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Abstract. The probably biggest challenge for climate change mitigation is to find a secure low-carbon
energy supply, which especially is difficult as the supply of renewable sources underlies strong volatil-
ity and storage possibilities are limited. We therefore consider the energy sector of a small country that
optimizes a portfolio consisting of fossil and/or renewable energy to cover a given energy demand, con-
sidering seasonal fluctuations in renewable energy generation. By solving these non-autonomous optimal
control models with infinite horizon, we investigate the impact of fossil energy prices on the annual op-
timal portfolio composition shown by the obtained periodic solutions.
Keywords: Optimal control, Nonlinear dynamical systems, Resources and environment, Renewable en-
ergy

1 Introduction

With a constantly increasing world-wide energy demand, theprogressively obvious impacts of climate
change and the energy sector as the main source of green housegas emission, the possibly biggest chal-
lenge of the 21st century is to find a low-carbon, secure and sustainable energy supply. Renewable energy
generation is already carried out, but technology and policy efforts are not yet sufficient. Besides the high
costs and the limited storage possibilities the possibly biggest problem is the fluctuating supply of renewable
sources.

To address this issue we investigate the decision of an energy sector in a small country that optimizes a
portfolio consisting of fossil and renewable energy. We assume that this energy sector has full information
about the energy demand that has to be covered, which is postulated to be stationary, as done in Coulomb
and Henriet (2011), but instead of assuming that the energy demand is dependent on the GDP of the country
(see also Chakravorty et al. (2012)) and on the electricity price, we follow Messner (1997) and consider
the energy demand to be exogenous. Given this demand as well as the mentioned seasonal fluctuations and
the fossil energy price, the energy sector optimizes its portfolio to find the most cost-effective solution.
Following Chakravorty et al. (2005) we focus especially on solar energy and omit storage completely, so
that the generated energy has to be used immediately or is lost.

Due to the seasonal fluctuations this optimal control problem with one state and two controls exhibits
a particular mathematical property by being non-autonomous. We solve this problem by applying Pontrya-
gin’s Maximum Principle, but instead of the usual steady-state analysis of autonomous approaches we are
looking for a periodic solution that solves the non-autonomous canonical system, which makes the problem
numerically sophisticated.



2 The Model

While fossil energy is assumed to be constantly available andimported for the pricepF , the supply of
renewable energy fluctuates over time but harvesting is for free and the generation is possible within the
country. To do so, however, investments for proper energy generation capital are necessary. One important
implication of the (small) size of the country is that the energy sector is assumed to be a price taker, which
means that its decision does not impact the market prices.
We especially focus in this paper on solar energy as renewable resource. Figure 1a shows the average global
radiation per month in Austria. One can clearly observe the seasonal differences underlining the challenge
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Fig. 1: (a) Average global radiation per month in Austria. (b) Deterministic function to describe the varying
global radiation over one year.

of a constant renewable energy supply over the whole year. Toinclude such seasonal fluctuations7 in our
model, we use a deterministic time-dependent function

vR(t) = ν sin(tπ)2+ τ ,

which can be seen in Figure 1b. The parameterτ defines the minimal supply in winter andν is the maximal
increment during summer. The necessary capitalKS(t) in form of photovoltaic (PV) cells is accumulated by
investmentsIS(t) and depreciates at a rateδS which later on will be set toδS = 0.03, implying that a PV
cell has a lifetime of about 33 years. With the current capital stock and the given global radiation, renewable
energy is generated as in Equation (1b), whereη is the degree of efficiency, which for common PV cells is
about 20%. Note that this function explicitly depends on time t which makes the problem non-autonomous.
As the required energy demandE that has to be covered is well known, it is postulated that thedemand
has to be satisfied completely with the portfolio of fossil,EF(t), and renewable,ES(KS(t), t), energy. This
means that shortfalls are not allowed while surpluses are ingeneral possible but are simply lost as saving
options do not exist. This balance is included in the model bythe mixed path constraint in Equation (1a).
Given this restriction and the current market price for fossil energy, the energy sector searches for the most
cost-effective solution by maximizing its profit as shown inEquation (1), wherep is the electricity price.

