Publications
Journal publications (peer reviewed)
- M. Wess, B. Kapidani, L. Codecasa, J. Schöberl. Mass lumping the dual cell method to arbitrary polynomial degree for acoustic and electromagnetic waves, Journal of Computational Physics, 113196, 2024, arXiv:2312.14716
- S. Doppler, P.L. Lederer, J. Schöberl, H. von Wahl, A discontinuous Galerkin approach for atmospheric flows with implicit condensation, Journal of Computational Physics 499, 112713, 2024
- J. Kraus, P.L. Lederer, M. Lymbery, K. Osthues, J. Schöberl, Hybridized discontinuous Galerkin/hybrid mixed methods for a multiple network poroelasticity model with applications in biomechanics, SIAM Journal on Scientific Computing 45(6), B802-B827, 2023
- P.L. Lederer, X. Mooslechner, J. Schöberl, High-order projection-based upwind method for implicit large eddy simulation, Journal of Computational Physics 493, 112492, 2023
- L. Kogler, P.L. Lederer, J. Schöberl, A conforming auxiliary space preconditioner for the mass conserving stress-yielding method, Numerical linear algebra with applications 30(5), e2503, 2023
- T. Danczul, C. Hofreither, J. Schöberl, A unified rational Krylov method for elliptic and parabolic fractional problems, Numerical linear algebra with applications 30(5), e2488, 2023
- M. Neunteufel, J. Schöberl, K. Sturm, Numerical shape optimization of the Canham-Helfrich-Evans bending energy, Journal of Computational Physics 488, 112218, 2023
- J. Gopalakrishnan, L. Kogler, P.L. Lederer, J. Schöberl, Divergence-conforming velocity and vorticity approximations for incompressible fluids obtained with minimal facet coupling, Journal of Scientific Computing 95(3), 91, 2023
- M. Rambausek, J. Schöberl, Curing spurious magneto-mechanical coupling in soft non-magnetic materials, International Journal for Numerical Methods in Engineering 124 (10), 2261-2291, 2023
- A. Sky, M. Neunteufel, I. Muench, J. Schöberl, P. Neff, Primal and mixed finite element formulations for the relaxed micromorphic model, Computer Methods in Applied Mechanics and Engineering 399, 115298, 2022
- T. Danczul, J. Schöberl, A reduced basis method for fractional diffusion operators I, Numerische Mathematik 151(2), 369-404, 2022
- M. Leumüller, K. Hollaus, J. Schöberl, Domain decomposition and upscaling technique for metascreens, COMPEL 41(3), 938-953, 2022
Proceedings
2024
- | On the improved convergence of lifted distributional Gauss curvature from Regge elements at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Neunteufel, M., Schöberl, J., & Wardetzky, M. (2024). On the improved convergence of lifted distributional Gauss curvature from Regge elements. Results in Applied Mathematics, 24, Article 100511. https://doi.org/10.1016/j.rinam.2024.100511
- | Mass lumping the dual cell method to arbitrary polynomial degree for acoustic and electromagnetic waves at reposiTUm , opens an external URL in a new windowWess, M., Kapidani, B., Codecasa, L., & Schöberl, J. (2024). Mass lumping the dual cell method to arbitrary polynomial degree for acoustic and electromagnetic waves. Journal of Computational Physics, 513, Article 113196. https://doi.org/10.1016/j.jcp.2024.113196
- | A discontinuous Galerkin approach for atmospheric flows with implicit condensation at reposiTUm , opens an external URL in a new windowDoppler, S., Lederer, P. L., Schöberl, J., & von Wahl, H. (2024). A discontinuous Galerkin approach for atmospheric flows with implicit condensation. Journal of Computational Physics, 499, Article 112713. https://doi.org/10.1016/j.jcp.2023.112713
- | The Hellan–Herrmann–Johnson and TDNNS methods for linear and nonlinear shells at reposiTUm , opens an external URL in a new windowNeunteufel, M., & Schöberl, J. (2024). The Hellan–Herrmann–Johnson and TDNNS methods for linear and nonlinear shells. COMPUTERS & STRUCTURES, 305, Article 107543. https://doi.org/10.1016/j.compstruc.2024.107543
