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Abstract

Time unit invariance is introduced as an additional requirement for
multiperiod risk measures: for a constant portfolio under an iid risk
factor process, the multiperiod risk should equal the one period risk of
the aggregated loss, for an appropriate choice of parameters and inde-
pendent of the portfolio. Multiperiod maximum loss over a sequence
of Kullback-Leibler balls is time unit invariant, whereas multiperiod
Value at Risk and multiperiod Expected Shortfall are not.
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1 Introduction

Time consistency (recursiveness) is an important property, often required
for multiperiod risk measures on top of the requirements of one period risk
measures. From a sequence Rα1 , . . . ,RαT of one period conditional risk
measures (not necessarily coherent) with parameters αt (which would be
e.g. confidence levels when R is Value at Risk (VaR) or Expected Shortfall)
one can construct in a canonical way a time consistent risk measure for
processes with finitely many time steps: One defines the multiperiod risk
MRα1,...,αT of a process (L1, . . . , LT ) recursively by

MRαT (LT |FT−1) := RαT (LT |FT−1), (1)

MRαt,...,αT (Lt, . . . , LT |Ft−1) := Rαt

(
Lt + MRαt+1,...,αT (Lt+1, . . . , LT |Ft−1)

)
.
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†PPE Research Centre, FH Vorarlberg, tb@fhv.at
‡Institute of Statistics and Mathematical Methods in Economics, Vienna University of
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Under weak technical assumptions this construction guarantees that MRα1,...,αT

is time consistent [4].
In this paper we introduce time unit invariance as another requirement

for process risk measures. The choice of time units should be irrelevant.
Consider an institution holding a portfolio unchanged over some time pe-
riod (which may e. g. be a day). It should make no difference into how many
intervals this period is split, be it into 1440 minutes, or 24 hours, or 1 day:
the risk of cash flows aggregated over one day should be equal to multiperiod
risk over 24 single hours or 1440 minutes—if the risk factor changes during
the day are independent of each other and of other information emerging
during the day. We do not think risk factor changes are necessarily inde-
pendent of each other and portfolios are actually held constant over a day.
These assumptions describe a counterfactual situation. But if this were the
case, a multiperiod risk of the loss process should be equal to one-period risk
of aggregated losses, whatever the portfolio happens to be. A risk measure
for processes satisfying this natural requirement is called time unit invari-
ant. More formally, we call MRα1,...,αT time unit invariant if there exists a
parameter value ᾱ, such that for any iid sequence of losses L1, . . . , LT

MRα1,...,αT (L1, . . . , LT |F0) = Rᾱ

(
T∑
t=1

Lt|F0

)
, (2)

holds, such that the parameter ᾱ may depend on the number of timesteps T
but not on L. The intuition behind requiring the same ᾱ for all loss processes
is that the passage of time does not depend on the portfolio someone may
hold. In this note we introduce multiperiod maximum loss (MML) and show
that it is time unit invariant, whereas multiperiod VaR (MVaR) is not.

2 Multiperiod Maximum Loss

In the single period case consider a measurable space (Ω,F), a random vector
r(·) : Ω → Rk, representing risk factors, and a measurable real-valued loss
function L(·). Conditions on L will be specified below. We may shortly
write L = L(r).

The true probability measure P is not known, but it is assumed that
an estimated measure, P , is available. Furthermore, in order to account for
model uncertainty it is assumed that the true probability measure lies within
the ”ball” of all probability measures Q whose I-divergence (also called rel-
ative entropy or Kullback-Leibler distance), D(Q||P ) :=

∫
log dQ

dP (r)dQ(r),
from P is not larger than some fixed threshold k > 0. Maximum Loss of
the loss function L then is defined as the expected loss in the worst of the
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plausible distributions,

MaxLossk(L) := sup
Q:D(Q||P )≤k

EQ(L) (3)

= sup {EP [LZ] : Z ≥ 0,EP [Z] = 1,EP [Z log (Z)] ≤ k} .

MaxLoss is a coherent risk measure [1, 5] and a decision maker, trying to
minimize it, is ambiguity averse [6]. I-divergence based sets of alternative
models are often used in optimal control under model uncertainty [7].

