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Abstract. The probably biggest challenge for climate change mitigation is to find aesému-carbon
energy supply, which especially is difficult as the supply of renewahleces underlies strong volatil-
ity and storage possibilities are limited. We therefore consider the enectyy ©8 a small country that
optimizes a portfolio consisting of fossil and/or renewable energy tor@géren energy demand, con-
sidering seasonal fluctuations in renewable energy generation. Bygthese non-autonomous optimal
control models with infinite horizon, we investigate the impact of fossilgnprices on the annual op-
timal portfolio composition shown by the obtained periodic solutions.

Keywords: Optimal control, Nonlinear dynamical systems, Resources and envinoiy Renewable en-

ergy

1 Introduction

With a constantly increasing world-wide energy demand, ghegressively obvious impacts of climate
change and the energy sector as the main source of green g@sigenission, the possibly biggest chal-
lenge of the 21st century is to find a low-carbon, secure asthgable energy supply. Renewable energy
generation is already carried out, but technology and pdftorts are not yet sufficient. Besides the high
costs and the limited storage possibilities the possilggést problem is the fluctuating supply of renewable
sources.

To address this issue we investigate the decision of angserdor in a small country that optimizes a
portfolio consisting of fossil and renewable energy. Wauass that this energy sector has full information
about the energy demand that has to be covered, which islgestio be stationary, as done in Coulomb
and Henriet (2011), but instead of assuming that the eneamadd is dependent on the GDP of the country
(see also Chakravorty et al. (2012)) and on the electridityep we follow Messner (1997) and consider
the energy demand to be exogenous. Given this demand assib# anentioned seasonal fluctuations and
the fossil energy price, the energy sector optimizes itsf@ar to find the most cost-effective solution.
Following Chakravorty et al. (2005) we focus especially otas energy and omit storage completely, so
that the generated energy has to be used immediately otis los

Due to the seasonal fluctuations this optimal control probkéth one state and two controls exhibits
a particular mathematical property by being non-auton@niée solve this problem by applying Pontrya-
gin’s Maximum Principle, but instead of the usual steadtestinalysis of autonomous approaches we are
looking for a periodic solution that solves the non-autonamcanonical system, which makes the problem
numerically sophisticated.



2 TheModd

While fossil energy is assumed to be constantly availableiamubrted for the pricepg, the supply of
renewable energy fluctuates over time but harvesting isré® &nd the generation is possible within the
country. To do so, however, investments for proper energyeiggion capital are necessary. One important
implication of the (small) size of the country is that the myyesector is assumed to be a price taker, which
means that its decision does not impact the market prices.

We especially focus in this paper on solar energy as renewabburce. Figure 1a shows the average global
radiation per month in Austria. One can clearly observe ##sanal differences underlining the challenge
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Fig. 1: (a) Average global radiation per month in Austrig. Qeterministic function to describe the varying
global radiation over one year.

of a constant renewable energy supply over the whole yeainclode such seasonal fluctuatidris our
model, we use a deterministic time-dependent function

VR(t) = vsin(tm? +1,

which can be seen in Figure 1b. The parametéefines the minimal supply in winter ands the maximal
increment during summer. The necessary capigét) in form of photovoltaic (PV) cells is accumulated by
investmentds(t) and depreciates at a rade which later on will be set t@ds = 0.03, implying that a PV
cell has a lifetime of about 33 years. With the current capitack and the given global radiation, renewable
energy is generated as in Equation (1b), wheie the degree of efficiency, which for common PV cells is
about 20%. Note that this function explicitly depends orettravhich makes the problem non-autonomous.
As the required energy demaiidthat has to be covered is well known, it is postulated thatdéx@mand
has to be satisfied completely with the portfolio of fosEit,(t), and renewableis(Ks(t),t), energy. This
means that shortfalls are not allowed while surpluses ageneral possible but are simply lost as saving
options do not exist. This balance is included in the modetheymixed path constraint in Equation (1a).
Given this restriction and the current market price for flossergy, the energy sector searches for the most
cost-effective solution by maximizing its profit as shownBquation (1), where is the electricity price.

7 Note that we only consider annual fluctuations and do not include dailgufitions from day to night nor changes
due to weather conditions. To get reasonable parameter values wAusteidn data for the estimation (cf. ZAMG
(2012)).



Note that we distinguish between linear investment and ig@dadjustment costs, where the latter arise
from installation efforts.

Summing up, we consider a non-autonomous optimal contraemwith infinite horizon, two controls
describing the capital investments and the imported fesslgy, and one state for the capital stock,

En)ax(t)/ et (pE s(t) (b+ cls(t)) ~ peEr (t)) dt @)
st Ks(t) = Is(t) — 3sKs(t)
Er (t) + Es(Ks(t).t) ~E >0 (1a)
Es(Ks(t),t) = (vsintm)?+1)Ks(t)n (1b)
Er(t).1s(t) > 0,

where the discount rateand the parametelsandc are positive constants.