2023
- | High-order projection-based upwind method for implicit large eddy simulation at reposiTUm , opens an external URL in a new windowLederer, P. L., Mooslechner, X., & Schöberl, J. (2023). High-order projection-based upwind method for implicit large eddy simulation. Journal of Computational Physics, 493, Article 112492. https://doi.org/10.1016/j.jcp.2023.112492
- | Numerical shape optimization of the Canham-Helfrich-Evans bending energy at reposiTUm , opens an external URL in a new windowNeunteufel, M., Schöberl, J., & Sturm, K. (2023). Numerical shape optimization of the Canham-Helfrich-Evans bending energy. Journal of Computational Physics, 488, Article 112218. https://doi.org/10.1016/j.jcp.2023.112218
- | Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Neunteufel, M., Schöberl, J., & Wardetzky, M. (2023). Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics. SMAI Journal of Computational Mathematics (SMAI-JCM), 9, 151–195. https://doi.org/10.5802/smai-jcm.98
2022
- | Primal and mixed finite element formulations for the relaxed micromorphic model at reposiTUm , opens an external URL in a new windowSky, A., Neunteufel, M., Muench, I., Schöberl, J., & Neff, P. (2022). Primal and mixed finite element formulations for the relaxed micromorphic model. Computer Methods in Applied Mechanics and Engineering, 399, Article 115298. https://doi.org/10.1016/j.cma.2022.115298
- | Domain decomposition and upscaling technique for metascreens at reposiTUm , opens an external URL in a new windowLeumüller, M., Hollaus, K., & Schöberl, J. (2022). Domain decomposition and upscaling technique for metascreens. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 41(3), 938–953. https://doi.org/10.1108/COMPEL-03-2021-0073
- | A reduced basis method for fractional diffusion operators I at reposiTUm , opens an external URL in a new windowDanczul, T., & Schöberl, J. (2022). A reduced basis method for fractional diffusion operators I. Numerische Mathematik, 151(2), 369–404. https://doi.org/10.1007/s00211-022-01287-y
- | Convergence analysis of some tent-based schemes for linear hyperbolic systems at reposiTUm , opens an external URL in a new windowDow, D., Gopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2022). Convergence analysis of some tent-based schemes for linear hyperbolic systems. Mathematics of Computation, 91(334), 699–733. https://doi.org/10.1090/mcom/3686
- | A Higher Order Multi-Scale FEM With A for 2-D Eddy Current Problems in Laminated Iron at reposiTUm , opens an external URL in a new windowHollaus, K., & Schöberl, J. (2022). A Higher Order Multi-Scale FEM With A for 2-D Eddy Current Problems in Laminated Iron. IEEE Transactions on Magnetics, 51(3), Article 7093479. https://doi.org/10.1109/TMAG.2014.2360075
- | An algebraic multigrid method for elasticity based on an auxiliary topology with edge matrices at reposiTUm , opens an external URL in a new windowKogler, L., & Schöberl, J. (2022). An algebraic multigrid method for elasticity based on an auxiliary topology with edge matrices. Numerical Linear Algebra with Applications, 29(1), Article e2408. https://doi.org/10.1002/nla.2408
2021
- | Three-field mixed finite element methods for nonlinear elasticity at reposiTUm , opens an external URL in a new windowNeunteufel, M., Pechstein, A. S., & Schöberl, J. (2021). Three-field mixed finite element methods for nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering, 382, Article 113857. https://doi.org/10.1016/j.cma.2021.113857
- | A hybrid H¹ x H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear at reposiTUm , opens an external URL in a new windowSky, A., Neunteufel, M., Münch, I., Schöberl, J., & Neff, P. (2021). A hybrid H1 x H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear. Computational Mechanics, 68, 1–24. https://doi.org/10.1007/s00466-021-02002-8