Loss L is not assumed to be essentially bounded. Instead, given k in
(3) we require L to satisfy conditions (i)-(iii) below. MaxLoss is different
from the entropic risk measure [5], which describes divergence preferences
[8], and whose dual representation also uses I-divergence, but as a penalty
term. Still the two can be evaluated with the same techniques [3].

The loss maximisation problem occuring in the definition (3) of MaxLoss
has a regular solution when L and k meet three conditions [2]:

(i) If ess sup(L) is finite, then k should be smaller than kmax := − log(P ({r :
L(r) = ess sup(L)})),

(ii) θmax(L) := sup{θ : Λ(θ) < +∞} should be positive,

(iii) If θmax,Λ(θmax), Λ′(θmax) are finite, then k should be smaller than
kmax(L) := θmaxΛ′(θmax)− Λ(θmax).

Here the function Λ is defined as

Λ(θ, L) := log

(∫
eθL(r)dP (r)

)
, (4)

where θ is a positive real number. For fixed L, Λ as a function of θ is
convex and lower semicontinuous on R. Its essential domain of definition
DΛ := {θ : Λ(θ) < ∞} is a finite or infinite interval, excluding the trivial
case DΛ = {0}. In the interval DΛ, the function Λ(θ) is continuous and has
derivative Λ′(θ) =

∫
L(r) exp(θL(r) − Λ(θ))dP (r). At an endpoint of DΛ

that belongs to DΛ, this derivative is understood as one-sided and is not
necessarily finite. Moreover, Λ′(θ) is strictly increasing in DΛ (unless L(r)
is constant ¶-almost surely). If supDΛ = ∞ then Λ′(θ) → ess sup(L) as
θ →∞.

Under assumptions (i), (ii), (iii) the equation

θΛ′(θ, L)− Λ(θ, L) = k (5)

has a unique positive solution θ. The maximum loss then is achieved and is
given by

MaxLossk(L) = Λ′(θ, L). (6)

In the sequel (i)-(iii) are standing assumptions.
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The pathological cases where some of the assumptions (i)–(iii) are vio-
lated can be solved with different methods [2].

Extending (3), conditional versions of the one-period maximum loss can
easily be defined. Given some σ-field F ′ ⊂ F , define the conditional maxi-
mum loss ML for L ∈ Lexp(Ω,F , P ) by

MLk(L|F ′) := sup
{
E[LZ|F ′] : Z ≥ 0,E[Z|F ′] = 1,E[Z log(Z)|F ′] ≤ k

}
.

(7)
The sup here denotes the supremum of functions, with respect to almost
sure ordering. The Z can be interpreted as densities of feasible probability
Q with respect to P .

In a multiperiod setup we work with filtered spaces (Ω,F , (Ft)t=0,...,T , Q)
and consider adapted loss processes Lt = Lt(rt(ω)). If we set Q = P , the
probability measure P again is interpreted as an estimated probability mea-
sure. If the portfolio is constant in the sense that no transactions occur, we
have Lt = L(rt(ω)). Ft represents the information available at time t, while
r(ω) = {r1(ω), . . . , rT (ω)} represent paths of risk factor values. If the risk
factor changes rt, and hence also losses L(rt), are independent of informa-
tion F0, . . . ,Ft−1 for all t. This is called the independence assumption in
the following. We omit the reference to Ft.

Define now multiperiod maximum loss (MML) for a sequence of positive
radii (k1, . . . , kT ) by the recursive procedure (1) with MLkt playing the role
of Rαt . MMLk1,...,kT inherits the properties of convexity, homogeneity, and
law-invariance from conditional one-period ML. Because of its recursive
construction it is time consistent, but it does not describe preference for
temporal resolution of uncertainty [10].

3 Main results

Let us first look at the situation where a Kullback-Leibler radius K > 0
for the long period [0, T ] is given. Maximum cumulated loss over the whole

period then is denoted MLK

(∑T
t=1 Lt

)
.