3 Solution

3.1 Canonical System and Necessary First Order Conditions

Let (K&(t),14(t), E£ (1)) be an optimal solution of the control problem in Equation tign, according to the
maximum principle for infinite time horizon problems (cf.&3s et al. (2008)), there exists a continuous and
piecewise continuously differentiable functiarit) € R satisfying

Z(Ks(t),Is(t), Eg (1), A(t),t) = IS(r_1)1§F><(_)f(Ké(t),Is(-),EF(~)7)\(t),t)
where.Z defines the Lagrangian which reads as
ZL(Ks(b), Is(t), Er(t),A (t),t) = PE — bls(t) — cls(t)® — prEr (1) + A (t) (Is(t) — 3sKs(t))
-+ (t) (Er (t) +Ks(t)n (vsin(tm)®+ 1) — E) + ka(t) Er (t) + pa(t)1s(t)
with pq(t), pa(t), us(t) being the Lagrange multipliers for the mixed path constramd the non-negativity
conditions. Further on, at each point where the control€anénuous

0L (Ks(t),Is(t), EF (1),A (t),1)
0Ks

At) =rA(t) —
is given and the complementary slackness conditions

p(t) (Bf (1) +Es(KS(t),t) —E) =0, pu(t) >0,
P(EF(t) =0, Ha(t) >0,
ps(t)ls(t) =0, ps(t) >0,
have to be satisfied. Hence, the necessary first order comglind the adjoint equation are given as follows:
07

dErM) ¢ + pa(t) + p(t) =
;j) = —b—2cls(t) +A(t) +us(t) = 0= Ig(t) = )\(t)++(t)—b
A(t) = rA(t) — 0L = (r +3g)A (t) — pu(t)n (vsin(tm)2+ 7).

IKs(t)



Looking for an interior solution with both controlg(t),Eg (t) > 0 and the mixed-path constraint of (1a)
satisfied with strict inequality, it can be shown that suclolatson never can be optimal as costs could be
reduced by lowering the amount of fossil energy until theedipath constraint is satisfied with equality,
which makes surpluses in fossil energy inefficient. Heneafaeus for the following analysis on the three
boundary cases, which are: tfassil caseavith the whole demand covered only with fossil enefgy(t) > 0

Is(t) = 0 andEg (t) — E = 0; the mixed casevhere both types of energy are used for the coverggé,),
Is(t) > 0 andEr (t) + Es(Ks(t),t) — E = 0; and finally therenewable casavhere only renewable energy is
used to cover the demarig; (t) = 0, Is(t) > 0 andEs(Ks(t),t) — E > 0. Inserting the corresponding values
of the controls and Lagrange multipliers yields the canalrsgstems for these boundary cases:

) ) 0 fossil case
Ks(t) = A—OsKg(t), wWithA=1<{ )7 _ _ 2
s(t) OsKs(t) {’\“2)0 b, mixed and renewable case @

pen(vsin(trm?4-1), fossil and mixed case

At)=(r+89A(t)—B, with B= {0 renewable case ®)

)

In what follows, we refer to these canonical system&g(s) = £¥(t,Ks(t),A(t)) andA (t) = FA(t,A(1)).

3.2 Periodic Solution

As the canonical system in (2)-(3) is non-autonomous we kavVied a trajectory with the property to be
hyperbolic. Detailed theory about the existence, the cdatfmn and the manifolds of such distinguished
hyperbolic trajectories can be found, e.g., in Ju et al. 8208lancho et al. (2004), or Madrid and Mancho
(2009). Due to the periodicity of the dynamics candidatedte long-run optimal solution of the problem
in (1) are periodic solutions with the period length of onaryén order to find such a periodic solution of the
canonical system numerically, we first determine the irtategous equilibrium pointsEP(t) andA'EP(t)

(cf. Ju et al. (2003)) by settingKs,A)(t) = (0,0), and then solve the following boundary value problem
using these instantaneous equilibrium points as startingtion,

Ks(t) = f*(t,Ks(t),A (1)), with Ks(0) = K¢=7(0) andKs(1) = Ks(0),
At) = fFA(LA(1)), with A (0) = A'EP(0) andA (1) = A (0).

