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Abstract

We develop a dynamic language competition model with dynamic state intervention. Parents
choose the language(s) to raise their children in based on the communicational value of each lan-
guage as well as on their emotional attachment to the languages at hand. Languages are thus con-
ceptualized as tools for communication as well as carriers of cultural identity. The model includes
a high and a low status language, and children can be brought up as monolinguals or bilinguals.
Through investment into language policies, the status of the minority language can be increased.
The aim of the intervention is to obtain the minority language in a bilingual subpopulation at low
costs. We investigate the dynamic structure of the optimally controlled system as well as the optimal
policy, identify stable equilibria and provide numerical case studies.

Keywords: Language Competition; Language Dynamics; Intergenerational language transmission; Op-
timal control;

1 Introduction

In many of the states in this world, one can find two or more larger language groups, often in form of
a majority language and one or several minority languages. By no means this is a static situation, since
"[a]ll over the world, people are stopping speaking minority languages and shifting to languages of
∗Part of the research of Bengt-Arne Wickström and Torsten Templin leading to this paper has received funding from the

European Community’s Seventh Framework Program under grant agreement No. 613344 (Project MIME).
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wider communication" (Sallabank, 2012, p. 104). This often results in the displacement of the minority
languages by the majority language. To some extend such processes are inevitable and can be observed
throughout human history. Nevertheless, in the modern world the decline of minority languages appears
to occur much faster than ever before. It is predicted that 90 percent of the currently 7000 spoken
languages will not survive the end of the century (Krauss, 1992).

Language shift and maintenance

In response to this accelerated process of (minority) language decline, revitalizing and maintaining
(endangered) minority languages is not only on the agenda of many of their speakers. Governments,
non-governmental organizations as well as international organizations such as the European Union "are
actively working to save and stabilize endangered languages" (Fernando et al., 2010, p. 49). In scien-
tific discourses a large variety of arguments to support (minority) language rights or to save endangered
languages were put forward over the past decades. In this paper we will not assess such arguments in
detail or develop new ones1, but rather investigate the possibilities, effects and costs of language policies
which aim at saving endangered languages in a formal model setting. To do so, we first have to clarify
three questions: 1) what are the causes of language shift, and 2) which measures are available to reverse
language shift. Here again, we will not go into all the details and mostly refer to the extensive literature
on this topics, see e.g. Fishman (1991), Crystal (2000), Nettle & Romaine (2000) and May (2011). The
third question is concerned with the target function: 3) what is the desired state of affairs that language
policies should aim at?

Referring to Nettle & Romaine (2000) and Crystal (2000), Sallabank groups causes for language shift in
four often overlapping main categories: a) natural catastrophes, famine, disease, b) war and genocide, c)
overt repression and d) cultural/political/economic dominance, where the last one is the most common,
cf. Sallabank (2012, pp.103f). Since we are interested in such cases, where individuals voluntarily
choose to change to the majority language or not to pass the minority language to the next generation,
we concentrate on the last category. Especially in nation states with one official/national language
(which often but not necessarily is the language of the majority), this language is dominant in education,
politics, media and public life. In modern democratic states the result is "that the majority culture [...]
is endemic and omnipresent; and minority cultures, having very little, if any, public legitimization and
private space, thereby constantly decline in survival potential, the more their members participate in the
’greater general good’" (Fishman, 1991, p. 63). Here, uneven power relations between the national
majority and minorities play a major role, when minorities are not only underrepresented in politics
and in the public, but, furthermore, are often socially disadvantaged, cf. May (2011). This, in turn,
can yield negative attitudes towards the minority language, which are also internalized by its speakers
(Sallabank, 2012, p. 104). When the two main aspects of language are considered - language as a tool
for communication and language as a carrier of cultural identity - it is no surprise, that a language that
can not be used in the majority of societal domains and that is furthermore stigmatized to some degree
will not be learned, spoken or passed to the next generation.2

Language shift usually passes through three phases. In a first phase, called diglossia, formal language
domains are dominated by the majority language which implies a loss of official and public functions of
the minority language. This forces the speakers of the minority language to use the dominant one. In a
second phase more and more speakers of the minority language become bilingual, while both languages
are still used, at least in some domains. Especially among the younger generation one can observe a
decreasing number of speakers and a decline of domains where the minority language can be or is used,
cf. May (2011). The third phase finally is the replacement of the minority language: "For a generation

1For an overview over current discussions concerning language rights see e.g. May or Sallabank. See also Fishman 1991
for a popular work on reversing language shift

2"The communicative value of languages is largely determined by the number of speakers it gives access to and by the
status or social positions of these speakers" (Spolsky, 2012, p. 127).
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or two, some bilingual arrangements may be observed, but often [...] these prove to be way-stations on
the road to a new monolingualism in the larger language" (Edwards, 2010, p. 6).

The process of language shift can be contested by language policies aiming at the survival of the minority
language. Language planning can be divided into three categories: status planning, corpus planning
and acquisition planning. All three can have a positive impact on the chances of survival of minority
languages. Through status planning, e.g. giving some official status to the minority language, the
prestige of the language can be increased for its speakers as well as for the other members of the society.
Corpus planning, which aims at standardizing the orthography and grammar of a language, can increase
its prestige and at the same time can reduce learning costs. Teaching the minority language at school,
which belongs to the category of acquisition planning, enables students to learn the language properly
or in the first place and can also have a positive impact on its status and identity value. In general,
(re)introducing and/or strengthening the minority language in at least some domains can enhance the
chances that the minority language stays vital.

Although Fishman and other authors underline, that a strong incentive from the minority language group
itself is needed to reverse language shift, we concentrate on the role of the state in such a revival process.
We presuppose that the state is basically interested in supporting the minority language or to warrant
minority language rights.3

At the same time, we assume that the state aims at ensuring social cohesion by enabling wide commu-
nication possibilities. The existence of two linguistically segregated language groups can threaten the
solidarity between the society members and hence social cohesion. Even without referring to a neces-
sity of a shared national identity for solidarity and cohesion one can at least say that "a shared language
contributes to democracy" (Spolsky, 2012, p. 135). Enabling wide communication possibilities while
guarantying minority rights can be achieved through widespread bilingualism. If the minority language
can be preserved in form of a relatively large number of bilingual individuals, the language minority is
able to pass cultural values linked to the minority language to the next generations while communication
possibilities throughout the society are assured. As mentioned above, bilingualism is usually a second
step in the decline of a minority language. Thus, it is modeled that the preservation of a vital bilingual
community requires a continuous effort by the state. We assume - and this is translated into the target
function - that the state tries to maximize the number of bilingual speakers at minimal expenditures.

