analysis related to industrial applications at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2021). Robustness aspects for the statistical analysis related to industrial applications. International Conference on Mathematical Methods in Economy and Industry (MMEI), Smolenice, Slovakia.
-
| Robust Statistics at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2021). Robust Statistics. In B. S. D. Sagar, Q. Cheng, J. McKinley, & F. Agterberg (Eds.), Encyclopedia of Mathematical Geosciences (pp. 1–5). Springer, Cham. https://doi.org/10.1007/978-3-030-26050-7_425-1, opens an external URL in a new window
-
| Robust linear regression for high-dimensional data: an overview at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Nordhausen, K. (2021). Robust linear regression for high-dimensional data: an overview. Wiley Interdisciplinary Reviews: Computational Statistics. https://doi.org/10.1002/wics.1524, opens an external URL in a new window
-
| Logratio Approach to Distributional Modeling at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Menafoglio, A. (2021). Logratio Approach to Distributional Modeling. In A. Daouia & A. Ruiz-Gazen (Eds.), Advances in Contemporary Statistics and Econometrics (pp. 451–470). Springer, Cham. https://doi.org/10.1007/978-3-030-73249-3_23, opens an external URL in a new window
-
| Advances in Compositional Data Analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., Martin-Fernandez, J. A., & Palarea-Albaladejo, J. (Eds.). (2021). Advances in Compositional Data Analysis. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-71175-7, opens an external URL in a new window
-
| Analysing Pairwise Logratios Revisited at reposiTUm , opens an external URL in a new windowHron, K., Coenders, G., Filzmoser, P., & Palarea-Albaladejo, J. (2021). Analysing Pairwise Logratios Revisited. Mathematical Geosciences, 53(7), 1643–1666. https://doi.org/10.1007/s11004-021-09938-w, opens an external URL in a new window
-
| Weighting of Parts in Compositional Data Analysis: Advances and Applications at reposiTUm , opens an external URL in a new windowHron, K., Menafoglio, A., Palarea-Albaladejo, J., Filzmoser, P., Talská, R., & Egozcue, J. J. (2021). Weighting of Parts in Compositional Data Analysis: Advances and Applications. Mathematical Geosciences, 54(1), 71–93. https://doi.org/10.1007/s11004-021-09952-y, opens an external URL in a new window
-
| Comparison of Zero Replacement Strategies for Compositional Data with Large Numbers of Zeros at reposiTUm , opens an external URL in a new windowLubbe, S., Filzmoser, P., & Templ, M. (2021). Comparison of Zero Replacement Strategies for Compositional Data with Large Numbers of Zeros. Chemometrics and Intelligent Laboratory Systems, 210(104248), 104248. https://doi.org/10.1016/j.chemolab.2021.104248, opens an external URL in a new window
-
| Identification of Mineralization in Geochemistry for Grid Sampling Using Generalized Additive Models at reposiTUm , opens an external URL in a new windowMiksova, D., Rieser, C., Filzmoser, P., Middleton, M., & Sutinen, R. (2021). Identification of Mineralization in Geochemistry for Grid Sampling Using Generalized Additive Models. Mathematical Geosciences, 53(8), 1861–1880. https://doi.org/10.1007/s11004-021-09929-x, opens an external URL in a new window
-
| Identification of Mineralization in Geochemistry Along a Transect Based on the Spatial Curvature of Log-Ratios at reposiTUm , opens an external URL in a new windowMikšová, D., Rieser, C., & Filzmoser, P. (2021). Identification of Mineralization in Geochemistry Along a Transect Based on the Spatial Curvature of Log-Ratios. Mathematical Geosciences, 53(7), 1513–1533. https://doi.org/10.1007/s11004-021-09930-4, opens an external URL in a new window
-
| Robust logistic zero-sum regression for microbiome compositional data at reposiTUm , opens an external URL in a new windowMonti, G. S., & Filzmoser, P. (2021). Robust logistic zero-sum regression for microbiome compositional data. Advances in Data Analysis and Classification, 16(2), 301–324. https://doi.org/10.1007/s11634-021-00465-4, opens an external URL in a new window
-
| Sparse least trimmed squares regression with compositional covariates for high-dimensional data at reposiTUm , opens an external URL in a new windowMonti, G. S., & Filzmoser, P. (2021). Sparse least trimmed squares regression with compositional covariates for high-dimensional data. Bioinformatics, 37(21), 3805–3814. https://doi.org/10.1093/bioinformatics/btab572, opens an external URL in a new window
-
| Adaptive Trade-offs Towards the Last Glacial Maximum in North-Western Europe: a Multidisciplinary View from Walou Cave at reposiTUm , opens an external URL in a new windowMoreau, L., & Filzmoser, P. (2021). Adaptive Trade-offs Towards the Last Glacial Maximum in North-Western Europe: a Multidisciplinary View from Walou Cave. Journal of Paleolithic Archaeology, 4, Article 11. https://doi.org/10.1007/s41982-021-00078-5, opens an external URL in a new window
-
| Blind Source Separation for Compositional Time Series at reposiTUm , opens an external URL in a new windowNordhausen, K., Fischer, G., & Filzmoser, P. (2021). Blind Source Separation for Compositional Time Series. Mathematical Geosciences, 53(5), 905–924. https://doi.org/10.1007/s11004-020-09869-y, opens an external URL in a new window
-
| Local projections for high-dimensional outlier detection at reposiTUm , opens an external URL in a new windowOrtner, T., Filzmoser, P., Rohm, M., Brodinova, S., & Breiteneder, C. (2021). Local projections for high-dimensional outlier detection. Metron, 79(2), 189–206. https://doi.org/10.1007/s40300-020-00183-5, opens an external URL in a new window
-
| Visualizing the decision rules behind the ROC curves: understanding the classification process at reposiTUm , opens an external URL in a new windowPérez-Fernández, S., Martínez-Camblor, P., Filzmoser, P., & Corral, N. (2021). Visualizing the decision rules behind the ROC curves: understanding the classification process. AStA Advances in Statistical Analysis, 105(1), 135–161. https://doi.org/10.1007/s10182-020-00385-2, opens an external URL in a new window
-
| Integrative Analyse der L oss- und L osslehmvorkommen im osterreichischen Alpenvorland und im Wiener Becken { ein Beitrag zum Interaktiven Rohsto -Informationssystem IRIS-Online at reposiTUm , opens an external URL in a new windowRabeder, J., Reitner, H., Wimmer-Frey, I., Filzmoser, P., Mert, M. C., Heinrich, M., Lipiarski, P., Reitner, J. M., Hobinger, G., & Benold, C. (2021). Integrative Analyse der L oss- und L osslehmvorkommen im osterreichischen Alpenvorland und im Wiener Becken { ein Beitrag zum Interaktiven Rohsto -Informationssystem IRIS-Online. BHM Berg- Und Hüttenmännische Monatshefte, 166(4), 206–211. https://doi.org/10.1007/s00501-021-01096-0, opens an external URL in a new window
-
| Multivariate functional outlier detection for compositions at reposiTUm , opens an external URL in a new windowRieser, C., & Filzmoser, P. (2021). Multivariate functional outlier detection for compositions. Online Conference Data Science, Statistics & Visualization (DSSV) 2021, Rotterdam, Netherlands (the).
-
| Compositional trend filtering at reposiTUm , opens an external URL in a new windowRieser, C., & Filzmoser, P. (2021). Compositional trend filtering. Annales Mathematicae et Informaticae, 53, 257–270. https://doi.org/10.33039/ami.2021.02.004, opens an external URL in a new window
-
| Outlier detection for pandemic-related data using compositional functional data analysis at reposiTUm , opens an external URL in a new windowRieser, C., & Filzmoser, P. (2021). Outlier detection for pandemic-related data using compositional functional data analysis. In M. del C. Boado-Penas, J. Eisenberg, & S. Şahin (Eds.), Springer Actuarial (pp. 251–266). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-78334-1_12, opens an external URL in a new window
-
| MAINT.Data: Modelling and Analysing Interval Data in R at reposiTUm , opens an external URL in a new windowSilva, A., Pedro,Duarte, Brito, P., Filzmoser, P., & Dias, J., G. (2021). MAINT.Data: Modelling and Analysing Interval Data in R. The R Journal, 13(2), 336–364. https://doi.org/10.32614/rj-2021-074, opens an external URL in a new window
-
| Artificial Neural Networks to Impute Rounded Zeros in Compositional Data at reposiTUm , opens an external URL in a new windowTempl, M. (2021). Artificial Neural Networks to Impute Rounded Zeros in Compositional Data. In P. Filzmoser, K. Hron, J. A. Martin-Fernandez, & J. Palarea-Albaladejo (Eds.), Advances in Compositional Data Analysis (pp. 163–187). Springer. https://doi.org/10.1007/978-3-030-71175-7_9, opens an external URL in a new window
-
| Automorphism groups of alkane graphs at reposiTUm , opens an external URL in a new windowVarmuza, K., Dehmer, M., Emmert-Streib, F., & Filzmoser, P. (2021). Automorphism groups of alkane graphs. Croatica Chemica Acta, 94(1). https://doi.org/10.5562/cca3807, opens an external URL in a new window
-
| Robust principal component analysis for compositional tables at reposiTUm , opens an external URL in a new windowde Sousa, J., Hron, K., Fačevicová, K., & Filzmoser, P. (2021). Robust principal component analysis for compositional tables. Journal of Applied Statistics, 48(2), 214–233. https://doi.org/10.1080/02664763.2020.1722078, opens an external URL in a new window
-
| Location-free robust scale estimates for fuzzy data at reposiTUm , opens an external URL in a new windowde la Rosa de Saa, S., Lubiano, M. A., Sinova, B., Gil, M. Á., & Filzmoser, P. (2021). Location-free robust scale estimates for fuzzy data. IEEE Transactions on Fuzzy Systems, 29(6), 1682–1694. https://doi.org/10.1109/tfuzz.2020.2984203, opens an external URL in a new window
-
| Robust regression with compositional covariates including cellwise outliers at reposiTUm , opens an external URL in a new windowŠtefelová, N., Alfons, A., Palarea-Albaladejo, J., Filzmoser, P., & Hron, K. (2021). Robust regression with compositional covariates including cellwise outliers. Advances in Data Analysis and Classification, 15(4), 869–909. https://doi.org/10.1007/s11634-021-00436-9, opens an external URL in a new window
-
| A comparison of generalised linear models and compositional models for ordered categorical data at reposiTUm , opens an external URL in a new windowVencálek, O., Hron, K., & Filzmoser, P. (2020). A comparison of generalised linear models and compositional models for ordered categorical data. Statistical Modelling, 20(3), 249–273. https://doi.org/10.1177/1471082x18816540, opens an external URL in a new window
-
| A new partial robust adaptive modified maximum likelihood estimator at reposiTUm , opens an external URL in a new windowAcitas, S., Filzmoser, P., & Senoglu, B. (2020). A new partial robust adaptive modified maximum likelihood estimator. Chemometrics and Intelligent Laboratory Systems, 204, Article 104068. https://doi.org/10.1016/j.chemolab.2020.104068, opens an external URL in a new window
-
| A robust adaptive modified maximum likelihood estimator for the linear regression model at reposiTUm , opens an external URL in a new windowAcitas, S., Filzmoser, P., & Senoglu, B. (2020). A robust adaptive modified maximum likelihood estimator for the linear regression model. Journal of Statistical Computation and Simulation, 91(7), 1394–1414. https://doi.org/10.1080/00949655.2020.1856847, opens an external URL in a new window
-
| The relationship between health outcomes and health expenditure in Europe by using compositional data analysis at reposiTUm , opens an external URL in a new windowDrastichova, M., & Filzmoser, P. (2020). The relationship between health outcomes and health expenditure in Europe by using compositional data analysis. Problemy Ekorozwoju, 15(2), 99–110.
-
| Statistical data analysis of surface geochemical data including case studies from Finland, Greenland and France at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2020). Statistical data analysis of surface geochemical data including case studies from Finland, Greenland and France. Online-Konferenz, Abschluss-Meeting UpDeep, Espoo, Finland.
-
| Multivariate outlier detection in applied data analysis: global, local, compositional and cellwise outliers at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Gregorich, M. (2020). Multivariate outlier detection in applied data analysis: global, local, compositional and cellwise outliers. Mathematical Geosciences, 52(8), 1049–1066. https://doi.org/10.1007/s11004-020-09861-6, opens an external URL in a new window
-
| Compositional Data Analysis in Chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2020). Compositional Data Analysis in Chemometrics. In R. Tauler, B. Walczak, & S. Brown (Eds.), Comprehensive Chemometrics. Chemical and Biochemical Data Analysis (pp. 641–662). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14591-3, opens an external URL in a new window
-
| Robust and sparse k-means clustering in high dimension at reposiTUm , opens an external URL in a new windowFilzmoser, P., Brodinova, S., Ortner, T., Breiteneder, C., & Rohm, M. (2020). Robust and sparse k-means clustering in high dimension. Seminarvortrag an der JKU Linz, Linz, Austria.
-
| Cellwise robust M regression at reposiTUm , opens an external URL in a new windowFilzmoser, P., Höppner, S., Ortner, I., Serneels, S., & Verdonck, T. (2020). Cellwise robust M regression. Computational Statistics & Data Analysis, 147, Article 106944. https://doi.org/10.1016/j.csda.2020.106944, opens an external URL in a new window
-
| Strategies to replace high proportions of zeros in compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P., Lubbe, S., & Templ, M. (2020). Strategies to replace high proportions of zeros in compositional data. Online Conference - 1st Conference on Information Technology and Data Science, Debrecen, Hungary.
-
| Robust Multivariate Methods in Chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P., Serneels, S., Maronna, R., & Croux, C. (2020). Robust Multivariate Methods in Chemometrics. In S. Brown, R. Tauler, & B. Walczak (Eds.), Comprehensive Chemometrics: Chemical and Biochemical Data Analysis (pp. 393–430). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14642-6, opens an external URL in a new window
-
| The impact of COVID-19 on relative changes in aggregated mobility using mobile-phone data at reposiTUm , opens an external URL in a new windowHeiler, G., Hanbury, A., & Filzmoser, P. (2020). The impact of COVID-19 on relative changes in aggregated mobility using mobile-phone data (p. 14). arXiv. https://doi.org/10.48550/arXiv.2009.03798, opens an external URL in a new window
-
| Weighted symmetric pivot coordinates for compositional data with geochemical applications at reposiTUm , opens an external URL in a new windowHron, K., Engle, M., Filzmoser, P., & Fišerová, E. (2020). Weighted symmetric pivot coordinates for compositional data with geochemical applications. Mathematical Geosciences, 53(4), 655–674. https://doi.org/10.1007/s11004-020-09862-5, opens an external URL in a new window
-
| pXRF measurements on soil samples for the exploration of an antimony deposit: example from the Vendean antimony district (France) at reposiTUm , opens an external URL in a new windowLemière, B., Melleton, J., Auger, P., Derycke, V., Gloaguen, E., Bouat, L., Mikšová, D., Filzmoser, P., & Middleton, M. (2020). pXRF measurements on soil samples for the exploration of an antimony deposit: example from the Vendean antimony district (France). Minerals, 10(8), Article 724. https://doi.org/10.3390/min10080724, opens an external URL in a new window
-
| Imputation of values above an upper detection limit in compositional data at reposiTUm , opens an external URL in a new windowMikšová, D., Filzmoser, P., & Middleton, M. (2020). Imputation of values above an upper detection limit in compositional data. Computers and Geosciences, 136, Article 104383. https://doi.org/10.1016/j.cageo.2019.104383, opens an external URL in a new window
-
| A method to identify geochemical mineralization on linear transects at reposiTUm , opens an external URL in a new windowMikšová, D., Rieser, C., Filzmoser, P., Thaarup, S. M., & Melleton, J. (2020). A method to identify geochemical mineralization on linear transects. Austrian Journal of Statistics, 49(4), 89–98. https://doi.org/10.17713/ajs.v49i4.1133, opens an external URL in a new window
-
| High-dimensional regression with compositional covariates: a robust perspective at reposiTUm , opens an external URL in a new windowMonti, G., & Filzmoser, P. (2020). High-dimensional regression with compositional covariates: a robust perspective. In A. Pollice, N. Salvati, & F. Schirripa Spagnolo (Eds.), Book of Short Papers SIS 2020 (pp. 105–110). Pearson.
-
| Local Difference Matrices for Spatial Blind Source Separation at reposiTUm , opens an external URL in a new windowMühlmann, C., Filzmoser, P., & Nordhausen, K. (2020). Local Difference Matrices for Spatial Blind Source Separation. 3rd Conference of the Arabian Journal of Geosciences (CAJG), Tunisia.
-
| Robust and sparse multigroup classification by the optimal scoring approach at reposiTUm , opens an external URL in a new windowOrtner, I., Filzmoser, P., & Croux, C. (2020). Robust and sparse multigroup classification by the optimal scoring approach. Data Mining and Knowledge Discovery, 34(3), 723–741. https://doi.org/10.1007/s10618-019-00666-8, opens an external URL in a new window
-
| Compositional Trend Filtering at reposiTUm , opens an external URL in a new windowRieser, C., & Filzmoser, P. (2020). Compositional Trend Filtering. Online Conference - 1st Conference on Information Technology and Data Science, Debrecen, Hungary.
-
| Robust Covariance Estimators for Mean-Variance Portfolio Optimization with Transaction Lots at reposiTUm , opens an external URL in a new windowRosadi, D., Setiawan, E. P., Templ, M., & Filzmoser, P. (2020). Robust Covariance Estimators for Mean-Variance Portfolio Optimization with Transaction Lots. Operations Research Perspectives, 7, Article 100154. https://doi.org/10.1016/j.orp.2020.100154, opens an external URL in a new window
-
| Evaluation of robust outlier detection methods for zero-inflated complex data at reposiTUm , opens an external URL in a new windowTempl, M., Gussenbauer, J., & Filzmoser, P. (2020). Evaluation of robust outlier detection methods for zero-inflated complex data. Journal of Applied Statistics, 47(7), 1144–1167. https://doi.org/10.1080/02664763.2019.1671961, opens an external URL in a new window
-
| Composition of cometary particles collected during two periods of the Rosetta mission: multivariate evaluation of mass spectral data at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Fray, N., Cottin, H., Merouane, S., Stenzel, O., Paquette, J., Kissel, J., Briois, C., Baklouti, D., Bardyn, A., Siljeström, S., Silén, J., & Hilchenbach, M. (2020). Composition of cometary particles collected during two periods of the Rosetta mission: multivariate evaluation of mass spectral data. Journal of Chemometrics, 34(4). https://doi.org/10.1002/cem.3218, opens an external URL in a new window
-
| ICP-MS of meteorite samples: Chemometric evaluation of diversity and discrimination. at reposiTUm , opens an external URL in a new windowVarmuza, K., Rados, E., Herzig, C., Limbeck, A., Pittenauer, E., Allmaier, G., & Filzmoser, P. (2020). ICP-MS of meteorite samples: Chemometric evaluation of diversity and discrimination. 31st Mass Spec Forum Vienna, Wien, Austria.
-
| Classical and Robust Regression Analysis with Compositional Data at reposiTUm , opens an external URL in a new windowvan den Boogaart, K. G., Filzmoser, P., Hron, K., Templ, M., & Tolosana-Delgado, R. (2020). Classical and Robust Regression Analysis with Compositional Data. Mathematical Geosciences, 53(5), 823–858. https://doi.org/10.1007/s11004-020-09895-w, opens an external URL in a new window
-
| Statistical methods for the geochemical characterisation of surface waters: The case study of the Tiber River basin (Central Italy) at reposiTUm , opens an external URL in a new windowGozzi, C., Filzmoser, P., Buccianti, A., Vaselli, O., & Nisi, B. (2019). Statistical methods for the geochemical characterisation of surface waters: The case study of the Tiber River basin (Central Italy). Computers and Geosciences, 131, 80–88. https://doi.org/10.1016/j.cageo.2019.06.011, opens an external URL in a new window
-
| A Comprehensive Prediction Approach for Hardware Asset Management at reposiTUm , opens an external URL in a new windowWurl, A., Falkner, A., Filzmoser, P., Haselböck, A., Mazak, A., & Sperl, S. (2019). A Comprehensive Prediction Approach for Hardware Asset Management. In C. Quix & J. Bernardino (Eds.), Data Management Technologies and Applications (pp. 26–49). Springer Nature Schwitzerland AG 2019. https://doi.org/10.1007/978-3-030-26636-3_2, opens an external URL in a new window
-
| First geochemical 'fingerprinting' of Balkan and Prut flint from Palaeolithic Romania: potentials, limitations and future directions at reposiTUm , opens an external URL in a new windowMoreau, L., Ciornei, A., Gjesfjeld, E., Filzmoser, P., Gibson, S. A., Day, J., Nigst, P. R., Noiret, P., Macleod, R. A., Niţă, L., & Anghelinu, M. (2019). First geochemical “fingerprinting” of Balkan and Prut flint from Palaeolithic Romania: potentials, limitations and future directions. Archaeometry, 61(3), 521–538. https://doi.org/10.1111/arcm.12433, opens an external URL in a new window
-
| Effects of sewage sludge application on unfertile tropical soils evaluated by multiple approaches: a field experiment in a commercial Eucalyptus plantation at reposiTUm , opens an external URL in a new windowAbreu-Junior, C. H., de Lima Brossi, M. J., Monteiro, R. T., Cardoso, P. H. S., da Silva Mandu, T., Nogueira, T. A. R., Ganga, A., Filzmoser, P., Carvalho de Oliveira, F., Pittol Firme, L., He, Z., & Capra, G. F. (2019). Effects of sewage sludge application on unfertile tropical soils evaluated by multiple approaches: a field experiment in a commercial Eucalyptus plantation. Science of the Total Environment, 655, 1457–1467. https://doi.org/10.1016/j.scitotenv.2018.11.334, opens an external URL in a new window
-
| Robust and sparse k-means clustering for high-dimensional data at reposiTUm , opens an external URL in a new windowBrodinová, Š., Filzmoser, P., Ortner, T., Breiteneder, C., & Rohm, M. (2019). Robust and sparse k-means clustering for high-dimensional data. Advances in Data Analysis and Classification, 905–932. https://doi.org/10.1007/s11634-019-00356-9, opens an external URL in a new window
-
| Identifying oceanic-atmospheric controls on hydrology using a machine learning approach at reposiTUm , opens an external URL in a new windowCrocetti, L., Dorigo, W., Martens, B., & Filzmoser, P. (2019). Identifying oceanic-atmospheric controls on hydrology using a machine learning approach. In EGU General Assembly 2019. EGU General Assembly 2019, Vienna, Austria. Copernicus Publications.
-
| Impacts of Climatic Oscillations on Mediterranean Hydrology at reposiTUm , opens an external URL in a new windowCrocetti, L., Dorigo, W., Martens, B., Filzmoser, P., & Fernandez-Prieto, D. (2019). Impacts of Climatic Oscillations on Mediterranean Hydrology. ESA Living Planet Symposium 2019, Milan, Italy.
-
| Assessment of sustainable development using cluster analysis and principal component analysis at reposiTUm , opens an external URL in a new windowDrastichova, M., & Filzmoser, P. (2019). Assessment of sustainable development using cluster analysis and principal component analysis. Problemy Ekorozwoju, 14(2), 7–24.
-
| Advanced methods of classification and regression at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Advanced methods of classification and regression. ÖAW AI Summer School 2019, Ligist, Austria.
-
| Buzzword Data Science -- an Overview of Common Methods and their Use in R at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Buzzword Data Science -- an Overview of Common Methods and their Use in R. Annual Meeting of the Austrian Actuarial Association, Wien, Austria.
-
| Compositional Data Analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Compositional Data Analysis. JOCLAD 2019, Viseu, Portugal.
-
| Correlation analysis for compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Correlation analysis for compositional data. Meet The Jury Seminar, Leuven, Belgium.
-
| Correlation analysis for compositional environmental data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Correlation analysis for compositional environmental data. Deutsche Statistische Woche, Konstanz, Austria.
-
| Linear methods for regression and classification at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Linear methods for regression and classification. Data Science School, University of Bolzano, Bozen, Italy.
-
| Outlier detection in compositional data: from row-wise to cell-wise at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Outlier detection in compositional data: from row-wise to cell-wise. ISI 2019, Kuala Lumpur, Malaysia.
-
| Outliers and compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Outliers and compositional data. IAMG2019, Pennsylvania, United States of America (the).
-
| Potentials of compositional data analysis in practical applications at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Potentials of compositional data analysis in practical applications. CARME 2019, Stellenbosch, South Africa.
-
| Robust and sparse classification in high dimensions at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Robust and sparse classification in high dimensions. Seminar presentation, University of Stellenbosch, Institute of Statistics, South Africa.
-
| Robust and sparse estimation methods for linear and logistic regression in high dimensions at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Robust and sparse estimation methods for linear and logistic regression in high dimensions. DMS-2019, Van, Turkey.
-
| Robust and sparse k-means clustering for high.dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Robust and sparse k-means clustering for high.dimensional data. CDAM 2019, Minsk, Belarus.
-
| Robust regression and classification methods for high-dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). Robust regression and classification methods for high-dimensional data. Predictive Analytics Konferenz, Wien, Austria.
-
| The log-ratio approach to handle relative information at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). The log-ratio approach to handle relative information. JOCLAD 2019, Viseu, Portugal.
-
| k-means clustering for high-dimensional data: a robust and sparse method at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2019). k-means clustering for high-dimensional data: a robust and sparse method. ÖSG Statistiktage, Wien, Austria.
-
| Comments on: Composition data: the sample space and its structure at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2019). Comments on: Composition data: the sample space and its structure. TEST, 28(3), 639–643. https://doi.org/10.1007/s11749-019-00671-5, opens an external URL in a new window
-
| Robust k-means-based clustering for high-dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P., Brodinova, S., Ortner, T., Breiteneder, C., & Rohm, M. (2019). Robust k-means-based clustering for high-dimensional data. International Conference on Robust Statistics (ICORS 2019), Guayaquil, Ecuador.
-
| Fraud detection in the digital music industry at reposiTUm , opens an external URL in a new windowFilzmoser, P., Mumic, N., & Kostadinova, R. (2019). Fraud detection in the digital music industry. Benford’s Law Conference, Stresa, Italy.
-
| Minimum Distance Index for Non-Square Complex Valued Mixing Matrices at reposiTUm , opens an external URL in a new windowLietzen, N., Virta, J., Nordhausen, K., & Ilmonen, P. (2019). Minimum Distance Index for Non-Square Complex Valued Mixing Matrices. In P. Filzmoser & Y. Kharin (Eds.), Proceedings of the 12th International Conference on Computer Data Analysis and Modeling (pp. 79–86). Minsk Publishing Center BSU.
-
| Detection of mineralization using the curvature of log‐ratios at reposiTUm , opens an external URL in a new windowMiksova, D., Rieser, C., & Filzmoser, P. (2019). Detection of mineralization using the curvature of log‐ratios. CoDaWork 2019, Terrassa, Spain.