Lemma 1 (Disaggregation). Under the independence assumption, assum-
ing (i) to (iii) for Λ(θ,

∑T
t=1 Lt) and a given K > 0, the equation θ ·

Λ′
(
θ,
∑T

t=1 Lt

)
− Λ

(
θ,
∑T

t=1 Lt

)
= K has a unique solution θ. Choose

kt := θ · Λ′(θ, Lt)− Λ(θ, Lt) (8)

for t = 1, . . . , T . With this choice we have

MMLk1,...,kT (L1, . . . , LT ) = MLK

(
T∑
t=1

Lt

)
, (9)
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and

K =
T∑
t=1

kt. (10)

Proof. We prove this by induction in the number T of time steps. For
T = 1 the result is trivial. In what follows, choose θ and the related kt
according to the assumptions of the Lemma and equation (8). Summation
leads to

∑T
t=2 kt = θ ·

∑T
t=2 Λ′(θ, Lt) −

∑T
t=2 Λ(θ, Lt). Λ is the logarithm

of a moment-generating function applied to a sum of independent random
variables, hence

T∑
t=2

kt = θ · Λ′(θ,
T∑
t=2

Lt)− Λ(θ,

T∑
t=2

Lt). (11)

Assume now that the Lemma holds up to T−1 (induction hypothesis). Then
– by renumbering – it holds also for losses L2, . . . , LT . Now, (11) shows that
θ and the kt are suitable for applying the Lemma to losses L2, . . . , LT if one
uses ML with radius

∑T
t=2 kt. Hence we have

MMLk1,...,kT (L1, . . . , LT ) = MLk1 (L1 + MMLk2,...,kT (L2, . . . , LT ))(12)

= MLk1 (L1) + ML∑T
t=2 kt

(

T∑
t=2

Lt). (13)

By assumption and by (11) the relevant parameter is θ for both ML in (13),
therefore

MMLk1,...,kT (L1, . . . , LT ) = Λ′
(
θ, L1

)
+ Λ′

(
θ,

T∑
t=2

Lt

)
(14)

= Λ′

(
θ,

T∑
t=1

Lt

)
= MLK

(
T∑
t=1

Lt

)
, (15)

which shows (9). Finally, to establish (10) sum up equation (8) over all
t.

Now let us assume that positive real radii k1, . . . , kT are given.

Lemma 2 (Aggregation). Under the independence assumptions and assum-
ing (i)-(iii) for each given kt, there exists a unique θ such that

T∑
t=1

Λ′(θ, Lt) =

T∑
t=1

Λ′(θt, Lt), (16)

where each θt is the unique solution of θt ·Λ′(θt, Lt)−Λ(θt, Lt) = kt. Define
K by

K := θ · Λ′
(
θ,

T∑
t=1

Lt

)
− Λ

(
θ,

T∑
t=1

Lt

)
. (17)
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With this choice of K we have

MLK

(
T∑
t=1

Lt

)
= MMLk1,...,kT (L1, . . . , LT ) =

T∑
t=1

MLkt(Lt). (18)

Proof. Since all Λ′(·, Lt) are strictly increasing and continuous, Λ′(·,
∑T

t=1 Lt)
is also strictly increasing and continuous, taking values in the interval [Λ′(min(θt),∑T

t=1 Lt),Λ
′(max(θt),

∑T
t=1 Lt)]. Therefore, for any point in this interval

there is a unique θ in [min(θt),max(θt)] such that Λ′(θ,
∑T

t=1 Lt) takes this
value. Observing that under the independence assumption the right hand
side of (16) equals MML and the left hand side is the ML of the summed loss
variables with K given by (17), this establishes (18) and thus the lemma.

If in addition to the independence assumption the losses Lt are i.i.d., we
can derive the simple relation announced in the introduction.

Proposition 1 (Aggregation for time independent loss function and iid risk
factors). Assume i.i.d. risk factors and a time independent loss function L.
Then under assumptions (i)-(iii):

MLkT

(
T∑
t=1

Lt

)
= MMLk,...,k (L1, . . . , LT ) = T ·MLk(L). (19)

Proof. Proof. Under the assumptions the losses Lt are i.i.d. with the same
distribution as some random variable L. By Lemma 2, there is unique (θ,K)
such that (18) holds. Putting θ into (8) leads to kt = k and Lemma 1 gives
K = kT . Equation (19) follows easily.

As required for time unit invariance (2), the one period parameter k
leads to the multi-period parameter kT , independently of the actual loss
function or of the risk factor distribution.

4 Counterexamples

In the following, we analyze recursive concatenations of two important risk
measures: value at risk (which is not a risk measure in the strict sense, but
widely used in industry) and expected shortfall (see e.g. [9]). It shows that
in both cases time unit invariance is violated.