Language competition models

In the past two decade a wide variety of language competition models were developed. One important
point of departure for this new research on language competition was the work by Abrams & Strogatz
(2003). There, a simple population model with two monolingual subpopulations is developed. The frac-
tion of speakers of each language evolves according to a differential equation, which takes into account
the size of the subpopulations and the prestige of both languages. Although the authors could fit their
model to aggregated empirical data of endangered languages, it shows some weaknesses. In Abrams
& Strogatz (2003) neither bilingual speakers nor the social structure of the population are considered.
Moreover, it is predicted that always one of the two competing languages will extinct in the long run.
Due to such limitations, the model was revised and extended by many authors, especially from the field
of (statistical) physics. Patriarca & Leppänen (2004) introduced a spatial dependence and could show
that both languages can survive. Mira & Paredes (2005), Minett & Wang (2008) and others extended the

3As mentioned above, there are many arguments supporting such policies:
"Indeed, the dynamics of ethnic tension involving language, leading in some cases to political conflict, occur most often
not when language compromises are made or language right are recognized, but where they have been historically avoided,
suppressed or ignored" (May, 2011, p. 161).
"So people’s self-respect and dignity are often affected by the esteem their language gets from others or from the state. We
might then justify different language policies by appealing to the importance of language recognition for individuals’ dignity"
(Spolsky, 2012, p. 136).
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A-S model by additionally considering bilinguals. Stauffer et al. (2007) or Schulze et al. (2007) propose
microscopic or individual based versions of the AS model and apply simulation techniques instead of
averaging over the whole population. A good review of the different approaches is given in Patriarca
et al. (2012).

In the model of Abrams and Stogatz (A-S model) speakers of two language A and B are assumed.
Speakers of A can switch/convert/change to speakers of language B and vis versa, while the population
size remains constant. Minett and Wang pointed out that "in practice, [...] typically a speaker does
not suddenly give up one language completely in favor of an other" (Minett & Wang, 2008, p. 23).
Therefore, they include bilingual speakers in their adoption of the A-S model. Furthermore, Abrams
and Strogatz implicitly consider language transmission from one generation to the other when fitting
their mathematical model to empirical data from more than a hundred years without theorizing this fact.
Minett and Wang therefore consider two modes of language transmission: 1) vertical, i.e. transmission
from parents to their children and 2) horizontal, i.e. (adults) learning the second language and becoming
bilingual. For the vertical mode, a uniparental model of transmission is applied. In contrast, Wickström
(2005) only considers vertical transmission, but explicitly models family formation. It is assumed that
adults mate due to a random search and matching process with a success probability that is smaller for
couples with an A-monolingual and a B-monolingual partner than for all the other possible couples.
In the so formed families offspring is produced and socialized in one - or in some cases both - of the
parents’ languages, depending on the communicational value of each language and their status/prestige.
As Wickström (2005) we only consider the vertical mode, i.e. intergenerational language transmission4.

In Wickström (2014) it is illustrated that the A-S model and its extension by Minett & Wang (2008) can
be reformulated in terms of the general model presented in Wickström (2005), adapting probabilities for
family formation and probabilities for mono- or bilingual socialization in each family type. Furthermore
the spatial model in Patriarca & Leppänen (2004) can be interpreted a version of the Wickström frame-
work with two subpopulations I and II, which value language A differently. It is shown that under some
general assumptions on the nexus between transition probabilities and the size of the subpopulations
stable steady states of the system are the same as derived by Patriarca & Leppänen (2004) in spatial
terms.

For this paper we build on the general model formulation presented in Wickström (2005) and Wickström
(2014). Hence we consider speakers of the majority language A, speakers of the minority language B
and bilingual speakers C.

Most of the formal language dynamic models so far concentrated on the description of language compe-
tition depending on some external parameters. They did not deal with any kind of linguistic intervention.
To maintain a bilingual equilibrium Minett & Wang (2008) suggested a rather technical kind of inter-
vention: whenever the amount of speakers of the minority language drops below some threshold value,
then the status of the minority language or some other model parameters have to be increased. Here,
increasing the status of the minority language automatically implies decreasing the status of the majority
language. That such a "dramatic intervention" (Fernando et al., 2010, p. 51) is quite unrealistic, was
already mentioned by the authors of Minett & Wang (2008) themselves. It can be seen as a theoretical
approximation of a more sophisticated intervention, which starts to increase the minority language status
when the numbers come close the threshold. A greater effort to model language planning was done in
Fernando et al. (2010). They consider intergenerational transmission as well as horizontal transmission.
It is taken into account to what extend languages are heard and used outside of the home and if they are
tough at school. Adults randomly form families, while couples with monolinguals of different languages
are excluded. In contrast to Wickström (2005) parents then do not choose one or two languages to so-
cialize their children in. Instead, in Fernando et al. (2010) the probability that a child speaks a language
L depends on the amount of L-conversations it is exposed to. In the private domain this amount just
depends on the family constellation. Hence, on the one hand, in this approach parental decisions on the

4Transmission in the family is the ‘gold standard’ of language vitality and the most important factor in language survival
(Fishman, 1991, p. 113).
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potential future of their children or their emotional attachments to their language do not play any roll.
On the other hand, the model does not only focus on the family sphere. It furthermore considers the
influence of the community by taking into account languages heard in the public sphere and languages
taught at school. This is also reflected in the three different kind of interventions contemplated here: 1)
increasing the status of the minority language, 2) increase the amount of the minority language heard in
society and 3) formal language teaching. Unlike to most of the models mentioned above, in the model
developed in Fernando et al. (2010) the status is included indirectly, namely in the parameters αL and
αH , where H denotes the high-status language and L the low-status language. "αL measures the effec-
tiveness of hearing language L in motivating its learning (i.e. the receptiveness of the child to L)" in a
HH or HB family (Fernando et al., 2010, p. 60), where B denotes bilinguals. Here one could ask why
especially very young children should have a higher response to the high-status language only because
it has a higher (social) status. Furthermore, in their simulations Fernando et al. illustrate the effect of
different kind of governmental interventions. After 100 years the learning of the low-status language
at home is encouraged. In the model this is done by increasing αL from 1 to 1.5 at year 100. Citing
Fernando et al. (Fernando et al. (2010)) when reviewing the paper by Minett and Wang one can state:
"How such a dramatic intervention could be achieved is not explained" (Minett & Wang, 2008, p. 51).

It is this last critical comment that motivated us to try to combine existing language dynamic models
with optimal control theory. To increase or even stabilize the status of a (minority) language a con-
tinuous effort over some amount of time is necessary, and such efforts will always raise costs. In the
model proposed here governmental intervention is not just a switch of model parameters. Instead, state
intervention is a continuous investment into language policies that aim at maintaining the minority lan-
guage, and hence a process (st)t≥0. We assume that there is a maximal amount of investment, i.e. a
limited budget on language maintenance. Thus, we can normalize the investment such that st ∈ [0, 1].
Throughout the paper S ∈ [0, 1] will denote the relative status of minority language B. Respectively,
the relative status of A is 1−S. In Fernando et al. (2010) the authors criticize such an assumption in the
model of Minett and Wang because it implies "that it is impossible to make one language more attractive
without making the other less so" (Minett & Wang, 2008, p. 50). However, in a language competition
situation, where individuals have to decide for one language, the other or both, this assumption makes
sense when we think of relative attractiveness instead of absolute attractiveness. So instead of statements
as ’language A has an attractiveness value of 3.5’ the model here only allows statements like ’language
A is three times as attractive as language B’. We assume that without any governmental intervention the
relative status S will tend to zero in the long run, but can be increased and stabilized due investments
into proper language policies.