-
| Identification of mineralization in geochemistry based on the spatial curvature of log-ratio at reposiTUm , opens an external URL in a new windowMiksova, D., Rieser, C., & Filzmoser, P. (2019). Identification of mineralization in geochemistry based on the spatial curvature of log-ratio. Olomoucian Days of Applied Mathematics (ODAM 2019), Olomouc, Czechia.
-
| Identification of mineralization in geochemistry based on the spatial curvature of log-ratios at reposiTUm , opens an external URL in a new windowMiksova, D., Rieser, C., & Filzmoser, P. (2019). Identification of mineralization in geochemistry based on the spatial curvature of log-ratios. In Identification of mineralization in geochemistry based on the spatial curvature of log-ratios (pp. 246–248).
-
| Piecewise smoothing splines at reposiTUm , opens an external URL in a new windowRieser, C., & Filzmoser, P. (2019). Piecewise smoothing splines. ÖSG Statistiktage, Wien, Austria.
-
| Detection of mineralization using the second derivative of log‐ratios at reposiTUm , opens an external URL in a new windowRieser, C., Miksova, D., & Filzmoser, P. (2019). Detection of mineralization using the second derivative of log‐ratios. CoDaWork 2019, Terrassa, Spain.
-
| Robust second-order least-squares estimation for regression models with autoregressive errors at reposiTUm , opens an external URL in a new windowRosadi, D., & Filzmoser, P. (2019). Robust second-order least-squares estimation for regression models with autoregressive errors. Statistical Papers, 60(1), 105–122. https://doi.org/10.1007/s00362-016-0829-9, opens an external URL in a new window
-
| Evaluation of robust outlier detection methods for zero-inflated complex data at reposiTUm , opens an external URL in a new windowTempl, M., Gussenbauer, J., & Filzmoser, P. (2019). Evaluation of robust outlier detection methods for zero-inflated complex data. Journal of Applied Statistics, 47(7), 1144–1167. https://doi.org/10.1080/02664763.2019.1671961, opens an external URL in a new window
-
| Composition of cometary particles versus distance to sun during sample collection - based on multivariate evaluation of mass spectral data (Rosetta/COSIMA). at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Fray, N., Cottin, H., Merouane, S., Stenzel, O., & Kissel, J. (2019). Composition of cometary particles versus distance to sun during sample collection - based on multivariate evaluation of mass spectral data (Rosetta/COSIMA). Conferentia Chemometrica 2019, Karcag, Hungary.
-
| Cometary particle surfaces - characterized by chemometric evaluation of secondary ion mass spectra. at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Hilchenbach, M., Kissel, J., Stenzel, O., Merouane, S., & Paquette, J. (2019). Cometary particle surfaces - characterized by chemometric evaluation of secondary ion mass spectra. FKA20, Conference on Solid State Analysis, 20. Tagung Festkörperanalytik, Wien, Austria.
-
| One-class classification for the recognition of relevant measurements - applied to mass spectra from cometary and meteoritic particles at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Ortner, T., Hilchenbach, M., Kissel, J., Merouane, S., & Cottin, H. (2019). One-class classification for the recognition of relevant measurements - applied to mass spectra from cometary and meteoritic particles. 16th Scandinavian Symposium on Chemometrics (SSC16), Nesbru / Oslo, Norway.
-
| Cellwise outlier detection and biomarker identification in metabolomics based on pairwise log ratios at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., Kouřil, Š., Friedecký, D., & Adam, T. (2019). Cellwise outlier detection and biomarker identification in metabolomics based on pairwise log ratios. Journal of Chemometrics, 34(1), Article e3182. https://doi.org/10.1002/cem.3182, opens an external URL in a new window
-
| Exploring robustness in a combined feature selection approach. at reposiTUm , opens an external URL in a new windowWurl, A., Falkner, A., Haselböck, A., Mazak, A., & Filzmoser, P. (2019). Exploring robustness in a combined feature selection approach. In Proceedings of the 8th International Conference on Data Science, Technology and Applications. Scitepress - Science and Technology Publications, LDA. https://doi.org/10.5220/0007924400840091, opens an external URL in a new window
-
| Dynamic log file analysis: An unsupervised cluster evolution approach for anomaly detection at reposiTUm , opens an external URL in a new windowLandauer, M., Wurzenberger, M., Skopik, F., Settanni, G., & Filzmoser, P. (2018). Dynamic log file analysis: An unsupervised cluster evolution approach for anomaly detection. Computers and Security, 79, 94–116. https://doi.org/10.1016/j.cose.2018.08.009, opens an external URL in a new window
-
| The response of 12 different plant materials and one mushroom to Mo and Pb mineralization along a 100-km transect in southern central Norway at reposiTUm , opens an external URL in a new windowReimann, C., Englmaier, P., Flem, B., Eggen, O. A., Finne, T. E., Andersson, M., & Filzmoser, P. (2018). The response of 12 different plant materials and one mushroom to Mo and Pb mineralization along a 100-km transect in southern central Norway. Geochemistry: Exploration, Environment, Analysis, 18(3), 204–215. https://doi.org/10.1144/geochem2017-089, opens an external URL in a new window
-
| Significance of variables for discrimination: Applied to the search of organic ions in mass spectra measured on cometary particles at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Hoffmann, I., Walach, J., Cottin, H., Fray, N., BRIOIS, C., Modica, P., Bardyn, A., Silén, J., Siljeström, S., Stenzel, O., Kissel, J., & Hilchenbach, M. (2018). Significance of variables for discrimination: Applied to the search of organic ions in mass spectra measured on cometary particles. Journal of Chemometrics, 32(4), e3001. https://doi.org/10.1002/cem.3001, opens an external URL in a new window
-
| A multi-technique analytical approach to sourcing Scandinavian flint: Provenance of ballast flint from the shipwreck "Leirvigen 1", Norway at reposiTUm , opens an external URL in a new windowBrandl, M., Martinez, M. M., Hauzenberger, C., Filzmoser, P., Nymoen, P., & Mehler, N. (2018). A multi-technique analytical approach to sourcing Scandinavian flint: Provenance of ballast flint from the shipwreck “Leirvigen 1”, Norway. PLoS ONE, 13(8), e0200647. https://doi.org/10.1371/journal.pone.0200647, opens an external URL in a new window
-
| Clustering of imbalanced high-dimensional media data at reposiTUm , opens an external URL in a new windowBrodinova, S., Zaharieva, M., Filzmoser, P., Ortner, T., & Breiteneder, C. (2018). Clustering of imbalanced high-dimensional media data. Advances in Data Analysis and Classification, 261–284. https://doi.org/10.1007/s11634-017-0292-z, opens an external URL in a new window
-
| The impact of large fire on calcareous Mediterranean pedosystems (Sardinia, Italy) - An integrated multiple approach at reposiTUm , opens an external URL in a new windowCapra, G. F., Tidu, S., Lovreglio, R., Certini, G., Salis, M., Bacciu, V., Ganga, A., & Filzmoser, P. (2018). The impact of large fire on calcareous Mediterranean pedosystems (Sardinia, Italy) - An integrated multiple approach. Science of the Total Environment, 624, 1152–1162. https://doi.org/10.1016/j.scitotenv.2017.12.099, opens an external URL in a new window
-
| A robust Parafact model for compositional data at reposiTUm , opens an external URL in a new windowDi Palma, M. A., Filzmoser, P., Gallo, M., & Hron, K. (2018). A robust Parafact model for compositional data. Journal of Applied Statistics, 45(8), 1347–1369. https://doi.org/10.1080/02664763.2017.1381669, opens an external URL in a new window
-
| Outlier detection in interval data at reposiTUm , opens an external URL in a new windowDuarte Silva, A. P., Filzmoser, P., & Brito, P. (2018). Outlier detection in interval data. Advances in Data Analysis and Classification, 12(3), 785–822. https://doi.org/10.1007/s11634-017-0305-y, opens an external URL in a new window
-
| Choice of influencing factors: Lasso at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). Choice of influencing factors: Lasso. BASF: Data Science Compact Course, Grossraeschen, EU.
-
| Estimators for robust maximum association at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). Estimators for robust maximum association. Modern Stochastics: Theory and Applications, Taras Shevchenko National University of Kyiv, Kiew, Ukraine, Non-EU.
-
| Robust and sparse estimation methods for linear and logistic regression in high dimensions at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). Robust and sparse estimation methods for linear and logistic regression in high dimensions. Seminar at the Department of Finance, Accounting and Statistics, Wirtschaftsuniversitaet Wien, WU Wien, Austria.
-
| Robust elastic net (logistic) regression for high dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). Robust elastic net (logistic) regression for high dimensional data. Visual Data Science and its role in Computational Medicine, TU Delft, EU.
-
| Robust estimators of maximum association at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). Robust estimators of maximum association. ISOR Colloquium at University of Vienna, University of Vienna, Austria.
-
| Robust linear and logistic regression in high dimension at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). Robust linear and logistic regression in high dimension. Seminar at the Center for Medical Statistics, Informatics, and Intelligent Systems, MedUni Wien, Austria.
-
| Robust maximum association estimators at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). Robust maximum association estimators. Forecasting from Complexity, University of Minnesota, Minneapolis, USA, Non-EU.
-
| Robust maximum association estimators at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). Robust maximum association estimators. International Conference on Robust Statistics (ICORS 2018), KU Leuven, Belgien, EU.
-
| The log-ratio methodology for compositional data analysis: concepts and applications at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). The log-ratio methodology for compositional data analysis: concepts and applications. Statistische Woche 2018, Linz, Austria.
-
| The log-ratio methodology: Major concepts, robustness, and practical use at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). The log-ratio methodology: Major concepts, robustness, and practical use. International Conference on Computational Statistics (COMPSTAT 2018), Iasi, Romania, EU.
-
| What statistical tool is best? at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2018). What statistical tool is best? Drawing Insights from Complex Data, TU Wien, Austria.
-
| A robust Liu regression estimator at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Kurnaz, F. S. (2018). A robust Liu regression estimator. Communications in Statistics - Simulation and Computation, 47(2), 432–443. https://doi.org/10.1080/03610918.2016.1271889, opens an external URL in a new window
-
| Applied Compositional Data Analysis. With Worked Examples in R at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Templ, M. (2018). Applied Compositional Data Analysis. With Worked Examples in R. Springer Series in Statistics.
-
| Graphical statistics to explore the natural and anthropogenic processes influencing the inorganic quality of drinking water, ground water and surface water at reposiTUm , opens an external URL in a new windowFlem, B., Reimann, C., Fabian, K., Birke, M., Filzmoser, P., & Banks, D. (2018). Graphical statistics to explore the natural and anthropogenic processes influencing the inorganic quality of drinking water, ground water and surface water. Applied Geochemistry, 88, 133–148. https://doi.org/10.1016/j.apgeochem.2017.09.006, opens an external URL in a new window
-
| Robust and sparse estimation methods for high dimensional linear and logistic regression at reposiTUm , opens an external URL in a new windowKurnaz, F. S., Hoffmann, I., & Filzmoser, P. (2018). Robust and sparse estimation methods for high dimensional linear and logistic regression. Chemometrics and Intelligent Laboratory Systems, 172, 211–222. https://doi.org/10.1016/j.chemolab.2017.11.017, opens an external URL in a new window
-
| Time series analysis: Unsupervised anomaly detection beyond outlier detection at reposiTUm , opens an external URL in a new windowLandauer, M., Wurzenberger, M., Skopik, F., Settanni, G., & Filzmoser, P. (2018). Time series analysis: Unsupervised anomaly detection beyond outlier detection. In C. Su & H. Kikuch (Eds.), Information Security Practice and Experience (pp. 16–36). Springer.
-
| Compositional data analysis in epidemiology at reposiTUm , opens an external URL in a new windowMert, M. C., Filzmoser, P., Endel, G., & Wilbacher, I. (2018). Compositional data analysis in epidemiology. Statistical Methods in Medical Research, 27(6), 1878–1891. https://doi.org/10.1177/0962280216671536, opens an external URL in a new window
-
| Estimation values above an upper detection limit in compositional data at reposiTUm , opens an external URL in a new windowMiksova, D., & Filzmoser, P. (2018). Estimation values above an upper detection limit in compositional data. Data Science, Statistics & Visualization (DSSV) 2018, Wien, Austria.
-
| Replacement of values above an upper detection limit in compositions at reposiTUm , opens an external URL in a new windowMiksova, D., & Filzmoser, P. (2018). Replacement of values above an upper detection limit in compositions. IAMG 2018, Olomouc, EU.
-
| A robust approach to risk assessment based on species sensitivity distributions at reposiTUm , opens an external URL in a new windowMonti, G. S., Filzmoser, P., & Deutsch, R. C. (2018). A robust approach to risk assessment based on species sensitivity distributions. Risk Analysis, 38(10), 2073–2086. https://doi.org/10.1111/risa.13009, opens an external URL in a new window
-
| Guided projections for analyzing the structure of high-dimensional data at reposiTUm , opens an external URL in a new windowOrtner, T., Filzmoser, P., Rohm, M., Breiteneder, C., & Brodinova, S. (2018). Guided projections for analyzing the structure of high-dimensional data. Journal of Computational and Graphical Statistics, 27(4), 750–762. https://doi.org/10.1080/10618600.2018.1459304, opens an external URL in a new window
-
| nsROC: An R package for Non-Standard ROC Curve Analysis at reposiTUm , opens an external URL in a new windowPérez-Fernández, S., Martínez-Camblor, P., Filzmoser, P., & Corral, N. (2018). nsROC: An R package for Non-Standard ROC Curve Analysis. The R Journal, 10(2), 55. https://doi.org/10.32614/rj-2018-043, opens an external URL in a new window
-
| GEMAS: Establishing geochemical back- ground and threshold for 53 chemical elements in European agricultural soil at reposiTUm , opens an external URL in a new windowReimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., Oorts, K., Matschullat, J., & de Caritat, P. (2018). GEMAS: Establishing geochemical back- ground and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 88, 302–318. https://doi.org/10.1016/j.apgeochem.2017.01.021, opens an external URL in a new window
-
| Geosphere-biosphere circulation of chemical elements in soil and plant systems from a 100 km transect from southern central Norway at reposiTUm , opens an external URL in a new windowReimann, C., Fabian, K., Flem, B., Anderson, M., Filzmoser, P., & Englmaier, P. (2018). Geosphere-biosphere circulation of chemical elements in soil and plant systems from a 100 km transect from southern central Norway. Science of the Total Environment, 639, 129–145. https://doi.org/10.1016/j.scitotenv.2018.05.070, opens an external URL in a new window
-
| Mass spectrometry near comet 67P (Rosetta/COSIMA) at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Hoffmann, I., Hilchenbach, M., Kissel, J., Merouane, S., Paquette, J., & Stenzel, O. (2018). Mass spectrometry near comet 67P (Rosetta/COSIMA). 29th Mass Spec Forum, Wien, Austria.
-
| The use of log-ratio methodology in cell-wise diagnostic at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., & Hron, K. (2018). The use of log-ratio methodology in cell-wise diagnostic. Data Science, Statistics & Visualization (DSSV) 2018, Wien, Austria.
-
| Cell-wise outlier diagnostics based on pairwise log-ratios at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., Hron, K., & Kouril, S. (2018). Cell-wise outlier diagnostics based on pairwise log-ratios. Chemometrics in Analytical Chemistry Conference (CAC), Halifax, Non-EU.
-
| Data normalization and scaling: Consequences for the analysis in omics sciences at reposiTUm , opens an external URL in a new windowWalach, J., Hron, K., & Filzmoser, P. (2018). Data normalization and scaling: Consequences for the analysis in omics sciences. In J. Jaumot, C. Bedia, & R. Tauler (Eds.), Comprehensive Analytical Chemistry. Data Analysis for Omics Sciences: Methods and Applications (pp. 165–196). Elsevier.
-
| There and back again: Outlier detection between statistical reasoning and data mining algorithms at reposiTUm , opens an external URL in a new windowZimek, A., & Filzmoser, P. (2018). There and back again: Outlier detection between statistical reasoning and data mining algorithms. WIREs Data Mining and Knowledge Discovery, 8(6). https://doi.org/10.1002/widm.1280, opens an external URL in a new window
-
| Weighted Pivot Coordinates for Compositional Data and Their Application to Geochemical Mapping at reposiTUm , opens an external URL in a new windowHron, K., Filzmoser, P., de Caritat, P., Fišerová, E., & Gardlo, A. (2017). Weighted Pivot Coordinates for Compositional Data and Their Application to Geochemical Mapping. Mathematical Geosciences, 49(6), 797–814. https://doi.org/10.1007/s11004-017-9684-z, opens an external URL in a new window
-
| Similarities in element content between comet 67P/Churyumov–Gerasimenko coma dust and selected meteorite samples at reposiTUm , opens an external URL in a new windowStenzel, O., Hilchenbach, M., Merouane, S., Paquette, J., Varmuza, K., Engrand, C., Brandstätter, F., Koeberl, C., Ferrière, L., Filzmoser, P., & Siljeström, S. (2017). Similarities in element content between comet 67P/Churyumov–Gerasimenko coma dust and selected meteorite samples. Monthly Notices of the Royal Astronomical Society, 469(Suppl_2), S492–S505. https://doi.org/10.1093/mnras/stx1908, opens an external URL in a new window
-
| Robust Maximum Association Estimators at reposiTUm , opens an external URL in a new windowAlfons, A., Croux, C., & Filzmoser, P. (2017). Robust Maximum Association Estimators. Journal of the American Statistical Association, 112(517), 436–445. https://doi.org/10.1080/01621459.2016.1148609, opens an external URL in a new window
-
| Finding groups in large and high-dimensional data using a k-means-based algorithm at reposiTUm , opens an external URL in a new windowBrodinova, S., Filzmoser, P., Ortner, T., Breiteneder, C., & Zaharieva, M. (2017). Finding groups in large and high-dimensional data using a k-means-based algorithm. MOVISS - Metabolomic Bio & Data 2017, Vorau, Austria.
-
| Grouping and outlier detection using robust sparse clustering at reposiTUm , opens an external URL in a new windowBrodinova, S., Filzmoser, P., Ortner, T., Zaharieva, M., & Breiteneder, C. (2017). Grouping and outlier detection using robust sparse clustering. Olomouc Days of Applied Mathematics (ODAM 2017), Olomouc, EU.
-
| Robust and sparse clustering for high-dimensional data at reposiTUm , opens an external URL in a new windowBrodinova, S., Filzmoser, P., Ortner, T., Zaharieva, M., & Breiteneder, C. (2017). Robust and sparse clustering for high-dimensional data. In CLADAG 2017 Book of Short Papers. Conference of the CLAssification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS), Milan, Italy, EU.
-
| Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction at reposiTUm , opens an external URL in a new windowBögl, M., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Leite, R. A., Miksch, S., & Rind, A. (2017). Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction. Eurographics / IEEE VGTC Conference on Visualization (EuroVis 2017), Barcelona, Spain, EU.
-
| Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction at reposiTUm , opens an external URL in a new windowBögl, M., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Leite, R. A., Miksch, S., & Rind, A. (2017). Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction. Computer Graphics Forum, 36(3), 227–238.
-
| Compositional data analysis of geochemical data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2017). Compositional data analysis of geochemical data. Kick-off Project Meeting, Espoo, Finalnd, EU.
-
| PLS for regression and binary classification: robustness and sparsity at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2017). PLS for regression and binary classification: robustness and sparsity. 7th International Chemometrics Research Meeting (ICRM 2017), Berg en Dal, The Netherlands, EU.
-
| Robust and sparse estimation methods for high dimensional linear and logistic regression at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2017). Robust and sparse estimation methods for high dimensional linear and logistic regression. Workshop devoted to the 60th birthday of Peter Rousseeuw, Leuven. Belgium, EU.
-
| Symmetric coordinates for determining pairwise association between compositional parts at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2017). Symmetric coordinates for determining pairwise association between compositional parts. CoDaWork 2017, Abbadia San Salvatore, EU.
-
| Correlation between variables in compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2017). Correlation between variables in compositional data. In EGU General Assembly 2017 (p. 1). Copernicus Publications.
-
| Special issue of the CDAM 2016 conference at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Kharin, Y. (2017). Special issue of the CDAM 2016 conference. Austrian Journal of Statistics, 46(3–4), 1–2.
-
| How sick is Austria? - A decision support framework for different evaluations of the burden of disease within the Austrian population based on different data sources at reposiTUm , opens an external URL in a new windowGlock, B., Endel, F., Endel, G., Sandholzer, K., Popper, N., Rinner, C., Duftschmid, G., Filzmoser, P., Mert, M. C., Holl, J., & Wagner-Pinter, M. (2017). How sick is Austria? - A decision support framework for different evaluations of the burden of disease within the Austrian population based on different data sources. International Journal of Population Data Science, 1(1). https://doi.org/10.23889/ijpds.v1i1.111, opens an external URL in a new window
-
| The paradigm of relatedness at reposiTUm , opens an external URL in a new windowGrad-Gyenge, L., & Filzmoser, P. (2017). The paradigm of relatedness. In W. Abramowicz, R. Alt, & B. Franczyk (Eds.), Business Information Systems Workshops BIS 2016 International Workshops, Leipzig, Germany, July 6-8, 2016, Revised Papers (pp. 57–68). Springer. https://doi.org/10.1007/978-3-319-52464-1_6, opens an external URL in a new window
-
| Inference for sparse and robust partial least squares regression at reposiTUm , opens an external URL in a new windowHoffmann, I., Filzmoser, P., & Serneels, S. (2017). Inference for sparse and robust partial least squares regression. Olomouc Days of Applied Mathematics (ODAM 2017), Olomouc, EU.
-
| Exploratory data analysis for interval compositional data at reposiTUm , opens an external URL in a new windowHron, K., Brito, P., & Filzmoser, P. (2017). Exploratory data analysis for interval compositional data. Advances in Data Analysis and Classification, 11(2), 223–241. https://doi.org/10.1007/s11634-016-0245-y, opens an external URL in a new window
-
| Robust and sparse estimation methods for high dimensional linear and logistic regression at reposiTUm , opens an external URL in a new windowKurnaz, F. S., Hoffmann, I., & Filzmoser, P. (2017). Robust and sparse estimation methods for high dimensional linear and logistic regression. ECDA 2017 - IVth European Conference on Data Analysis 2017, Wroclaw, EU.
-
| Robust and sparse methods for high-dimensional linear and logistic regression at reposiTUm , opens an external URL in a new windowKurnaz, F. S., Hoffmann, I., & Filzmoser, P. (2017). Robust and sparse methods for high-dimensional linear and logistic regression. MOVISS - Metabolomic Bio & Data 2017, Vorau, Austria.
-
| Correlation Between Compositional Parts Based on Symmetric Balances at reposiTUm , opens an external URL in a new windowKynčlová, P., Hron, K., & Filzmoser, P. (2017). Correlation Between Compositional Parts Based on Symmetric Balances. Mathematical Geosciences, 49(6), 777–796. https://doi.org/10.1007/s11004-016-9669-3, opens an external URL in a new window
-
| Local projection for outlier detection at reposiTUm , opens an external URL in a new windowOrtner, T., Filzmoser, P., Brodinova, S., Zaharieva, M., & Breiteneder, C. (2017). Local projection for outlier detection. Olomouc Days of Applied Mathematics (ODAM 2017), Olomouc, EU.
-
| A new method for correlation analysis of compositional (environmental) data - a worked example at reposiTUm , opens an external URL in a new windowReimann, C., Filzmoser, P., Hron, K., Kynčlová, P., & Garrett, R. G. (2017). A new method for correlation analysis of compositional (environmental) data - a worked example. Science of the Total Environment, 607–608, 965–971. https://doi.org/10.1016/j.scitotenv.2017.06.063, opens an external URL in a new window
-
| Comment on "Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment" by Tóth, G., Hermann, T., Szatmári, G., Pásztor, L. at reposiTUm , opens an external URL in a new windowReimann, C., Négrel, P., Ladenberger, A., Birke, M., Filzmoser, P., O’Connor, P., & Demetriades, A. (2017). Comment on “Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment” by Tóth, G., Hermann, T., Szatmári, G., Pásztor, L. Science of the Total Environment, 578, 236–241. https://doi.org/10.1016/j.scitotenv.2016.07.208, opens an external URL in a new window
-
| Phenological patterns of flowering across biogeographical regions of Europe at reposiTUm , opens an external URL in a new windowTempl, B., Templ, M., Filzmoser, P., Lehoczky, A., Baksiene, E., Fleck, S., Gregow, H., Hodzic, S., Kalvane, G., Kubin, E., Palm, V., Romanovskaja, D., Vucetic, V., Zust, A., & Czúcz, B. (2017). Phenological patterns of flowering across biogeographical regions of Europe. International Journal of Biometeorology, 61(7), 1347–1358. https://doi.org/10.1007/s00484-017-1312-6, opens an external URL in a new window
-
| Exploring outliers in compositional data with structural zeros at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., & Filzmoser, P. (2017). Exploring outliers in compositional data with structural zeros. CoDaWork 2017, Abbadia San Salvatore, EU.
-
| Exploratory Tools for Outlier Detection in Compositional Data with Structural Zeros at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., & Filzmoser, P. (2017). Exploratory Tools for Outlier Detection in Compositional Data with Structural Zeros. Journal of Applied Statistics, 44(4), 734–752. https://doi.org/10.1080/02664763.2016.1182135, opens an external URL in a new window
-
| Untargeted analysis of fermentation process of rooibos tea samples at reposiTUm , opens an external URL in a new windowTobin, J., Walach, J., Beer, D. de, Williams, P., Filzmoser, P., & Walczak, B. (2017). Untargeted analysis of fermentation process of rooibos tea samples. SCC15 2017 - 15th Scandinavian Symposium on Chemometrics, Naantali, Finland, EU.
-
| Untargeted analysis of chromatographic data for green and fermented rooibos: problem with size effect removal at reposiTUm , opens an external URL in a new windowTobin, J., Walach, J., de Beer, D., Williams, P. J., Filzmoser, P., & Walczak, B. (2017). Untargeted analysis of chromatographic data for green and fermented rooibos: problem with size effect removal. Journal of Chromatography A, 1525, 109–115. https://doi.org/10.1016/j.chroma.2017.10.024, opens an external URL in a new window
-
| Comet dust composition explored by chemometric methods using mass spectral data from COSIMA/ROSETTA at reposiTUm , opens an external URL in a new windowVarmuza, K., Baklouti, D., Bardyn, A., Cottin, H., Engrand, C., Filzmoser, P., Fray, N., Hilchenbach, M., Hoffmann, I., Kissel, J., Modica, P., Silén, J., Siljeström, S., & Stenzel, O. (2017). Comet dust composition explored by chemometric methods using mass spectral data from COSIMA/ROSETTA. 15th Scandinavian Symposium on Chemometrics (SSC15), Naantali, EU.