Solving this BVP yields the periodic solutiofiKg(t),A*(t)) that lies completely within one of the three
boundary cases. However, it can happen that the solutioonag¢ point leaves the current admissible area
before the course of the period of one year is completed.idrcdse one has to switch to the corresponding
canonical system to get a periodic solution existing of sgharcs. Therefore, a multi-point boundary value
problem has to be solved. At each point of time where the caims$ of the current region are violated a
switch to the proper region happens, meaning that the quoneling canonical system is used to continue
the solution. Fon switching timestp :=0< T1 < Tp < --- < Tp_1 < Tn < 1 =: T1.1, ONne has to calculate
n+ 1 arcs, for which the continuity at each switching time had¢oguaranteed. We introduce an index
a € {1,2,3} that distinguishes the canonical systems for the foss#l,nfixed and the renewable case,
respectively, for each aiawithi =1,...,n+ 1. If n switches are necessary along the periodic solution and
we use for simplicity the notation

Ks (t) =

(L Kg(O).A (), te[mpnl,  i=1..ntd, )
Ait) = f2(t.A

i), telti-1, 1], a €{1,2,3}, (5)



for the corresponding canonical system atiaitthas to hold thas # a_; and|a — &_1| = 1, which means
that switches only can happen between fossil/mixed or mizedwable cases. For the numerical solution
of the system for each arave use a time transformation so that it can be solved with fiied intervals.
This means that, in order to solve an equation

X(t) = f(t,xt)), ten-1,nl,i=1...,n+1,170=0,T11=1
as in (4)-(5), we are looking for a time transformatiosa T (s) so that
y(s) = f(sy(s)), seli—1il, withy(s) =x(T(s)).

It turns out that the linear transformatidits) = (7, — 1i_1)(s—i+1) + 1i_1 satisfies the required conditions.
Hence, in terms of the original dynamics this yields

dx(T(s))  dx(T(s)) dT(s)

X9="gs ~ dT ds

= f(t,xt)) (1 — 1i-1)-

Using this transformation, we have to solvefee 1,...,n+1,j=1,...,n,s€[i—1,i], 10 =0,Thy1 =1
the multi-point boundary problem

Ks(9) = (i — 1) TX(T(5).Ks (8. Ai(9),  Ai(S) = (T — Ti-1) 2 (T(8),Ai(9)),
(Ks;(17),Aj(1))) = (sz(rj),ml(n)) , (Ks,(1),2n(1) = (Ks;(0),A1(0)), (6)
(Ks;(0),A1(0)) = (K&EP(0),A'EP(0)) .

Equation (6) ensures that the continuity in state and ctenditeeach switch is given and, as a periodic solution
is calculated, the beginning and the endpoint coincide. folewing Equation (7) finally guarantees the
necessary condition that the Lagrangian is continuous #swigich depends on the involved regions as
well as on the direction of the switch and is given fee 1,...,nas

b—)\j(Tj), if a,-:1, ajH:Z,
Aj(Tj)—

, if aj =2,aj41=1,

O=c(aj,aj1) =9 _ = L e
Es KSj(Tj)7Tj)_E7 if aj:27 aj+1:37
EF(TJ'), if a; =3 aj+1:2.

()

The periodic solution that solves this BVP then is given as

(K&(0,1* (1) = (K021 0) gy, (KO ASD) gy (K& OAD) )

Calculating the eigenvalues of the monodromy matrix fordb&ined periodic solution reflects the stability,
which here are given as = e % ande, = € 7%. As §s < 1 always is satisfied, one can see #at 1 holds.
For reasonable values of the discount rate and the depoeciate it further is supposed that ds < 1 which
implies thate, > 1 in these cases. As the Jacobian is independent of the sthtbecontrol variable, this
means that every periodic solution that we can find withinafrtee boundary regions is of saddle-type and,
as no eigenvalue = 1 occurs, it is a hyperbolic cycle which guarantees that grabior of the system near
this periodic solution can be fully described by its lingation (see Grass et al. (2008)).



Interpretation Parameter Value||Interpretation Parametegialue
Investment costs b 0.6||Discount rate r 0.04
Adjustment costs c 0.3||Depreciation rate Os 0.03
Energy demand E 1053.82|Maximal radiation increment v 4.56
Electricity price p 0.1{|Degree of efficiency n 0.2
Fossil energy price  pr 0.08|Minimal radiation in winter T 0.79

Table 1: Parameter values used for the numerical analysis.

4 Resaults

For the following numerical analysis, we use the paramed@res summarized in Table 1. Figure 2 shows
the long-run optimal periodic solution for this parametatue set which corresponds to the mixed case
where both types of energy are used. While the initial capitatk in winter is quite low, it increases and
peaks during summer due to investments to accumulate newaimtain already existing capital. Note,
that the peak is exactly where also the global radiation igima and hence, the generation of renewable
energy reaches a peak during this time as well. The investmieowever, start to decline again even before
this period because a further increase of the capital stodutumn would not be beneficial due to the
declining radiation. Therefore, the capital stock deaesa®ain after the summer peak and renewable energy
generation goes down. The proportion of renewable enerthysrscenario’s portfolio with only 0.6% is very
low, but this comes from the fact that fossil energy with= 0.08 is really cheap and hence high investments
in renewable energy are simply too costly.
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Fig. 2: Periodic solution (left box), time paths for investnts and capital over one year (two boxes in the
middle) and renewable energy generation (right box) forsaif@nergy price opr = 0.08.