The dynamic control model proposed here is a three-state model. The three states are: the fraction of
speakers of language A (denoted by pA), the fraction of speakers of language B (denoted by pB) and
the relative status of language B (denoted by S). The fraction of bilingual speakers is simply given by
pC = 1− pA − pB . In contrast to Wickström (2005) we follow the definition in Fernando et al. (2010,
p. 53) by assuming that "bilingualism [is] the ability to function confidently in two languages, that is,
the ability to have communicative competence in two languages". Hence, we do not require bilinguals
to be fully balanced speakers of two languages.

The evolution of the system is described by three differential equations. The evolution of the status
can be controlled directly though state intervention s, i.e. Ṡ = g(s, S), where g is some function
increasing in s. How the fractions of speakers evolve depends on the current distribution of speakers as
well as on the status S. Hence, these fractions can be influenced by state intervention, but only indirectly
through the controlled status. The purpose of state intervention is achieve a maximal number of bilingual
speakers with lowest possible costs.

This paper is organized as follows. In Section 2 the general language dynamic model is introduced. In
Section 3 we suggest specific functional forms for the general model described in the previous section.
Section 4 aims at identifying the optimal public investment strategy. Furthermore, some general state-
ments on steady states of the optimally controlled system are derived. In Section 5 we consider some
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F φF

AA p2
A + pApB

AB 0
AC 2pApC
BB p2

B + pApB
BC 2pBpC
CC p2

C

Table 1: Distribution of families for a given distribution of adult speakers.

case studies to illustrate our results numerically. Section 6 provides conclusions and some remarks for
future research.

2 Model

We consider a (large) population consisting of individuals equipped with one of three different language
repertoires L: monolingual speakers of the dominant language A, monolingual speakers of the minority
language B and bilinguals speakers C. The relative sizes (fractions of the population) of the respective
language repertoire groups are denoted by pA, pB and pC . The fractions add up to 1, hence pC =
1− pA − pB . The variable S represents the relative status of the minority language B in the society.

2.1 Family formation

In every generation individuals form families. There are six family types F : AA (two A monolinguals),
AB, AC, BB, BC and CC. Family formation is assumed to be random but restricted by the condition
that both adults should share a common language, i.e. they should be able to communicate with each
other. Hence, couples with an A-monoglot and a B-monoglot are precluded. Given any distribution of
speakers pA, pB, pC , the distribution of family types is given in Table 1, where φF denotes the fraction
of F -type families.

2.2 Family behavior

Families bring up their children either as monolinguals in A or B, or as bilinguals. The fraction of F -
type families bringing up children with language repertoire L is denoted by αL(F ; ·) ∈ [0, 1]. Naturally,
the α’s add up to one: for every family type F∑

L

αL(F ; ·) = 1.

The α−functions are one main ingredient of the model proposed here. Parents choose a language reper-
toire depending on their own languages, on their emotional attachment to those languages as well as
on the communication values of all the languages at hand. Therefore, the fraction of families of type
F raising their children as L’s varies with the current distribution of speakers in the society as well as
with the statuses of languages A and B. Hence, αL(F ; ·) = αL(F ; pA, pB, S). The dependence on
the variables pL captures the practical advantage of belonging to a certain language group, since they
measure the frequency with which an individual encounters another individual in group A, B and C,
respectively, and hence measure how many people one can communicate with. Following the individual
utility maximization approach developed in Wickström (2005), we assume that αA is non-decreasing in

6



pA and pC , and non-increasing in pB , and vice versa for αB:

∂αA(F ; pA, pB, S)

∂pA
,
∂αB(F ; pA, pB, S)

∂pB
≥ 0

∂αC(F ; pA, pB, S)

∂pA
,
∂αC(F ; pA, pB, S)

∂pB
≥ 0

∂αA(F ; pA, pB, S)

∂pB
,
∂αB(F ; pA, pB, S)

∂pA
≤ 0

This reflects the first aspect of language mentioned in the introduction: language as a tool for communi-
cation. The second aspect - language as a carrier for cultural identity - is reflected in the dependence of
the α′s on the family type F and the relative status of the minority language S. It is hypothesized that
the emotional attachment in the family to a certain language, and hence the frequency of its transmission
to the next generation, depends on its strength in the family. The stronger the position of a language L
in the family, the higher is the fraction αL:

1 ≥ αA(AA; ·) ≥ αA(AC; ·) ≥ αA(CC; ·) ≥ αA(BC; ·) ≥ αA(BB; ·) ≥ 0

0 ≤ αB(AA; ·) ≤ αB(AC; ·) ≤ αB(CC; ·) ≤ αB(BC; ·) ≤ αB(BB; ·) ≤ 1

It is furthermore assumed that both parents shall be able to communicate with their children, cf. Fer-
nando et al. (2010). Hence,

αA(BC; ·) = αA(BB; ·) = 0

αB(AC; ·) = αB(AA; ·) = 0

The average emotional attachment to a language L also depends on the general prestige or cultural status
of the language in the society. The higher the status, the higher is the willingness of its speakers to pass
their language to the next generation. We therefore assume that αA is non-increasing in S, while αB is
non-decreasing in S:

∂αA(F ; pA, pB, S)

∂S
≤ 0

∂αB(F ; pA, pB, S)

∂S
≥ 0.

From the assumptions made above two properties of the α′s can be concluded. Since αB(AA) =
αA(BB) = 0 we get

∂αA(AA; pA, pB, S)

∂pA
=
∂αB(BB; pA, pB, S)

∂pB
= 0.

Furthermore, αB(AC; ·) = αA(BC; ·) = 0 yield

∂αA(AC; pA, pB, S)

∂pA
=
∂αB(BC; pA, pB, S)

∂pB
= 0.

2.3 Dynamics

Throughout the paper we make the simplifying assumptions that the size of the population is constant
and that there are two children per family. Hence, the dynamics of the system is described by:

ṗ =
∑
F

α(F ; pA, pB, S) · φF − p

7



For languages A and B this reads as

ṗA = (p2
A + pApB)αA(AA) + 2pApCαA(AC) + p2

CαA(CC)− pA (2.1)

˙pB = (p2
B + pApB)αB(BB) + 2pBpCαB(BC) + p2

CαB(CC)− pB, (2.2)

where αL(F ) = αL(F ; pA, pB, S).

If families with two monolingual speakers, that is AA or BB, will always socialize their children in their
respective language, i.e. αA(AA) = αB(BB) = 1, then the dynamics simplify to

ṗA = pC [2pAαA(AC; pA, pB, S) + (1− pA − pB)αA(CC; pA, pB, S)− pA]
˙pB = pC [2pBαB(BC; pA, pB, S) + (1− pA − pB)αB(CC; pA, pB, S)− pB] .

2.3.1 The status variable

The status of the minority language B is expressed in the variable S, 0 ≤ S ≤ 1. The status can be
influenced by investments in language policies supporting the minority language B, denoted by s

Ṡ = f(S, s)− µS (2.3)

It is assumed that the function f is non-increasing in S and non-decreasing in s. Furthermore, for s = 0
the function f should be zero. This implies, that without any state intervention the minority language B
will die out at rate µ.