4.1 Value at Risk

For a constant linear portfolio with loss function Lt(rt) = −lrt whose loss
equals a constant −l times the value of a normally distributed risk factor
rt ∼ N(0, σ2). Value at Risk at level α equals Φ−1(α) · σ · l, where Φ−1 is
the inverse of the standard normal distribution function. For a sequence of
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confidence levels α1, α2, . . . , αT , a time consistent multiperiod version MVaR
of VaR may be defined by a procedure similar to (1) with VaRα in the role
of Rα. For two time steps we get

MVaRα1,α2(−lr1,−lr2) = (Φ−1(α1) + Φ−1(α2)) · σ · l.

Aggregated VaR at level ᾱ over the period [0, 2] equals

VaRᾱ(−lr1 − lr2) =
√

2Φ−1(ᾱ) · σ · l.

MVaRα,α equals one period VaR at level ᾱ if

ᾱ = Φ((Φ−1(α1) + Φ−1(α2))/
√

2). (20)

This condition guarantees equality for all constant linear portfolios.
Consider now quadratic portfolios with loss function −l2r2. VaRα equals

F−1
1 (α)l2σ2, where F−1

1 is the inverse of the distribution function of the χ2-
distribution with one degree of freedom. Multiperiod VaR for the parameter
sequence (α1, α2) is

MVaRα1,α2(−l2r2
1,−l2r2

2) = (F−1
1 (α1) + F−1

1 (α2))σ2l2.

Aggregated VaR at level ᾱ over the period [0, 2] is

VaRᾱ(−l2r2
1 − l2r2

2) = F−1
2 (ᾱ)l2σ2,

where F−1
2 is the inverse of the distribution function of the χ2-distribution

with two degrees of freedom. Multiperiod MVaRα1,α2(−l2r2
1,−l2r2

2) equals
VaRᾱ(−l2r2

1 − l2r2
2) if

ᾱ = F2(F−1
1 (α1) + F−1

1 (α2)). (21)

This guarantees equality for all constant quadratic portfolios. But (21) is
different from (20), hence time unit invariance is not fulfilled for MVaR.

4.2 expected Shortfall

Assume that losses Li are i.i.d. with a standard normal distribution. (Con-
ditional) expected shortfall of L2 at level q therefore is

ES1 [L2] = ES [L2] =
φ
(
Φ−1(q)

)
1− q

.

The multiperiod expected shortfall over two periods then is given by

ESM(q) = ES [L1 + ES1 [L2]] = ES [L1] +
φ
(
Φ−1(q)

)
1− q

. = 2 ·
φ
(
Φ−1(q)

)
1− q

.
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On the other hand the expected shortfall over two periods at level q′ is
given by the expected shortfall of the random variable L1 +L2, which has a
normal distribution with mean zero and a variance of two. This leads to

ESS(q′) =
√

2 ·
φ
(
Φ−1(q′)

)
1− q′

.

To find a level q′ such that ESM and ESS are equal, one has to solve

φ
(
Φ−1(q′)

)
1− q′

=
√

2 ·
φ
(
Φ−1(q)

)
1− q

. (22)

Consider now the quadratic portfolio: Mi = L2
i are i.i.d. χ2-distributed

with one degree of freedom. Here we have

ES1 [M2] = ES [M2] = 1 +
√

2

√
F−1

1 (q) exp
(
−1

2F
−1
1 (q)

)
1− q

,

and

ESM(q) = ES [M1 + ES1 [M2]] = 2 + 2
√

2

√
F−1

1 (q) exp
(
−1

2F
−1
1 (q)

)
1− q

,

where F−1
1 (q) denotes the q-quantile of the χ2 distribution with one degree

of freedom.
The expected shortfall over two periods is calculated for M1 +M2, which

is χ2-distributed with two degrees of freedom:

ESS(q′) =
exp

(
−1

2F
−1
2 (q′)

)
·
(
F−1

2 (q) + 2
)

1− q
,

where F−1
2 (q) denotes the q-quantile of the χ2 distribution with two degrees

of freedom.Again we have to solve ESM(q)=ESS(q’). Because of

F−1
2 (q′) = −2 ln

(
1− q′

)
,

this leads to

q′ = 1− exp

1

2
+

√
2

2

√
F−1

1 (q) exp
(
−1

2F
−1
1 (q)

)
1− q

 ,

which is not in general a solution to (22).
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