5 Sensitivity Analysis

As the previous scenario has shown, not much is investechewable energy in case of a low fossil energy
price. This aspect raises the question how the portfoliopmsition will change if fossil energy gets more
expensive. We therefore investigate in this section theaohpf the fossil energy price on the long-run
optimal portfolio solution by increasing the price step bypsand then using numerical continuation. Figure



3 shows the results for different values mf. The two boxes on the left hand side contain the time paths
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Fig. 3: Periodic solution for (apr = 0.068: two arcs given by the mixed solution as dashed line aad th
fossil solution as solid line, (b = 1.4: mixed solution over the whole year, (o3 = 2.7: two arcs given
by the mixed solution as black solid line and the renewabligtism as gray solid line.

for investmentds(t) and capital stockKs(t), respectively, while the box on the right hand side depiogs t
composition of the energy portfolio with renewable energgven as gray line, fossil energy as black line
and the energy demand as black dashed line. While for a verpiime (belowpr = 0.06785) fossil energy

is so cheap that the whole energy demand is covered withl frssigy, meaning that no investments are
done and, consequently, no capital is accumulated, redewabrgy very soon is used as additional energy
source for the portfolio if the fossil energy price incremfgee Figure 3a). Here, a very interesting aspect can
be observed. Due to the high global radiation in summer amtbth fossil energy price, it is only worthwhile
to do investments in the first half of the year to increasewaine energy capital (or to do some maintenance
to have it in a good condition) in order to optimally utilizég productive period. During the rest of the year,
however, investments are again set to zero as a high cafuitid would not be cost effective. The periodic
solution for this scenario therefore consists of two arls, first one with positive (black dashed line in
Figure 3a) and the second one with zero investments (blaekriFigure 38. Note that the contribution of
renewable energy to cover the demand still is very low andédine line for fossil energy and the energy
demand basically coincide. The price interval for whickstkind of result can be seen is, however, very
small, pr € [0.067850.06897. For a higher fossil energy price, investments are done theewhole year
but still with a peak before summer, the generation of refdsvanergy increases and the additional fossil
energy amount during the summer period is reduced. Duriagvihter period, however, fossil energy still
is required. Figure 3b shows the long-run optimal solutiengd: = 1.4, which completely corresponds to
the mixed case. At an even higher fossil energy pricprof= 2.1025, the renewable energy generation is
so high that it reaches the demand at the peak in summer. SThisértain point of interest because here a
switch to the complete renewable case happens. Being omdg@nation point at the beginning, it develops
to an interval if the price goes further up. In this interwahich always is around the maximum of global

8 The capital stock along the fossil solution of course is not immediatelyizénere are no further investments, but
due to the fact that the capital stock is not very high even during summdestepreciation decreases the stock if there
are no investments, renewable energy generation during the winter srisisih low that it can be neglected.



radiation, the energy demand can be fully covered with ratdsvenergy and no additional fossil energy
is needed. Figure 3c shows this scenario for a fossil eneaigg pf pr = 2.7. The energy portfolio in the
right box shows that surpluses are generated during sumimieh\are lost as no storage possibilities exist.
The periodic solution in this scenario again consists of &nas, the mixed solution arc (black line) and the
renewable solution arc (gray line). The interval in whichewable energy is sufficient to cover the energy
demand increases the further the fossil energy price goeblapever, it turns out that this happens at a
decreasing speed, and during winter fossil energy stileisessary to cover the shortfalls, even if the fossil
energy price is already unreasonably high.

6 Conclusions

We have investigated in this paper the impact of the fossitgynprice on the optimal portfolio composition
consisting of fossil and renewable (solar) energy in a sewiintry. We postulated that the supply of the
renewable source is seasonally varying, the energy demsamelliknown and constant over the year.
Sensitivity analysis with respect to the fossil energy@pge showed that a higher fossil energy price indeed
is an incentive for more investments in renewable energitalaplowever, an autarkic solar energy supply
is not possible. While independence of fossil energy can bewaed during some time interval in summer
in which global radiation is high and even surpluses can egged, the shortfalls in winter always have
to be covered with fossil energy no matter how high the fagsdrgy price is.

These results underline that the non-constant supply isobtiee major challenges of renewable energy
generation. This not only concerns solar energy but alserdifpes of renewable energy like wind and
water. Hence, probably a combined portfolio of several sypferenewable energy could compensate for the
fluctuations of each other and enable a more or less constpptys Such a portfolio is exactly what we
want to study in some model extension in the near future. diitiath, also the effect of learning by doing on
investment costs and efficiency as well as a fluctuating graiggrand will be a special matter of interest.
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