2.4 The objective function

The aim of state intervention is a preferably large bilingual subpopulation. At the same time, state
interventions to increase the status of the minority language are costly. Hence, the decision maker is
looking for an investment policy (s(t))t≥0, st ∈ [0, 1], that yields a high level of individual bilingualism
(benefit) at low costs. By w(pA(t), pB(t), s(t)) we denote the value of the system at time t, i.e. benefits
minus costs at time t. We require w to be increasing in pC = 1 − pA − pB , non-increasing in pA and
pB , and decreasing in s. The total discounted value is given by∫ ∞

0
e−rtw(pA(t), pB(t), s(t))dt,

where r ∈ (0, 1) denotes the discount rate. The problem of finding the best investment strategy for
language maintenance can now be formulated as a maximization problem:

max
(st)t≥0

∫ ∞
0

e−rtw(pA(t), pB(t), s(t))dt.

Note, S(t) and therefore pA(t) and pB(t) depend on the size of s prior to time t, cf. (2.3), (2.1) and
(2.2).

3 Specific functional forms

In view of the theoretical assumptions and properties stated in the previous section, we will now provide
specifications of the α-functions, of the dynamics of the status as well as of the objective function.

8



For parameters 0 ≤ η < β < δ and ε+ γ < ζ < 1 let

αA(AA; pA, pB, S) = 1− ηSpB
αA(AC; pA, pB, S) = max{0, ζ(1− S)− βSpB}
αA(CC; pA, pB, S) = max{0, ε(1− S) + γ(1− S)pA − δSpB}

and

αB(BB; pA, pB, S) = 1− η(1− S)pA
αB(BC; pA, pB, S) = max{0, ζS − β(1− S)pA}
αB(CC; pA, pB, S) = max{0, εS + γSpB − δ(1− S)pA}.

These constructions imply, that given a sufficiently high fraction ofA speakers in the society and a suffi-
ciently low status of the minority language B, bilingual or even mixed couples (BC) will not raise their
children as monolinguals inB, since in this scenario neitherB is a much useful communicational tool in
this society nor the prestige of this language can really compensate the communicational disadvantage.

Throughout the paper we will assume η to be zero. In this case the system dynamics simplify to

ṗA = pC [2pAαA(AC; pA, pB, S) + pCαA(CC; pA, pB, S)− pA] (3.4)

˙pB = pC [2pBαB(BC; pA, pB, S) + pCαB(CC; pA, pB, S)− pB] . (3.5)

3.1 Dynamics for fixed status

For the moment let S be fixed. The essential dynamics of pA and pB can each be described by two
parameters, cf. Wickström (2005). These parameters are introduced in the following. Let p∆

B(S) denote
the fraction of B speakers where pA = 0 and ṗA = 0. Hence,

αA(CC; pA, pB, S) = 0 ⇒ ε(1− S)− δSpB = 0 ⇔ p∆
B(S) =

ε

δ

1− S
S

.

For p∆
A respectively we get

p∆
A(S) =

ε

δ

S

1− S
.

Next we look for p∗A and p∗B . p∗A is the fraction when ṗA = 0 given pB = 0. Hence, p∗A is a solution to

0 = 2pAαA(AC; pA, pB, S) + (1− pA)αA(CC; pA, pB, S)− pA,

or, with the above specifications, p∗A is the unique positive solution to the quadratic equation

0 = γp2
A −

[
2ζ + γ − ε− 1

1− S

]
pA − ε. (3.6)

Note, p∗A < 1 iff S > 1/2ζ. From this, we easily conclude that p∗A is increasing in ζ, ε and γ, and
decreases with an increase of S. On the other hand, p∆

A increases in ε and S and decreases with an
increase in γ. It is unaffected by a change of ζ.

From the relations between p∆
A , p∆

B and p∗A, p∗B we can identify possible bilingual equilibria for the fixed
status S:

Lemma 3.1. Let η = 0.

(a) If p∆
A ≤ p∗A < 1 there exists a stable equilibrium with 0 < pA < 1 and pB = 0; the fraction of

A-speakers equals p∗A

9



(b) If p∆
B ≤ p∗B < 1 there exists a stable equilibrium with 0 < pB < 1 and pA = 0; the fraction of

B-speakers equals p∗B

(c) If 1 ≥ p∆
A > p∗A and 1 ≥ p∆

B > p∗B , we have a stable equilibrium with bilinguals and monolin-
guals in both languages (pA, pB, pC > 0).

Lemma 3.2. Let η = 0. For monolingual stable equilibria the following statements hold true

(a) pA = 1 is a stable equilibrium if and only if S ≤ 1− 1/2ζ .

(b) pB = 1 is no stable equilibrium

(c) pA, pB ∈ (0, 1) with pA + pB = 1 is stable iff

pAαA(AC; pA, pB, S) + pBαB(BC; pA, pB, S) ≥
1

2
. (3.7)

A necessary condition for this last inequality is S ≤ 1− 1/2ζ.

Lemma 3.1 can be proven by picture, see Wickström (2005). The proof of Lemma 3.2 can be found in
the Appendix.

3.2 Variable status and status control

Now we specify the dynamics of the minority language status S, which is increasing as a result of
investments into language policies and decreasing due to a general negative trend. We assume the
following functional form:

Ṡ = f(S, s)− µS = ν(1− 2S)
√
s− µS, (3.8)

where ν > 0 is a model parameter correlated to the effectiveness of intervention. Here two assumptions
are made: a) for a low status language the necessary effort to increase its status is low, while for a high
status language it takes more effort. b) Language B stays the minority language. This assumptions is
expressed in the term (1−2S). The status can not exceed 1/2, while the (1−S), which can be interpreted
as the status of A, does not fall below 1/2. A can be thought as the first official language.

The control variable s is bounded (s ≤ 1). Thus, any steady state status S (Ṡ = 0) has an upper bound:

S ≤ ν

2ν + µ
.

Since p∗A is decreasing in S, while p∆
A increases in S, Lemma 3.1 (a) yields a second upper bound for S,

which is relevant for equilibria with 0 < pA < 1 and pB = 0. A third one results from Lemma 3.1 (b),
see below. A minimal value for this kind of equilibrium is given by p∗A(S) < 1, where p∗A is the unique
positive solution to (3.6).

We therefore introduce the following status thresholds

S :=
ν

2ν + µ

S̃ : p∗A(S̃) = p∆
A(S̃)

S := 1− 1

2ζ
.