7 Note that we only consider annual fluctuations and do not include daily fluctuations from day to night nor changes
due to weather conditions. To get reasonable parameter values we usedAustrian data for the estimation (cf. ZAMG
(2012)).



Note that we distinguish between linear investment and quadratic adjustment costs, where the latter arise
from installation efforts.
Summing up, we consider a non-autonomous optimal control model with infinite horizon, two controls
describing the capital investments and the imported fossilenergy, and one state for the capital stock,

max
EF (t), IS(t)

∫ ∞

0
e−rt

(

pE − IS(t)
(

b+ cIS(t)
)

− pF EF(t)

)

dt (1)

s.t.: K̇S(t) = IS(t)−δSKS(t)

EF(t)+ES
(

KS(t), t
)

−E ≥ 0 (1a)

ES
(

KS(t), t
)

=
(

ν sin(tπ)2+ τ
)

KS(t)η (1b)

EF(t), IS(t)≥ 0,

where the discount rater and the parametersb andc are positive constants.

3 Solution

3.1 Canonical System and Necessary First Order Conditions

Let (K∗
S (t), I

∗
S (t),E

∗
F(t)) be an optimal solution of the control problem in Equation (1), then, according to the

maximum principle for infinite time horizon problems (cf. Grass et al. (2008)), there exists a continuous and
piecewise continuously differentiable functionλ (t) ∈ R satisfying

L (K∗
S (t), I

∗
S (t),E

∗
F(t),λ (t), t) = max

IS(·),EF (·)
L (K∗

S (t), IS(·),EF(·),λ (t), t)

whereL defines the Lagrangian which reads as

L (KS(t), IS(t),EF(t),λ (t), t) = pE −bIS(t)− cIS(t)
2− pF EF(t)+λ (t)(IS(t)−δSKS(t))

+µ1(t)(EF(t)+KS(t)η(ν sin(tπ)2+ τ)−E)+µ2(t)EF(t)+µ3(t)IS(t) ,

with µ1(t),µ2(t),µ3(t) being the Lagrange multipliers for the mixed path constraint and the non-negativity
conditions. Further on, at each point where the controls arecontinuous

λ̇ (t) = rλ (t)−
∂L (KS(t), IS(t),EF(t),λ (t), t)

∂Ks

is given and the complementary slackness conditions

µ1(t)
(

E∗
F(t)+E∗

S

(

K∗
S (t), t

)

−E
)

= 0 , µ1(t)≥ 0,

µ2(t)E
∗
F(t) = 0 , µ2(t)≥ 0,

µ3(t)I
∗
S (t) = 0 , µ3(t)≥ 0,

have to be satisfied. Hence, the necessary first order conditions and the adjoint equation are given as follows:

∂L

∂EF(t)
= −pF +µ1(t)+µ2(t) = 0

∂L

∂ IS(t)
= −b−2cIS(t)+λ (t)+µ3(t) = 0⇔ IS(t) =

λ (t)+µ3(t)−b
2c

λ̇ (t) = rλ (t)−
∂L

∂KS(t)
= (r+δS)λ (t)−µ1(t)η(ν sin(tπ)2+ τ).



Looking for an interior solution with both controlsIS(t),EF(t) > 0 and the mixed-path constraint of (1a)
satisfied with strict inequality, it can be shown that such a solution never can be optimal as costs could be
reduced by lowering the amount of fossil energy until the mixed path constraint is satisfied with equality,
which makes surpluses in fossil energy inefficient. Hence, we focus for the following analysis on the three
boundary cases, which are: thefossil casewith the whole demand covered only with fossil energy,EF(t)> 0,
IS(t) = 0 andEF(t)−E = 0; themixed casewhere both types of energy are used for the coverage,EF(t),
IS(t)> 0 andEF(t)+ES(KS(t), t)−E = 0; and finally therenewable case, where only renewable energy is
used to cover the demand,EF(t) = 0, IS(t)> 0 andES(KS(t), t)−E > 0. Inserting the corresponding values
of the controls and Lagrange multipliers yields the canonical systems for these boundary cases:

K̇S(t) = A−δSKS(t), with A =

{

0, fossil case,
λ (t)−b

2c , mixed and renewable case,
(2)

λ̇ (t) = (r+δS)λ (t)−B, with B =

{

pF η(ν sin(tπ)2+ τ), fossil and mixed case,

0, renewable case.
(3)

In what follows, we refer to these canonical systems asK̇S(t) = f K(t,KS(t),λ (t)) andλ̇ (t) = f λ (t,λ (t)).