- | Enhanced Technique for Metascreens Using the Generalized Finite Element Method at reposiTUm , opens an external URL in a new windowLeumüller, M., Auinger, B., Schöberl, J., & Hollaus, K. (2021). Enhanced Technique for Metascreens Using the Generalized Finite Element Method. IEEE Transactions on Magnetics, 57(6), Article 7401704. https://doi.org/10.1109/tmag.2021.3065118
- | A finite-strain model for incomplete damage in elastoplastic materials at reposiTUm , opens an external URL in a new windowMelching, D., Neunteufel, M., Schöberl, J., & Stefanelli, U. (2021). A finite-strain model for incomplete damage in elastoplastic materials. Computer Methods in Applied Mechanics and Engineering, 374, Article 113571. https://doi.org/10.1016/j.cma.2020.113571
- | A reduced basis method for fractional diffusion operators II at reposiTUm , opens an external URL in a new windowDanczul, T., & Schöberl, J. (2021). A reduced basis method for fractional diffusion operators II. Journal of Numerical Mathematics, 29(4), 269–287. https://doi.org/10.1515/jnma-2020-0042
- | Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot's consolidation model at reposiTUm , opens an external URL in a new windowKraus, J., Lederer, P. L., Lymbery, M., & Schöberl, J. (2021). Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot’s consolidation model. Computer Methods in Applied Mechanics and Engineering, 384(113991), 113991. https://doi.org/10.1016/j.cma.2021.113991
- | Avoiding membrane locking with Regge interpolation at reposiTUm , opens an external URL in a new windowNeunteufel, M., & Schöberl, J. (2021). Avoiding membrane locking with Regge interpolation. Computer Methods in Applied Mechanics and Engineering, 373, Article 113524. https://doi.org/10.1016/j.cma.2020.113524
- | An Equilibrated Error Estimator for the Multiscale Finite Element Method of a 2-D Eddy Current Problem at reposiTUm , opens an external URL in a new windowSchöbinger, M., Schöberl, J., & Hollaus, K. (2021). An Equilibrated Error Estimator for the Multiscale Finite Element Method of a 2-D Eddy Current Problem. IEEE Transactions on Magnetics, 57(6), 1–4. https://doi.org/10.1109/tmag.2021.3065732
2020
- | Divergence-free tangential finite element methods for incompressible flows on surfaces at reposiTUm , opens an external URL in a new windowLederer, P. L., Lehrenfeld, C., & Schöberl, J. (2020). Divergence-free tangential finite element methods for incompressible flows on surfaces. International Journal for Numerical Methods in Engineering, 121(11), 2503–2533. https://doi.org/10.1002/nme.6317
- | An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods at reposiTUm , opens an external URL in a new windowBraess, D., Pechstein, A. S., & Schöberl, J. (2020). An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods. IMA Journal of Numerical Analysis, 40(2), 951–975. https://doi.org/10.1093/imanum/drz005
- | Fully and semi-automated shape differentiation in NGSolve at reposiTUm , opens an external URL in a new windowGangl, P., Sturm, K., Neunteufel, M., & Schöberl, J. (2020). Fully and semi-automated shape differentiation in NGSolve. Structural and Multidisciplinary Optimization, 63(3), 1579–1607. https://doi.org/10.1007/s00158-020-02742-w
- | An Explicit Mapped Tent Pitching Scheme for Maxwell Equations at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Hochsteger, M., Schöberl, J., & Wintersteiger, C. (2020). An Explicit Mapped Tent Pitching Scheme for Maxwell Equations. In Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 (pp. 359–369). Springer. https://doi.org/10.1007/978-3-030-39647-3_28
- | Structure aware Runge-Kutta time stepping for spacetime tents at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2020). Structure aware Runge-Kutta time stepping for spacetime tents. Partial Differential Equations and Applications, 1(19). https://doi.org/10.1007/s42985-020-00020-4