Note, that due to symmetry it holds p∗B(1− S̃) = p∆
B(1− S̃). Table 3.2 shows possible stable equilibria

for the fixed status problem corresponding to these threshold values. Figure 1 illustrates some of the
cases listed in 3.2.
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(a) S = 0.3 < 0.375 = S (b) S = 0.3 < 0.375 = S

(c) S = 0.4 < 0.49 ≈ min{S̃, 1− S̃} (d) S = 0.4 < 0.49 ≈ min{S̃, 1− S̃}

(e) S = S ≈ 0.42 (f) S = S ≈ 0.42

Figure 1: Panals (a),(c) and (e) show phase diagrams for fixed S for different values of S. Panals (b),(d)
and (f) show trajectories for fixed S for different values of S. For the trajectories the initial distribution
is pA = 0.6 and pB = 0.2. Parameters are as in Example 5.1 in Section 5.
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S ∈ [0 , S] (S , S̃ ∧ 1− S̃) (S ∨ 1− S̃ , S̃] (S ∨ S̃ , 1− S̃)

steady state A, AB AC AC, BC ABC

Table 2: Possible stable equilibria for the fixed status problem for different values of S. The first line
contains intervals for S, while the second one shows the corresponding potential stable equilibria. “A,
AB” means that a pure A-monolingual steady state as well as a steady state with monolingual speakers
of A and B is possible.

To find optimal state intervention strategies we need to consider the derivatives of the function f(S, s) =
ν(1− 2S)

√
s:

∂f

∂s
(S, s) =

ν

2

1− 2S√
s

, (3.9)

∂f

∂S
(S, s) = −2ν

√
s. (3.10)

3.3 Objective

Departing at the initial state pA(0), pB(0) and S(0) the aim of the optimization problem is to find the
best investment policy (s(t))t≥0 such that, r ∈ (0, 1), k > 0, ξ ∈ [0, 1],∫ ∞

0
e−rt

(
k · pC(t)− [pB(t) + pC(t)]

ξs(t)
)
dt (3.11)

is maximized, while the system is developing according to (3.4), (3.5) and (3.8). For ξ = 0 the costs for
the state intervention do not depend on the numbers of speakers of language B. Here one can think of
adding language B to (street-)signs. For ξ = 1 the costs linearly increase with the number of speakers -
one could think of bilingual education in schools.

4 Optimal control and optimal steady states

Substituting pB + pC by 1− pA in the objective function, the Hamiltonian can be expressed as

H(pA, pB, S, s) = k · pC − (1− pA)ξs + λAṗA + λB ṗB + λS (f(S, s)− µS) , (4.12)

where λA, λB and λS are the costate variables measuring the marginal value of the corresponding state
variables pA, pB and S, respectively.

We assumed that the control variable is bounded, i.e. that the budget for language policies fostering
bilingualism is limited. This budget constraint is formalized by the inequality s ≤ 1. To include the
constraint in the formal model we define the Lagrangian L := H + ω(1− s), where ω is the Lagrange
multiplier. For the identification of the optimal intervention at a given state we consider the derivative
of L with respect to the control variable s:

Ls = −(1− pA)ξ + λS
∂f(S, s)

∂s
− ω. (4.13)

To identify optimal intervention, we are looking for s and ω such that Ls = 0 and ω(1 − s) = 0. We
have

Ls = 0 ⇔ (1− pA)ξ + ω = λS ·
∂f(S, s)

∂s︸ ︷︷ ︸
≥0

⇒ λS ≥ 0.
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Note, if pA < 1 then we even have λS > 0. For the explicit form of the function f defined in (3.8) we
get

Ls = 0⇔ (1− pA)ξ + ω = λS ·
ν

2

1− 2S√
s∗

⇔ s∗ =

(
λS
ν

2

1− 2S

(1− pA)ξ + ω

)2

. (4.14)

The second derivative of L with respect to the control variable s is non-positive if λS > 0 in which case
the Legendre Clebsch condition is satisfied. Whenever pA = 1 - in which case λS = 0 could be possible
- s = 0 is obviously optimal. Applying the optimal control we have

Ṡ = f(S, s∗)− µS = λS
ν2

2

(1− 2S)2

(1− pA)ξ + ω
− µS. (4.15)

If the constraint is inactive, i.e. s < 1, then ω = 0. If, in contrast, the constraint is active (s = 1), then

ω = λS
ν

2
(1− 2S)− (1− pA)ξ ≥ 0. (4.16)

4.1 Stationary points

To state the co-state equations we first introduce some functions. For L = A,B set

gL(pA, pB, S) := 2pLαL(LC; pA, pB, S) + pCαL(CC; pA, pB, S)− pL,

which equals ṗL/pC whenever pC > 0. Then,

H = pC(k + λAgA + λBgB)− (1− pA)ξs+ λS(f(S, s)− µS).

Using this notation we have

HpA = −(k + λAgA + λBgB) + λApC
∂gA
∂pA

+ λBpC
∂gB
∂pA

+
ξ

(1− pA)1−ξ
s, (4.17)

HpB = −(k + λAgA + λBgB) + λApC
∂gA
∂pB

+ λBpC
∂gB
∂pB

, (4.18)

HS = pC

(
λA

∂gA
∂S

+ λB
∂gB
∂S

)
+ λS

(
∂f(S, s)

∂S
− µ

)
. (4.19)

The co-state equations are then given by

λ̇A = rλA −HpA ,

λ̇B = rλB −HpB ,

λ̇S = rλS −HS .

To find inner stationary points we try to identify solutions (p̂A, p̂B, Ŝ, λ̂A, λ̂B, λ̂S) to

0 = ṗA = ṗB = Ṡ = λ̇A = λ̇B = λ̇S .

For pA and pB to be stationary we need either p̂C = 0 or gA(p̂A, p̂B, Ŝ) = gB(p̂A, p̂B, Ŝ) = 0.

Note, any steady state status 0 < Ŝ < S corresponds to a steady state control variable 0 < ŝ∗ < 1 and
to hence to some ω̂ = 0. In this case, the stationarity of the status (Ṡ(Ŝ, λ̂S) = 0) yields an explicit
relation between Ŝ and λ̂S , cf. (4.15):

λ̂S =
2µ

ν2

Ŝ

(1− 2Ŝ)2
(1− p̂A)ξ. (4.20)
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Plugging this into (4.14) we get for the stationary optimal intervention

ŝ∗ =

(
µ

ν

Ŝ

1− 2Ŝ

)2

< 1. (4.21)

If Ŝ = S, then ŝ has to be equal to one and thus λ̂S ≥ 22ν+µ
νµ (1− p∗A(S))ξ has to hold true, cf. (4.16).

Using the explicit expression for the function f introduced in Section 3, the equation λ̇S = 0 yields

0 =− p̂C
(
λ̂A

∂gA
∂S

+ λ̂B
∂gB
∂S

)
+ λ̂S

(
r + µ+ 2ν

([
λ̂S ·

ν

2

1− 2Ŝ

(1− p̂A)ξ

]
∧ 1

))
. (4.22)

4.1.1 Monolingual stationary points

First we want to consider stationary points with p̂C = 0. Obviously, if pC = 0, then the linguistic
composition wont change anymore, since families of type AB are impossible, while no bilinguals,
which function as a kind of language transmitters, are part of the population. In the steady state all
families are of types AA and BB and children of such families are raised monolingual in the respective
language. Hence, both monolingual language groups reproduce themselves independent of the statuses
of both languages. Thus, the state does not invest any money to support the status minority language,
which would produce costs without having any positive effect, i.e. Ŝ = ŝ∗ = 0.

4.1.2 Bilingual stationary points

Now we want to consider stationary points with a bilingual sub-population, i.e. pC > 0. Using the
notation introduced above this yields that whenever p̂L > 0 the stationarity implies gL(p̂, Ŝ) = 0.