-
| Comet and meteorite particle surface characterization by multi-variate data analyses using TOF‐SIMS data from COSIMA/Rosetta at reposiTUm , opens an external URL in a new windowVarmuza, K., Brandstätter, F., Cottin, H., Engrand, C., Ferrière, L., Filzmoser, P., Fray, N., Hilchenbach, M., Hoffmann, I., Kissel, J., Koeberl, C., Modica, P., Paquette, J., & Stenzel, O. (2017). Comet and meteorite particle surface characterization by multi-variate data analyses using TOF‐SIMS data from COSIMA/Rosetta. ANAKON 2017, Gesellschaft Deutscher Chemiker, Tubingen, EU.
-
| Elemental surface composition of comet 67P grains (Rosetta) and of carbonaceous chondrite meteorites - characterized by multivariate mass spectral data (COSIMA). at reposiTUm , opens an external URL in a new windowVarmuza, K., Brandstätter, F., Cottin, H., Engrand, C., Ferrière, L., Filzmoser, P., Fray, N., Hilchenbach, M., Hoffmann, I., Kissel, J., Koeberl, C., Modica, P., Paquette, J., & Stenzel, O. (2017). Elemental surface composition of comet 67P grains (Rosetta) and of carbonaceous chondrite meteorites - characterized by multivariate mass spectral data (COSIMA). In EGU General Assembly 2017 (p. 1). Copernicus Publications.
-
| Significance of variables for discrimination - applied to the search of organic ions in mass spectra measured on cometary particles at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Hoffmann, I., Walach, J., Cottin, H., Fray, N., Briois, C., Silén, J., Stenzel, O., Kissel, J., & Hilchenbach, M. (2017). Significance of variables for discrimination - applied to the search of organic ions in mass spectra measured on cometary particles. Conferentia Chemometrica 2017, Gyöngyös-Farkasmály, EU.
-
| A new method for variable selection in a two and multi-group case at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., Hron, K., Walczak, B., & Najdekr, L. (2017). A new method for variable selection in a two and multi-group case. ERCIM 2017 - International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2017), London, EU.
-
| A robust pairwise log-ratio approach for variable selection and cell-wise outlier diagnostics with focus on metabolomic data at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., Hron, K., Walczak, B., & Najdekr, L. (2017). A robust pairwise log-ratio approach for variable selection and cell-wise outlier diagnostics with focus on metabolomic data. CoDaWork 2017, Abbadia San Salvatore, EU.
-
| Cell-wise outlier diagnostics and its use for biomarker identification at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., Hron, K., Walczak, B., & Najdekr, L. (2017). Cell-wise outlier diagnostics and its use for biomarker identification. MOVISS - Metabolomic Bio & Data 2017, Vorau, Austria.
-
| Variable selection method based on a pairwise log-ratio approach and cell-wise outlier diagnostics at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., Hron, K., Walczak, B., & Najdekr, L. (2017). Variable selection method based on a pairwise log-ratio approach and cell-wise outlier diagnostics. Olomouc Days of Applied Mathematics (ODAM 2017), Olomouc, EU.
-
| Robust biomarker identification in a two-class problem based on pairwise log-ratios at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., Hron, K., Walczak, B., & Najdekr, L. (2017). Robust biomarker identification in a two-class problem based on pairwise log-ratios. Chemometrics and Intelligent Laboratory Systems, 171, 277–285. https://doi.org/10.1016/j.chemolab.2017.09.003, opens an external URL in a new window
-
| Robust scale estimators for fuzzy data at reposiTUm , opens an external URL in a new windowde la Rosa de Sáa, S., Lubiano, M. A., Sinova, B., & Filzmoser, P. (2017). Robust scale estimators for fuzzy data. Advances in Data Analysis and Classification, 11(4), 731–758. https://doi.org/10.1007/s11634-015-0210-1, opens an external URL in a new window
-
| Error propagation in isometric log-ratio coordinates for compositional data: theoretical and practical considerations at reposiTUm , opens an external URL in a new windowMert, M. C., Filzmoser, P., & Hron, K. (2016). Error propagation in isometric log-ratio coordinates for compositional data: theoretical and practical considerations. Mathematical Geosciences. https://doi.org/10.1007/s11004-016-9646-x, opens an external URL in a new window
-
| Recent Advances in Robust Statistics: Theory and Applications at reposiTUm , opens an external URL in a new windowAgostinelli, C., Basu, A., Filzmoser, P., & Mukherjee, D. (Eds.). (2016). Recent Advances in Robust Statistics: Theory and Applications. Springer International Publishing. https://doi.org/10.1007/978-81-322-3643-6, opens an external URL in a new window
-
| Robust maximum association between data sets: The R package ccaPP at reposiTUm , opens an external URL in a new windowAlfons, A., Croux, C., & Filzmoser, P. (2016). Robust maximum association between data sets: The R package ccaPP. Austrian Journal of Statistics, 45(1), 71–79. https://doi.org/10.17713/ajs.v45i1.90, opens an external URL in a new window
-
| Robust multivariate analysis of interval data at reposiTUm , opens an external URL in a new windowBrito, P., Duarte Silva, P., & Filzmoser, P. (2016). Robust multivariate analysis of interval data. SINAPE - Simpósio Nacional de Probabilidade e Estatística - 2016, Porto Allegre, Non-EU.
-
| Evaluation of robust PCA for supervised audio outlier detection at reposiTUm , opens an external URL in a new windowBrodinova, S., Ortner, T., Filzmoser, P., Zaharieva, M., & Breiteneder, C. (2016). Evaluation of robust PCA for supervised audio outlier detection. In Proceeding of 22nd International Conference on Computational Statistics (COMPSTAT) (p. 12).
-
| Group Detection in the Context of Imbalanced Data at reposiTUm , opens an external URL in a new windowBrodinova, S., Zaharieva, M., Filzmoser, P., Ortner, T., & Breiteneder, C. (2016). Group Detection in the Context of Imbalanced Data. International Conference COMPUTER DATA ANALYSIS & MODELING, Minsk, Belarus, Non-EU.
-
| Combining local and scientific knowledge on soil resources through an integrated ethnopedological approach at reposiTUm , opens an external URL in a new windowCapra, G. F., Ganga, A., Filzmoser, P., Gaviano, C., & Vacca, S. (2016). Combining local and scientific knowledge on soil resources through an integrated ethnopedological approach. CATENA, 142, 89–101. https://doi.org/10.1016/j.catena.2016.03.003, opens an external URL in a new window
-
| Robust statistics: Theory and practice at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2016). Robust statistics: Theory and practice. Summer School System Simulation Computational Complex Systems, Bad Fischau, Austria.
-
| Robustness in practice at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2016). Robustness in practice. International Conference of Robust Statistics (ICORS 2016), Genf, Non-EU.
-
| Sparse and robust PLS for regression and binary classification at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hoffmann, I., Serneels, S., Croux, C., & Varmuza, K. (2016). Sparse and robust PLS for regression and binary classification. International Conference on Computational Statistics (Compstat 2016), Oviedo, EU.
-
| Statistical analysis of geochemical compositions: Problems, perspectives and solutions at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Tolosana-Delgado, R. (2016). Statistical analysis of geochemical compositions: Problems, perspectives and solutions. Applied Geochemistry, 75, 169–170. https://doi.org/10.1016/j.apgeochem.2016.11.016, opens an external URL in a new window
-
| How sick is Austria? A decision support framework for different evaluations of the burden of disease within the Austrian population based in different data sources at reposiTUm , opens an external URL in a new windowGlock, B., Endel, F., Endel, G., Popper, N., Sandholzer, K., Rinner, C., Duftschmid, G., Holl, J., Wagner-Pinter, M., Mert, M. C., & Filzmoser, P. (2016). How sick is Austria? A decision support framework for different evaluations of the burden of disease within the Austrian population based in different data sources. International Population Data Linkage Conference 2016, Swansea, EU.
-
| Recommendation Techniques on a Knowledge Graph for Email Remarketing at reposiTUm , opens an external URL in a new windowGrad-Gyenge, L., & Filzmoser, P. (2016). Recommendation Techniques on a Knowledge Graph for Email Remarketing. In eKNOW 2016, The Eighth International Conference on Information, Process, and Knowledge Management (pp. 51–56). IARIA.
-
| Meteorite classification by TOF-SIMS-chemometrics at reposiTUm , opens an external URL in a new windowHoffmann, I., Brandstätter, F., Engrand, C., Ferrière, L., Filzmoser, P., Hilchenbach, M., Koeberl, C., & Varmuza, K. (2016). Meteorite classification by TOF-SIMS-chemometrics. 27th Mass Spec Forum Vienna, Wien, Austria.
-
| Robust and Sparse Multiclass Classification by the Optimal Scoring Approach at reposiTUm , opens an external URL in a new windowHoffmann, I., Filzmoser, P., & Croux, C. (2016). Robust and Sparse Multiclass Classification by the Optimal Scoring Approach. International Conference COMPUTER DATA ANALYSIS & MODELING, Minsk, Belarus, Non-EU.
-
| Robust and sparse classification by the optimal scoring approach at reposiTUm , opens an external URL in a new windowHoffmann, I., Filzmoser, P., & Croux, C. (2016). Robust and sparse classification by the optimal scoring approach. International Conference of the ERCIM WG on Computational and Methodological Statistics, Seville, Spain, EU.
-
| Robust and sparse multiclass classification by the optimal scoring approach at reposiTUm , opens an external URL in a new windowHoffmann, I., Filzmoser, P., & Croux, C. (2016). Robust and sparse multiclass classification by the optimal scoring approach. International Conference on Robust Statistics, Parma, EU.
-
| Sparse and robust PLS for binary classification at reposiTUm , opens an external URL in a new windowHoffmann, I., Filzmoser, P., Serneels, S., & Varmuza, K. (2016). Sparse and robust PLS for binary classification. Journal of Chemometrics, 30(4), 153–162. https://doi.org/10.1002/cem.2775, opens an external URL in a new window
-
| Univariate analysis of compositional data using weighted balances at reposiTUm , opens an external URL in a new windowHron, K., Filzmoser, P., & Gardlo, A. (2016). Univariate analysis of compositional data using weighted balances. International Conference on Computational Statistics (Compstat 2016), Oviedo, EU.
-
| Exploring outliers in compositional data with structural zeros at reposiTUm , opens an external URL in a new windowHron, K., Templ, M., & Filzmoser, P. (2016). Exploring outliers in compositional data with structural zeros. International Conference of the ERCIM WG on Computational and Methodological Statistics, Seville, Spain, EU.
-
| Classical and robust orthogonal regression between parts of compositional data at reposiTUm , opens an external URL in a new windowHrůzová, K., Todorov, V., Hron, K., & Filzmoser, P. (2016). Classical and robust orthogonal regression between parts of compositional data. Statistics, 50(6), 1261–1275. https://doi.org/10.1080/02331888.2016.1162164, opens an external URL in a new window
-
| Compositional biplots including external non-compositional variables at reposiTUm , opens an external URL in a new windowKynčlová, P., Filzmoser, P., & Hron, K. (2016). Compositional biplots including external non-compositional variables. Statistics, 50(5), 1132–1148. https://doi.org/10.1080/02331888.2015.1135155, opens an external URL in a new window
-
| The single component geochemical map: Fact or fiction? at reposiTUm , opens an external URL in a new windowMcKinley, J. M., Hron, K., Grunsky, E. C., Reimann, C., de Caritat, P., Filzmoser, P., van den Boogaart, K. G., & Tolosana-Delgado, R. (2016). The single component geochemical map: Fact or fiction? Journal of Geochemical Exploration, 162, 16–28. https://doi.org/10.1016/j.gexplo.2015.12.005, opens an external URL in a new window
-
| Geochemical Sourcing of Flint Artifacts from Western Belgium and the German Rhineland: Testing Hypotheses on Gravettian Period Mobility and Raw Material Economy at reposiTUm , opens an external URL in a new windowMoreau, L., Brandl, M., Filzmoser, P., Hauzenberger, C., Goemaere, E., Jadin, I., Collet, H., Hanzeur, A., & Schmitz, R. (2016). Geochemical Sourcing of Flint Artifacts from Western Belgium and the German Rhineland: Testing Hypotheses on Gravettian Period Mobility and Raw Material Economy. Geoarchaeology, 31(3), 229–243.
-
| Forward Projection for High-Dimensional Data at reposiTUm , opens an external URL in a new windowOrtner, T., Filzmoser, P., Brodinova, S., Zaharieva, M., & Breiteneder, C. (2016). Forward Projection for High-Dimensional Data. International Conference COMPUTER DATA ANALYSIS & MODELING, Minsk, Belarus, Non-EU.
-
| Guided projections for analysising the structure of high dimensional data at reposiTUm , opens an external URL in a new windowOrtner, T., Filzmoser, P., Zaharieva, M., Breiteneder, C., & Brodinova, S. (2016). Guided projections for analysising the structure of high dimensional data. International Conference of the ERCIM WG on Computational and Methodological Statistics, Seville, Spain, EU.
-
| Comment on "Heavy metals in agricultural soil of the European Union with implications for food safety" by G. Toth, T. Hermann, M.R. Da Silva, and L. Montanarella at reposiTUm , opens an external URL in a new windowReimann, C., Négrel, P., Ladenberger, A., Birke, M., Filzmoser, P., O’Connor, P., & Demetriades, A. (2016). Comment on “Heavy metals in agricultural soil of the European Union with implications for food safety” by G. Toth, T. Hermann, M.R. Da Silva, and L. Montanarella. Environment International, 97, 258–263. https://doi.org/10.1016/j.envint.2016.07.019, opens an external URL in a new window
-
| Imputation of rounded zeros for high-dimensional compositional data at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., Filzmoser, P., & Gardlo, A. (2016). Imputation of rounded zeros for high-dimensional compositional data. Chemometrics and Intelligent Laboratory Systems, 155, 183–190. https://doi.org/10.1016/j.chemolab.2016.04.011, opens an external URL in a new window
-
| An R package for robust orthogonal regression for compositional data at reposiTUm , opens an external URL in a new windowTodorov, V., Hruzova, K., Hron, K., & Filzmoser, P. (2016). An R package for robust orthogonal regression for compositional data. 61a Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria (RBras 2016), Salvador, Non-EU.
-
| Robust orthogonal regression for compositional data in R at reposiTUm , opens an external URL in a new windowTodorov, V., Hruzova, K., Hron, K., & Filzmoser, P. (2016). Robust orthogonal regression for compositional data in R. International Conference of Robust Statistics (ICORS 2016), Genf, Non-EU.
-
| A Pairwise Log-Ratio Method For The Identification Of Biomarkers at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., Hron, K., & Walczak, B. (2016). A Pairwise Log-Ratio Method For The Identification Of Biomarkers. Xvi Chemometrics In Analytical Chemistry, Barcelona, EU.
-
| A Pairwise Log-Ratio Method for the Identification Biomarkers at reposiTUm , opens an external URL in a new windowWalach, J., Filzmoser, P., Hron, K., & Walczak, B. (2016). A Pairwise Log-Ratio Method for the Identification Biomarkers. International Conference COMPUTER DATA ANALYSIS & MODELING, Minsk, Belarus, Non-EU.
-
| Evaluation of Robust PCA for Supervised Audio Outlier Detection at reposiTUm , opens an external URL in a new windowBrodinova, S., Ortner, T., Filzmoser, P., Zaharieva, M., & Breiteneder, C. (2015). Evaluation of Robust PCA for Supervised Audio Outlier Detection (CS-2015-2).
-
| Simulation of Robust PCA for Supervised Audio Outlier Detection at reposiTUm , opens an external URL in a new windowBrodinova, S., Ortner, T., Filzmoser, P., Zaharieva, M., & Breiteneder, C. (2015). Simulation of Robust PCA for Supervised Audio Outlier Detection. In Eighth International Workshop on Simulation: Book of Abstracts. International Workshop on Simulation, Vienna, Austria.
-
| Integrating Predictions in Time Series Model Selection at reposiTUm , opens an external URL in a new windowBögl, M., Aigner, W., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Miksch, S., & Rind, A. (2015). Integrating Predictions in Time Series Model Selection. In J. Yang, E. Bertini, N. Elmqvist, T. Dwyer, X. Yuan, & H. Carr (Eds.), EuroVA 2015 EuroVis Workshop on Visual Analytics (pp. 73–78). The Eurographics Association. https://doi.org/10.2312/eurova.20151107, opens an external URL in a new window
-
| Visually and Statistically Guided Imputation of Missing Values in Univariate Seasonal Time Series at reposiTUm , opens an external URL in a new windowBögl, M., Aigner, W., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Miksch, S., & Rind, A. (2015). Visually and Statistically Guided Imputation of Missing Values in Univariate Seasonal Time Series. In J. Yang, E. Bertini, N. Elmqvist, T. Dwyer, X. Yuan, & H. Carr (Eds.), Poster Proceedings of the IEEE Visualization Conference 2015 (p. 2).
-
| Local multivariate outlier identification at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2015). Local multivariate outlier identification. Universität Olomouc, Olomouc, EU.
-
| Robust statistical methods for high-dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2015). Robust statistical methods for high-dimensional data. Isi Wsc World Statistics Congress 2015, Rio de Janeiro, Brazil, Non-EU.
-
| Robust statistics and R at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2015). Robust statistics and R. In International Conference on Robust Statistics - Book of Abstracts. ICORS 2015 International Conference on Robust Statistics, Indian Statistical Institute, Kolkata, India, Non-EU.
-
| Guest Editorial: Special Issue: Compositional Data Modelling at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2015). Guest Editorial: Special Issue: Compositional Data Modelling. Statistical Modelling, 15(2), vii–viii. https://doi.org/10.1177/1471082x14535520, opens an external URL in a new window
-
| Robust Coordinates for Compositional Data Using Weighted Balances at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2015). Robust Coordinates for Compositional Data Using Weighted Balances. In K. Nordhausen & S. Taskinen (Eds.), Modern Nonparametric, Robust and Multivariate Methods (pp. 167–184). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-22404-6_10, opens an external URL in a new window
-
| High-dimensional regression and classification with sparse partial robust M estimation (IPS067) at reposiTUm , opens an external URL in a new windowFilzmoser, P., Croux, C., Hoffmann, I., & Serneels, S. (2015). High-dimensional regression and classification with sparse partial robust M estimation (IPS067). Isi Wsc World Statistics Congress 2015, Rio de Janeiro, Brazil, Non-EU.
-
| Detecting outliers in household consumption survey data at reposiTUm , opens an external URL in a new windowFilzmoser, P., Gussenbauer, J., & Templ, M. (2015). Detecting outliers in household consumption survey data (Deliverable 4. Contract with world bank (1157976)).
-
| Short Overview on Outlier Detection Methods at reposiTUm , opens an external URL in a new windowFilzmoser, P., Templ, M., & Gussenbauer, J. (2015). Short Overview on Outlier Detection Methods (Deliverable 1 Contract with world bank (1157976)).
-
| Inorganic chemical quality of European tap-water: 2. Geographical distribution at reposiTUm , opens an external URL in a new windowFlem, B., Reimann, C., Birke, M., Banks, D., Filzmoser, P., & Frengstad, B. (2015). Inorganic chemical quality of European tap-water: 2. Geographical distribution. Applied Geochemistry, 59, 211–224. https://doi.org/10.1016/j.apgeochem.2015.01.016, opens an external URL in a new window
-
| Imputation of rounded zeros for data from metabolomics at reposiTUm , opens an external URL in a new windowGardlo, A., Hron, K., Templ, M., & Filzmoser, P. (2015). Imputation of rounded zeros for data from metabolomics. CoDaWork 2015, L’Escala, EU.
-
| Recommendations on a Knowledge Graph at reposiTUm , opens an external URL in a new windowGrad-Gyenge, L., Filzmoser, P., & Werthner, H. (2015). Recommendations on a Knowledge Graph. In MLRec 2015 : 1st International Workshop on Machine Learning Methods for Recommender Systems (pp. 13–20).
-
| Robust Statistical Methods for Outlier Detection with Application to Household Expenditure Data at reposiTUm , opens an external URL in a new windowGussenbauer, J., Filzmoser, P., Templ, M., & Dupriez, O. (2015). Robust Statistical Methods for Outlier Detection with Application to Household Expenditure Data. Statistiktage 2015, Wien, Austria.
-
| Robust and sparse PLS for binary classification at reposiTUm , opens an external URL in a new windowHoffmann, I., Filzmoser, P., & Serneels, S. (2015). Robust and sparse PLS for binary classification. In International Conference on Robust Statistics - Book of Abstracts (pp. 22–23).
-
| Sparse partial robust M-regression at reposiTUm , opens an external URL in a new windowHoffmann, I., Serneels, S., Filzmoser, P., & Croux, C. (2015). Sparse partial robust M-regression (CS-2015-1).
-
| Sparse partial robust M regression at reposiTUm , opens an external URL in a new windowHoffmann, I., Serneels, S., Filzmoser, P., & Croux, C. (2015). Sparse partial robust M regression. Chemometrics and Intelligent Laboratory Systems, 149, PART A, 15 DECEMBER, 50–59.
-
| Exploring compositional data with the robust compositional biplot at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2015). Exploring compositional data with the robust compositional biplot. In M. Carpita, E. Brentari, & E. M. Qannari (Eds.), Advances in Latent Variables. Part of the series Studies in Theoretical and Applied Statistics (pp. 219–226). Springer International Publishing Switzerland.
-
| Simplicial principal component analysis for density functions in Bayes spaces at reposiTUm , opens an external URL in a new windowHron, K., Menafoglio, A., Templ, M., Hruzova, K., & Filzmoser, P. (2015). Simplicial principal component analysis for density functions in Bayes spaces. Computational Statistics & Data Analysis, 94, 330–350. https://doi.org/10.1016/j.csda.2015.07.007, opens an external URL in a new window
-
| PLS-DA for compositional data with application to metabolomics at reposiTUm , opens an external URL in a new windowKalivodova, A., Hron, K., Filzmoser, P., Najdekr, L., Janeckova, H., & Adam, T. (2015). PLS-DA for compositional data with application to metabolomics. Journal of Chemometrics, 29(1), 21–28.
-
| Modeling Compositional Time Series with Vector Autoregressive Models at reposiTUm , opens an external URL in a new windowKynčlová, P., Filzmoser, P., & Hron, K. (2015). Modeling Compositional Time Series with Vector Autoregressive Models. Journal of Forecasting, 34(4 / July), 303–314.
-
| Bayesian-multiplicative treatment of count zeros in compositional data sets at reposiTUm , opens an external URL in a new windowMartin-Fernandez, J. A., Hron, K., Templ, M., Filzmoser, P., & Palarea-Albaladejo, J. (2015). Bayesian-multiplicative treatment of count zeros in compositional data sets. Statistical Modelling, 15(2), 134–158.
-
| Sparse principal balances at reposiTUm , opens an external URL in a new windowMert, M. C., Filzmoser, P., & Hron, K. (2015). Sparse principal balances. Statistical Modelling, 15(2), 159–174. https://doi.org/10.1177/1471082x14535525, opens an external URL in a new window
-
| Blind Source Separation for Spatial Compositional Data at reposiTUm , opens an external URL in a new windowNordhausen, K., Oja, H., Filzmoser, P., & Reimann, C. (2015). Blind Source Separation for Spatial Compositional Data. Mathematical Geosciences, 47(7), 753–770. https://doi.org/10.1007/s11004-014-9559-5, opens an external URL in a new window
-
| Identifying Structural Changes in Austrian Social Insurance Data at reposiTUm , opens an external URL in a new windowOrtner, T., Filzmoser, P., & Endel, G. (2015). Identifying Structural Changes in Austrian Social Insurance Data. IFAC-PapersOnLine, 48(1), 115–120. https://doi.org/10.1016/j.ifacol.2015.05.152, opens an external URL in a new window
-
| Biogeographical regions and their flowering phenological patterns across Europe at reposiTUm , opens an external URL in a new windowSzabo, B., Templ, M., Filzmoser, P., Lehoczky, A., & Pongrácz, R. (2015). Biogeographical regions and their flowering phenological patterns across Europe. Phenology 2015, Kusadasi, Non-EU.
-
| Outlier detection in complex survey data including semi-continuous components and missing values at reposiTUm , opens an external URL in a new windowTempl, M., Gussenbauer, J., Filzmoser, P., & Dupriez, O. (2015). Outlier detection in complex survey data including semi-continuous components and missing values. ERCIM 2015, London, EU.
-
| Simplicial principal component analysis for density functions at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., Menafoglio, A., Hruskova, K., & Filzmoser, P. (2015). Simplicial principal component analysis for density functions. CoDaWork 2015, L’Escala, EU.
-
| Chapter 2: Repeated Double Cross Validation (rdCV) - A Strategy for Optimizing Empirical Multivariate Models, and for Comparing Their Prediction Performances at reposiTUm , opens an external URL in a new windowVarmuza, K., & Filzmoser, P. (2015). Chapter 2: Repeated Double Cross Validation (rdCV) - A Strategy for Optimizing Empirical Multivariate Models, and for Comparing Their Prediction Performances. In M. Khanmohammadi (Ed.), Current Applications of Chemometrics (pp. 15–32). Nova Science Publishers.
-
| On the Robustness of Absolute Deviations with Fuzzy Data at reposiTUm , opens an external URL in a new windowde la Rosa de Sáa, S., Filzmoser, P., Gil, M. Á., & Lubiano, M. A. (2015). On the Robustness of Absolute Deviations with Fuzzy Data. In Strengthening Links Between Data Analysis and Soft Computing (pp. 133–141). Springer Verlag. https://doi.org/10.1007/978-3-319-10765-3_16, opens an external URL in a new window
-
| Radiolarite studies at Krems-Wachtberg (Lower Austria): Northern Alpine versus Carpathian lithic resources at reposiTUm , opens an external URL in a new windowBrandl, M., Hauzenberger, C., Postl, W., Martinez, M. M., Filzmoser, P., & Trnaka, G. (2014). Radiolarite studies at Krems-Wachtberg (Lower Austria): Northern Alpine versus Carpathian lithic resources. Quaternary International, 351, 146–162.
-
| Exploratory data analysis for interval compositional data at reposiTUm , opens an external URL in a new windowBrito, P., Filzmoser, P., & Hron, K. (2014). Exploratory data analysis for interval compositional data. 4th Workshop in Symbolic Data Analysis (SDA 2014), Taipei, China, Non-EU.
-
| Statistical analysis of interval compositional data at reposiTUm , opens an external URL in a new windowBrito, P., Filzmoser, P., & Hron, K. (2014). Statistical analysis of interval compositional data. In CFE-ERCIM 2014 - Book of Abstracts. ERCIM 2014 - 7th International Conference of the ERCIM WG on Computational and Methodological Statistics, University of Pisa, Italy, EU.
-
| Visual Analytics Methods to Guide Diagnostics for Time Series Model Predictions at reposiTUm , opens an external URL in a new windowBögl, M., Aigner, W., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Miksch, S., & Rind, A. (2014). Visual Analytics Methods to Guide Diagnostics for Time Series Model Predictions. In Proceedings of the 2014 IEEE VIS Workshop on Visualization for Predictive Analytics (p. 4).