- | The equations of motion for a rigid body using non-redundant unified local velocity coordinates at reposiTUm , opens an external URL in a new windowHolzinger, S., Schöberl, J., & Gerstmayr, J. (2020). The equations of motion for a rigid body using non-redundant unified local velocity coordinates. Multibody System Dynamics, 48(3), 283–309. https://doi.org/10.1007/s11044-019-09700-5
- | Fluid-structure interaction with H(div)-conforming finite elements at reposiTUm , opens an external URL in a new windowNeunteufel, M., & Schöberl, J. (2020). Fluid-structure interaction with H(div)-conforming finite elements. Computers and Structures, 243(106402), 106402. https://doi.org/10.1016/j.compstruc.2020.106402
- | Tent pitching and Trefftz-DG method for the acoustic wave equation at reposiTUm , opens an external URL in a new windowPerugia, I., Schöberl, J., Stocker, P., & Wintersteiger, C. (2020). Tent pitching and Trefftz-DG method for the acoustic wave equation. Computers and Mathematics with Applications, 79(10), 2987–3000. https://doi.org/10.1016/j.camwa.2020.01.006
- | Computational micromagnetics with Commics at reposiTUm , opens an external URL in a new windowPfeiler, C.-M., Ruggeri, M., Stiftner, B., Exl, L., Hochsteger, M., Hrkac, G., Schöberl, J., Mauser, N. J., & Praetorius, D. (2020). Computational micromagnetics with Commics. Computer Physics Communications, 248, Article 106965. https://doi.org/10.1016/j.cpc.2019.106965
2019
- | MSFEM for the Eddy Current Problem in a Laminated Core Including Hysteresis at reposiTUm , opens an external URL in a new windowSchöbinger, M., Steentjes, S., Schöberl, J., Hameyer, K., & Hollaus, K. (2019). MSFEM for the Eddy Current Problem in a Laminated Core Including Hysteresis. IEEE Transactions on Magnetics, 55(8), 1–9. https://doi.org/10.1109/tmag.2019.2907894
- | On reference solutions and the sensitivity of the 2d Kelvin-Helmholtz instability problem at reposiTUm , opens an external URL in a new windowSchroeder, P. W., John, V., Lederer, P. L., Lehrenfeld, C., Lube, G., & Schöberl, J. (2019). On reference solutions and the sensitivity of the 2d Kelvin-Helmholtz instability problem. Computers and Mathematics with Applications, 77(4), 1010–1028. https://doi.org/10.1016/j.camwa.2018.10.030
- | A mass conserving mixed stress formulation for the Stokes equations at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Lederer, P. L., & Schöberl, J. (2019). A mass conserving mixed stress formulation for the Stokes equations. IMA Journal of Numerical Analysis, 40(3), 1838–1874. https://doi.org/10.1093/imanum/drz022
- | An explicit Mapped Tent Pitching scheme for hyperbolic systems at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2019). An explicit Mapped Tent Pitching scheme for hyperbolic systems. In M. Kaltenbacher, J. M. Melenk, L. Nannen, & F. Toth (Eds.), Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (pp. 272–273). Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation.
- | MSFEM and MOR to Minimize the Computational Costs of Nonlinear Eddy-Current Problems in Laminated Iron Cores at reposiTUm , opens an external URL in a new windowHollaus, K., Schöberl, J., & Schöbinger, M. (2019). MSFEM and MOR to Minimize the Computational Costs of Nonlinear Eddy-Current Problems in Laminated Iron Cores. IEEE Transactions on Magnetics, 56(2), 1–4. https://doi.org/10.1109/tmag.2019.2954392
- | A matrix-free Discontinuous Galerkin method for the time dependent Maxwell equations in open domians at reposiTUm , opens an external URL in a new windowKapidani, B., & Schöberl, J. (2019). A matrix-free Discontinuous Galerkin method for the time dependent Maxwell equations in open domians. In M. Kaltenbacher, J. M. Melenk, L. Nannen, & F. Toth (Eds.), Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation (pp. 432–433). Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation.