3.2 Periodic Solution

As the canonical system in (2)-(3) is non-autonomous we haveto find a trajectory with the property to be
hyperbolic. Detailed theory about the existence, the computation and the manifolds of such distinguished
hyperbolic trajectories can be found, e.g., in Ju et al. (2003), Mancho et al. (2004), or Madrid and Mancho
(2009). Due to the periodicity of the dynamics candidates for the long-run optimal solution of the problem
in (1) are periodic solutions with the period length of one year. In order to find such a periodic solution of the
canonical system numerically, we first determine the instantaneous equilibrium pointsKIEP

S (t) andλ IEP(t)
(cf. Ju et al. (2003)) by setting(K̇S, λ̇ )(t) = (0,0), and then solve the following boundary value problem
using these instantaneous equilibrium points as starting function,

K̇S(t) = f K(t,KS(t),λ (t)), with KS(0) = KIEP
S (0) andKS(1) = KS(0),

λ̇ (t) = f λ (t,λ (t)), with λ (0) = λ IEP(0) andλ (1) = λ (0).

Solving this BVP yields the periodic solution
(

K∗
S (t),λ ∗(t)

)

that lies completely within one of the three
boundary cases. However, it can happen that the solution at some point leaves the current admissible area
before the course of the period of one year is completed. In this case one has to switch to the corresponding
canonical system to get a periodic solution existing of several arcs. Therefore, a multi-point boundary value
problem has to be solved. At each point of time where the constraints of the current region are violated a
switch to the proper region happens, meaning that the corresponding canonical system is used to continue
the solution. Forn switching timesτ0 := 0 < τ1 < τ2 < · · · < τn−1 < τn < 1 =: τn+1, one has to calculate
n+ 1 arcs, for which the continuity at each switching time has tobe guaranteed. We introduce an index
ai ∈ {1,2,3} that distinguishes the canonical systems for the fossil, the mixed and the renewable case,
respectively, for each arci with i = 1, . . . ,n+1. If n switches are necessary along the periodic solution and
we use for simplicity the notation

K̇Si(t) = f K
ai
(t,KSi(t),λi(t)), t ∈ [τi−1,τi], i = 1, . . . ,n+1, (4)

λ̇i(t) = f λ
ai
(t,λi(t)), t ∈ [τi−1,τi], ai ∈ {1,2,3}, (5)



for the corresponding canonical system at arci, it has to hold thatai 6= ai−1 and|ai−ai−1|= 1, which means
that switches only can happen between fossil/mixed or mixed/renewable cases. For the numerical solution
of the system for each arci we use a time transformation so that it can be solved with fixedtime intervals.
This means that, in order to solve an equation

ẋ(t) = f (t,x(t)), t ∈ [τi−1,τi], i = 1, . . . ,n+1, τ0 = 0, τn+1 = 1

as in (4)-(5), we are looking for a time transformationt = T (s) so that

ẏ(s) = f̃ (s,y(s)), s ∈ [i−1, i], with y(s) = x(T (s)).

It turns out that the linear transformationT (s) = (τi−τi−1)(s− i+1)+τi−1 satisfies the required conditions.
Hence, in terms of the original dynamics this yields

ẋ(s) =
dx(T (s))

ds
=

dx(T (s))
dT

dT (s)
ds

= f (t,x(t))(τi − τi−1).