-
| Evaluation of GEMAS project quality control results at reposiTUm , opens an external URL in a new windowDemetriades, A., Reimann, C., & Filzmoser, P. (2014). Evaluation of GEMAS project quality control results. In C. Reimann, M. Birke, A. Demetriades, P. Filzmoser, & P. O´Connor (Eds.), Chemistry of Europe’s Agricultural Soils. Part A: Methodology and Interpretation of the GEMAS Data Set, Geologisches Jahrbuch, Reihe B, Heft 102 (pp. 47–60). E. Schweizerbart’sche Verlagsbuchhandlung oHG.
-
| Generalized additive models at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2014). Generalized additive models. Seminar at the Palacky University, Olomouc / Czech Republic, Non-EU.
-
| Identi cation of multivariate outliers in interval data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2014). Identi cation of multivariate outliers in interval data. Seminar at the Palacky University, Olomouc / Czech Republic, Non-EU.
-
| Identifikation multivariater Ausreißer bei Intervalldaten at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2014). Identifikation multivariater Ausreißer bei Intervalldaten. Stochastik - Workshop Innsbruck (in Kooperation mit TU Dresden), Innsbruck, Austria.
-
| Opportunities of compositional data analysis in chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2014). Opportunities of compositional data analysis in chemometrics. CAC 2014 - 14th Conference on Chemometrics in Analytical Chemistry, Richmond, Virginia, EU.
-
| PCA and beyond at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2014). PCA and beyond. Seminar for students of the Palacký University, Velké Losiny, EU.
-
| Robust statistics: theoretical and practical considerations at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2014). Robust statistics: theoretical and practical considerations. Seminar for students of the Palacký University, Dolni Morava, Cz, EU.
-
| Spline interpolation at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2014). Spline interpolation. Seminar at the Palacky University, Olomouc / Czech Republic, Non-EU.
-
| Statistical analysis of interval compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2014). Statistical analysis of interval compositional data. Seminar at the Lisbon University of Technology, Lisbon, Portugal, EU.
-
| Multivariate data analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Reimann, C. (2014). Multivariate data analysis. In C. Reimann, M. Birke, A. Demetriades, P. Filzmoser, & P. O´Connor (Eds.), Chemistry of Europe’s Agricultural Soils. Part A: Methodology and Interpretation of the GEMAS Data Set, Geologisches Jahrbuch, Reihe B, Heft 102 (pp. 83–92). E. Schweizerbart’sche Verlagsbuchhandlung oHG.
-
| What can go wrong at the data normalization step for identification of biomarkers? at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Walczak, B. (2014). What can go wrong at the data normalization step for identification of biomarkers? Journal of Chromatography A, 1362, 194–205. https://doi.org/10.1016/j.chroma.2014.08.050, opens an external URL in a new window
-
| Outlier detection in interval data at reposiTUm , opens an external URL in a new windowFilzmoser, P., Brito, P., & Pedro Duarte Silva, A. (2014). Outlier detection in interval data. In M. Gilli, G. Gonzalez-Rodriguez, & A. Nieto-Reyes (Eds.), Proceedings of COMPSTAT 2014 (p. 11).
-
| Special issue on statistical algorithms and software in R at reposiTUm , opens an external URL in a new windowFilzmoser, P., Gatu, C., & Zeileis, A. (2014). Special issue on statistical algorithms and software in R. Computational Statistics & Data Analysis, 71, 887–888. https://doi.org/10.1016/j.csda.2013.10.012, opens an external URL in a new window
-
| Statistical aspects when analyzing geochemical compositions at reposiTUm , opens an external URL in a new windowFilzmoser, P., Reimann, C., & Birke, M. (2014). Statistical aspects when analyzing geochemical compositions. EGU European Geosciences Union General Assembly 2014, Vienna, Austria.
-
| Univariate data analysis and mapping at reposiTUm , opens an external URL in a new windowFilzmoser, P., Reimann, C., & Birke, M. (2014). Univariate data analysis and mapping. In C. Reimann, M. Birke, A. Demetriades, P. Filzmoser, & P. O´Connor (Eds.), Chemistry of Europe’s Agricultural Soils. Part A: Methodology and Interpretation of the GEMAS Data Set, Geologisches Jahrbuch, Reihe B, Heft 102 (pp. 67–81). E. Schweizerbart’sche Verlagsbuchhandlung oHG.
-
| Identification of local multivariate outliers at reposiTUm , opens an external URL in a new windowFilzmoser, P., Ruiz-Gazen, A., & Thomas-Agnan, C. (2014). Identification of local multivariate outliers. Statistical Papers, 55(1), 29–47. https://doi.org/10.1007/s00362-013-0524-z, opens an external URL in a new window
-
| Spreading Activation for Rating Estimation in Recommender Systems at reposiTUm , opens an external URL in a new windowGrad-Gyenge, L., Werthner, H., & Filzmoser, P. (2014). Spreading Activation for Rating Estimation in Recommender Systems. The 15th International Conference on Electronic Commerce and Web Technologies (EC-Web 2014), Munich, Germany, EU.
-
| Robust Regression with Compositional Response: Application to Geosciences at reposiTUm , opens an external URL in a new windowHron, K., Filzmoser, P., Templ, M., van den Boogaart, K. G., & Tolosana-Delgado, R. (2014). Robust Regression with Compositional Response: Application to Geosciences. In Mathematics of Planet Earth. Proceedings of the 15th Annual Conference of the International Association for Mathematical Geosciences (pp. 87–90). Springer Verlag Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-32408-6_21, opens an external URL in a new window
-
| Simplicial principal component analysis for density functions in Bayes spaces at reposiTUm , opens an external URL in a new windowHron, K., Menafoglio, A., Templ, M., Hruzova, K., & Filzmoser, P. (2014). Simplicial principal component analysis for density functions in Bayes spaces (MOX-report 25/2014).
-
| Simplicial principal component analysis for density functions in Bayes spaces at reposiTUm , opens an external URL in a new windowHron, K., Menafoglio, A., Templ, M., Hruzova, K., & Filzmoser, P. (2014). Simplicial principal component analysis for density functions in Bayes spaces. In CFE-ERCIM 2014 - Book of Abstracts. ERCIM 2014 - 7th International Conference of the ERCIM WG on Computational and Methodological Statistics, University of Pisa, Italy, EU.
-
| On the generalizability of resting-state fMRI machine learning classifiers at reposiTUm , opens an external URL in a new windowHuf, W., Kalcher, K., Boubela, R. N., Rath, G., Vecsei, A., Filzmoser, P., & Moser, E. (2014). On the generalizability of resting-state fMRI machine learning classifiers. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00502, opens an external URL in a new window
-
| The Spectral Diversity of Resting-State Fluctuations in the Human Brain at reposiTUm , opens an external URL in a new windowKalcher, K., Boubela, R. N., Huf, W., Bartova, L., Kronnerwetter, C., Derntl, B., Pezawas, L., Filzmoser, P., Nasel, C., & Moser, E. (2014). The Spectral Diversity of Resting-State Fluctuations in the Human Brain. PLoS ONE, 9(4), e93375. https://doi.org/10.1371/journal.pone.0093375, opens an external URL in a new window
-
| PLS-DA for metabolomical (compositional) data using the logratio approach at reposiTUm , opens an external URL in a new windowKalivodova, A., Hron, K., & Filzmoser, P. (2014). PLS-DA for metabolomical (compositional) data using the logratio approach. In CFE-ERCIM 2014 - Book of Abstracts. ERCIM 2014 - 7th International Conference of the ERCIM WG on Computational and Methodological Statistics, University of Pisa, Italy, EU.
-
| Application of T-spaces in modeling compositional time series at reposiTUm , opens an external URL in a new windowKynčlová, P., Filzmoser, P., & Hron, K. (2014). Application of T-spaces in modeling compositional time series. In CFE-ERCIM 2014 - Book of Abstracts. ERCIM 2014 - 7th International Conference of the ERCIM WG on Computational and Methodological Statistics, University of Pisa, Italy, EU.
-
| Elemental patterns in agricultural and grazing land soil in Norway, Finland and Sweden: What have we learned from continental scale mapping. at reposiTUm , opens an external URL in a new windowLadenberger, A., Uhlbäck, J., Andersson, M., Reimann, C., Tarvainen, T., Morris, G., Sadeghi, M., Eklund, M., & Filzmoser, P. (2014). Elemental patterns in agricultural and grazing land soil in Norway, Finland and Sweden: What have we learned from continental scale mapping. In C. Reimann, M. Birke, A. Demetriades, P. Filzmoser, & P. O´Connor (Eds.), Chemistry of Europe’s Agricultural Soils. Part A: Methodology and Interpretation of the GEMAS Data Set, Geologisches Jahrbuch, Reihe B, Heft 103 (pp. 235–251). E. Schweizerbart’sche Verlagsbuchhandlung oHG.
-
| Error propagation of compositional data transformations at reposiTUm , opens an external URL in a new windowMert, M. C., Filzmoser, P., & Hron, K. (2014). Error propagation of compositional data transformations. In CFE-ERCIM 2014 - Book of Abstracts. ERCIM 2014 - 7th International Conference of the ERCIM WG on Computational and Methodological Statistics, University of Pisa, Italy, EU.
-
| Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator at reposiTUm , opens an external URL in a new windowNeykov, N. M., Filzmoser, P., & Neytchev, P. N. (2014). Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator. Statistical Papers, 55(1), 187–207. https://doi.org/10.1007/s00362-013-0516-z, opens an external URL in a new window
-
| Robust variable selection in joint modeling of location, scale and shape for high dimensional data through trimming (CS6) at reposiTUm , opens an external URL in a new windowNeykov, N., Filzmoser, P., & Neytchev, P. (2014). Robust variable selection in joint modeling of location, scale and shape for high dimensional data through trimming (CS6). In ICORS14 - Conference Guide & Book of Abstracts (p. 39).
-
| Blind source separation for spatial compositional data at reposiTUm , opens an external URL in a new windowNordhausen, K., Oja, H., Filzmoser, P., & Reimann, C. (2014). Blind source separation for spatial compositional data. Mathematical Geosciences, 47(7), 753–770. https://doi.org/10.1007/s11004-014-9559-5, opens an external URL in a new window
-
| Blind source separation for spatial compositional data at reposiTUm , opens an external URL in a new windowNordhausen, K., Oja, H., Filzmoser, P., & Reimann, C. (2014). Blind source separation for spatial compositional data. In CFE-ERCIM 2014 - Book of Abstracts. ERCIM 2014 - 7th International Conference of the ERCIM WG on Computational and Methodological Statistics, University of Pisa, Italy, EU.
-
| Chemistry of Europe's Agricultural Soils Part A and B (2-volume set), 880 pp | 1 DVD | Hardbound ISBN 978-3-510-96848-0 at reposiTUm , opens an external URL in a new windowReimann, C., Birke, M., Demetriades, A., & Filzmoser, P. (Eds.). (2014). Chemistry of Europe’s Agricultural Soils Part A and B (2-volume set), 880 pp | 1 DVD | Hardbound ISBN 978-3-510-96848-0. E. Schweizerbart’sche Verlagsbuchhandlung oHG.
-
| Part A: Methodology and Interpretation of the GEMAS Data Set at reposiTUm , opens an external URL in a new windowReimann, C., Birke, M., Demetriades, A., Filzmoser, P., & O´Connor, P. (Eds.). (2014). Part A: Methodology and Interpretation of the GEMAS Data Set. E. Schweizerbart’sche Verlagsbuchhandlung oHG.
-
| Part B: General Background Information and Further Analysis of the GEMAS Data Set at reposiTUm , opens an external URL in a new windowReimann, C., Birke, M., Demetriades, A., Filzmoser, P., & O´Connor, P. (Eds.). (2014). Part B: General Background Information and Further Analysis of the GEMAS Data Set. E. Schweizerbart’sche Verlagsbuchhandlung oHG.
-
| Geochemical mapping and CoDa: Problems and Possibilities at reposiTUm , opens an external URL in a new windowReimann, C., Filzmoser, P., & Hron, K. (2014). Geochemical mapping and CoDa: Problems and Possibilities. In K. Hron & P. Filzmoser (Eds.), GeoMap Workshop Proceedings (pp. 47–49). Palacký University, Olomouc, Cz.
-
| GeoMap Workshop Proceedings at reposiTUm , opens an external URL in a new windowReimann, C., Filzmoser, P., & Hron, K. (Eds.). (2014). GeoMap Workshop Proceedings. Palacký University, Olomouc, Cz.
-
| Subject to Change: A log-ra! o approach to the geochemistry of stream sediment samples at reposiTUm , opens an external URL in a new windowReitner, H., Filzmoser, P., & Pirkl, H. (2014). Subject to Change: A log-ra! o approach to the geochemistry of stream sediment samples. In K. Hron & P. Filzmoser (Eds.), GeoMap Workshop Proceedings (pp. 50–52). Palacký University, Olomouc, Cz.
-
| Sparse partial robust M regression at reposiTUm , opens an external URL in a new windowSerneels, S., Filzmoser, P., Hoffmann, I., & Croux, C. (2014). Sparse partial robust M regression. In ICORS14 - Conference Guide & Book of Abstracts (p. 24).
-
| Special Issue - 10th International Conference COMPUTER DATA ANALYSIS & MODELLING 2013, Minsk, Belarus ( Vol.43, 3-4) at reposiTUm , opens an external URL in a new windowSpecial Issue - 10th International Conference COMPUTER DATA ANALYSIS & MODELLING 2013, Minsk, Belarus ( Vol.43, 3-4). (2014). In P. Filzmoser & M. Templ (Eds.), Austrian Journal of Statistics. Österreichische Statistische Gesellschaft.
-
| Characterisation of meteoritic samples with the Rosetta Cosima TOF-SIMS laboratory reference model - a covariance approach at reposiTUm , opens an external URL in a new windowStenzel, O., Varmuza, K., Engrand, C., Ferrière, L., Brandstätter, F., Koeberl, C., Filzmoser, P., & Hilchenbach, M. (2014). Characterisation of meteoritic samples with the Rosetta Cosima TOF-SIMS laboratory reference model - a covariance approach. In Asteroids, Comets, Meteors, Book of Abstracts, Helsinki, Finland, 2014 Editors: K. Muinonen, A. Penttilä, M. Granvik, A. Virkki, G. Fedorets, O. Wilkman, T. Kohout. ACM 2014 - Asteroids, Comets, Meteors, Helsinki / Finland, EU.
-
| From South to North: flowering phenological responses at different geographical latitudes in 12 European countries at reposiTUm , opens an external URL in a new windowSzabo, B., Lehoczky, A., Filzmoser, P., Templ, M., Szentkirályi, F., Pongrácz, R., Ortner, T., Mert, M. C., & Czúcz, B. (2014). From South to North: flowering phenological responses at different geographical latitudes in 12 European countries. European Geosciences Union General Assembly 2014, Wien, Austria.
-
| Simulation and quality of a synthetic close-to-reality employer-employee population at reposiTUm , opens an external URL in a new windowTempl, M., & Filzmoser, P. (2014). Simulation and quality of a synthetic close-to-reality employer-employee population. Journal of Applied Statistics, 41(5), 1053–1072. https://doi.org/10.1080/02664763.2013.859237, opens an external URL in a new window
-
| Robust Estimation of Income and Social Indicators with Tail Modelling at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., & Filzmoser, P. (2014). Robust Estimation of Income and Social Indicators with Tail Modelling. Seminar in Applied Mathematics, Palacky University Olomouc, EU.
-
| The Problem of Missing Values and Rounded Zeros in Compositional Data at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., & Filzmoser, P. (2014). The Problem of Missing Values and Rounded Zeros in Compositional Data. Joint Statistical Meeting, Vancouver, Canada, Non-EU.
-
| Software tools for robust analysis of high-dimensional data at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2014). Software tools for robust analysis of high-dimensional data. Austrian Journal of Statistics, 43(4), 255–266. https://doi.org/10.17713/ajs.v43i4.44, opens an external URL in a new window
-
| Compositional regression: an overview at reposiTUm , opens an external URL in a new windowTolosana-Delgado, R., van den Boogaart, K. G., Filzmoser, P., Hron, K., & Templ, M. (2014). Compositional regression: an overview. IAMG2014 - 16th Annual Conference of the International Association for Mathematical Geosciences, New Delhi, Non-EU.
-
| KNN classification - evaluated by repeated double cross validation: Recognition of minerals relevant for comet dust at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Hilchenbach, M., Krüger, H., & Silén, J. (2014). KNN classification - evaluated by repeated double cross validation: Recognition of minerals relevant for comet dust. Chemometrics and Intelligent Laboratory Systems, 138, 64–71. https://doi.org/10.1016/j.chemolab.2014.07.011, opens an external URL in a new window
-
| Visual Analytics for Model Selection in Time Series Analysis at reposiTUm , opens an external URL in a new windowBögl, M., Aigner, W., Filzmoser, P., Lammarsch, T., Miksch, S., & Rind, A. (2013). Visual Analytics for Model Selection in Time Series Analysis. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2237–2246. https://doi.org/10.1109/tvcg.2013.222, opens an external URL in a new window
-
| Greetings from the Programm Committee Co-Chairs at reposiTUm , opens an external URL in a new windowAivazian, S., Filzmoser, P., & Kharin, Y. (2013). Greetings from the Programm Committee Co-Chairs. In S. Aivazian, P. Filzmoser, & Y. Kharin (Eds.), Computer Data Analysis and Modeling - Theoretical and Applied Stochastics / Proceedings of the Tenth International Conference Minsk, September 10-14, 2013 (pp. 5–6). Publishing center BSU, Minsk.
-
| Computer Data Analysis and Modeling Theoretical and Applied Stochastics / Proceedings of the Tenth International Conference, Minsk at reposiTUm , opens an external URL in a new windowAivazian, S., Filzmoser, P., & Kharin, Y. (Eds.). (2013). Computer Data Analysis and Modeling Theoretical and Applied Stochastics / Proceedings of the Tenth International Conference, Minsk. Publishing center BSU, Minsk.
-
| Robust estimation of economic indicators from survey samples based on Pareto tail modelling at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2013). Robust estimation of economic indicators from survey samples based on Pareto tail modelling. Journal of the Royal Statistical Society: Series C, VOL. 62(2), 271–286.
-
| Effects of supervised Self Organising Maps parameters on classification performance at reposiTUm , opens an external URL in a new windowBallabio, D., Vasighi, M., & Filzmoser, P. (2013). Effects of supervised Self Organising Maps parameters on classification performance. Analytica Chimica Acta, 765, 45–53. https://doi.org/10.1016/j.aca.2012.12.027, opens an external URL in a new window
-
| Beyond noise: Using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest at reposiTUm , opens an external URL in a new windowBoubela, R. N., Kalcher, K., Huf, W., Kronnerwetter, C., Filzmoser, P., & Moser, E. (2013). Beyond noise: Using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00168, opens an external URL in a new window
-
| Northern Alpine versus Carpatian radiolarites - a case study from the Upper Palaeolithic Krems-Wachtberg site (Lower Austria) at reposiTUm , opens an external URL in a new windowBrandl, M., Filzmoser, P., & Hauzenberger, C. (2013). Northern Alpine versus Carpatian radiolarites - a case study from the Upper Palaeolithic Krems-Wachtberg site (Lower Austria). In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 16).
-
| Visual Analytics for Model Selection in Time Series Analysis at reposiTUm , opens an external URL in a new windowBögl, M., Aigner, W., Filzmoser, P., Lammarsch, T., Miksch, S., & Rind, A. (2013). Visual Analytics for Model Selection in Time Series Analysis. IEEE Conference on Visual Analytics Science and Technology (IEEE VAST), Atlanta, GA, USA, Non-EU.
-
| Robust Sparse Principal Component Analysis at reposiTUm , opens an external URL in a new windowCroux, C., Filzmoser, P., & Fritz, H. (2013). Robust Sparse Principal Component Analysis. Technometrics, 55(2), 202–214. https://doi.org/10.1080/00401706.2012.727746, opens an external URL in a new window
-
| Covariance-based variable selection for compositional data at reposiTUm , opens an external URL in a new windowDonevska, S., Fiserová, E., Filzmoser, P., & Hron, K. (2013). Covariance-based variable selection for compositional data. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 23).
-
| Advanced methods for regression and classi cation, and how to use them in R at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Advanced methods for regression and classi cation, and how to use them in R. ECO Winter School 2013, Kalmar, Sweden, EU.
-
| Computational statistics: The ATC/ICD project and applications at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Computational statistics: The ATC/ICD project and applications. Workshop on Innovative Methods for Evidence Based Decision Making in Healthcare, Vienna, Austria.
-
| Concepts of compositional data analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Concepts of compositional data analysis. Seminar at the Institute for Water Quality, Resource and Waste Management, Vienna, Austria.
-
| Linear and non-linear methods for regression and classification at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Linear and non-linear methods for regression and classification. Workshop at the University of Debrecen, Hungary, EU.
-
| Multivariate Regression und Klassi kation mit Anwendungen aus der Chemometrie at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Multivariate Regression und Klassi kation mit Anwendungen aus der Chemometrie. Herbstseminar der Wiener Biometrischen Sektion, Vienna, Austria.
-
| Outlier detection in compositional data with structural zeros at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Outlier detection in compositional data with structural zeros. ODAM 2013 - Olomoucian Days of Applied Mathematics, Olomouc, EU.
-
| Robust Linear Regression for Compositional Data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Robust Linear Regression for Compositional Data. ICORS 2013 International Conference on Robust Statistics, Saint Petersburg, Russia, Non-EU.
-
| Robust dimension reduction for high-dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Robust dimension reduction for high-dimensional data. Universität Olomouc, Olomouc, EU.
-
| Robust variable selection in linear regression with compositional explanatory variables at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Robust variable selection in linear regression with compositional explanatory variables. Seminar at the University of Geneve, Genf, Schweiz, Non-EU.
-
| Sparse multivariate statistical methods for high-dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Sparse multivariate statistical methods for high-dimensional data. Seminar at the University of Bergen, Bergen, Norway, EU.
-
| Sparse regression and classi cation methods for high-dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Sparse regression and classi cation methods for high-dimensional data. Seminar at the Vienna PhD-School of Informatics, Technical University Vienna, Austria.
-
| Stepwise variable selection in robust regression with compositional explanatory variables at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Stepwise variable selection in robust regression with compositional explanatory variables. ODAM 2013 - Olomoucian Days of Applied Mathematics, Olomouc, EU.
-
| Support vector machine at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Support vector machine. Seminar at the Palacky University, Olomouc / Czech Republic, Non-EU.
-
| Variable selection in regression models at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Variable selection in regression models. Universität Olomouc, Olomouc, EU.
-
| Analysis of chemical data from a compositional point of view at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Analysis of chemical data from a compositional point of view. In VIII Colloquium Chemometricum Mediterraneum (p. 8).
-
| Compositional data and R at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Compositional data and R. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria.
-
| Opening Lecture: A Projection-Pursuit Method for Sparse Robust PCA at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). Opening Lecture: A Projection-Pursuit Method for Sparse Robust PCA. In Proceedings of the 10th International Conderence Computer Data Analysis & Modelling 2013. CDAM 2013 10th International Conference Computer Data Analysis & Modeling 2013 Theoretical & Applied Stochastics, Minsk, Weißrussland, Belarus, Non-EU.
-
| R Tools for Robust Statistical Analysis of High-Dimensional Data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2013). R Tools for Robust Statistical Analysis of High-Dimensional Data. In Proceedings of the 10th International Conderence Computer Data Analysis & Modelling 2013. CDAM 2013 10th International Conference Computer Data Analysis & Modeling 2013 Theoretical & Applied Stochastics, Minsk, Weißrussland, Belarus, Non-EU.
-
| Robustness for Compositional Data at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2013). Robustness for Compositional Data. In C. Becker, R. Fried, & S. Kuhnt (Eds.), Robustness and Complex Data Structures (pp. 117–131). Springer Verlag. https://doi.org/10.1007/978-3-642-35494-6_8, opens an external URL in a new window
-
| Sparse and robust principal component analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P., Croux, C., & Fritz, H. (2013). Sparse and robust principal component analysis. DAGStat 2013, Freiburg, Deutschland, EU.
-
| Outlier Detection in High Dimension Using Regularization at reposiTUm , opens an external URL in a new windowGschwandtner, M., & Filzmoser, P. (2013). Outlier Detection in High Dimension Using Regularization. In Synergies of Soft Computing and Statistics for Intelligent Data Analysis (pp. 237–244). Springer Verlag Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_26, opens an external URL in a new window
-
| Exploring compositional data with the robust compositional biplot at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2013). Exploring compositional data with the robust compositional biplot. SIS 2013 - Advances in Latent Variables - Methods, Models and Applications, Brescia, Italy, EU.
-
| Robust Diagnostics of Fuzzy Clustering Results Using the Compositional Approach at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2013). Robust Diagnostics of Fuzzy Clustering Results Using the Compositional Approach. In Synergies of Soft Computing and Statistics for Intelligent Data Analysis (pp. 245–253). Springer Verlag Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_27, opens an external URL in a new window
-
| Correlation analysis for compositional data using classical and robust methods at reposiTUm , opens an external URL in a new windowHron, K., Filzmoser, P., & Fiserová, E. (2013). Correlation analysis for compositional data using classical and robust methods. ODAM 2013 - Olomoucian Days of Applied Mathematics, Olomouc, EU.
-
| Proceedings of the 5th International Workshop on compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria at reposiTUm , opens an external URL in a new windowHron, K., Filzmoser, P., & Templ, M. (Eds.). (2013). Proceedings of the 5th International Workshop on compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria. TU WIEN.
-
| Covariance-based variable selection for compositional data at reposiTUm , opens an external URL in a new windowHron, K., Filzmoser, P., Donevska, S., & Fišerová, E. (2013). Covariance-based variable selection for compositional data. Mathematical Geosciences, 45(4), 487–498. https://doi.org/10.1007/s11004-013-9450-9, opens an external URL in a new window
-
| Estimation of a proportion in survey sampling using the logratio approach at reposiTUm , opens an external URL in a new windowHron, K., Templ, M., & Filzmoser, P. (2013). Estimation of a proportion in survey sampling using the logratio approach. Metrika, 76(6), 799–818. https://doi.org/10.1007/s00184-012-0416-6, opens an external URL in a new window
-
| RESCALE: Voxel-specific Task-fMRI Scaling Using Resting State Fluctuation Amplitude at reposiTUm , opens an external URL in a new windowKalcher, K., Boubela, R., Huf, W., Biswal, B., Baldinger, P., Sailer, U., Filzmoser, P., Kasper, S., Lamm, C., Lanzenberger, R., & Moser, E. (2013). RESCALE: Voxel-specific Task-fMRI Scaling Using Resting State Fluctuation Amplitude. NeuroImage, 70(15 April), 80–88.
-
| Replacement of Missing Values and Rounded Zeros in High-Dimensional Compositional Data with Application to Metabolomics at reposiTUm , opens an external URL in a new windowKalidova, A., Hron, K., Templ, M., & Filzmoser, P. (2013). Replacement of Missing Values and Rounded Zeros in High-Dimensional Compositional Data with Application to Metabolomics. ODAM 2013 - Olomoucian Days of Applied Mathematics, Olomouc, EU.