4.1.3 Bilingual stationary points with pB = 0

The most interesting case is when monolingualism in the minority language B vanishes and only mono-
linguals in A and bilinguals remain. Such a state is desirable, since all society members are able to
communicate with each other, while speakers of B can still preserve their cultural identity. If pB = 0
we need ṗB ≤ 0. This is equivalent to p̂A(S) ≥ p̂∆

A .

Let
S < S ≤ min{S, S̃}

and pA = p∗A(S). The co-state equation λ̇A = rλA −HpA = 0 is independent of λB , since gB = 0 and
∂gB/∂pA = 0, see 7.1. Hence, we can derive λA(S) = λA(pA, S). Given this λA we can choose some
λB such that λ̇B = 0. In 7.1 it is also shown that ∂gB/∂S = 0.

To identify optimal steady states we have to distinguish two possibilities. First we can check if there is
a steady state at S. To do so, it has to be investigated if there exists a λ̂S > 22ν+µ

νµ (1 − p∗A(S))ξ which
solves

0 = λ̇S(λ̂S) = λ̇S(S, pA(S), λA(S), λ̂S).

The second case covers S < S < S. Here, let λS(S) be defined by (4.20). In this case steady states can
be found by identifying statuses S which solve

0 = λ̇S(S) = λ̇S(S, pA(S), λA(S), λS(S)).

Depending on the parameter constellation and especially depending on k, ν and µ such a solution exists.
If k is too small, then no such solution exists, that means it is not profitable to maintain the minority
language B.
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Lemma 4.1. For k sufficiently large there exists at least one solution Ŝ∗ ∈ (S,min{S, S̃}] such that

0 = λ̇S(Ŝ
∗) = λ̇S(Ŝ

∗, pA(Ŝ
∗), λA(Ŝ

∗), λS),

where λS = λS(Ŝ
∗) if Ŝ∗ < S, and λS > 22ν+µ

νµ (1− p∗A(S))ξ if Ŝ∗ = S.

For a proof see the Appendix.

4.1.4 Bilingual stationary points with pB > 0

For an optimal steady state with pA, pB, pC > 0 we need

S ∨ S̃ < Ŝ ≤ (1− S̃) ∧ S.

This is only possible if S̃ < S < 1/2, which does not hold true for all parameter constellations, cf.
Example 5.1.

For fix S we need the following for any steady state: αA(AC), αB(BC), αB(CC) > 0. The last
inequality is due to S < 1/2 and ζ < 1. If αA(CC) = 0, then ζ(1 − S) > 1/2 has to hold true, else
αA(CC) > 0.

As before, for suitable S (here max{S, S̃} < S < S), we have can find pA(S) and pB(S) such that
ṗA = ṗB = Ṡ = 0. For some parameter constellations there can be more than one stable solution pA(S)
and pB(S) such that ṗA = ṗB = 0. Furthermore we get a unique λS(S). The co-state equations yield
a linear system in λA, λB with 3 equations and coefficients depending on S. To identify the optimal
status, one has to check if this linear system has a solution for some suitable S.This also holds true at
the left boundary. At the right boundary one has to check if the linear system in λA, λB and λS has a
solution with a sufficiently large λS , see above.

5 Numerical calculations

In this section we numerically investigate the linguistic behavior of the population under the optimal
policy. We show the existence of different stable and optimal steady states. Moreover, we illustrate the
dependence of the selected steady state on the initial distribution of speakers as well as on how much
bilingualism is valued with respect to expenditures by the decision maker (parameter k). To analyze the
evolution towards the steady states we plot exemplary trajectories.

Two examples are considered. For both of them we set η = 0. In Example 5.1 we choose µ, the rate of
decline of the minority language status S, to be 0.2, which is relatively high. In contrast, Example 5.2
depicts a case where the status of the minority language declines rather slowly over time (µ = 0.01).
Furthermore, the parameter ζ, which measures the aggregated weight that is put on the status in the
decision of LC families, L = A,B, to socialize their children as monolinguals in L, is slightly higher
in Example 5.1. In both example we chose the discount rate r to be 0.5.

Example 5.1. β = 0.4, δ = 0.7; γ = 0.1, ε = 0.4, ζ = 0.8; ν = 0.5, µ = 0.2 and ξ = 0

Example 5.2. β = 0.4, δ = 0.7; γ = 0.1, ε = 0.4, ζ = 0.7; ν = 0.5, µ = 0.01 and ξ = 0

First we calculate the S- thresholds, cf. Subsection 3.2. In Example 5.1 we have S = 0.375, S = 0.417
and S̃ = 0.492, while in Example 5.2, S = 0.286, S = 0.495 and S̃ = 0.463. According to these
numbers and the statements made in Subsection 3.2, stable equilibria with pA, pC > 0 and pB = 0 are
possible for both examples. In Example 5.2 furthermore equilibria with pA, pC > 0 and pB > 0 are
possible, since S̃ < S. This is not the case for Example 5.1, since there S < S̃. The actual stable
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k ξ Ŝ ŝ∗ p̂A p̂B kp̂C − ŝ∗

Example 5.1

60 0 - - - - -

75
0 0.41 0.74 0.85 0 10.3

1 S ≈ 4.2 1 0.81 0 13.4

90 0 S ≈ 4.2 1 0.81 0 16.3

Example 5.2 20 0 0.47 0.03 0.44 0.03 10.6

Table 3: This table contains stable bilingual steady states - if such exist - for Examples 5.1 and 5.2 for
different values of k. The steady state values of the status Ŝ, the optimal control ŝ∗, the fraction of
speakers p̂A and p̂B as well as the steady state objective kp̂C − ŝ∗ are listed. Here r = 0.5 and ξ = 0.

bilingual equilibria are displayed in Table 3. For Example 5.1 we investigate the influence of different
values of k, namely k = 60, k = 75 and k = 90. For Example 5.2 we concentrate on the case of k = 20.
For any parameter constellation there also is a manifold of steady states at (p̂A, p̂B, Ŝ) = (p̂A, 1−p̂A, 0),
where p̂A can take any value between zero and one. In these steady states it is optimal to have ŝ = 0.
Note, however, that not every point on this manifold is a candidate for the optimal long run solution due
to its stability properties, cf. Lemma 3.2. Next, we analyze the two examples in greater detail.

Example 5.1, k = 60

If k is small the decision maker does not have a particularly high incentive to support the status of the
minority language B in the long run. As can be seen in the first row of Table 3 there is no bilingual
steady steady. The following happens. Let us consider a situation where the fraction of A speakers, pA,
is relatively high, while pB and pC and the status variable S are small. Because of the dominance of A
speakers, most families are of type AA. Thus, pA increases. Initially pC decreases due to the low status
of B and the low chances of A speakers of meeting a bilingual partner. This development is challenged
by the decision maker who invests much into raising the status of B. Under such a policy the incentive
to raise their children bilingual increases for AC and CC couples. This yields an increase in the number
of bilinguals. An other effect of is that BC couples have a stronger incentive to raise their children as
B-monoglots. However, since the fraction of B and C speakers is small, the policy does not have a
strong effect on the overall development of the language and over all pB decreases even further. As a
result, it soon does not pay of anymore to invest into the status of the language as these measures affect
less and less people. Thus, the status of B decreases again. Consequently, the incentive to raise the kids
bilingual and therefore the fraction of bilinguals decreases as well. In the long-run the majority of the
population only speaks A and bilingual speakers disappear completely in the long run. This behavior is
illustrated in Figures 2 and 3.