Using this transformation, we have to solve fori = 1, . . . ,n+1, j = 1, . . . ,n, s ∈ [i−1, i], τ0 = 0, τn+1 = 1
the multi-point boundary problem

K̇Si(s) = (τi − τi−1) f K
ai
(T (s),KSi(s),λi(s)), λ̇i(s) = (τi − τi−1) f λ

ai
(T (s),λi(s)),

(

KS j(τ j),λ j(τ j)
)

=
(

KS j+1(τ j),λ j+1(τ j)
)

, (KSn(1),λn(1)) = (KS1(0),λ1(0)) , (6)

(KS1(0),λ1(0)) =
(

KIEP
S (0),λ IEP(0)

)

.

Equation (6) ensures that the continuity in state and controls at each switch is given and, as a periodic solution
is calculated, the beginning and the endpoint coincide. Thefollowing Equation (7) finally guarantees the
necessary condition that the Lagrangian is continuous as well, which depends on the involved regions as
well as on the direction of the switch and is given forj = 1, . . . ,n as

0= c(a j,a j+1) =



















b−λ j(τ j), if a j = 1, a j+1 = 2,
λ j(τ j)−b

2c , if a j = 2, a j+1 = 1,

ES(KS j(τ j),τ j)−E, if a j = 2, a j+1 = 3,

EF(τ j), if a j = 3, a j+1 = 2.

(7)

The periodic solution that solves this BVP then is given as

(K∗
S (t),λ ∗(t)) =

(

(

K∗
S1
(t),λ ∗

1 (t)
)

0≤t<τ1
,
(

K∗
S2
(t),λ ∗

2 (t)
)

τ1≤t<τ2
, . . . ,

(

K∗
Sn
(t),λ ∗

n (t)
)

τn−1≤t<τn=1

)

.

Calculating the eigenvalues of the monodromy matrix for theobtained periodic solution reflects the stability,
which here are given ase1 = e−δS ande2 = er+δS . AsδS < 1 always is satisfied, one can see thate1 < 1 holds.
For reasonable values of the discount rate and the depreciation rate it further is supposed thatr+δS < 1 which
implies thate2 > 1 in these cases. As the Jacobian is independent of the state and the control variable, this
means that every periodic solution that we can find within oneof the boundary regions is of saddle-type and,
as no eigenvalueei = 1 occurs, it is a hyperbolic cycle which guarantees that the behavior of the system near
this periodic solution can be fully described by its linearisation (see Grass et al. (2008)).



Interpretation Parameter Value Interpretation ParameterValue
Investment costs b 0.6 Discount rate r 0.04
Adjustment costs c 0.3 Depreciation rate δS 0.03
Energy demand E 1053.82 Maximal radiation increment ν 4.56
Electricity price p 0.1 Degree of efficiency η 0.2
Fossil energy price pF 0.08 Minimal radiation in winter τ 0.79

Table 1: Parameter values used for the numerical analysis.

4 Results

For the following numerical analysis, we use the parameter values summarized in Table 1. Figure 2 shows
the long-run optimal periodic solution for this parameter value set which corresponds to the mixed case
where both types of energy are used. While the initial capitalstock in winter is quite low, it increases and
peaks during summer due to investments to accumulate new or maintain already existing capital. Note,
that the peak is exactly where also the global radiation is maximal and hence, the generation of renewable
energy reaches a peak during this time as well. The investments, however, start to decline again even before
this period because a further increase of the capital stock in autumn would not be beneficial due to the
declining radiation. Therefore, the capital stock decreases again after the summer peak and renewable energy
generation goes down. The proportion of renewable energy inthis scenario’s portfolio with only 0.6% is very
low, but this comes from the fact that fossil energy withpF = 0.08 is really cheap and hence high investments
in renewable energy are simply too costly.
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Fig. 2: Periodic solution (left box), time paths for investments and capital over one year (two boxes in the
middle) and renewable energy generation (right box) for a fossil energy price ofpF = 0.08.