-
| How to Model Compositional Time Series from the Official Statistics Chair: at reposiTUm , opens an external URL in a new windowKynčlová, P., Filzmoser, P., & Hron, K. (2013). How to Model Compositional Time Series from the Official Statistics Chair: Österreichische Statistiktage 2013, Statistik Austria, Wien, Austria.
-
| Vector autoregression for compositiona; time series at reposiTUm , opens an external URL in a new windowKynčlová, P., Filzmoser, P., & Hron, K. (2013). Vector autoregression for compositiona; time series. ODAM 2013 - Olomoucian Days of Applied Mathematics, Olomouc, EU.
-
| Compositional time series: The VAR model at reposiTUm , opens an external URL in a new windowKynčlová, P., Filzmoser, P., & Hron, K. (2013). Compositional time series: The VAR model. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 39).
-
| Statistical modeling of hunting success using hunter surveys at reposiTUm , opens an external URL in a new windowMartinez Avila, J. C., Filzmoser, P., & Neykov, N. (2013). Statistical modeling of hunting success using hunter surveys. Austrian Journal of Statistics, 42(2), 67–80.
-
| Principal balances with sparse PCA at reposiTUm , opens an external URL in a new windowMert, M. C., Filzmoser, P., & Hron, K. (2013). Principal balances with sparse PCA. ODAM 2013 - Olomoucian Days of Applied Mathematics, Olomouc, EU.
-
| Sparse Principal Balances for High-Dimensional Compositional Data at reposiTUm , opens an external URL in a new windowMert, M. C., Filzmoser, P., & Hron, K. (2013). Sparse Principal Balances for High-Dimensional Compositional Data. In Proceedings of the 10th International Conderence Computer Data Analysis & Modelling 2013. CDAM 2013 10th International Conference Computer Data Analysis & Modeling 2013 Theoretical & Applied Stochastics, Minsk, Weißrussland, Belarus, Non-EU. Publishing Center of BSU Minsk 2013.
-
| Sparse principal balances at reposiTUm , opens an external URL in a new windowMert, M. C., Filzmoser, P., & Hron, K. (2013). Sparse principal balances. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (pp. 44–45).
-
| Covariance-Based Outlier Detection for Compositional Data with Structural Zeros: Application to Italian Survey of Household Income and Wealth Data at reposiTUm , opens an external URL in a new windowMonti, G., Hron, K., Filzmoser, P., & Templ, M. (2013). Covariance-Based Outlier Detection for Compositional Data with Structural Zeros: Application to Italian Survey of Household Income and Wealth Data. SIS 2013 - Advances in Latent Variables - Methods, Models and Applications, Brescia, Italy, EU.
-
| Covariance-Based Outlier Detection for Compositional Data with Structural Zeros: Application to Italian Survey of Household Income and Wealth Data at reposiTUm , opens an external URL in a new windowMonti, G., Hron, K., Filzmoser, P., & Templ, M. (2013). Covariance-Based Outlier Detection for Compositional Data with Structural Zeros: Application to Italian Survey of Household Income and Wealth Data. In D. Vita e Pensiero (Ed.), Dipartimento di Economia, Metodi Quantitativi e Strategie di Impresa. Vita e Pensiero.
-
| Challenges for CoDa in geochemical practice at reposiTUm , opens an external URL in a new windowReimann, C., Filzmoser, P., & Hron, K. (2013). Challenges for CoDa in geochemical practice. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 52).
-
| Robust variable selection in linear regression with compositional explanatory variables at reposiTUm , opens an external URL in a new windowSchroeder, F., Braumann, A., Filzmoser, P., & Hron, K. (2013). Robust variable selection in linear regression with compositional explanatory variables. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 55).
-
| Supporting tools at reposiTUm , opens an external URL in a new windowTempl, M. (2013). Supporting tools. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria.
-
| Statistical Indicators for the Analysis of Digitalized Brain Tumor Images at reposiTUm , opens an external URL in a new windowTempl, M., Aklan, S., Filzmoser, P., Preusser, M., & Hainfellner, J. A. (2013). Statistical Indicators for the Analysis of Digitalized Brain Tumor Images. Austrian Journal of Statistics, 42(2), 1–19. https://doi.org/10.17713/ajs.v42i2.156, opens an external URL in a new window
-
| The R packages robCompositions and compositionsGUI at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., & Filzmoser, P. (2013). The R packages robCompositions and compositionsGUI. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria.
-
| Methods to Detect Outliers in Compositional Data with Structural Zeros at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., Filzmoser, P., & Monti, G. (2013). Methods to Detect Outliers in Compositional Data with Structural Zeros. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 56).
-
| Software compositionsGUI at reposiTUm , opens an external URL in a new windowTempl, M., van den Boogaart, G., Eichler, J., Filzmoser, P., Hron, K., & Tolosana-Delgado, R. (2013). Software compositionsGUI. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria.
-
| Locally-centred Mahalanobis distance: a new distance measure with salient features towards outlier detection at reposiTUm , opens an external URL in a new windowTodeschini, R., Ballabio, D., Consonni, V., Sahigara, F., & Filzmoser, P. (2013). Locally-centred Mahalanobis distance: a new distance measure with salient features towards outlier detection. Analytica Chimica Acta, 787, 1–9. https://doi.org/10.1016/j.aca.2013.04.034, opens an external URL in a new window
-
| Multivariate robust partial M-regression at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2013). Multivariate robust partial M-regression. ICORS 2013 International Conference on Robust Statistics, Saint Petersburg, Russia, Non-EU.
-
| Comparing Classical and Robust Sparse PCA at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2013). Comparing Classical and Robust Sparse PCA. In Synergies of Soft Computing and Statistics for Intelligent Data Analysis (pp. 283–291). Springer Verlag Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_31, opens an external URL in a new window
-
| Statistical analysis of compositional 2x2 tables with an economic application at reposiTUm , opens an external URL in a new windowTodorov, V., Facevicova, K., Hron, K., Guo, D., & Templ, M. (2013). Statistical analysis of compositional 2x2 tables with an economic application. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 58).
-
| Variable selection and its strict evaluation at reposiTUm , opens an external URL in a new windowVarmuza, K., & Filzmoser, P. (2013). Variable selection and its strict evaluation. CC 2013 Conferentia Chemometrica 2013, Sopron / Hungary, EU.
-
| Empirical modeling of mass spectral features by molecular descriptors at reposiTUm , opens an external URL in a new windowVarmuza, K., Dehmer, M., & Filzmoser, P. (2013). Empirical modeling of mass spectral features by molecular descriptors. CC 2013 Conferentia Chemometrica 2013, Sopron / Hungary, EU.
-
| Multivariate linear QSPR/QSAR models: Rigorous evaluation of variable selection for PLS at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., & Dehmer, M. (2013). Multivariate linear QSPR/QSAR models: Rigorous evaluation of variable selection for PLS. Computational and Structural Biotechnology Journal, 5(e201302007), e201302007. https://doi.org/10.5936/csbj.201302007, opens an external URL in a new window
-
| Robust multivariate regression with compositional data at reposiTUm , opens an external URL in a new windowZehetgruber, J., Filzmoser, P., Hron, K., & Templ, M. (2013). Robust multivariate regression with compositional data. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 65).
-
| Fuzzy rating or fuzzy linguistic? at reposiTUm , opens an external URL in a new windowde la Rosa de Saa, S., Filzmoser, P., Gil, M. A., & Lubiano, M. A. (2013). Fuzzy rating or fuzzy linguistic? ODAM 2013 - Olomoucian Days of Applied Mathematics, Olomouc, EU.
-
| Compositional regression with unobserved components or below detection limit values at reposiTUm , opens an external URL in a new windowvan den Boogaart, G., Tolosana-Delgado, R., Hron, K., Templ, M., & Filzmoser, P. (2013). Compositional regression with unobserved components or below detection limit values. In K. Hron, P. Filzmoser, & M. Templ (Eds.), Proceedings of the 5th International Workshop on Compositional Data Analysis CoDaWork 2013 June 3-7, 2013, Vorau, Austria (p. 59).
-
| A highly parallelized framework for computationally intensive MR data analysis at reposiTUm , opens an external URL in a new windowBoubela, R. N., Huf, W., Kalcher, K., Sladky, R., Filzmoser, P., Pezawas, L., Kasper, S., Windischberger, C., & Moser, E. (2012). A highly parallelized framework for computationally intensive MR data analysis. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 25(4), 313–320. https://doi.org/10.1007/s10334-011-0290-7, opens an external URL in a new window
-
| A projection-pursuit algorithm for robust maximum correlation estimators at reposiTUm , opens an external URL in a new windowAlfons, A., Croux, C., & Filzmoser, P. (2012). A projection-pursuit algorithm for robust maximum correlation estimators. Statistische Woche 2012, TU Wien, Austria.
-
| Robust maximum correlation based on projection pursuit at reposiTUm , opens an external URL in a new windowAlfons, A., Croux, C., & Filzmoser, P. (2012). Robust maximum correlation based on projection pursuit. International Conference on Robust Statistics, Parma, EU.
-
| A highly parallelized statistical analysis of fMRI data in R at reposiTUm , opens an external URL in a new windowBoubela, R., Kalcher, K., Huf, W., Moser, E., Windischberger, C., & Filzmoser, P. (2012). A highly parallelized statistical analysis of fMRI data in R. Statistische Woche 2012, TU Wien, Austria.
-
| Simplicial regression. The normal model at reposiTUm , opens an external URL in a new windowEgozcue, J. J., Daunis-I-Estadella, J., Pawlowsky-Glahn, V., Hron, K., & Filzmoser, P. (2012). Simplicial regression. The normal model. Journal of Applied Probability and Statistics, 6, 87–108.
-
| Burden of disease of Diabetes Mellitus - consequences for capacity planning at reposiTUm , opens an external URL in a new windowEndel, G., Pfeffer, N., Wilbacher, I., Filzmoser, P., Endel, F., Eisl, A., Dorda, W., Duftschmid, G., Grossmann, W., Schober, E., & Waldhör, T. (2012). Burden of disease of Diabetes Mellitus - consequences for capacity planning. 9th HTAi Annual Meeting. HTA in Integrated Care for a Patient Centered System, Bilbao / Spain, EU.
-
| Compositional data analysis: Consequences for Chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2012). Compositional data analysis: Consequences for Chemometrics. Afrodatat 2012, Stellenbosch / South Africa, Non-EU.
-
| Introduction to concepts of robust statistics at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2012). Introduction to concepts of robust statistics. Seminar at the Palacky University, Olomouc / Czech Republic, Non-EU.
-
| Regression and Classification Methods for High-dimensional Data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2012). Regression and Classification Methods for High-dimensional Data. Seminar at the Palacky University, Olomouc / Czech Republic, Non-EU.
-
| Compositional data analysis: challenges for environment sciences at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2012). Compositional data analysis: challenges for environment sciences. University Venice, Venice / Italy, Austria.
-
| Correlation Analysis for Compositional Data at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2012). Correlation Analysis for Compositional Data. Mathematical Geosciences, 41(8), 905–919. https://doi.org/10.1007/s11004-008-9196-y, opens an external URL in a new window
-
| Robust tools for the imperfect world at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Todorov, V. (2012). Robust tools for the imperfect world. Information Sciences, 245, 4–20. https://doi.org/10.1016/j.ins.2012.10.017, opens an external URL in a new window
-
| Robust Sparse Principal Component Analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P., Croux, C., & Fritz, H. (2012). Robust Sparse Principal Component Analysis. Austrian Statistical Society, Vienna, Austria.
-
| Robust sparse PCA in R at reposiTUm , opens an external URL in a new windowFilzmoser, P., Croux, C., & Fritz, H. (2012). Robust sparse PCA in R. In Proceedings COMPSTAT2012. International Conference on Computational Statistics, Limassol / Cyprus, EU.
-
| Review of sparse methods in regression and classification with application to chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P., Gschwandtner, M., & Todorov, V. (2012). Review of sparse methods in regression and classification with application to chemometrics. Seminar at the National Insitute of Chemistry, Ljubljana / Slovenia, EU.
-
| Sparse statistical methods: theory, applications, software at reposiTUm , opens an external URL in a new windowFilzmoser, P., Gschwandtner, M., & Todorov, V. (2012). Sparse statistical methods: theory, applications, software. ECO Summer School, Verona / Italy, EU.
-
| Review of sparse methods in regression and classification with application to chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P., Gschwandtner, M., & Todorov, V. (2012). Review of sparse methods in regression and classification with application to chemometrics. Journal of Chemometrics, 26, 10.
-
| Interpretation of multivariate outliers for compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Reimann, C. (2012). Interpretation of multivariate outliers for compositional data. Computers and Geosciences, 39, 77–85. https://doi.org/10.1016/j.cageo.2011.06.014, opens an external URL in a new window
-
| Discriminant analysis for compositional data and robust parameter estimation at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Templ, M. (2012). Discriminant analysis for compositional data and robust parameter estimation. Computational Statistics, 27(4), 585–604. https://doi.org/10.1007/s00180-011-0279-8, opens an external URL in a new window
-
| Robust ultrahigh-dimensional variable selection through trimming at reposiTUm , opens an external URL in a new windowFilzmoser, P., Neykov, N., & Neytchev, P. (2012). Robust ultrahigh-dimensional variable selection through trimming. International Conference on Robust Statistics, Parma, EU.
-
| Identification of local multivariate outliers at reposiTUm , opens an external URL in a new windowFilzmoser, P., Ruiz-Gazen, A., & Thomas-Agnan, C. (2012). Identification of local multivariate outliers. Workshop on Statistical Methods for Dependent Data, Witten / Germany, EU.
-
| A comparison of algorithms for the multivariate L1-median at reposiTUm , opens an external URL in a new windowFritz, H., Filzmoser, P., & Croux, C. (2012). A comparison of algorithms for the multivariate L1-median. Computational Statistics, 27(3), 393–410. https://doi.org/10.1007/s00180-011-0262-4, opens an external URL in a new window
-
| Outlier detection by the use of the regularized MCD estimator at reposiTUm , opens an external URL in a new windowGschwandtner, M., & Filzmoser, P. (2012). Outlier detection by the use of the regularized MCD estimator. Statistische Woche 2012, TU Wien, Austria.
-
| Classical and robust correlation analysis of compositional data at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2012). Classical and robust correlation analysis of compositional data. Statistische Woche 2012, TU Wien, Austria.
-
| Robust diagnostics of fuzzy clustering results using the compositional approach at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2012). Robust diagnostics of fuzzy clustering results using the compositional approach. International Conference on Soft Methods in Probability and Statistics SMPS2012, Konstanz / Germany, Austria.
-
| Linear regression with compositional explanatory variables at reposiTUm , opens an external URL in a new windowHron, K., Filzmoser, P., & Thompson, K. (2012). Linear regression with compositional explanatory variables. Journal of Applied Statistics, 39(5), 1115–1128. https://doi.org/10.1080/02664763.2011.644268, opens an external URL in a new window
-
| A unified approach to classical and robust regression for compositional data at reposiTUm , opens an external URL in a new windowHron, K., Filzmoser, P., Templ, M., van den Boogaart, G., & Tolosana-Delgado, R. (2012). A unified approach to classical and robust regression for compositional data. 5th International Conference of the ERCIM WG on COMPUTING & STATISTICS, Oviedo / Spain, EU.
-
| Statistical analysis of wines using a robust compositional biplot at reposiTUm , opens an external URL in a new windowHron, K., Jelínková, M., Filzmoser, P., Kreuziger, R., Bednář, P., & Barták, P. (2012). Statistical analysis of wines using a robust compositional biplot. Talanta, 90, 46–50. https://doi.org/10.1016/j.talanta.2011.12.060, opens an external URL in a new window
-
| Fully exploratory network independent component analysis of the 1000 functional connectomes database at reposiTUm , opens an external URL in a new windowKalcher, K., Huf, W., Boubela, R. N., Filzmoser, P., Pezawas, L., Biswal, B., Kasper, S., Moser, E., & Windischberger, C. (2012). Fully exploratory network independent component analysis of the 1000 functional connectomes database. Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00301, opens an external URL in a new window
-
| Dementia and pathways of health service utilisation in Austria: A record linkage study in a country with a fragmented provider payment system at reposiTUm , opens an external URL in a new windowKatschnig, H., Endel, F., Endel, G., Weibold, B., Scheffel, S., & Filzmoser, P. (2012). Dementia and pathways of health service utilisation in Austria: A record linkage study in a country with a fragmented provider payment system. 22nd Alzheimer Europe Conference, Vienna, Austria.
-
| A generic model for the integration of interactive visualization and statistical computing using R at reposiTUm , opens an external URL in a new windowKehrer, J., Boubela, R. N., Filzmoser, P., & Piringer, H. (2012). A generic model for the integration of interactive visualization and statistical computing using R. In 2012 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE Conference on Visual Analytics Science and Technology, VAST 2012, Seattle, WA, USA, Non-EU. https://doi.org/10.1109/vast.2012.6400537, opens an external URL in a new window
-
| Variable selection by the LASSO method at reposiTUm , opens an external URL in a new windowLiebmann, B., Todeschini, R., Cansonni, V., Filzmoser, P., & Varmuza, K. (2012). Variable selection by the LASSO method. Conference on Chemometrics in Analytic Chemistry, Budapest / Hungary, EU.
-
| Variable Selection by the LASSO method at reposiTUm , opens an external URL in a new windowLiebmann, B., Todeschini, R., Consonni, V., Filzmoser, P., & Varmuza, K. (2012). Variable Selection by the LASSO method. In XIII Chemometrics in Analytical Chemistry (p. 161).
-
| Evaluating the performance of a Bayesian-multiplicative treatment of zeros in compositional data sets at reposiTUm , opens an external URL in a new windowMartin-Fernandez, J. A., Hron, K., Templ, M., Filzmoser, P., & Palarea-Albaladejo, J. (2012). Evaluating the performance of a Bayesian-multiplicative treatment of zeros in compositional data sets. In Proceedings of COMPSTAT2012. International Conference on Computational Statistics, Limassol / Cyprus, EU.
-
| Model-based replacement of rounded zeros in compositional data: Classical and robust approaches at reposiTUm , opens an external URL in a new windowMartín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P., & Palarea-Albaladejo, J. (2012). Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Computational Statistics & Data Analysis, 56(9), 2688–2704. https://doi.org/10.1016/j.csda.2012.02.012, opens an external URL in a new window
-
| Robust joint modeling of mean and dispersion through trimming at reposiTUm , opens an external URL in a new windowNeykov, N. M., Filzmoser, P., & Neytchev, P. N. (2012). Robust joint modeling of mean and dispersion through trimming. Computational Statistics & Data Analysis, 56(1), 34–48. https://doi.org/10.1016/j.csda.2011.07.007, opens an external URL in a new window
-
| The least trimmed quantile regression at reposiTUm , opens an external URL in a new windowNeykov, N. M., Čížek, P., Filzmoser, P., & Neytchev, P. N. (2012). The least trimmed quantile regression. Computational Statistics & Data Analysis, 56(6), 1757–1770. https://doi.org/10.1016/j.csda.2011.10.023, opens an external URL in a new window
-
| Robust estimation in high demensional GLMs through trimming at reposiTUm , opens an external URL in a new windowNeykov, N., Filzmoser, P., & Neytchev, P. (2012). Robust estimation in high demensional GLMs through trimming. Workshop on Statistical Methods for Dependent Data, Witten / Germany, EU.
-
| Robust feature selection and robust PCA for internet traffic anomaly detection at reposiTUm , opens an external URL in a new windowPascoal, C., de Oliviera, M. R., Valades, R., Filzmoser, P., Salvador, P., & Pacheco, A. (2012). Robust feature selection and robust PCA for internet traffic anomaly detection. In 2012 Proceedings IEEE INFOCOM. 31th International Conference on Computer Communications IEEE, Orlando / Florida, Non-EU. https://doi.org/10.1109/infcom.2012.6195548, opens an external URL in a new window
-
| Temperature-dependent leaching of chemical elements from mineral water bottle materials at reposiTUm , opens an external URL in a new windowReimann, C., Birke, M., & Filzmoser, P. (2012). Temperature-dependent leaching of chemical elements from mineral water bottle materials. Applied Geochemistry, 27(8), 1492–1498. https://doi.org/10.1016/j.apgeochem.2012.05.003, opens an external URL in a new window
-
| The concept of compositional data analysis in practice - Total major element concentrations in agricultural and grazing land soils of Europe at reposiTUm , opens an external URL in a new windowReimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Dinelli, E., & Ladenberger, A. (2012). The concept of compositional data analysis in practice - Total major element concentrations in agricultural and grazing land soils of Europe. Science of the Total Environment, 426, 196–210. https://doi.org/10.1016/j.scitotenv.2012.02.032, opens an external URL in a new window
-
| Robust variable selection for linear regression models with compositional data at reposiTUm , opens an external URL in a new windowSchroeder, F., Braumann, A., & Filzmoser, P. (2012). Robust variable selection for linear regression models with compositional data. Statistische Woche 2012, TU Wien, Austria.
-
| Top-/bottom-soil ratios and enrichment factors: What do they really show? at reposiTUm , opens an external URL in a new windowSucharovà, J., Suchara, I., Hola, M., Marikova, S., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2012). Top-/bottom-soil ratios and enrichment factors: What do they really show? Applied Geochemistry, 27(1), 138–145. https://doi.org/10.1016/j.apgeochem.2011.09.025, opens an external URL in a new window
-
| Exploring incomplete data using visualization techniques at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., & Filzmoser, P. (2012). Exploring incomplete data using visualization techniques. Advances in Data Analysis and Classification, 6(1), 29–47. https://doi.org/10.1007/s11634-011-0102-y, opens an external URL in a new window
-
| Visualization of regional indicators with the checkerplot at reposiTUm , opens an external URL in a new windowTempl, M., Hulliger, B., & Kowarik, A. (2012). Visualization of regional indicators with the checkerplot. In P. Filzmoser (Ed.), Book of Abstracts (p. 141).
-
| Comparing classical and robust sparse PCA at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2012). Comparing classical and robust sparse PCA. International Conference on Soft Methods in Probability and Statistics SMPS2012, Konstanz / Germany, Austria.
-
| Sparse and robust partial least squares regression at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2012). Sparse and robust partial least squares regression. 5th International Conference of the ERCIM WG on COMPUTING & STATISTICS, Oviedo / Spain, EU.
-
| Sparse and robust partial least squares regression at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2012). Sparse and robust partial least squares regression. Statistische Woche 2012, TU Wien, Austria.
-
| rrcovHD: Moving rrcov to high dimensions at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2012). rrcovHD: Moving rrcov to high dimensions. International Conference on Robust Statistics, Parma, EU.
-
| Redundancy analysis for characterizing the correlation between groups of variables - Applied to molecular descriptors at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Liebmann, B., & Dehmer, M. (2012). Redundancy analysis for characterizing the correlation between groups of variables - Applied to molecular descriptors. Chemometrics and Intelligent Laboratory Systems, 117, 31–41. https://doi.org/10.1016/j.chemolab.2011.05.013, opens an external URL in a new window
-
| Repeated double cross validation for optimization and evaluation of empirical classifiers at reposiTUm , opens an external URL in a new windowVarmuza, K., Liebmann, B., & Filzmoser, P. (2012). Repeated double cross validation for optimization and evaluation of empirical classifiers. In XIII Chemometrics in Analytical Chemistry (p. 160).
-
| Brushing Dimensions - A Dual Visual Analysis Model for High-Dimensional Data at reposiTUm , opens an external URL in a new windowTurkay, C., Filzmoser, P., & Hauser, H. (2011). Brushing Dimensions - A Dual Visual Analysis Model for High-Dimensional Data. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2591–2599. https://doi.org/10.1109/TVCG.2011.178, opens an external URL in a new window
-
| The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: A comparative study at the scale of the Czech Republic at reposiTUm , opens an external URL in a new windowSuchara, I., Sucharova, J., Hola, M., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2011). The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: A comparative study at the scale of the Czech Republic. Science of the Total Environment, 409(11), 2281–2297. https://doi.org/10.1016/j.scitotenv.2011.02.003, opens an external URL in a new window
-
| Linking chemical elements in forest floor humus (Oₕ-horizon) in the Czech Republic to contamination sources at reposiTUm , opens an external URL in a new windowSucharova, J., Suchara, I., Hola, M., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2011). Linking chemical elements in forest floor humus (Oₕ-horizon) in the Czech Republic to contamination sources. Environmental Pollution, 159(5), 1205–1214. https://doi.org/10.1016/j.envpol.2011.01.041, opens an external URL in a new window
-
| Robust variable selection with application in the social sciences at reposiTUm , opens an external URL in a new windowAlfons, A., & Filzmoser, P. (2011). Robust variable selection with application in the social sciences. Dutch/Flemish Classification Society Spring Meeting, Antwerpen, EU.
-
| Robust variable selection with application to quality of life research at reposiTUm , opens an external URL in a new windowAlfons, A., Baaske, W. E., Filzmoser, P., Mader, W., & Wieser, R. (2011). Robust variable selection with application to quality of life research. Statistical Methods & Applications, 20(1), 65–82. https://doi.org/10.1007/s10260-010-0151-y, opens an external URL in a new window
-
| The AMELI simulation study at reposiTUm , opens an external URL in a new windowAlfons, A., Burgard, J. P., Filzmoser, P., Hulliger, B., Kolb, J.-P., Kraft, S., Münnich, R., Schoch, T., & Templ, M. (2011). The AMELI simulation study (European Commission,FP7-SSH-2007-217322,WP6-D6.1).
-
| Summary of the State-of-the-art in visualisation of the European Laeken Indicators at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., & Templ, M. (2011). Summary of the State-of-the-art in visualisation of the European Laeken Indicators (European Commission,FP7-SSH-2007-217322,WP1-D1.1-6).
-
| Synthetic data generation of SILC at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., Hulliger, B., Kolb, J.-P., Kraft, S., Münnich, R., & Templ, M. (2011). Synthetic data generation of SILC (European Commission,FP7-SSH-2007-217322,WP6-D6.2-3).
-
| The R package simFrame at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., Kraft, S., & Templ, M. (2011). The R package simFrame (European Commission,FP7-SSH-2007-217322,WP6-D6.1-3).
-
| Design-based simulations at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., Kraft, S., Templ, M., Kolb, J.-P., & Münnich, R. (2011). Design-based simulations (European Commission,FP7-SSH-2007-217322,WP6-D6.1-2).
-
| Robust distribution fitting at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., Meraner, A., & Templ, M. (2011). Robust distribution fitting (European Commission,FP7-SSH-2007-217322,WP4-D4.1-3).
-
| Applications of statistical simulation at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2011). Applications of statistical simulation (Europ. Commission,FP7-SSH-2007-21732,WP10-D10.3-2).
-
| Robust semiparametric estimation of economic indicators from survey samples at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2011). Robust semiparametric estimation of economic indicators from survey samples (CS-2011-5).
-
| Simulation of EU-SILC population data using simPopulation at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2011). Simulation of EU-SILC population data using simPopulation (Europ. Commission,FP7-SSH-2007-21732,WP10-D10.3-3).