- | The Hellan-Herrmann-Johnson Method for Nonlinear Shells at reposiTUm , opens an external URL in a new windowNeunteufel, M., & Schöberl, J. (2019). The Hellan-Herrmann-Johnson Method for Nonlinear Shells. Computers and Structures, 225(106109), 106109. https://doi.org/10.1016/j.compstruc.2019.106109
- | Multiscale FEM for the Linear 2-D/1-D Problem of Eddy Currents in Thin Iron Sheets at reposiTUm , opens an external URL in a new windowSchöbinger, M., Schöberl, J., & Hollaus, K. (2019). Multiscale FEM for the Linear 2-D/1-D Problem of Eddy Currents in Thin Iron Sheets. IEEE Transactions on Magnetics, 55(1), 1–12. https://doi.org/10.1109/tmag.2018.2879030
2018
- | Some Two-Dimensional Multiscale Finite Element Formulations for the Eddy Current Problem in Iron Laminates at reposiTUm , opens an external URL in a new windowHollaus, K., & Schöberl, J. (2018). Some Two-Dimensional Multiscale Finite Element Formulations for the Eddy Current Problem in Iron Laminates. IEEE Transactions on Magnetics, 54(4), 1–16. https://doi.org/10.1109/tmag.2017.2777395
- | An Error Estimator for Multiscale FEM for the Eddy-Current Problem in Laminated Materials at reposiTUm , opens an external URL in a new windowSchöbinger, M., Schöberl, J., & Hollaus, K. (2018). An Error Estimator for Multiscale FEM for the Eddy-Current Problem in Laminated Materials. IEEE Transactions on Magnetics, 54(3), Article 7203204. https://doi.org/10.1109/tmag.2017.2762357
- | MOR for the MSFEM of the Eddy Current Problem in Linear Laminated Media at reposiTUm , opens an external URL in a new windowHollaus, K., Schöberl, J., & Schöbinger, M. (2018). MOR for the MSFEM of the Eddy Current Problem in Linear Laminated Media. In F. Breitenecker, W. Kemmetmüller, A. Körner, A. Kugi, & I. Troch (Eds.), MATHMOD 2018 - 9th Vienna International Conference on Mathematical Modelling (pp. 121–122). MATHMOD 2018 - 9th Vienna International Conference on Mathematical Modelling.
- | An analysis of the TDNNS method using natural norms at reposiTUm , opens an external URL in a new windowPechstein, A. S., & Schöberl, J. (2018). An analysis of the TDNNS method using natural norms. Numerische Mathematik, 139(1), 93–120. https://doi.org/10.1007/s00211-017-0933-3
2017
- | The TDNNS method for Reissner-Mindlin plates at reposiTUm , opens an external URL in a new windowPechstein, A., & Schöberl, J. (2017). The TDNNS method for Reissner-Mindlin plates. Numerische Mathematik, 137(3), 713–740.