Example 5.1, k = 75, ξ = 0

Table 3 shows that for k = 75 there exists a steady state with 15% bilinguals and no monolingual
speakers of the minority language B. To obtain this fraction of bilingual speakers in the long run, 75%
of the budget has to be used. If this bilingual steady is reached or not depends on the initial state values.
For the initial states considered in Figures 4 and 5 the system converges to that steady states. If the initial
pB , pC and S would be even smaller than in Figure 4, the system is likely to converge to a steady state
with almost only A-monolingual speakers, few B-monoglots and no bilinguals.
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Figure 2: Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1 (Example 5.1, k = 60).
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Figure 3: α-functions for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1 (Example 5.1, k = 60).

For the base case (pA = 0.85, pB = 0.05, S = 0.1), see Figure 4 and the left panel of Figure 6,
the fraction of the bilingual population first decreases, since the status of language B is low, as are the
fractions of B and C speakers, so the majority of couples consists of A speakers. Due to the dominance
of AA couples and the high likelihood that AC and CC couples raise their children as A-monoglots,
pA first increases. Initially one would invest as much as possible into the status to increase it. As a
first result of this policy BC couples get a stronger incentive to raise their children as B-monoglots.
Furthermore, AC and CC couples become less likely to raise their kids just as speakers of language A
and instead are more likely to raise the children bilingual than before. Consequently, pA now decreases
while pC increases see Figures 4. Hence, the negative term in αB(BC) decreases and even more BC
families raise their children as B’s. This is a problem as long as pB , which is continuously decreasing,
is still to big. To avoid this effect, the increase of S is slowed down for a while, until pB is small enough

17



0 20 40 60 80 100
0.84

0.86

0.88

t

p
A

0 20 40 60 80 100
0

0.02

0.04

0.06

t

p
B

0 20 40 60 80 100
0.05

0.1

0.15

0.2

t

p
C

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

s

t

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

S

t

Figure 4: Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1 (Ex. 5.1, k = 75, ξ = 0).
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Figure 5: Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.4 (Ex. 5.1, k = 75, ξ = 0).

and then increased again to obtain the steady state status.

If, in contrast to the base case, the initial status is high, see Figure 5 and the right panel of Figure 6, then
initially the state does not have to invest as much into increasing the status of the minority language. Due
to the high status of B, many AC couples will raise their kids bilingual. As a result, at the beginning
pA decreases while pC increases. Furthermore, the fraction of language B speakers is so low that BB
and BC couples are rather unlikely and pB decreases. To further support the growth of pC it is optimal
to increase s for some time. Due to the smaller fraction of B speakers, AA and AC couples are more
likely than BC or CC couples, thus, pA recovers after some time and even grows. At some point of
time the status S and the fraction of bilingual speakers pC is high enough while pB is very low, such
that s can be lowered again until it reaches its steady state.

Example 5.1, k = 75, ξ = 1

For ξ = 1 the costs for state intervention increase with the number of speakers ofB, i.e. B-monoglots as
well as bilinguals. Thus, the higher pA, the lower are the costs for state intervention. In Figure 7 we can
see that for the base case, the system behaves quite similar to the case of ξ = 0. The major difference is
that state intervention is not just maximal in the beginning, but the entire budget is used over the entire
time horizon. Due to the large amount of A-monolinguals the intervention is much cheaper compared to
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Figure 6: α-functions. In the both panels pA(0) = 0.85 and pB(0) = 0.05. In the left panel S(0) = 0.1,
while in the right one S(0) = 0.4 (Ex. 5.1, k = 75, ξ = 0).
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Figure 7: Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.4 (Ex. 5.1, k = 75, ξ = 1).

the case where ξ = 0 (more than 80% cheaper). Therefore, in the long run the status and pC are higher
while the pA is smaller, cf. Table 3.

Example 5.1, k = 90

If k is large, then it is optimal to approach a steady state where the state invests the entire budget to
reach the maximal possible status for minority language B, see Table 3. This yields a maximal amount
of bilingual speakers while no B-monolinguals remain within the population. For the base case, see
Figure 8, initially the state spends as much as possible for improving the status ofB. For similar reasons
as before, pA first increases while pB and pC first decrease. This changes after some time. Once pB
has become small enough, the state can afford to decrease efforts. However, to ensure a growth in the
number of bilingual speakers, it is necessary to increase expenditures after some time again. This is
the main difference to the case with a low k; where one would first decrease, then increase, and then
decrease the expenditures s. I.e. the later increase is apparently necessary reach a steady state with a
proper bilingual population.
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Figure 8: Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1 (Example 5.1, k = 90).
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Figure 9: Time path for initial state pA(0) = 0.85, pB(0) = 0.05, S(0) = 0.1 (Example 5.2, k = 20).

Example 5.2, k = 20

Table 3 shows that in the bilingual steady state for the parameter constellation considered in Example 5.2
all three linguistic repertoires remain intact in the long run. This is the major difference to Example 5.1
and is mainly due to the much lower value of µ (µ = 0.2 in Example 5.1 and µ = 0.01 in Example 5.2).
Here with the low µ it is much less costly to keep the status at a high level. The development of the
population groups is similar to before, however, pB only decreases for a certain time, then the status of
language B is so high that even CC couples have a small incentive to teach their kids only language B.
Due to the small depreciation of S it is not necessary to spend much for keeping the status high, so one
would only invest much into the status in the beginning to get it to a high level and then decrease control
efforts over time. Example 5.2 with k = 20 is visualized in Figure 9. Note, in the long run only 3% of
the budget is used to guaranty that more than half of the population is bilingual.
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6 Conclusions

The state aims at ensuring wide communication possibilities, while recognizing and supporting - if this
is not too costly - minority language rights. This trade-off between a commonly spoken language and the
preservation of a minority language is approached through bilingualism. To investigate language policies
can be used to preserve a minority language in a bilingual subpopulation we developed an abstract
language dynamics model. The point of departure is individual utility maximization, while here only
intergenerational language transmission is considered. Families decide to bring up their children either
as monolinguals in the majority or the minority language, or as bilinguals. This decision is based on how
they value the communicational value of each language and their emotional attachment to the languages
at hand. Through a continuous investment into language policies the state can increase the status of the
minority language and thereby foster bilingual parenting in families with one or two bilingual parents.
It is assumed that the state wants to maximize the number of bilingual speakers at minimal costs.