-
| Robust estimation of social inclusion indicators based on Pareto tail modeling at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2011). Robust estimation of social inclusion indicators based on Pareto tail modeling. In Proceedings of the NTTS 2011 conference (p. 3).
-
| Simulation of close-to-reality population data for household surveys with application to EU-SILC at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2011). Simulation of close-to-reality population data for household surveys with application to EU-SILC. Statistical Methods & Applications, 20(3), 383–407. https://doi.org/10.1007/s10260-011-0163-2, opens an external URL in a new window
-
| Robust Pareto tail modeling for the estimation of indicators on social exclusion using the R package laeken at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., Filzmoser, P., & Holzer, J. (2011). Robust Pareto tail modeling for the estimation of indicators on social exclusion using the R package laeken (CS-2011-2).
-
| Robust Pareto tail modeling with package laeken at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., Filzmoser, P., & Holzer, J. (2011). Robust Pareto tail modeling with package laeken (Europ. Commission,FP7-SSH-2007-21732,WP10-D10.3-6).
-
| Semi-parametric robust estimation at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., Filzmoser, P., & Holzer, J. (2011). Semi-parametric robust estimation (Europ. Commission,FP7-SSH-2007-21732,WP4-D4.2-3).
-
| Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction at reposiTUm , opens an external URL in a new windowBerger, W., Piringer, H., Filzmoser, P., & Gröller, E. (2011). Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction. EuroVis 2011, Bergen, Norway, EU.
-
| Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction at reposiTUm , opens an external URL in a new windowBerger, W., Piringer, H., Filzmoser, P., & Gröller, E. (2011). Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction. Computer Graphics Forum, 30(3), 911–920.
-
| Robust sparse principal component analysis at reposiTUm , opens an external URL in a new windowCroux, C., Filzmoser, P., & Fritz, H. (2011). Robust sparse principal component analysis (SM-2011-2).
-
| Health service record linkage in a situation of multiple social health insurance institutions: the case of Austria at reposiTUm , opens an external URL in a new windowEndel, F., Endel, G., Filzmoser, P., Weibold, B., & Katschnig, H. (2011). Health service record linkage in a situation of multiple social health insurance institutions: the case of Austria. SHIP Biennial Conference, St Andrews, EU.
-
| Analyzing high-dimensional data, with application to chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2011). Analyzing high-dimensional data, with application to chemometrics. University of Valladolid, Valladolid, EU.
-
| Finding relevant descriptors at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2011). Finding relevant descriptors. Workshop “Molecular Descriptors,” Wien, Austria.
-
| Multivariate statistics using R at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2011). Multivariate statistics using R. University of Salatiga, Salatiga, Non-EU.
-
| Regression and classification methods for high-dimensional data with application to chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2011). Regression and classification methods for high-dimensional data with application to chemometrics. Conferencias Statistical Robustness, Oviedo, EU.
-
| Robust sparse principal component analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2011). Robust sparse principal component analysis. Statistische Tage 2011, Graz, Austria.
-
| Robust statistics: Concepts, methods, applications, and computation at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2011). Robust statistics: Concepts, methods, applications, and computation. SEAMS-GMU 2011 International Conference on Mathematics and Its Applications, Yogyakarta, Non-EU.
-
| Sparse multivariate methods for high-dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2011). Sparse multivariate methods for high-dimensional data. 7th International Symposium on Computer Applications and Chemometrics in Analytical Chemistry, Sümeg, EU.
-
| Sparse regression and classification methods for high-dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2011). Sparse regression and classification methods for high-dimensional data. University of Valladolid, Valladolid, EU.
-
| Robuste multivariate Methoden für die Analyse von Kompositionsdaten at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2011). Robuste multivariate Methoden für die Analyse von Kompositionsdaten. Workshop TU Dresden - TU Wien, Dresden, EU.
-
| Robust statistical analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2011). Robust statistical analysis. In Compositional Data Analysis: Theory and Applications (pp. 59–72). John Wiley & Sons.
-
| Review of robust multivariate statistical methods in high dimension at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Todorov, V. (2011). Review of robust multivariate statistical methods in high dimension (SM-2011-1).
-
| Review of robust multivariate statistical methods in high dimension at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Todorov, V. (2011). Review of robust multivariate statistical methods in high dimension. Analytica Chimica Acta, 705(1–2), 2–14. https://doi.org/10.1016/j.aca.2011.03.055, opens an external URL in a new window
-
| Robust sparse principal component analysis based on projection-pursuit at reposiTUm , opens an external URL in a new windowFilzmoser, P., Croux, C., & Fritz, H. (2011). Robust sparse principal component analysis based on projection-pursuit. International Conference on Robust Statistics in Valladolid, Spanien, EU.
-
| Discriminant Analysis for Compositional Data and Robust Parameter Estimation at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Templ, M. (2011). Discriminant Analysis for Compositional Data and Robust Parameter Estimation. In Book of Abstracts of the Olomoucian Days of Applied Mathematics (p. 17).
-
| Robust compositional data analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Templ, M. (2011). Robust compositional data analysis. In Proceedings of the 4th International Workshop on Compositional Data Analysis (p. 4).
-
| State-of-the-art of indicators on poverty and social exclusion the Laeken indicators at reposiTUm , opens an external URL in a new windowGraf, M., Alfons, A., Bruch, C., Filzmoser, P., Hulliger, B., Lehtonen, R., Meindl, B., Münnich, R., Schoch, T., Templ, M., Valaste, M., Wenger, A., & Zins, S. (2011). State-of-the-art of indicators on poverty and social exclusion the Laeken indicators (Europ. Commission,FP7-SSH-2007-21732,WP1-D1.1).
-
| A robust approach to regularized discriminant analysis at reposiTUm , opens an external URL in a new windowGschwandtner, M., Filzmoser, P., Croux, C., & Haesbroeck, G. (2011). A robust approach to regularized discriminant analysis. Statistische Tage 2011, Graz, Austria.
-
| Linear regression with compositional explanatory variables using the logratio approach at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2011). Linear regression with compositional explanatory variables using the logratio approach. International Conference of Probability and Statistics, Smolenice, EU.
-
| Mathematical elements in robust statistics for CoDa at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2011). Mathematical elements in robust statistics for CoDa. Congress of the Spanish Royal Mathematical Society, Avila, EU.
-
| On the Interpretation of Orthonormal Coordinates for Compositional Data with Applications at reposiTUm , opens an external URL in a new windowHron, K., Fiserová, E., Filzmoser, P., & Templ, M. (2011). On the Interpretation of Orthonormal Coordinates for Compositional Data with Applications. In Book of Abstracts of the Olomoucian Days of Applied Mathematics (p. 27).
-
| Classical and robust imputation of missing values for compositional data using balances at reposiTUm , opens an external URL in a new windowHron, K., Templ, M., & Filzmoser, P. (2011). Classical and robust imputation of missing values for compositional data using balances. In Proceedings of the 4th International Workshop on Compositional Data Analysis (p. 1).
-
| Meta-analysis: Fact or fiction? How to interpret meta-analyses at reposiTUm , opens an external URL in a new windowHuf, W., Kalcher, K., Pail, G., Friedrich, M.-E., Filzmoser, P., & Kasper, S. (2011). Meta-analysis: Fact or fiction? How to interpret meta-analyses. The World Journal of Biological Psychiatry, 12(3), 188–200. https://doi.org/10.3109/15622975.2010.551544, opens an external URL in a new window
-
| Report on the simulation results: Appendix at reposiTUm , opens an external URL in a new windowHulliger, B., Alfons, A., Bruch, C., Filzmoser, P., Graf, M., Kolb, J.-P., Lehtonen, R., Lussmann, D., Meraner, A., Münnich, R., Myrskylä, M., Nedyalkova, D., Schoch, T., Templ, M., Valaste, M., Veijanen, A., & Zins, S. (2011). Report on the simulation results: Appendix (Europ. Commission,FP7-SSH-2007-21732,WP7-D7.1-App).
-
| Report on the simulation results at reposiTUm , opens an external URL in a new windowHulliger, B., Alfons, A., Bruch, C., Filzmoser, P., Graf, M., Kolb, J.-P., Lehtonen, R., Lussmann, D., Meraner, A., Münnich, R., Myrskylä, M., Nedyalkova, D., Schoch, T., Templ, M., Valaste, M., Veijanen, A., & Zins, S. (2011). Report on the simulation results (Europ. Commission,FP7-SSH-2007-21732,WP7-D7.1).
-
| R programmes for robust procedures including manual at reposiTUm , opens an external URL in a new windowHulliger, B., Alfons, A., Filzmoser, P., Meraner, A., Schoch, T., & Templ, M. (2011). R programmes for robust procedures including manual (Europ. Commission,FP7-SSH-2007-21732,WP4-D4.1).
-
| Robust methodology for Laeken indicators at reposiTUm , opens an external URL in a new windowHulliger, B., Alfons, A., Filzmoser, P., Meraner, A., Schoch, T., & Templ, M. (2011). Robust methodology for Laeken indicators (Europ. Commission,FP7-SSH-2007-21732,WP4-D4.2).
-
| WP4: Robustness at reposiTUm , opens an external URL in a new windowHulliger, B., Schoch, T., Alfons, A., Holzer, J., Filzmoser, P., Meraner, A., & Templ, M. (2011). WP4: Robustness (Europ. Commission,FP7-SSH-2007-21732,WP7-D7.1-10).
-
| Evaluation Plots: Revision and extensions at reposiTUm , opens an external URL in a new windowHulliger, B., Zechner, S., Templ, M., & Filzmoser, P. (2011). Evaluation Plots: Revision and extensions (Europ. Commission,FP7-SSH-2007-21732,WP8-D8.2-3).
-
| Identifying psychiatric patients' pathways of care: linking service use data for psychiatric and non-psychiatric services for the total population of a province of Austria at reposiTUm , opens an external URL in a new windowKatschnig, H., Endel, G., Endel, F., Filzmoser, P., & Weibold, B. (2011). Identifying psychiatric patients’ pathways of care: linking service use data for psychiatric and non-psychiatric services for the total population of a province of Austria. SHIP Biennial Conference, St Andrews, EU.
-
| Identifying psychiatric patients' pathways of care by record linkage after pseudonymisation: linking inpatient and outpatient data for the total population of a province of Austria at reposiTUm , opens an external URL in a new windowKatschnig, H., Endel, G., Endel, F., Filzmoser, P., & Weibold, B. (2011). Identifying psychiatric patients’ pathways of care by record linkage after pseudonymisation: linking inpatient and outpatient data for the total population of a province of Austria. In Psychiatrische Praxis. Society for Psychotherapy Research. https://doi.org/10.1055/s-0031-1277820, opens an external URL in a new window
-
| Robust methods for semi-continuous data at reposiTUm , opens an external URL in a new windowMeraner, A., Filzmoser, P., & Templ, M. (2011). Robust methods for semi-continuous data (Europ. Commission,FP7-SSH-2007-21732,WP4-D4.2-12).
-
| Policy Recommendations and Methodological Report at reposiTUm , opens an external URL in a new windowMunnich, R., Zins, S., Alfons, A., Bruch, C., Filzmoser, P., Graf, M., Hulliger, B., Kolb, J.-P., Lehtonen, R., Lussmann, D., Meraner, A., Myrskylä, M., Nedyalkova, D., Schoch, T., Templ, M., Valaste, M., & Veijanen, A. (2011). Policy Recommendations and Methodological Report (Europ. Commission,FP7-SSH-2007-217322,WP6-D10-1).
-
| Robust quantile regression estimator through trimming at reposiTUm , opens an external URL in a new windowNeykov, N., Cizek, P., Filzmoser, P., & Neytchev, P. (2011). Robust quantile regression estimator through trimming. International Conference on Robust Statistics in Valladolid, Spanien, EU.
-
| A new approach for variable selection in robust PCA, applied to anomaly detection in internet traffic flows at reposiTUm , opens an external URL in a new windowPascoal, C., Oliveira, M. R., Filzmoser, P., Pacheco, A., & Valadas, R. (2011). A new approach for variable selection in robust PCA, applied to anomaly detection in internet traffic flows. International Conference on Robust Statistics in Valladolid, Spanien, EU.
-
| Data analysis for urban geochemical data at reposiTUm , opens an external URL in a new windowReimann, R., Birke, M., & Filzmoser, P. (2011). Data analysis for urban geochemical data. In C. C. Johnson, A. Demetriades, J. Locutura, & R. T. Ottesen (Eds.), Mapping the Chemical Environment of Urban Areas (pp. 99–115). John Wiley & Sons.
-
| Characterisation of the potamal Danube River and the Delta: connectivity determines indicative macrophyte assemblages at reposiTUm , opens an external URL in a new windowSarbu, A., Janauer, G., Schmidt-Mumm, U., Filzmoser, P., Smarandache, D., & Pascale, G. (2011). Characterisation of the potamal Danube River and the Delta: connectivity determines indicative macrophyte assemblages. Hydrobiologia, 671(1), 75–93.
-
| Spatial distribution of lead and lead isotopes in soil B-horizon, forest-floor humus, grass (Avenella flexuosa) and spruce (Picea abies) needles across the Czech Republic at reposiTUm , opens an external URL in a new windowSucharová, J., Suchara, I., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2011). Spatial distribution of lead and lead isotopes in soil B-horizon, forest-floor humus, grass (Avenella flexuosa) and spruce (Picea abies) needles across the Czech Republic. Applied Geochemistry, 26(7), 1205–1214. https://doi.org/10.1016/j.apgeochem.2011.04.009, opens an external URL in a new window
-
| Diagnostic tools for missing values at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., & Filzmoser, P. (2011). Diagnostic tools for missing values (Europ. Commission,FP7-SSH-2007-21732,WP8-D8.2-8).
-
| Robust semi-parametric estimation of economic and social indicators at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., & Filzmoser, P. (2011). Robust semi-parametric estimation of economic and social indicators. 58th Session of the ISI Conference, Dublin, EU.
-
| Estimation of Social Inclusion Indicators with Bounded Influence of Incomes by Tail Modeling at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., Filzmoser, P., & Holzer, J. (2011). Estimation of Social Inclusion Indicators with Bounded Influence of Incomes by Tail Modeling. In Book of Abstracts of the Olomoucian Days of Applied Mathematics (p. 61).
-
| R packages plus manual at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., Filzmoser, P., Graf, M., Hulliger, B., Kolb, J.-P., Lehtonen, R., Münnich, R., Nedyalkova, D., Schoch, T., Veijanen, A., & Zins, S. (2011). R packages plus manual (Europ. Commission,FP7-SSH-2007-21732,WP10-D10.3).
-
| Visualisation of indicators within the AMELI project at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., Kowarik, A., Meindl, B., Filzmoser, P., Hulliger, B., & Lussmann, D. (2011). Visualisation of indicators within the AMELI project. In Proceedings of the NTTS 2011 conference (p. 2).
-
| Analysis of Compositional Data using Robust Methods. The R-Package robCompositions at reposiTUm , opens an external URL in a new windowTempl, M., Filzmoser, P., & Hron, K. (2011). Analysis of Compositional Data using Robust Methods. The R-Package robCompositions. In Proceedings of the Conference of European Statisticians, Work Session on Statistical Data Editing. CODAWORK’11, Girona, EU.
-
| Robust imputation for compositional data at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., & Filzmoser, P. (2011). Robust imputation for compositional data (Europ. Commission,FP7-SSH-2007-21732,WP4-D4.2-11).
-
| robCompositions: an R-package for robust statistical analysis of compositional data at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., & Filzmoser, P. (2011). robCompositions: an R-package for robust statistical analysis of compositional data. In Compositional Data Analysis: Theory and Applications (pp. 341–355). John Wiley & Sons.
-
| Visualisation tools at reposiTUm , opens an external URL in a new windowTempl, M., Hulliger, B., Alfons, A., Lussmann, D., & Filzmoser, P. (2011). Visualisation tools (Europ. Commission,FP7-SSH-2007-21732,WP8-D8.2).
-
| EM-based regression imputation using robust methods at reposiTUm , opens an external URL in a new windowTempl, M., Kowarik, A., & Filzmoser, P. (2011). EM-based regression imputation using robust methods (Europ. Commission,FP7-SSH-2007-21732,WP4-D4.2-8).
-
| Imputation of complex data with R-package VIM: traditional and new methods based on robust estimation at reposiTUm , opens an external URL in a new windowTempl, M., Kowarik, A., & Filzmoser, P. (2011). Imputation of complex data with R-package VIM: traditional and new methods based on robust estimation. In Proceedings of the Conference of European Statisticians, Work Session on Statistical Data Editing (p. 10).
-
| Iterative stepwise regression imputation using standard and robust methods at reposiTUm , opens an external URL in a new windowTempl, M., Kowarik, A., & Filzmoser, P. (2011). Iterative stepwise regression imputation using standard and robust methods. Computational Statistics & Data Analysis, 55(10), 2793–2806. https://doi.org/10.1016/j.csda.2011.04.012, opens an external URL in a new window
-
| A computational and methodological framework for visualisation and imputation of missing values: the R-package VIM at reposiTUm , opens an external URL in a new windowTempl, M., Kowarik, A., Filzmoser, P., & Alfons, A. (2011). A computational and methodological framework for visualisation and imputation of missing values: the R-package VIM. Statistische Tage 2011, Graz, Austria.
-
| Sparse and robust methods for discrimination in high dimensions at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2011). Sparse and robust methods for discrimination in high dimensions. Statistische Tage 2011, Graz, Austria.
-
| Detection of multivariate outliers in business survey data with incomplete information at reposiTUm , opens an external URL in a new windowTodorov, V., Templ, M., & Filzmoser, P. (2011). Detection of multivariate outliers in business survey data with incomplete information. Advances in Data Analysis and Classification, 5(1), 37–56. https://doi.org/10.1007/s11634-010-0075-2, opens an external URL in a new window
-
| Software for multivariate outlier detection in survey data at reposiTUm , opens an external URL in a new windowTodorov, V., Templ, M., & Filzmoser, P. (2011). Software for multivariate outlier detection in survey data. In Proceedings of the Conference of European Statisticians, Work Session on Statistical Data Editing (p. 16).
-
| Sparse methods for robust discrimination in high dimensions at reposiTUm , opens an external URL in a new windowTodorov, V., Trendafilov, N., & Filzmoser, P. (2011). Sparse methods for robust discrimination in high dimensions. International Conference on Robust Statistics in Valladolid, Spanien, EU.
-
| Benefits from using continuous rating scales in online survey research at reposiTUm , opens an external URL in a new windowTreiblmaier, H., & Filzmoser, P. (2011). Benefits from using continuous rating scales in online survey research. In Proceedings of the International Conference on Information Systems (p. 13). Association for Information Systems.
-
| Random projection for dimensionality reduction-Applied to time-of-flight secondary ion mass spectrometry data at reposiTUm , opens an external URL in a new windowVarmuza, K., Engrand, C., Filzmoser, P., Hilchenbach, M., Kissel, J., Krüger, H., Silén, J., & Trieloff, M. (2011). Random projection for dimensionality reduction-Applied to time-of-flight secondary ion mass spectrometry data. Analytica Chimica Acta, 705(1–2), 48–55. https://doi.org/10.1016/j.aca.2011.03.031, opens an external URL in a new window
-
| Repeated double cross validation for classification models at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., & Liebmann, B. (2011). Repeated double cross validation for classification models. In Conferentia Chemometrica 2011. Conferentia Chemometrica 2011, Sümeg, Ungarn, EU.
-
| Robust model selection in the social sciences at reposiTUm , opens an external URL in a new windowAlfons, A., & Filzmoser, P. (2010). Robust model selection in the social sciences. In Programme and Abstracts: 4th CSDA International Conference on Computational and Financial Econometrics (p. 63).
-
| Simulation of synthetic population data for household surveys with application to EU-SILC at reposiTUm , opens an external URL in a new windowAlfons, A., Kraft, S., Templ, M., & Filzmoser, P. (2010). Simulation of synthetic population data for household surveys with application to EU-SILC (CS-2010-1).
-
| Simulation of population data for complex household surveys at reposiTUm , opens an external URL in a new windowAlfons, A., Kraft, S., Templ, M., & Filzmoser, P. (2010). Simulation of population data for complex household surveys. In Abstracts of the International Conference on Indicators and Survey Methodology (p. 13).
-
| Application of the R package simFrame for statistical simulation to EU-SILC at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2010). Application of the R package simFrame for statistical simulation to EU-SILC. 4th AMELI Meeting, Wien, Austria.
-
| Pareto tail modeling for social inclusion indicators at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2010). Pareto tail modeling for social inclusion indicators. 6th AMELI Meeting, Trier, EU.
-
| Simulation of EU-SILC population data: using the R package simPopulation at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2010). Simulation of EU-SILC population data: using the R package simPopulation (CS-2010-5).
-
| Text Von Andi at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2010). Text Von Andi. AMELI Meeting in Wien, Wien, Austria.
-
| An object-oriented framework for statistical simulation: The R Package simFrame at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2010). An object-oriented framework for statistical simulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36.
-
| Contamination models in the R package simFrame for statistical simulation at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2010). Contamination models in the R package simFrame for statistical simulation. In S. Aivazian, P. Filzmoser, & Y. Kharin (Eds.), Proceedings of the Ninth International Conference on Computer Data Analysis and Modeling (pp. 178–181).
-
| Exploring Microdata with Missing Information at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2010). Exploring Microdata with Missing Information. In Abstracts of the Workshop on Exploratory Data Analysis and Visualization (p. 11).
-
| The R package simFrame: An object-oriented approach towards simulation studies in statistics at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2010). The R package simFrame: An object-oriented approach towards simulation studies in statistics. In Abstracts of Contributed Presentations (p. 13).
-
| A comparison of robust methods for Pareto tail modeling in the case of Laeken indicators at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., Filzmoser, P., Holzer, J., & Gonzalez-Rodriguez, G. (2010). A comparison of robust methods for Pareto tail modeling in the case of Laeken indicators. In C. Borgelt, G. Gonzalez-Rodriguez, W. Trutschnig, M. A. Lubiano, M. A. Gil, P. Grzegorzewski, & O. Hryniewicz (Eds.), Combining Soft Computing and Statistical Methods in Data Analysis (pp. 17–24).
-
| Active Middle Ear Implant Compared With Open-Fit Hearing Aid in Sloping High-Frequency Sensorineural Hearing Loss at reposiTUm , opens an external URL in a new windowBoeheim, K., Pock, S.-M., Schloegel, M., & Filzmoser, P. (2010). Active Middle Ear Implant Compared With Open-Fit Hearing Aid in Sloping High-Frequency Sensorineural Hearing Loss. Otology and Neurotology, 31(3), 424–429.
-
| Robust multivariate methods for compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2010). Robust multivariate methods for compositional data. DAGStat 2010, Dortmund, EU.
-
| Robust multivariate methods for high-dimensional data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2010). Robust multivariate methods for high-dimensional data. Chemometrics in Analytical Chemistry (CAC 2010), Antwerpen, EU.
-
| The "chemometrics" package in R - Application in multivariate calibration and classification at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2010). The “chemometrics” package in R - Application in multivariate calibration and classification. Chemometrics Workshop, Wien, Austria.
-
| Soft methods in robust statistics at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2010). Soft methods in robust statistics. In C. Borgelt, G. Gonzalez-Rodriguez, W. Trutschnig, M. A. Lubiano, M. A. Gil, P. Grzegorzewski, & O. Hryniewicz (Eds.), Combining Soft Computing and Statistical Methods in Data Analysis (pp. 273–280).
-
| Multivariate outlier detection with compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Horn, K. (2010). Multivariate outlier detection with compositional data. In S. Aivazian, P. Filzmoser, & Y. Kharin (Eds.), Proceedings of the Ninth International Conference on Computer Data Analysis and Modeling (pp. 45–52).
-
| Robust methods for compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Horn, K. (2010). Robust methods for compositional data. In G. Saporta & Y. Lechevallier (Eds.), Proceedings in Computational Statistics (pp. 79–88).
-
| Data Analysis with Robust Statistical Methods at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Templ, M. (2010). Data Analysis with Robust Statistical Methods. In Abstracts of the Workshop on Exploratory Data Analysis and Visualization (p. 17).
-
| The bivariate statistical analysis of environmental (compositional) data at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Reimann, R. (2010). The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 408, 4230–4238.
-
| A comparison of algorithms for the multivariate L1-median at reposiTUm , opens an external URL in a new windowFritz, H., Filzmoser, P., & Croux, C. (2010). A comparison of algorithms for the multivariate L1-median (CS-2010-4).
-
| Robust regression for compositional data at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2010). Robust regression for compositional data. International Conference on Robust Statistics, Parma, EU.
-
| Elements of robust regression for data with absolute and relative information at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2010). Elements of robust regression for data with absolute and relative information. In C. Borgelt, G. Gonzalez-Rodriguez, W. Trutschnig, M. A. Lubiano, M. A. Gil, P. Grzegorzewski, & O. Hryniewicz (Eds.), Combining Soft Computing and Statistical Methods in Data Analysis (pp. 329–335).
-
| Classical and robust simple random sampling for compositional data at reposiTUm , opens an external URL in a new windowHron, K., Filzmoser, P., & Templ, M. (2010). Classical and robust simple random sampling for compositional data. In Abstracts of the International Conference on Indicators and Survey Methodology (p. 33).
-
| Exploratory compositional data analysis using the R-package robCompositions at reposiTUm , opens an external URL in a new windowHron, K., Templ, M., & Filzmoser, P. (2010). Exploratory compositional data analysis using the R-package robCompositions. In S. Aivazian, P. Filzmoser, & Y. Kharin (Eds.), Proceedings of the Ninth International Conference Data Analysis and Modeling (pp. 179–186).
-
| Imputation of missing values for compositional data using classical and robust methods at reposiTUm , opens an external URL in a new windowHron, K., Templ, M., & Filzmoser, P. (2010). Imputation of missing values for compositional data using classical and robust methods. Computational Statistics & Data Analysis, 54, 3095–3107.
-
| Asymptotic normality of kernel type regression estimators for random fields at reposiTUm , opens an external URL in a new windowKaracsony, Z., & Filzmoser, P. (2010). Asymptotic normality of kernel type regression estimators for random fields. Journal of Statistical Planning and Inference, 140, 872–886.
-
| Identifying psychiatric patients' pathways through the health care system by record linkage after pseudonymisation at reposiTUm , opens an external URL in a new windowKatschnig, H., Endel, G., Endel, F., Filzmoser, P., & Weibold, B. (2010). Identifying psychiatric patients’ pathways through the health care system by record linkage after pseudonymisation. 26th PCSI annual conference, München, EU.
-
| Brushing Moments in Interactive Visual Analysis at reposiTUm , opens an external URL in a new windowKehrer, J., Filzmoser, P., & Hauser, H. (2010). Brushing Moments in Interactive Visual Analysis. Eurograhics Digital Library, 29(3), 10.