- | An efficient reformulation of a multiscale method for the eddy current problem at reposiTUm , opens an external URL in a new windowSchöbinger, M., Hollaus, K., & Schöberl, J. (2017). An efficient reformulation of a multiscale method for the eddy current problem. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 36(5), 1421–1429. https://doi.org/10.1108/compel-02-2017-0091
2016
- | Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs at reposiTUm , opens an external URL in a new windowHalla, M., Hohage, T., Nannen, L., & Schöberl, J. (2016). Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. Numerische Mathematik, 133(1), 103–139. https://doi.org/10.1007/s00211-015-0739-0
2015
- | Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM at reposiTUm , opens an external URL in a new windowBrennecke, C., Linke, A., Merdon, C., & Schöberl, J. (2015). Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM. JOURNAL OF COMPUTATIONAL MATHEMATICS, 33(2), 191–208. https://doi.org/10.4208/jcm.1411-m4499
- | Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs at reposiTUm , opens an external URL in a new windowHalla, M., Hohage, T., Nannen, L., & Schöberl, J. (2015). Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. Numerische Mathematik, 133(1), 103–139. https://doi.org/10.1007/s00211-015-0739-0
- | Multi-scale FEM and magnetic vector potential A for 3D eddy currents in laminated media at reposiTUm , opens an external URL in a new windowHollaus, K., & Schöberl, J. (2015). Multi-scale FEM and magnetic vector potential A for 3D eddy currents in laminated media. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 34(5), 1598–1608. https://doi.org/10.1108/compel-02-2015-0090
- | A high order space momentum discontinuous Galerkin method for the Boltzmann equation at reposiTUm , opens an external URL in a new windowKitzler, G., & Schöberl, J. (2015). A high order space momentum discontinuous Galerkin method for the Boltzmann equation. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 70(7), 1539–1554. https://doi.org/10.1016/j.camwa.2015.06.011
2014
- | Two-Scale Homogenization of the Nonlinear Eddy Current Problem with FEM at reposiTUm , opens an external URL in a new windowHollaus, K., Hannukainen, A., & Schöberl, J. (2014). Two-Scale Homogenization of the Nonlinear Eddy Current Problem with FEM. IEEE Transactions on Magnetics, 50(2), 413–416. https://doi.org/10.1109/tmag.2013.2282334
- | Reversing the pump-dependence of a laser at an exceptional point at reposiTUm , opens an external URL in a new windowBrandstetter, M., Liertzer, M., Deutsch, C., Klang, P., Schöberl, J., Türeci, H. E., Strasser, G., Unterrainer, K., & Rotter, S. (2014). Reversing the pump-dependence of a laser at an exceptional point. Nature Communications, 5(4034). https://doi.org/10.1038/ncomms5034
2013
- | Accurate magnetostatic simulation of step-lap joints in transformer cores using anisotropic higher order FEM at reposiTUm , opens an external URL in a new windowHauck, A., Ertl, M., Schöberl, J., & Kaltenbacher, M. (2013). Accurate magnetostatic simulation of step-lap joints in transformer cores using anisotropic higher order FEM. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 32(5), 1581–1595. https://doi.org/10.1108/compel-04-2013-0134
- | Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems at reposiTUm , opens an external URL in a new windowNannen, L., Hohage, T., Schädle, A., & Schöberl, J. (2013). Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems. SIAM Journal on Scientific Computing, 35(2), A1024–A1048. https://doi.org/10.1137/110860148
2012
- | A Stable High-Order Spectral Difference Method for Hyperbolic Conservation Laws in Triangular Elements at reposiTUm , opens an external URL in a new windowBalan, A., May, G., & Schöberl, J. (2012). A Stable High-Order Spectral Difference Method for Hyperbolic Conservation Laws in Triangular Elements. Journal of Computational Physics, 231(5), 2359–2375. https://doi.org/10.1016/j.jcp.2011.11.041
- | A uniformly stable Fortin operator for the Taylor-Hood element at reposiTUm , opens an external URL in a new windowMardal, K.-A., Schöberl, J., & Winther, R. (2012). A uniformly stable Fortin operator for the Taylor-Hood element. Numerische Mathematik, 123(3), 537–551. https://doi.org/10.1007/s00211-012-0492-6
- | Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes at reposiTUm , opens an external URL in a new windowSchöberl, J., & Lehrenfeld, C. (Eds.). (2012). Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes. Springer Verlag. https://doi.org/10.1007/978-3-642-30316-6
2011
- | Polynomial Extension Operators. Part III at reposiTUm , opens an external URL in a new windowDemkowicz, L., Gopalakrishnan, J., & Schöberl, J. (2011). Polynomial Extension Operators. Part III. Mathematics of Computation, 81(279), 1289–1326. https://doi.org/10.1090/s0025-5718-2011-02536-6
- | A Mixed Hybrid Finite Element Method for the Helmholtz Equation at reposiTUm , opens an external URL in a new windowHannukainen, A., Huber, M., & Schöberl, J. (2011). A Mixed Hybrid Finite Element Method for the Helmholtz Equation. Journal of Modern Optics, 58(5–6), 424–437. https://doi.org/10.1080/09500340.2010.527067
- | Anisotropic mixed finite elements for elasticity at reposiTUm , opens an external URL in a new windowPechstein, A., & Schöberl, J. (2011). Anisotropic mixed finite elements for elasticity. International Journal for Numerical Methods in Engineering, VOL.87.