In Wickström (2005) it was already proven that for a constant status and proper parameter constellations
stable bilingual steady states are possible. Here we could furthermore show that such bilingual steady
states can even be optimal when costs for language policies are taken into account. It was illustrated
that for some cases there are steady states only with monolingual speakers of the majority language and
bilinguals but without any monolingual speakers of the minority language. In such a state all individuals
within the population can - in principle - communicate with each other while the minority can preserve
its language. For other cases we could see that small subpopulation with monolingual speakers of the
minority language survives in the long run optimal state. As one would expect, bilingual steady states
are only optimal, if bilingualism is valued high enough with respect to expenditures.

Whether or not a bilingual steady states is not only possible but really targeted by the decision maker,
depends on the initial distribution of speakers as well as the initial status of the minority language. If
both the status and number of speakers of the minority language are too low, then it is not worthwhile
to invest in language maintenance in the long run, which results in a purely monolingual population. In
most of the examples considered in the numerical analysis, the initial values were high enough and it
was illustrated how expenditures change over time to achieve an optimal bilingual steady state in the
long run.

For future research the current model will be extended. To get closer to the real-world complexity of
language acquisition and transmission within a large population, we will add to the model language
learning in formal education as well as adult language learning. Furthermore, language policies will be
investigated in greater detail. We also intend to adjust the model to cases of new minorities, that means
minorities which are based on temporary or permanent migration.
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7 Appendix

7.1 Partial derivatives of gA and gB when pB = 0

Given the definition of gA and gB , their partial derivatives are given by

∂gA
∂pA

= (1− S) [2ζ − (ε+ γpA) + (1− pA)γ]− 1

∂gB
∂pA

= −αB(CC)− δ(1− S)(1− pA)1{αB(CC)>0}

∂gA
∂pB

= − [S(2βpA + δpC) + (1− S)(ε+ γpA)]

∂gB
∂pB

= 2αB(BC)− αB(CC) + γS(1− pA)1{αB(CC)>0} − 1

∂gA
∂S

= −2ζpA − (ε+ γpA)(1− pA)

∂gB
∂S

= (1− pA)(ε+ δpA)1{αB(CC>0)}.

Note, if pA ≥ p∆
A , then αB(CC) = 0 and hence ∂gB/∂pA = ∂gB/∂S = 0.

7.2 Proof of Lemma 3.2

Since η = 0, every constellation with pA+pB = 1, which implies pC = 0, is a steady state (ṗA = ṗB =
0). In the following we investigate their stability. Let fLL denote the matrix

fLL =

 ∂ṗA
∂pA

∂ṗA
∂pB

∂ṗB
∂pA

∂ṗB
∂pB


and define a := pA(1 − 2αA(AC)) and b := pB(1 − 2αB(BC)). For pC = 0 the matrix fLL equals(
a a
b b

)
and has eigenvalues λ1 = 0 and λ2 = a + b. If pA = 1 and hence pB = 0 the non positivity

of a + b = a is equivalent to S ≤ 1 − 1/2ζ. If in contrast pA = 0 and pB = 1 we need for stability
that a + b = b ≤ 0. This is equivalent to S ≥ 1/2ζ and can not be true since S < 1/2 and ζ ≤ 1. If
pA, pB > 0 we have

a+ b = 1− 2(pAαA(AC) + pBαB(BC)).

Consider the function

h(p) = pαA(AC; p, 1− p, S) + (1− p)αB(BC; p, 1− p, S).

Then stability, i.e. a+b <= 0, is euqivalent to h(pA) ≥ 1/2. We will investigate the four possible cases
seperately. If αA(AC) = αB(BC) = 0, then h = 0. So we can except this first case. As a second case
let αA(AC) = 0 and αB(BC) > 0. Then,

f(p) = (1− p)(ζS − β(1− S)p) ≤ (1− p)ζS < 1/2, (7.23)

since S < 1/2 and (1 − p), ζ < 1. Thus, we can exclude this case as well. As a third case let
αA(AC) > 0 and αB(BC) = 0. Here,

f(p) = (1− p)(ζ(1− S)− βS(1− p) = pζ − S(pζ + βp(1− p)).
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To get f(pA) ≥ 1/2 we need pA ≥ 1/2. Then, f(pA) ≥ 1/2 yields

S ≤ pAζ − 1/2

pAζ + βP −A(1− pA)
.

The right hand side of the last inequality is increasing in pA for pA ≥ 1/2. Hence, to achieve f(pA) ≥
1/2 we need at least

S ≤ ζ − 1/2

ζ
= 1− 1

2ζ
.

In case 4 we have αA(AC), αB(BC) > 0. Here, f is a convex function in p:

f(p) = ζS + (ζ − 2ζS − β)p+ βp2.

Hence, for all 0 < p < 1, f(p) ≤ max{f(0), f(1)}. We have f(0) = ζS < 1/2 and f(1) = ζ(1− S).
For S > 1 − 1/2ζ, f(1) < 1/2. Summarizing we can see that in the first two cases no stable steady
state exists, while in the last two cases a necessary condition for stability is given by S ≤ 1− 1/2ζ.

a+ b = ...

= ζpA + ζ(1− 2pA)S − βpA(1− pA)

< ζpA + ζ(1− 2(1− ζ

β

1− S
S

))S − βpA(1− pA)

= ζpA + ζ(−1 + 2
ζ

β

1− S
S

)S − βpA(1− pA)

= ζpA + ζ(2
ζ

β
(1− S)− S)− βpA(1− pA)

7.3 Proof of Lemma 4.1

For S ∈ [S, S] let pA = p∗A(S), while pB = 0. We will consider both cases separately.

Case 1: S = S1

The stationarity of λA yields

0 =

(
r − pC

∂gA
∂pA

)
λA + k − ξ

(1− pA)1−ξ
.

To achieve stationarity of λS , we have to find a λS ≥ 22ν+µ
νµ (1− pA)ξ such that

0 = λ̇S = −pCλA
∂gA
∂S

+ λS(r + µ+ 2ν).

Since λA < 0 increases in k and ∂gA
∂S < 0, the solution to the above linear equation is sufficiently large,

if k is sufficiently large.

Case 2: S < S < S1

Here the stationarity of λA yields

0 =

(
r − pC

∂gA
∂pA

)
λA + k − ξ

(1− pA)1−ξ
s∗(S),

and λS = λS(S) is given by (4.20). We seek for a proper S such that λ̇S = 0 holds, cf. (4.22), where
∂gB/∂S = 0. If the first summand of (4.22) is denoted by f1(S) and the second one by f2(S), then
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we aim to solve −f1(S) = f2(S). It is easy to check that at S (note, p∗A(S) = 1) we have f1(S) = 0.
Depending on ξ it holds f2(S) > 0 (for ξ = 0) or f2(S) = 0 (for ξ > 0). Furthermore, f2(S) → ∞
for S → 1/2, while −f1 is bounded. Since f2 is independent of the parameter k while −f1 is growing
linearly in k, we get for sufficiently large k that −f1(S) > f2(S) for some relevant S. Summarizing
we have for sufficiently large k: −f1(S) ≤ f2(S), −f1(S) > f2(S) for some S ∈ (S, 1/2), f2(1/2) =
∞, −f1(1/2) < ∞ and f1, f2 are continuous functions on (S, 1/2). Hence, there exists at least one
intersection between the two functions in the interval (S, 1/2).
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