-
| Robust and classical PLS regression compared at reposiTUm , opens an external URL in a new windowLiebmann, B., Filzmoser, P., & Varmuza, K. (2010). Robust and classical PLS regression compared. Journal of Chemometrics, 24(3–4), 111–120. https://doi.org/10.1002/cem.1279, opens an external URL in a new window
-
| Outlier Detection for Semi-continuous Variables at reposiTUm , opens an external URL in a new windowMeraner, A., Templ, M., & Filzmoser, P. (2010). Outlier Detection for Semi-continuous Variables. AMELI Meeting in Wien, Wien, Austria.
-
| Robust joint modeling of the mean and dispersion through trimming at reposiTUm , opens an external URL in a new windowNeykov, N., Filzmoser, P., & Neytchev, P. (2010). Robust joint modeling of the mean and dispersion through trimming. International Conference on Robust Statistics, Parma, EU.
-
| Identification of diagnose-related procedure bundles in outpatient care using statistical methods at reposiTUm , opens an external URL in a new windowPfeffer, N., Eisl, A., Endel, F., Filzmoser, P., Scholler, C., & Weisser, A. (2010). Identification of diagnose-related procedure bundles in outpatient care using statistical methods. 26th PCSI annual conference, München, EU.
-
| Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification at reposiTUm , opens an external URL in a new windowReimann, C., Birke, M., & Filzmoser, P. (2010). Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification. Applied Geochemistry, 25, 1030–1046.
-
| Reply to the comment "Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification" by Hayo Müller-Simon at reposiTUm , opens an external URL in a new windowReimann, C., Birke, M., & Filzmoser, P. (2010). Reply to the comment “Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification” by Hayo Müller-Simon. Applied Geochemistry, 25, 1464–1465.
-
| robCompositions: An R-package for robust statistical analysis of compositional data at reposiTUm , opens an external URL in a new windowTempl, M., Hron, K., & Filzmoser, P. (2010). robCompositions: An R-package for robust statistical analysis of compositional data. In Abstracts of Contributed Presentations (p. 161).
-
| Iterative imputation of complex survey data using robust methods at reposiTUm , opens an external URL in a new windowTempl, M., Kovarik, A., Filzmoser, P., & Alfons, A. (2010). Iterative imputation of complex survey data using robust methods. In Abstracts of the International Conference on Indicators and Survey Methodology (p. 51).
-
| EM-based stepwise regression imputation using standard and robust methods at reposiTUm , opens an external URL in a new windowTempl, M., Kowarik, A., & Filzmoser, P. (2010). EM-based stepwise regression imputation using standard and robust methods (CS-2010-3).
-
| IRMI: An open-source solution for imputation of complex data using robust methods at reposiTUm , opens an external URL in a new windowTempl, M., Kowarik, A., & Filzmoser, P. (2010). IRMI: An open-source solution for imputation of complex data using robust methods. European Conference on Quality in Official Statistics 2010, Helsinki, EU.
-
| Robust discrimination in high dimensions at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2010). Robust discrimination in high dimensions. International Conference on Robust Statistics, Parma, EU.
-
| Robust statistic for the one-way MANOVA at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2010). Robust statistic for the one-way MANOVA. Computational Statistics & Data Analysis, 54, 37–48.
-
| Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research at reposiTUm , opens an external URL in a new windowTreiblmaier, H., & Filzmoser, P. (2010). Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research. Information and Management, 47, 197–207.
-
| Statistical evaluation of molecular descriptors used in quantitative-structure-activity relationships at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., & Dehmer, M. (2010). Statistical evaluation of molecular descriptors used in quantitative-structure-activity relationships. In Programme and Abstracts (p. 55).
-
| Random projection experiments with chemometric data at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., & Liebmann, B. (2010). Random projection experiments with chemometric data. Journal of Chemometrics, 24(3–4), 209–217. https://doi.org/10.1002/cem.1295, opens an external URL in a new window
-
| Random projection for dimensionality reduction - applied to TOF-SIMS data relevant for future experiments near a comet at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., Hilchenbach, M., Kissel, J., Krüger, H., & Silèn, J. (2010). Random projection for dimensionality reduction - applied to TOF-SIMS data relevant for future experiments near a comet. In CAC 2010 Book of Abstracts (p. 277).
-
| Results of the project ATC-ICD at reposiTUm , opens an external URL in a new windowWeisser, A., Endel, F., Endel, G., & Filzmoser, P. (2010). Results of the project ATC-ICD. 26th PCSI annual conference, München, EU.
-
| How to improve the Quality of Life in Central European Municipalities at reposiTUm , opens an external URL in a new windowWieser, R., Filzmoser, H., Filzmoser, P., Alfons, A., Baaske, W. E., & Mader, W. (2010). How to improve the Quality of Life in Central European Municipalities. International Conference on Indicators and Survey Methodology, Wien, Austria.
-
| Visualization of Indicators in R with application to EUSILC at reposiTUm , opens an external URL in a new windowZechner, S., Filzmoser, P., Templ, M., & Alfons, A. (2010). Visualization of Indicators in R with application to EUSILC. 4th AMELI Meeting, Wien, Austria.
-
| Summary of the State-of-the-Art in Visualization of the European Laeken Indicators at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., & Templ, M. (2009). Summary of the State-of-the-Art in Visualization of the European Laeken Indicators (AMELI Project Deliverable 8.1, Part 3).
-
| State-of-the-art in visualization of indicators in survey statistics at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., Hulliger, B., Meindl, B., Schoch, T., & Templ, M. (2009). State-of-the-art in visualization of indicators in survey statistics (CS-2009-4).
-
| Generation of synthetic EU-SILC data and simulation at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., Kraft, S., & Templ, M. (2009). Generation of synthetic EU-SILC data and simulation (CS-2009-5).
-
| Intermediate report on the data generation mechanism and of the design of the simulation study at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., Kraft, S., & Templ, M. (2009). Intermediate report on the data generation mechanism and of the design of the simulation study (AMELI Project Deliverable 6.1).
-
| Progress Report WP6-Simulation at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., Kraft, S., & Templ, M. (2009). Progress Report WP6-Simulation (AMELI Project Deliverable 6.1, Part 2).
-
| Summary of the state-of-the-art in simulation in survey statistics at reposiTUm , opens an external URL in a new windowAlfons, A., Filzmoser, P., Kraft, S., & Templ, M. (2009). Summary of the state-of-the-art in simulation in survey statistics (AMELI Project Deliverable 6.1, Part1).
-
| Progress report on simulation and synthetic data generation for EU-SILC data at reposiTUm , opens an external URL in a new windowAlfons, A., Kraft, S., Filzmoser, P., & Templ, M. (2009). Progress report on simulation and synthetic data generation for EU-SILC data (CS-2009-6).
-
| State-of-the-Art and recent developments in Visualisation of Missing Values and Indicators at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2009). State-of-the-Art and recent developments in Visualisation of Missing Values and Indicators. 3rd AMELI meeting, Olten, Non-EU.
-
| simFrame: An object-oriented framework for statistical simulation at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2009). simFrame: An object-oriented framework for statistical simulation (CS-2009-1).
-
| On the influence of imputation methods on Laeken indicators: simulations and recommendations at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2009). On the influence of imputation methods on Laeken indicators: simulations and recommendations. In Proceedings of the Conference of European Statisticians (p. 9).
-
| Agriculture as a success factor for municipalities at reposiTUm , opens an external URL in a new windowBaaske, W. E., Filzmoser, P., Mader, W., & Wieser, R. (2009). Agriculture as a success factor for municipalities. In Jahrbuch der Österreichischen Gesellschaft für Agrarökonomie (pp. 21–30). Facultas Verlags- und Buchhandels AG.
-
| Integrating R into the InfoVis System Visplore at reposiTUm , opens an external URL in a new windowBoubela, R., Filzmoser, P., & Piringer, H. (2009). Integrating R into the InfoVis System Visplore. useR! 2009, Rennes, EU.
-
| Visplore and R: a symbiosis of powerfull visualization and statistical processing at reposiTUm , opens an external URL in a new windowBoubela, R., Filzmoser, P., & Piringer, H. (2009). Visplore and R: a symbiosis of powerfull visualization and statistical processing. Young Statisticians Meeting, Piran, Slowenien, EU.
-
| ErfolgsVision: Ergebnisdarstellung at reposiTUm , opens an external URL in a new windowFilzmoser, H., & Filzmoser, P. (2009). ErfolgsVision: Ergebnisdarstellung. Workshop: Erfolgsfaktoren für Gemeinden, Bad Zell, Austria.
-
| Applied Environmental Statistics with Focus on Exploratory Data Analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2009). Applied Environmental Statistics with Focus on Exploratory Data Analysis. IASC-ERS Summer School on Computational Aspects in Environmental Statistics, Pamporovo, EU.
-
| ErfolgsVision: Statistische Methodik at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2009). ErfolgsVision: Statistische Methodik. Workshop: Erfolgsfaktoren für Gemeinden, Bad Zell, Austria.
-
| Exploratory Data Analysis und Visualization with R at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2009). Exploratory Data Analysis und Visualization with R. Workshop “R” in Teaching and Empirical Research, Wien, Austria.
-
| Robust Exploratory Factor Analysis as a Reliable Statistical Tool in IS Research at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2009). Robust Exploratory Factor Analysis as a Reliable Statistical Tool in IS Research. KIMEP International Research Conference, Almaty, Non-EU.
-
| Robust Statistics: Concepts, Methods, Applications, and Software at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2009). Robust Statistics: Concepts, Methods, Applications, and Software. COST Spring School, Mieres, EU.
-
| Statistical Practices for Environmental Monitoring at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2009). Statistical Practices for Environmental Monitoring. 57th Session of the International Statistical Institute, Durban, Non-EU.
-
| Statistische Analyse von Kompositionsdaten at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2009). Statistische Analyse von Kompositionsdaten. Institut für Statistik, Graz, Austria.
-
| Invariant co-ordinate selection (Discussion on this paper) at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2009). Invariant co-ordinate selection (Discussion on this paper). Journal of the Royal Statistical Society, 71(3), 549–592.
-
| Correlation Analysis for Compositional Data at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2009). Correlation Analysis for Compositional Data. Mathematical Geosciences, 41, 905–919.
-
| Robust Factor Analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2009). Robust Factor Analysis. In Abstracts of the International Conference on Robust Statistics (pp. 51–52).
-
| Univariate statistical analysis of environmental (compositional) data: Problems and possibilities at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2009). Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of the Total Environment, 407, 6100–6108.
-
| The estimation of missing data in presence of outliers: computational aspects at reposiTUm , opens an external URL in a new windowFilzmoser, P., Fritz, H., Horn, K., & Templ, M. (2009). The estimation of missing data in presence of outliers: computational aspects. In Abstracts of the Third International Conference on Computational and Financial Econometrics (CFE 09) and Second Workshop of the ERCIM Working Group on Computing & Statistics (ERCIM 09) (p. 29).
-
| Classification Methods Applied to Chemical Data Using the R Library "chemometrics" at reposiTUm , opens an external URL in a new windowFilzmoser, P., Gieber, H., Liebmann, B., & Varmuza, K. (2009). Classification Methods Applied to Chemical Data Using the R Library “chemometrics.” In Conferentia Chemometrica 2009 Abstract Book. Conferentia Chemometrica 2009, Siofok,Ungarn, EU.
-
| Univariate statistical analysis of environmental data: Problems and possibilities at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Reimann, C. (2009). Univariate statistical analysis of environmental data: Problems and possibilities (SM-2009-2).
-
| Principal component analysis for compositional data with outliers at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20, 621–632.
-
| Discriminant analysis for compositional data and robust parameter estimation at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Templ, M. (2009). Discriminant analysis for compositional data and robust parameter estimation (SM-2009-3).
-
| Robust factor analysis for compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., Reimann, C., & Garrett, R. G. (2009). Robust factor analysis for compositional data. Computers and Geosciences, 35, 1854–1861.
-
| Repeated double cross validation at reposiTUm , opens an external URL in a new windowFilzmoser, P., Liebmann, B., & Varmuza, K. (2009). Repeated double cross validation. Journal of Chemometrics, 23, 160–171.
-
| Repeated double cross validation at reposiTUm , opens an external URL in a new windowFilzmoser, P., Liebmann, B., & Varmuza, K. (2009). Repeated double cross validation. In 11#^{th} Scandinavian Symposium on Chemometrics SSC11 - Book of Abstracts (p. 39).
-
| Robust Multivariate Methods in Chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P., Serneels, S., Maronna, R., & Van Espen, P. J. (2009). Robust Multivariate Methods in Chemometrics. In S. D. Brown, R. Tauler, & B. Walczak (Eds.), Comprehensive Chemometrics: Chemical and Biochemical Data Analysis (pp. 663–722). Elsevier.
-
| A Robust Biplot for Compositional Data at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2009). A Robust Biplot for Compositional Data. In Abstracts of the International Conference on Robust Statistics (pp. 70–71).
-
| Simulation of a Population for the European Living and Income Conditions Survey at reposiTUm , opens an external URL in a new windowKraft, S., Filzmoser, P., & Templ, M. (2009). Simulation of a Population for the European Living and Income Conditions Survey. 3rd AMELI meeting, Olten, Non-EU.
-
| Robust and classical PLS regression compared at reposiTUm , opens an external URL in a new windowLiebmann, B., Filzmoser, P., & Varmuza, K. (2009). Robust and classical PLS regression compared (CS-2009-8).
-
| Classical and Robust PLS Regression compared by Repeated Double Cross Validation at reposiTUm , opens an external URL in a new windowLiebmann, B., Filzmoser, P., Friedl, A., & Varmuza, K. (2009). Classical and Robust PLS Regression compared by Repeated Double Cross Validation. In Conferentia Chemometrica 2009 Abstract Book. Conferentia Chemometrica 2009, Siofok,Ungarn, EU.
-
| Statistical Estimators based on Trimming at reposiTUm , opens an external URL in a new windowNeykov, N., Filzmoser, P., & Neytchev, P. (2009). Statistical Estimators based on Trimming. In Abstracts of the International Conference on Robust Statistics (p. 112).
-
| Tools for visualising data and aggregated information at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., & Filzmoser, P. (2009). Tools for visualising data and aggregated information (CS-2009-3).
-
| Exploring the multivariate structure of missing values using the R package VIM at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., & Filzmoser, P. (2009). Exploring the multivariate structure of missing values using the R package VIM. In Abstracts of the 5th R useR Conference (p. 194).
-
| Imputation of item non-responses in compositional data using robust methods at reposiTUm , opens an external URL in a new windowTempl, M., Filzmoser, P., & Hron, K. (2009). Imputation of item non-responses in compositional data using robust methods. In Proceedings of the Conference of European Statisticians (p. 11).
-
| Missing Values in Compositional Data: Imputation and Diagnostics at reposiTUm , opens an external URL in a new windowTempl, M., Filzmoser, P., & Hron, K. (2009). Missing Values in Compositional Data: Imputation and Diagnostics. In Abstracts of the 6th International Conference on Computational Management Science (p. 16).
-
| Robust Imputation of Missing Values in Compositional Data Using the R-package robCompositions at reposiTUm , opens an external URL in a new windowTempl, M., Filzmoser, P., & Hron, K. (2009). Robust Imputation of Missing Values in Compositional Data Using the R-package robCompositions. In Proceedings of the NTTS Conference. NTTS Conference, Brüssel, EU.
-
| Robustness for Compositional Data Using the R Package robCompositions at reposiTUm , opens an external URL in a new windowTempl, M., Filzmoser, P., & Hron, K. (2009). Robustness for Compositional Data Using the R Package robCompositions. In Abstracts of the International Conference in Robust Statistics (pp. 146–147).
-
| Robust methods for the estimation of selected Laeken indicators at reposiTUm , opens an external URL in a new windowTempl, M., Holzer, J., Filzmoser, P., & Alfons, A. (2009). Robust methods for the estimation of selected Laeken indicators. 3rd AMELI meeting, Olten, Non-EU.
-
| Iterative robust model-based Imputation of complex data at reposiTUm , opens an external URL in a new windowTempl, M., Kowarik, A., & Filzmoser, P. (2009). Iterative robust model-based Imputation of complex data. In Abstracts of the Third International Conference on Computational and Financial Econometrics (CFE 09) and Second Workshop of the ERCIM Working Group on Computing & Statistics (ERCIM) 09 (p. 29).
-
| An object-oriented framework for robust multivariate analysis at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2009). An object-oriented framework for robust multivariate analysis (CS-2009-7).
-
| Multivariate Robust Statistics - Methods and Computation at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2009). Multivariate Robust Statistics - Methods and Computation. Südwestdeutscher Verlag für Hochschulschriften.
-
| An Object-Oriented Framework for Robust Multivariate Analysis at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2009). An Object-Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47.
-
| Outlier detection in survey data using robust methods at reposiTUm , opens an external URL in a new windowTodorov, V., Templ, M., & Filzmoser, P. (2009). Outlier detection in survey data using robust methods. In Proceedings of the Conference of European Statisticians (p. 11).
-
| Robust Outlier Detection in Survey Data at reposiTUm , opens an external URL in a new windowTodorov, V., Templ, M., & Filzmoser, P. (2009). Robust Outlier Detection in Survey Data. In Abstracts of the International Conference in Robust Statistics (pp. 148–149).
-
| Benefits from using continuous rating scales in online survey research at reposiTUm , opens an external URL in a new windowTreiblmaier, H., & Filzmoser, P. (2009). Benefits from using continuous rating scales in online survey research (SM-2009-4).
-
| Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research at reposiTUm , opens an external URL in a new windowTreiblmaier, H., & Filzmoser, P. (2009). Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research (SM-2009-5).
-
| Introduction to Multivariate Statistical Analysis in Chemometrics at reposiTUm , opens an external URL in a new windowVarmuza, K., & Filzmoser, P. (2009). Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press.
-
| Random Projection and Projection Pursuit Based PCA Applied to Chemical Data at reposiTUm , opens an external URL in a new windowVarmuza, K., Filzmoser, P., & Liebmann, B. (2009). Random Projection and Projection Pursuit Based PCA Applied to Chemical Data. In Conferentia Chemometrica 2009 Abstract Book. Conferentia Chemometrica 2009, Siofok,Ungarn, EU.
-
| A Statistical Approach to the Reconstruction of Pleistocene Drainage of the Po River Basin at reposiTUm , opens an external URL in a new windowVezzoli, G., Hron, K., & Filzmoser, P. (2009). A Statistical Approach to the Reconstruction of Pleistocene Drainage of the Po River Basin. In Abstracts of the International Conference on Robust Statistics (pp. 155–156).
-
| A context-sensitive method for robust model selection with application to analysing success factors of communities at reposiTUm , opens an external URL in a new windowAlfons, A., Baaske, W. E., Filzmoser, P., Mader, W., & Wieser, R. (2008). A context-sensitive method for robust model selection with application to analysing success factors of communities (CS-2008-6).
-
| Analyse und Visualisierung von EU-SILC Daten in R at reposiTUm , opens an external URL in a new windowAlfons, A., Kraft, S., Templ, M., & Filzmoser, P. (2008). Analyse und Visualisierung von EU-SILC Daten in R. In Abstracts of the Workshop TU Wien/TU Dresden (p. 6).
-
| Complex Survey Data Sets: Visualization of Missing Values in R at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2008). Complex Survey Data Sets: Visualization of Missing Values in R. Young European Statisticians Workshop, Eindhoven, EU.
-
| Visualization Software for EU-SILC Data and Laeken Indicators at reposiTUm , opens an external URL in a new windowAlfons, A., Templ, M., & Filzmoser, P. (2008). Visualization Software for EU-SILC Data and Laeken Indicators. AMELI Meeting, Wiesbaden, EU.
-
| Landwirtschaft als Erfolgsfaktor für Kommunen? Ergebnisse aus Bevölkerungsbefragungen in Bürgerbeteiligungsprozessen at reposiTUm , opens an external URL in a new windowBaaske, W. E., Filzmoser, P., Mader, W., & Wieser, R. (2008). Landwirtschaft als Erfolgsfaktor für Kommunen? Ergebnisse aus Bevölkerungsbefragungen in Bürgerbeteiligungsprozessen. ÖGA-Jahrestagung 2008, Wien, EU.
-
| Integration der Statistiksoftware R in die Visualisierungssoftware Bulk Analyzer zur interaktiven Datenanalyse at reposiTUm , opens an external URL in a new windowBoubela, R., Filzmoser, P., & Piringer, H. (2008). Integration der Statistiksoftware R in die Visualisierungssoftware Bulk Analyzer zur interaktiven Datenanalyse. In Abstracts of the Workshop TU Wien/TU Dresden (p. 8).
-
| Classification efficiencies for robust linear discriminant analysis at reposiTUm , opens an external URL in a new windowCroux, C., Filzmoser, P., & Joossens, K. (2008). Classification efficiencies for robust linear discriminant analysis. Statistica Sinica, 18, 581–599.
-
| Special Issue on the Eighth International Conference Computer Data Analysis and Modeling at reposiTUm , opens an external URL in a new windowDutter, R., Filzmoser, P., & Kharin, Y. (Eds.). (2008). Special Issue on the Eighth International Conference Computer Data Analysis and Modeling. Österreichische Statistische Gesellschaft.
-
| Defining background: Which statistical method ? Outliers versus extreme values at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2008). Defining background: Which statistical method ? Outliers versus extreme values. Eurosoil 2008, Wien, Austria.
-
| Linear and nonlinear methods for regression and classification and applications in R at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2008). Linear and nonlinear methods for regression and classification and applications in R (CS-2008-3).
-
| Outlier Identification and Robust PCA for Compositional Data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2008). Outlier Identification and Robust PCA for Compositional Data. Seminar of the Statistics Department, Belarusian State University, Minsk, Non-EU.
-
| Robust fitting of mixtures: The approach based on the Trimmed Likelihood Estimator at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2008). Robust fitting of mixtures: The approach based on the Trimmed Likelihood Estimator. The 32nd Annual Conference of the German Classification Society, Hamburg, EU.
-
| Robust statistics: a clever approach for using the useful data information at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2008). Robust statistics: a clever approach for using the useful data information. 4th International Symposium on Computer Applications and Chemometrics in Analytical Chemistry, Balatonalmadi, EU.
-
| Correlation analysis for compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2008). Correlation analysis for compositional data (SM-2008-2).
-
| Outlier Detection for Compositional Data Using Robust Methods at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2008). Outlier Detection for Compositional Data Using Robust Methods. Mathematical Geosciences, 40(3), 233–248.
-
| Robust Statistical Methods for Compositional Data at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2008). Robust Statistical Methods for Compositional Data. In Abstracts of the International Conference On Robust Statistics (p. 37).
-
| Robust factor analysis for compositional data at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., Reimann, C., & Garrett, R. G. (2008). Robust factor analysis for compositional data (SM-2008-3).
-
| Repeated double cross validation at reposiTUm , opens an external URL in a new windowFilzmoser, P., Liebmann, B., & Varmuza, K. (2008). Repeated double cross validation (CS-2008-4).
-
| Outlier identification in high dimensions at reposiTUm , opens an external URL in a new windowFilzmoser, P., Maronna, R., & Werner, M. (2008). Outlier identification in high dimensions. Computational Statistics & Data Analysis, 52, 1694–1711.
-
| Tools for local multivariate outlier detection at reposiTUm , opens an external URL in a new windowFilzmoser, P., Ruiz-Gazen, A., Thomas-Agnan, C., & Reimann, C. (2008). Tools for local multivariate outlier detection. 1st Workshop of the ERCIM Working Group on Computing and Statistics, Neuchatel, Non-EU.
-
| Plausibility of Databases and the Relation to Imputation Methods at reposiTUm , opens an external URL in a new windowFritz, H., & Filzmoser, P. (2008). Plausibility of Databases and the Relation to Imputation Methods. VDM Verlag Dr. Müller.
-
| Macrophyte distribution pattern in the Krka River--the role of habitat quality at reposiTUm , opens an external URL in a new windowGerm, M., Urbanc-Bercic, O., Janauer, G., Filzmoser, P., Exler, N., & Gaberscik, A. (2008). Macrophyte distribution pattern in the Krka River--the role of habitat quality. Large Rivers, 18(1-2), 145–155.
-
| Robuste Biplots für Kompositionsdaten at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2008). Robuste Biplots für Kompositionsdaten. In Abstracts of the Workshop TU Wien/TU Dresden (p. 16).
-
| Imputation of missing values for compositional data using classical and robust methods at reposiTUm , opens an external URL in a new windowHron, K., Templ, M., & Filzmoser, P. (2008). Imputation of missing values for compositional data using classical and robust methods (SM-2008-4).
-
| A Robust Approach for Dealing with Missing Values in Compositional Data at reposiTUm , opens an external URL in a new windowHron, K., Templ, M., & Filzmoser, P. (2008). A Robust Approach for Dealing with Missing Values in Compositional Data. In Abstracts of the International Conference on Robust Statistics 2008 (pp. 48–49).
-
| Asymptotic normality of kernel type regression estimators for random fields at reposiTUm , opens an external URL in a new windowKaracsony, Z., & Filzmoser, P. (2008). Asymptotic normality of kernel type regression estimators for random fields (MS-2008-1).
-
| Simulation at reposiTUm , opens an external URL in a new windowKraft, S., Templ, M., & Filzmoser, P. (2008). Simulation. AMELI Meeting, Wiesbaden, EU.
-
| Recent developments in robust fitting of mixtures at reposiTUm , opens an external URL in a new windowNeykov, N., Filzmoser, P., & Neytchev, P. (2008). Recent developments in robust fitting of mixtures. In Abstracts of the International Conference on Robust Statistics (p. 74).
-
| Principal Component Analysis (PCA) and Factor Analysis (FA) with geochemical data: problems and possibilities at reposiTUm , opens an external URL in a new windowReimann, C., & Filzmoser, P. (2008). Principal Component Analysis (PCA) and Factor Analysis (FA) with geochemical data: problems and possibilities. Seminar or the Norwegian Geological Survey, Trondheim, Non-EU.
-
| Statistical Data Analysis Explained. Applied Environmental Statistics with R. at reposiTUm , opens an external URL in a new windowReimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley & Sons.
-
| Visualization and the use of R-Forge for collaborative research projects at reposiTUm , opens an external URL in a new windowTempl, M., & Filzmoser, P. (2008). Visualization and the use of R-Forge for collaborative research projects. AMELI kick-off meeting, Neuchatel, Non-EU.
-
| Visualization of missing values using the R-package VIM at reposiTUm , opens an external URL in a new windowTempl, M., & Filzmoser, P. (2008). Visualization of missing values using the R-package VIM (CS-2008-1).
-
| Recent Developments in Visualization : Focus on Missing Values and Maps at reposiTUm , opens an external URL in a new windowTempl, M., Alfons, A., & Filzmoser, P. (2008). Recent Developments in Visualization : Focus on Missing Values and Maps. AMELI Meeting, Wiesbaden, EU.
-
| Cluster Analysis: Data preparation? Which algorithm? How many clusters? at reposiTUm , opens an external URL in a new windowTempl, M., Filzmoser, P., & Reimann, C. (2008). Cluster Analysis: Data preparation? Which algorithm? How many clusters? Lifestat 2008, München, EU.