2007
- | Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements at reposiTUm , opens an external URL in a new windowSchöberl, J., Melenk, J. M., Pechstein, C., & Zaglmayr, S. (2007). Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements. IMA Journal of Numerical Analysis, 28(1), 1–24. https://doi.org/10.1093/imanum/drl046
2005
- | Nested Multigrid Finite Element Analyses of Eddy Current Losses in Power Transformers at reposiTUm , opens an external URL in a new windowSchmidt, E., Schöberl, J., & Hamberger, P. (2005). Nested Multigrid Finite Element Analyses of Eddy Current Losses in Power Transformers. In Proceedings of the 21th International Conference on Applied Computational Electromagnetics (pp. 674–677).
Preprints aus dem reposiTUm:
- | A Reduced Basis Method for Fractional Diffusion Operators I at reposiTUm , opens an external URL in a new windowDanczul, T., & Schöberl, J. (2019). A Reduced Basis Method for Fractional Diffusion Operators I. arXiv. https://doi.org/10.48550/arXiv.1904.05599
- | A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Lederer, P. L., & Schöberl, J. (2019). A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry. arXiv. https://doi.org/10.48550/arXiv.1901.04648
- | Avoiding Membrane Locking with Regge Interpolation at reposiTUm , opens an external URL in a new windowNeunteufel, M., & Schöberl, J. (2019). Avoiding Membrane Locking with Regge Interpolation. arXiv. https://doi.org/10.48550/arXiv.1907.06232
- | A mass conserving mixed stress formulation for the Stokes equations at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Lederer, P. L., & Schöberl, J. (2018). A mass conserving mixed stress formulation for the Stokes equations. arXiv. https://doi.org/10.48550/arXiv.1806.07173
- | Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows Part II at reposiTUm , opens an external URL in a new windowLederer, P. L., Lehrenfeld, C., & Schöberl, J. (2018). Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows Part II. arXiv. https://doi.org/10.48550/arXiv.1805.06787
- | An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods at reposiTUm , opens an external URL in a new windowBraess, D., Pechstein, A., & Schöberl, J. (2017). An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods. arXiv. https://doi.org/10.48550/arXiv.1705.07607
- | Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows at reposiTUm , opens an external URL in a new windowLederer, P. L., Lehrenfeld, C., & Schöberl, J. (2017). Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. arXiv.
- | Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods at reposiTUm , opens an external URL in a new windowLederer, P. L., Schöberl, J., & Merdon, C. (2017). Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods. arXiv. https://doi.org/10.48550/arXiv.1712.01625
- | Mapped tent pitching schemes for hyperbolic systems at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2016). Mapped tent pitching schemes for hyperbolic systems. arXiv. https://doi.org/10.48550/arXiv.1604.01081
- | Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements at reposiTUm , opens an external URL in a new windowLederer, P. L., Linke, A., Merdon, C., & Schöberl, J. (2016). Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements. arXiv. https://doi.org/10.48550/arXiv.1609.03701
- | An analysis of the TDNNS method using natural norms at reposiTUm , opens an external URL in a new windowPechstein, A., & Schöberl, J. (2016). An analysis of the TDNNS method using natural norms. arXiv. https://doi.org/10.48550/arXiv.1606.06853
- | Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations at reposiTUm , opens an external URL in a new windowSchöberl, J., & Lederer, P. L. (2016). Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations. arXiv. https://doi.org/10.48550/arXiv.1612.01482