5 Sensitivity Analysis

As the previous scenario has shown, not much is invested in renewable energy in case of a low fossil energy
price. This aspect raises the question how the portfolio composition will change if fossil energy gets more
expensive. We therefore investigate in this section the impact of the fossil energy price on the long-run
optimal portfolio solution by increasing the price step by step and then using numerical continuation. Figure



3 shows the results for different values ofpF . The two boxes on the left hand side contain the time paths
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Fig. 3: Periodic solution for (a)pF = 0.068: two arcs given by the mixed solution as dashed line and the
fossil solution as solid line, (b)pF = 1.4: mixed solution over the whole year, (c)pF = 2.7: two arcs given
by the mixed solution as black solid line and the renewable solution as gray solid line.

for investmentsIS(t) and capital stockKS(t), respectively, while the box on the right hand side depicts the
composition of the energy portfolio with renewable energy shown as gray line, fossil energy as black line
and the energy demand as black dashed line. While for a very lowprice (belowpF = 0.06785) fossil energy
is so cheap that the whole energy demand is covered with fossil energy, meaning that no investments are
done and, consequently, no capital is accumulated, renewable energy very soon is used as additional energy
source for the portfolio if the fossil energy price increases (see Figure 3a). Here, a very interesting aspect can
be observed. Due to the high global radiation in summer and the low fossil energy price, it is only worthwhile
to do investments in the first half of the year to increase renewable energy capital (or to do some maintenance
to have it in a good condition) in order to optimally utilize this productive period. During the rest of the year,
however, investments are again set to zero as a high capital stock would not be cost effective. The periodic
solution for this scenario therefore consists of two arcs, the first one with positive (black dashed line in
Figure 3a) and the second one with zero investments (black line in Figure 3a)8. Note that the contribution of
renewable energy to cover the demand still is very low and hence the line for fossil energy and the energy
demand basically coincide. The price interval for which this kind of result can be seen is, however, very
small, pF ∈ [0.06785,0.06897]. For a higher fossil energy price, investments are done overthe whole year
but still with a peak before summer, the generation of renewable energy increases and the additional fossil
energy amount during the summer period is reduced. During the winter period, however, fossil energy still
is required. Figure 3b shows the long-run optimal solution for pF = 1.4, which completely corresponds to
the mixed case. At an even higher fossil energy price ofpF = 2.1025, the renewable energy generation is
so high that it reaches the demand at the peak in summer. This is a certain point of interest because here a
switch to the complete renewable case happens. Being only anosculation point at the beginning, it develops
to an interval if the price goes further up. In this interval,which always is around the maximum of global

8 The capital stock along the fossil solution of course is not immediately zeroif there are no further investments, but
due to the fact that the capital stock is not very high even during summer and depreciation decreases the stock if there
are no investments, renewable energy generation during the winter months is so low that it can be neglected.



radiation, the energy demand can be fully covered with renewable energy and no additional fossil energy
is needed. Figure 3c shows this scenario for a fossil energy price of pF = 2.7. The energy portfolio in the
right box shows that surpluses are generated during summer which are lost as no storage possibilities exist.
The periodic solution in this scenario again consists of twoarcs, the mixed solution arc (black line) and the
renewable solution arc (gray line). The interval in which renewable energy is sufficient to cover the energy
demand increases the further the fossil energy price goes up. However, it turns out that this happens at a
decreasing speed, and during winter fossil energy still is necessary to cover the shortfalls, even if the fossil
energy price is already unreasonably high.

6 Conclusions

We have investigated in this paper the impact of the fossil energy price on the optimal portfolio composition
consisting of fossil and renewable (solar) energy in a smallcountry. We postulated that the supply of the
renewable source is seasonally varying, the energy demand is well known and constant over the year.
Sensitivity analysis with respect to the fossil energy price pF showed that a higher fossil energy price indeed
is an incentive for more investments in renewable energy capital. However, an autarkic solar energy supply
is not possible. While independence of fossil energy can be achieved during some time interval in summer
in which global radiation is high and even surpluses can be generated, the shortfalls in winter always have
to be covered with fossil energy no matter how high the fossilenergy price is.
These results underline that the non-constant supply is oneof the major challenges of renewable energy
generation. This not only concerns solar energy but also other types of renewable energy like wind and
water. Hence, probably a combined portfolio of several types of renewable energy could compensate for the
fluctuations of each other and enable a more or less constant supply. Such a portfolio is exactly what we
want to study in some model extension in the near future. In addition, also the effect of learning by doing on
investment costs and efficiency as well as a fluctuating energy demand will be a special matter of interest.
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