-
| Cluster analysis applied to regional geochemical data: Problems and possibilities at reposiTUm , opens an external URL in a new windowTempl, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 23(8), 2198–2213.
-
| An Object Oriented Framework for Robust Multivariate Analysis in R at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2008). An Object Oriented Framework for Robust Multivariate Analysis in R. In Abstracts of the International Conference On Robust Statistics (p. 100).
-
| Robuste multivariate Analyse in R at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2008). Robuste multivariate Analyse in R. In Abstracts of the Workshop TU Wien/TU Dresden (p. 27).
-
| Comparison of some Linear Regression Methods - Available in R - for a QSPR Problem at reposiTUm , opens an external URL in a new windowVarmuza, K., & Filzmoser, P. (2008). Comparison of some Linear Regression Methods - Available in R - for a QSPR Problem. In 22. CIC- Workshop (p. 96).
-
| ATC-#gtICD - evaluating the reliability of prognoses for ICD-10 diagnoses derived from the ATC-Code of prescriptions at reposiTUm , opens an external URL in a new windowWeisser, A., Endel, G., Filzmoser, P., & Gyimesi, M. (2008). ATC-#gtICD - evaluating the reliability of prognoses for ICD-10 diagnoses derived from the ATC-Code of prescriptions. BMC Health Services Research, 8, 10.
-
| Anwendung statistischer Verfahren auf einen kommunalen Datensatz at reposiTUm , opens an external URL in a new windowWieser, R., & Filzmoser, P. (2008). Anwendung statistischer Verfahren auf einen kommunalen Datensatz (CS-2008-7).
-
| An Application of Robust Variable Selection with many Variables at reposiTUm , opens an external URL in a new windowWieser, R., Filzmoser, P., Baaske, W. E., & Mader, W. (2008). An Application of Robust Variable Selection with many Variables. In Abstracts of the International Conference On Robust Statistics (p. 115).
-
| Anwendung robuster Variablenselektionsverfahren zur Analyse hochdimensionaler Daten at reposiTUm , opens an external URL in a new windowWieser, R., Filzmoser, P., Baaske, W. E., & Mader, W. (2008). Anwendung robuster Variablenselektionsverfahren zur Analyse hochdimensionaler Daten. In Abstracts of the Workshop TU Wien/TU Dresden (p. 32).
-
| A survey of robust statistics at reposiTUm , opens an external URL in a new windowCroux, C., & Filzmoser, P. (2007). A survey of robust statistics. Statistical Methods & Applications, 15, 280–282.
-
| Algorithms for Projection-Pursuit robust principal component analysis at reposiTUm , opens an external URL in a new windowCroux, C., Filzmoser, P., & Oliveira, M. R. (2007). Algorithms for Projection-Pursuit robust principal component analysis. Chemometrics and Intelligent Laboratory Systems, 87, 218–225.
-
| Data Quality Issues for Statistical Methods at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2007). Data Quality Issues for Statistical Methods. 11th Meeting of CEN/TG 230/WG 2, Wien, Austria.
-
| Package mvoutlier for Multivariate Outlier Detection at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2007). Package mvoutlier for Multivariate Outlier Detection. International Workshop on Robust Statistics and R, Treviso, Italy, Austria.
-
| Robust PCA for Flat Data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2007). Robust PCA for Flat Data. International Workshop on Computational and Financial Econometrics, Genf, Non-EU.
-
| Robust Principal Components at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2007). Robust Principal Components. Jubilee International Conference 60 years Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, EU.
-
| Robuste Schätzung am Beispiel von Hauptkomponentenanalyse at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2007). Robuste Schätzung am Beispiel von Hauptkomponentenanalyse. Seminar of the Department of Mathematical Stochastics, Dresden, EU.
-
| Robustness for Compositional Data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2007). Robustness for Compositional Data. Seminar für Statistik, Dortmund, EU.
-
| Robustness for Large Data Sets: New Challenges in High Dimension at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2007). Robustness for Large Data Sets: New Challenges in High Dimension. Seminar of the Department of Statistics, Univ. Toulouse I, Toulouse, EU.
-
| Exploring high-dimensional data with robust principal components at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Fritz, H. (2007). Exploring high-dimensional data with robust principal components (CS-2007-2).
-
| Exploring High-dimensional Data with Robust Principal Components at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Fritz, H. (2007). Exploring High-dimensional Data with Robust Principal Components. In Proceedings of the Eighth International Conference Computer Data Analysis and Modeling (pp. 43–50). Publishing center BSU, Minsk.
-
| Outlier detection for compositional data using robust methods at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Hron, K. (2007). Outlier detection for compositional data using robust methods (CS-2007-1).
-
| Principal component analysis for compositional data with outliers at reposiTUm , opens an external URL in a new windowFilzmoser, P., Hron, K., & Reimann, C. (2007). Principal component analysis for compositional data with outliers (SM-2007-3).
-
| Exploratory Tools for Spatial Multivariate Outlier Detection at reposiTUm , opens an external URL in a new windowFilzmoser, P., Reimann, C., Ruiz-Gazen, A., & Thomas-Agnan, C. (2007). Exploratory Tools for Spatial Multivariate Outlier Detection. International Conference on Robust Statistics (ICORS 2007), Buenos Aires, Non-EU.
-
| Robust multivariate methods in chemometrics at reposiTUm , opens an external URL in a new windowFilzmoser, P., Serneels, S., Maronna, R., & Van Espen, P. J. (2007). Robust multivariate methods in chemometrics (CS-2007-3).
-
| Robust Estimation of Missing Values at reposiTUm , opens an external URL in a new windowFritz, H., Filzmoser, P., & Templ, M. (2007). Robust Estimation of Missing Values. International Workshop on Robust Statistics and R, Treviso, Italy, Austria.
-
| Outlier Detection for Compositional Data and Applications to Environmetrics at reposiTUm , opens an external URL in a new windowHron, K., & Filzmoser, P. (2007). Outlier Detection for Compositional Data and Applications to Environmetrics. TIES 2007, 18th annual meeting of the International Environmetrics Society, Mikulov, EU.
-
| A new variable selection method based on all subsets regression at reposiTUm , opens an external URL in a new windowLiebminger, A., Seyfang, L., Filzmoser, P., & Varmuza, K. (2007). A new variable selection method based on all subsets regression. In Book of Abstracts. 10#^{th} Scandinavian Symposium on Chemometrics, Lappeenranta, Finnland, EU.
-
| Robust fitting of mixtures using the trimmed likelihood estimator at reposiTUm , opens an external URL in a new windowNeykov, N., Filzmoser, P., Dimova, R., & Neytchev, P. (2007). Robust fitting of mixtures using the trimmed likelihood estimator. Computational Statistics & Data Analysis, 52, 299–308.
-
| Element concentrations and variations along a 120-km transect in southern Norway - Anthropogenic vs. geogenic vs. biogenic element sources and cycles at reposiTUm , opens an external URL in a new windowReimann, C., Arnoldussen, A., Englmaier, P., Filzmoser, P., Finne, T. E., Garrett, R. G., Koller, F., & Nordgulen, O. (2007). Element concentrations and variations along a 120-km transect in southern Norway - Anthropogenic vs. geogenic vs. biogenic element sources and cycles. Applied Geochemistry, 22, 851–871.
-
| Exploratory Tools for Spatial Multivariate Outlier Detection at reposiTUm , opens an external URL in a new windowRuiz-Gazen, A., Thomas-Agnan, C., Filzmoser, P., & Reimann, R. (2007). Exploratory Tools for Spatial Multivariate Outlier Detection. 6th Spatial Econometrics and Statistics Workshop, Dijon, EU.
-
| Variable selection by all subsets regression and by genetic algorithms at reposiTUm , opens an external URL in a new windowSeyfang, L., Filzmoser, P., & Varmuza, K. (2007). Variable selection by all subsets regression and by genetic algorithms. In Proc.of Conferentia Chemometrica. Conferentia Chemometrica 2007, Budapest, EU.
-
| Visualisation of Missing Values and Robust Imputation in Environmental Surveys at reposiTUm , opens an external URL in a new windowTempl, M., & Filzmoser, P. (2007). Visualisation of Missing Values and Robust Imputation in Environmental Surveys. TIES 2007, 18th annual meeting of the International Environmetrics Society, Mikulov, EU.
-
| Problems and Possibilities of Cluster Analysis: Application on Geochemical Data at reposiTUm , opens an external URL in a new windowTempl, M., Filzmoser, P., & Reimann, C. (2007). Problems and Possibilities of Cluster Analysis: Application on Geochemical Data. ROeS Seminar 2007, Bern, Non-EU.
-
| Robust Statistic for the One-way MANOVA at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2007). Robust Statistic for the One-way MANOVA. TIES 2007, 18th annual meeting of the International Environmetrics Society, Mikulov, EU.
-
| Robust statistic for the one-way MANOVA at reposiTUm , opens an external URL in a new windowTodorov, V., & Filzmoser, P. (2007). Robust statistic for the one-way MANOVA (CS-2007-7).
-
| A Functional Central Limit Theorem for Kernel Type Density Estimators at reposiTUm , opens an external URL in a new windowFazekas, I., & Filzmoser, P. (2006). A Functional Central Limit Theorem for Kernel Type Density Estimators. Austrian Journal of Statistics, 35(4), 409–418.
-
| Analysing Multivariate Data: Methods and their Piftalls at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2006). Analysing Multivariate Data: Methods and their Piftalls. Arsenal Research, Wien, Austria.
-
| Extremwerte oder Ausreißer at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2006). Extremwerte oder Ausreißer. Seminar of Department of Applied Statistics, Leuven, EU.
-
| Outlier Detection in Very High Dimension at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2006). Outlier Detection in Very High Dimension. University of Liege, Belgien, EU.
-
| Outlier Detection with Application to Geochemistry at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2006). Outlier Detection with Application to Geochemistry. The R User Conference 2006, Wien, EU.
-
| Outlier Identification in High Dimensions at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2006). Outlier Identification in High Dimensions. International Conference on Robust Statistics (ICORS 2006), Lissabon, EU.
-
| Outliers or Extremes at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2006). Outliers or Extremes. Seminar of Department of Applied Statistics, Leuven, EU.
-
| Projection Pursuit Algorithms for Robust Multivariate Methods at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2006). Projection Pursuit Algorithms for Robust Multivariate Methods. Robust Classification and Discrimination with High Dimensional Data, Florenz, EU.
-
| What can Robust Statistics Offer for Practice? at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2006). What can Robust Statistics Offer for Practice? Geological Survey of Norway, Trondheim, Non-EU.
-
| Ermittlung der Wahrscheinlichkeit einer Nichteinhaltung des Sicherheitsabstandes zwischen Ankerbohrungen, C-2006-4 at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Filzmoser, H. (2006). Ermittlung der Wahrscheinlichkeit einer Nichteinhaltung des Sicherheitsabstandes zwischen Ankerbohrungen, C-2006-4.
-
| Multiple group discriminant analysis: Robustness and error rate, CS-2006-1 at reposiTUm , opens an external URL in a new windowFilzmoser, P., Joossens, K., & Croux, C. (2006). Multiple group discriminant analysis: Robustness and error rate, CS-2006-1.
-
| Multiple group linear discriminant analysis: robustness and error rate at reposiTUm , opens an external URL in a new windowFilzmoser, P., Joossens, K., & Croux, C. (2006). Multiple group linear discriminant analysis: robustness and error rate. In A. Rizzi & M. Vichi (Eds.), Compstat 2006, Proceedings in Computational Statistics (pp. 521–532).
-
| Outlier identification in high dimensions, CS-2006-3 at reposiTUm , opens an external URL in a new windowFilzmoser, P., Maronna, R., Dimova, R., & Werner, M. (2006). Outlier identification in high dimensions, CS-2006-3.
-
| Robust Multivariate Methods: The Projection Pursuit Approach at reposiTUm , opens an external URL in a new windowFilzmoser, P., Serneels, S., Croux, C., & Van Espen, P. J. (2006). Robust Multivariate Methods: The Projection Pursuit Approach. In M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nürnberger, & W. Gaul (Eds.), From Data and Information Analysis to Knowledge Engineering (pp. 270–277).
-
| Macrophyte Habitat Preference, River Restoration, and the WFD: making use of the MIDCC data base at reposiTUm , opens an external URL in a new windowJanauer, G., Filzmoser, P., Otahelova, H., Gaberscik, A., Topic, J., Berczik, A., Igic, R., Vulchev, V., Sarbu, A., Kohler, A., & Exler, N. (2006). Macrophyte Habitat Preference, River Restoration, and the WFD: making use of the MIDCC data base. In Proceedings 36th International Conference of IAD (pp. 81–85). Austrian Committee Danube Research/IAD.
-
| Breg and Brigach, source streams of the Danube: changes based on macrophyte surveys 1967, 1989, and 2004 at reposiTUm , opens an external URL in a new windowJanauer, G., Lanz, E., Filzmoser, P., & Exler, N. (2006). Breg and Brigach, source streams of the Danube: changes based on macrophyte surveys 1967, 1989, and 2004. In Proceedings 36th International Conference of IAD (pp. 86–90). Austrian Committee Danube Research/IAD.
-
| Robust fitting of mixtures using the Trimmed Likelihood Estimator, CS-2006-2 at reposiTUm , opens an external URL in a new windowNeykov, N., Filzmoser, P., Dimova, R., & Neytchev, P. (2006). Robust fitting of mixtures using the Trimmed Likelihood Estimator, CS-2006-2.
-
| Is inducibility of atrial fibrillation after radio frequency ablation really a relevant prognostic factor? at reposiTUm , opens an external URL in a new windowRichter, B., Gwechenberger, M., Filzmoser, P., Marx, M., Lercher, P., & Gössinger, H. D. (2006). Is inducibility of atrial fibrillation after radio frequency ablation really a relevant prognostic factor? European Heart Journal, 27, 2553–2559.
-
| The aquatic vegetation of large Danube river branches in Romania at reposiTUm , opens an external URL in a new windowSarbu, A., Janauer, G., Exler, N., & Filzmoser, P. (2006). The aquatic vegetation of large Danube river branches in Romania. In Proceedings 36th International Conference of IAD (pp. 101–106). Austrian Committee Danube Research/IAD.
-
| The Partial Robust M-approach at reposiTUm , opens an external URL in a new windowSerneels, S., Croux, C., Filzmoser, P., & Van Espen, P. J. (2006). The Partial Robust M-approach. In M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nürnberger, & W. Gaul (Eds.), From Data and Information Analysis to Knowledge Engineering (pp. 230–237). Springer.
-
| Stability of Cluster Analysis at reposiTUm , opens an external URL in a new windowTempl, M., & Filzmoser, P. (2006). Stability of Cluster Analysis. The R User Conference 2006, Wien, EU.
-
| Cluster Analysis applied to regional geochemical data: Problems and possibilities, CS-2006-5 at reposiTUm , opens an external URL in a new windowTempl, M., Filzmoser, P., & Reimann, R. (2006). Cluster Analysis applied to regional geochemical data: Problems and possibilities, CS-2006-5.
-
| Changes in the fish species composition of all Austrian lakes #gt50 ha during the last 150 years at reposiTUm , opens an external URL in a new windowZick, D., Gassner, H., Filzmoser, P., Wanzenböck, J., Pamminger-Lahnsteiner, B., & Tischler, G. (2006). Changes in the fish species composition of all Austrian lakes #gt50 ha during the last 150 years. Fisheries Management and Ecology, 13, 103–111.
-
| Robust Canonical Correlations: A Comparative Study at reposiTUm , opens an external URL in a new windowBranco, J., Croux, C., Filzmoser, P., & Oliveira, M. R. (2005). Robust Canonical Correlations: A Comparative Study. Computational Statistics, 20, 203–229.
-
| Robust linear discriminant analysis for multiple groups: influence and classification efficiencies, CS-2005-1 at reposiTUm , opens an external URL in a new windowCroux, C., Filzmoser, P., & Joossens, K. (2005). Robust linear discriminant analysis for multiple groups: influence and classification efficiencies, CS-2005-1.
-
| Austrian Journal of Statistics at reposiTUm , opens an external URL in a new windowDutter, R., Filzmoser, P., & Kharin, Y. (Eds.). (2005). Austrian Journal of Statistics. Österreichische Statistische Gesellschaft.
-
| Analyzing Data with Robust Statistical Methods at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). Analyzing Data with Robust Statistical Methods. VRVis Center, Vienna, Austria.
-
| Multivariate Outlier Detection with Application to Geochemistry at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). Multivariate Outlier Detection with Application to Geochemistry. Seminar of the Department of Statistics, Univ. Toulouse, Toulouse, Austria.
-
| Multivariate und robuste Statistik in der Praxis at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). Multivariate und robuste Statistik in der Praxis. Forum Junge Statistik, Austrian Statistical Society, Vienna, Austria.
-
| Partial Robust M-Regression at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). Partial Robust M-Regression. International Conference on Robust Statistics, Parma, EU.
-
| Partial Robust Regression versus Robust Partial Least Squares at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). Partial Robust Regression versus Robust Partial Least Squares. Perspectives in Modern Statistical Inference III, Mikulov, Czech Republic, Austria.
-
| Robuste Statistik zur Erkennung multivariater Ausreißer at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). Robuste Statistik zur Erkennung multivariater Ausreißer. Wissenwertes aus der Mathematik, Wien, Austria.
-
| Statistical Analysis of Data from the MIDCC Project, Advanced Statistical Analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). Statistical Analysis of Data from the MIDCC Project, Advanced Statistical Analysis. Workshop MIDCC, Mosonmagyarovar, Austria.
-
| The Package pcaPP: PCA by Projection Pursuit at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). The Package pcaPP: PCA by Projection Pursuit. International Workshop on Robust Statistics and R, Treviso, Italy, Austria.
-
| The Projection Pursuit Approach for Robust Multivariate Analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). The Projection Pursuit Approach for Robust Multivariate Analysis. ISDS Kolloquium, University of Vienna, Austria.
-
| Identification of Multivariate Outliers: A Performance Study at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2005). Identification of Multivariate Outliers: A Performance Study. Austrian Journal of Statistics, 34, 2, 127–138.
-
| Multivariate outlier detection in exploration geochemistry at reposiTUm , opens an external URL in a new windowFilzmoser, P., Garrett, R. G., & Reimann, C. (2005). Multivariate outlier detection in exploration geochemistry. COMPUTERS & GEOSCIENCES, 31, 579–587.
-
| Background and threshold: critical comparison of methods of determination at reposiTUm , opens an external URL in a new windowReimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1–16.
-
| Partial robust M-regression at reposiTUm , opens an external URL in a new windowSerneels, S., Croux, C., Filzmoser, P., & Van Espen, P. J. (2005). Partial robust M-regression. Chemometrics and Intelligent Laboratory Systems, 79, 55–64.
-
| Robust continuum regression at reposiTUm , opens an external URL in a new windowSerneels, S., Croux, C., Filzmoser, P., & Van Espen, P. J. (2005). Robust continuum regression. Chemometrics and Intelligent Laboratory Systems, 76(2), 197–204.
-
| Sequential Factor Analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: An application to a bulk chemical characterization of fluvial deposits (Rhine-Meuse delta, The Netherlands at reposiTUm , opens an external URL in a new windowvan Helvoort, P.-J., Filzmoser, P., & van Gaans, P. F. M. (2005). Sequential Factor Analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: An application to a bulk chemical characterization of fluvial deposits (Rhine-Meuse delta, The Netherlands. Applied Geochemistry, 20, 2233–2251.
-
| Computer Data Analysis and Modeling: Robustness and Computer Intensive Methods. Proceedings of the Seventh International Conference, Volume 1 at reposiTUm , opens an external URL in a new windowAivazian, S., Filzmoser, P., & Kharin, Y. (Eds.). (2004). Computer Data Analysis and Modeling: Robustness and Computer Intensive Methods. Proceedings of the Seventh International Conference, Volume 1. Belarusian State University.
-
| Projection-pursuit Estimators for Robust Principal Component Analysis, TS-04-4 at reposiTUm , opens an external URL in a new windowCroux, C., Filzmoser, P., & Oliveira, M. R. (2004). Projection-pursuit Estimators for Robust Principal Component Analysis, TS-04-4.
-
| A Multivariate Outlier Detection Method at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2004). A Multivariate Outlier Detection Method. Konferenz CDAM (Computer Data Analysis and Modeling), Minsk, Austria.
-
| An Adaptive Method for Multivariate Outlier Detection at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2004). An Adaptive Method for Multivariate Outlier Detection. International Conference on Robust Statistics, Parma, EU.
-
| Identification of Multivariate Outliers: A Performance Study, TS-04-3 at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2004). Identification of Multivariate Outliers: A Performance Study, TS-04-3.
-
| Konzepte der robusten Statistik mit Anwendungen at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2004). Konzepte der robusten Statistik mit Anwendungen. Seminarreihe von VRVis Center, Wien, Austria.
-
| Partial Least Squares Regression at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2004). Partial Least Squares Regression. Workshop “Robust Analysis of Large Data Sets,” Banff, Kanada, Austria.
-
| Statistical Analysis of Data from the MIDCC Project at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2004). Statistical Analysis of Data from the MIDCC Project. Workshop MIDCC, Mosonmagyarovar, Austria.
-
| Statistical Methods in Developing Quality Assessment Criteria at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2004). Statistical Methods in Developing Quality Assessment Criteria. Workshop "What’s fishy about the Water Framework Directive?, Stockholm, Austria.
-
| Mixture of GLMs and the trimmed likelihood methodology at reposiTUm , opens an external URL in a new windowNeykov, N., Filzmoser, P., Dimova, R., & Neytchev, P. (2004). Mixture of GLMs and the trimmed likelihood methodology. Compstat 2004, Prag, Austria.
-
| Robust Partial M-Regression, TS-04-2 at reposiTUm , opens an external URL in a new windowSerneels, S., Croux, C., Filzmoser, P., & Van Espen, P. J. (2004). Robust Partial M-Regression, TS-04-2.
-
| Sequential factor analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: an application to a bulk chemical characterization of fluvial deposits (Rhine-Meuse delta, the Netherlands), TS-04-1 at reposiTUm , opens an external URL in a new windowvan Helvoort, P. J., Filzmoser, P., & van Gaans, P. F. M. (2004). Sequential factor analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: an application to a bulk chemical characterization of fluvial deposits (Rhine-Meuse delta, the Netherlands), TS-04-1.
-
| Robust canonical correlations: a comparative study, TS-03-4 at reposiTUm , opens an external URL in a new windowBranco, J., Croux, C., Filzmoser, P., & Oliveira, M. R. (2003). Robust canonical correlations: a comparative study, TS-03-4.
-
| Projection pursuit based mesasures of association, TS-03-3 at reposiTUm , opens an external URL in a new windowCroux, C., & Filzmoser, P. (2003). Projection pursuit based mesasures of association, TS-03-3.
-
| A statistical method for finding indicators of water quality at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2003). A statistical method for finding indicators of water quality. Symposium on "How to assess and monitor ecological quality in freshwaters, Helsinki, Austria.
-
| Maße für Assoziation basierend auf Projection Pursuit at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2003). Maße für Assoziation basierend auf Projection Pursuit. Österreichische Statistiktage 2003, Wien, Austria.
-
| Measures of Association based on Projection Pursuit at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2003). Measures of Association based on Projection Pursuit. International Conference on Robust Statistics (ICORS 2003), Antwerpen, Austria.
-
| Multivariate Outlier Detection and Visualization at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2003). Multivariate Outlier Detection and Visualization. StatGIS 2003: Interfacing Geostatistics, GIS and Spatial Databases, Pörtschach, Kärnten, Austria.
-
| Robust factor analysis and extended models at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2003). Robust factor analysis and extended models. Institut für Angewandte Mathematik, Masaryk Universität, Brno, Brno, Austria.
-
| Robuste Faktorenanalyse und erweiterte Modelle at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2003). Robuste Faktorenanalyse und erweiterte Modelle. Institut f. Ökonometrie, Operations Research und Systemtheorie, TU wien, Austria.
-
| Univariate and Multivariate Outlier Detection with Application to Geochemical Data at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2003). Univariate and Multivariate Outlier Detection with Application to Geochemical Data. RMED’03: Workshop on Robust Modeling of Environmental Data, Vorau, Austria.
-
| Multivariate outlier detection in exploration geochemistry, TS-03-5 at reposiTUm , opens an external URL in a new windowFilzmoser, P., Garrett, R. G., & Reimann, C. (2003). Multivariate outlier detection in exploration geochemistry, TS-03-5.
-
| Statistical consideration for monitoring macrophytes in lakes according to the water framework directive: Towards minimising the survey effort, TS-03-6 at reposiTUm , opens an external URL in a new windowJanauer, G., & Filzmoser, P. (2003). Statistical consideration for monitoring macrophytes in lakes according to the water framework directive: Towards minimising the survey effort, TS-03-6.
-
| Robust Redundancy analysis by alternating regression, TS-03-2 at reposiTUm , opens an external URL in a new windowOliveira, M. R., Branco, J., Croux, C., & Filzmoser, P. (2003). Robust Redundancy analysis by alternating regression, TS-03-2.
-
| Background and threshold - the need for visualisation, TS-03-1 at reposiTUm , opens an external URL in a new windowReimann, C., Filzmoser, P., & Garrett, R. G. (2003). Background and threshold - the need for visualisation, TS-03-1.
-
| Hauptebenenanalyse - eine Erweiterung der Hauptkomponentenanalyse at reposiTUm , opens an external URL in a new windowChristodoulides, P., & Filzmoser, P. (2002). Hauptebenenanalyse - eine Erweiterung der Hauptkomponentenanalyse. Österreichische Statistiktage 2002, Wien, Austria.
-
| Dimension reduction of the explanatory variables in (robust) multiple linear regression at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2002). Dimension reduction of the explanatory variables in (robust) multiple linear regression. XXII International Seminar on Stability Problems for Stochastic Models and Seminar on Statistical Data Analysis (SDA 2002), Varna, Austria.
-
| Robust estimation of the parameters in the FANOVA model at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2002). Robust estimation of the parameters in the FANOVA model. Instituto Superior Tecnico Lisbon, Lissabon, Austria.
-
| Robust factor analysis at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2002). Robust factor analysis. International Conference on Robust Statistics, Parma, EU.
-
| Robust fitting of additive and multiplicative models at reposiTUm , opens an external URL in a new windowFilzmoser, P. (2002). Robust fitting of additive and multiplicative models. Universite Libre de Bruxelles, Bruxelles, Austria.
-
| Testing hypotheses with fuzzy data: The fuzzy p-value, RIS-2002-3 at reposiTUm , opens an external URL in a new windowFilzmoser, P., & Viertl, R. (2002). Testing hypotheses with fuzzy data: The fuzzy p-value, RIS-2002-3.
-
| PLS - Regression und ihre Anwendungen at reposiTUm , opens an external URL in a new windowKavsek, B., & Filzmoser, P. (2002). PLS - Regression und ihre Anwendungen. Österreichische Statistiktage 2002, Wien, Austria.