Presseaussendungen

Altes Rätsel um „neue Sorte von Elektronen“ gelöst

Warum emittieren bestimmte Materialien Elektronen mit einer ganz bestimmten Energie? An der TU Wien wurde das nun nach langer Zeit endlich geklärt.

Vier Personen vor Vakuumröhren, Kabeln und Geräten

Das Team im Labor

Florian Libisch, Philipp Ziegler, Wolfgang Werner und Alessandra Bellissimo (v.l.n.r.)

Elektronen verlassen ein bestimmtes Material, fliegen davon und werden gemessen – das ist in der Physik etwas ganz Alltägliches. Manche Materialien emittieren Elektronen, wenn man sie mit Licht bestrahlt, dann spricht man von „Photoelektronen“. In der Materialforschung spielen auch sogenannte „Auger-Elektronen“ eine wichtige Rolle – sie können von Atomen ausgesandt werden, wenn man ihnen zuvor ein Elektron aus einer der inneren Elektronenschalen entreißt. Doch nun gelang es an der TU Wien, eine ganz andere Art der Elektronenemission zu erklären, die beispielsweise bei Kohlenstoff-Materialien wie Graphit auftritt. Bekannt ist diese Elektronenemission schon seit etwa 50 Jahren, doch ihre Ursache war bisher unklar.

Merkwürdige Elektronen ohne Erklärung

„Viele Forschende haben sich darüber bereits gewundert“, sagt Prof. Wolfgang Werner vom Institut für Angewandte Physik. „Es gibt Materialien, die aus atomaren Schichten bestehen, die nur von schwachen Van-der-Waals-Kräften zusammengehalten werden, zum Beispiel Graphit. Und man stellte fest, dass diese Sorte von Graphit ganz bestimmte Elektronen aussendet, die alle exakt dieselbe Energie haben, nämlich 3,7 Elektronenvolt.“

Kein bekannter physikalischer Mechanismus konnte diese Elektronenemission erklären. Doch die gemessene Energie gab einen Hinweis darauf, wo man suchen muss: „Wenn diese atomar dünnen Schichten aufeinanderliegen, dann kann sich dazwischen ein bestimmter Elektronenzustand ausbilden“, sagt Wolfgang Werner. „Man kann sich das vorstellen wie ein Elektron, das laufend zwischen den beiden Schichten hin und her reflektiert wird, bis es irgendwann die Schicht durchdringt und nach außen entkommt.“

Man wusste, dass die Energie dieser Zustände eigentlich gut zu den beobachteten Daten passt, doch das alleine war auch keine Erklärung. „Die Elektronen in diesen Zuständen sollten eigentlich nicht zum Detektor gelangen“, sagt Dr. Alessandra Bellissimo, eine der Autorinnen der aktuellen Publikation. „In der Sprache der Quantenphysik sagt man: Die Übergangswahrscheinlichkeit ist zu gering.“

Springschnüre und Symmetrie

Um das zu ändern, muss die innere Symmetrie der Elektronenzustände gebrochen werden. „Man kann sich das so ähnlich vorstellen wie beim Springschnurspringen“, erklärt Wolfgang Werner. „Zwei Kinder halten ein langes Seil und bewegen die Endpunkte. Eigentlich erzeugen sie damit beide eine Welle, die sich normalerweise von einer Seite des Seils bis zur anderen ausbreiten würde. Doch wenn das System symmetrisch ist und beide genau dasselbe tun, bewegt sich das Seil rauf und runter. Das Schwingungsmaximum bleibt immer an derselben Stelle. Wir sehen keine Wellenbewegung nach links oder rechts, man spricht von einer stehenden Welle.“ Wird die Symmetrie aber gebrochen, weil sich etwa eines der Kinder nach hinten bewegt, ist die Situation anders – dann bekommt das Seil plötzlich eine völlig andere Dynamik und das Schwingungsmaximum wandert.

Solche Symmetriebrechungen können sich auch im Material ergeben. Elektronen verlassen ihren Platz und bewegen sich. An der Stelle, an der sie vorher gesessen sind, bleibt ein „Loch“ zurück. Solche Elektron-Loch-Paare stören die Symmetrie, und dadurch haben die Elektronen plötzlich gleichzeitig die Eigenschaften zweier unterschiedlicher Zustände. So lassen sich zwei Vorteile miteinander verbinden: Einerseits gibt es eine große Zahl solcher Elektronen, und andererseits ist auch ihre Wahrscheinlichkeit ausreichend hoch, zum Detektor zu gelangen. In einem perfekt symmetrischen System wäre nur das eine oder das andere möglich. Laut Quantenmechanik können sie beides gleichzeitig, weil durch die Symmetriebrechung die zwei Zustände „verschmelzen“ (hybridisieren).

„Es ist gewissermaßen eine Teamarbeit zwischen den Elektronen, die zwischen zwei Schichten des Materials hin und her reflektiert werden und den symmetriebrechenden Elektronen“, sagt Prof. Florian Libisch vom Institut für Theoretische Physik. „Nur wenn man sie gemeinsam betrachtet, lässt sich erklären, dass das Material Elektronen von genau dieser Energie von 3,7 Elektronenvolt aussendet.“

Kohlenstoffmaterialien wie die Graphit-Sorte, die in dieser Forschungsarbeit analysiert wurde, spielen heute eine große Rolle – etwa das 2D-Material Graphen, aber auch Kohlenstoff-Nanoröhrchen mit winzigem Durchmesser, die ebenfalls bemerkenswerte Eigenschaften aufweisen. „Der Effekt sollte in ganz unterschiedlichen Materialien auftreten – überall dort, wo dünne Schichten durch schwache Van-der-Waals-Kräfte zusammengehalten werden“, sagt Wolfgang Werner. „In all diesen Materialien dürfte diese ganz spezielle Art der Elektronenemission, die wir nun erstmals erklären können, eine wichtige Rolle spielen.“

Originalpublikation 

W. Werner et al., Secondary Electron Emission by Plasmon-Induced Symmetry Breaking in Highly Oriented Pyrolytic Graphite, Phys. Rev. Lett. 125, 196603 (2020)., öffnet eine externe URL in einem neuen Fenster

Die Arbeit wurde in der Novemberausgabe von „Physical Review Letters“ veröffentlicht (PRL 125, 196603) und im Rahmen eines von der EU geförderten Marie-Sklodowska-Curie Projektes SIMDALEE2 (Sources, Interaction with Matter, Detection and Analysis of Low Energy Electrons) in Zusammenarbeit mit der Universita Roma Trè (Supervisor Prof. Giovanni Stefani) durchgeführt. Zwei der Autor_innen, Dr. Alessandra Bellissimo und Dr. Vytautas Astasauskas, haben ihre Dissertationen im Rahmen dieses Projektes abgeschlossen.


Kontakt

Prof. Wolfgang Werner
Institut für Angewandte Physik
Technische Universität Wien
+43 1 58801 13462
wolfgang.werner@tuwien.ac.at

Aussender:
Dr. Florian Aigner
PR und Marketing
Technische Universität Wien
Resselgasse 3, 1040 Wien
+43 1 58801 41027
florian.aigner@tuwien.ac.at