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Abstract

Due to a low birth rate many countries need immigration to sustain a given population
size. This paper investigates the question of optimal choice of the immigration age-profile
within certain bounds. The objective function involves the number of workers and the size
of the immigration. The main qualitative result is that under certain conditions (verified in
the case study of Austrian) the optimal immigration age-profile is time-invariant, although
a dynamic framework is used. This makes it possible to give a detailed description of the
optimal immigration policy and to obtain numerical solutions for the Austrian case. The
model involves a non-standard age-structured optimal control problem on an infinite time-
horizon. The analysis of which requires a number of new mathematical results obtained in
the paper: a new type of transversality condition for the adjoint equation involved in the
optimality conditions, generic conditions for well-posedness of the problem and appropriate
stability conditions.

1 Introduction

Many countries face low fertility levels combined with an increase in life expectancy especially
in older ages. These demographic developments influence the populations’ well-being in many
ways and lead for example to severe challenges for their social security systems. One possible
way to counteract these developments is to steer immigration in an appropriate way.

In this paper, we consider a human population (presumably the inhabitants of a country)
where immigration is allowed, although subjected to restrictions. It is assumed that the intensity
of the migration inflow and, to a certain extend, the age-structure of the migrants can be used
as control (policy) instruments. The problem we consider is to keep the size of the population
constant by choosing appropriate immigration policy which, in addition, optimizes a certain
objective function. A politically relevant objective may include the fraction of population in
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working age (to be maximized) or the migration intensity, both discounted and aggregated in
time. Of course, the problem is meaningful only if the population would steadily decrease without
migration (population with below-replacement fertility).

The relevance of this issue is underlined in United Nations (2001), where the authors
investigate whether immigration can be used to hinder a decline or aging of the populations of
eight industrialized countries. It is concluded that immigration alone cannot stop the aging of
these populations. However, the age structure of the immigrants is taken as given in this report.

In Simon et al. (2012), the authors determine the optimal age-specific immigration profile
that minimizes the dependency ratio in a stationary population through immigration while
fixing either the population size or the immigration quota. It is assumed that the population
faces below-replacement fertility.

In contrast to Simon et al. (2012), in this paper non-stationary populations are investigated
leading to the formulation and study of a distributed control problem on an infinite horizon.
The population dynamics in this case can be modeled by the McKendrick-von Forster equation.
The non-stationary problem is more relevant from the demographic point of view because the
transition to a stationary population takes a long time.

From mathematical point of view the considered problem is challenging for three reasons:
(i) it has the form of a distributed optimal control problem with state constraints (although
rather specific); (ii) the time horizon is infinite and a theory for infinite-horizon optimal control
problems for age-structured systems is missing (Chan and Zhu (1990) and Feichtinger and Veliov
(2007) are exceptions, as well as a few non-sound papers that we do not mention); (iii) we deal
with a maximization problem for a non-concave functional, where the existence of a solution
and the well-posedness are problematic.

The main contributions of the paper are as follows. We obtain a Pontryagin type maximum
principle with a transversality condition in the form of boundedness of the adjoint variable. This
is done under suitable stability assumptions which are fulfilled for populations with sufficiently
low fertility. Existence of an optimal solution is also proved. The most striking result is that under
an additional generic well-posedness condition for a population with time-invariant mortality and
fertility the optimal age-density of the migration turns out to be time-invariant and independent
of the initial data. This makes it possible to find it by solving the associated steady-state problem,
which is an optimal control problem for an ordinary differential equation and was studied in
details in Simon et al. (2012). Thanks to this property also qualitative results for the optimal
policy are obtained.

As an application we consider the Austrian female population in 2009 and determine from
the available data the age-specific mortality and fertility rates and the initial age structure of the
population and of the migration. Then we consider the age-profile of the migration as a control
(policy) variable, allowing for modifications of the age-profile from 2009. Using the results in this
paper we determine numerically the immigration policy that maximizes the aggregate number
of workers over time. It turns out that the optimal migration intensity is at its upper bound on
a single age-interval and on its lower bound at all other ages.

For the presentation of the problem and the proofs below we use ideas from Feichtinger
and Veliov (2007), where the authors investigate the recruitment problem of organizations of
fixed size. Like here, a distributed control problem is involved. However, the problem in the
present paper is substantially more complicated due to the involvement of births in the boundary
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condition.
The paper is structured as follows. In Section 2 we present the population dynamics and

some auxiliary results. In Section 3 we formulate the optimization problem and in Section 4
we prove necessary optimality conditions. Stationarity, structure and uniqueness of the optimal
solution are investigated in Section 5. Finally, in Section 6 we provide numerical illustrations with
Austrian data before concluding in Section 7. Most of the proofs are moved to the Appendix.

2 Preliminary statements

Below t ≥ 0 denotes time, a ≥ 0 denotes age and a 7→ N(t, a) ≥ 0 is the (non-probabilistic)
age-density of a population. The mortality and the fertility rate at age a of this population
are denoted by µ(a) and ϕ(a), respectively. The immigration flux (number of immigrants) at
time t will be denoted by R(t) ≥ 0, and the immigration age-density – by u(t, a), a ∈ [0,∞)
and t ∈ [0,∞). That is, u satisfies u(t, a) ≥ 0,

∫∞
0 u(t, a) da = 1 and R(t)u(t, a) is the flow

of immigrants of age a at time t. Then the evolution of the population is described by the
McKendrick-von Forster equations (see e.g. Webb (1985))

(
∂

∂a
+

∂

∂t

)
N(t, a) = −µ(a) N(t, a) + R(t)u(t, a), t, a ≥ 0, (1)

N(0, a) = N0(a), a ≥ 0, (2)

N(t, 0) =
∫ ∞

0
ϕ(a) N(t, a) da, t ≥ 0, (3)

where N0(·) is the initial population density. The formal meaning of these equations will be
given below in this section.

Given an immigration profile, u(t, a), one can always keep the size of the population constant
(equal to M :=

∫∞
0 N0(a) da) by an appropriate choice of the immigration intensity, namely by

choosing R(t) in the feedback form

R(t) :=
∫ ∞

0
(µ(a)− ϕ(a))N(t, a) da. (4)

This fact has an obvious demographic meaning and can easily be established by integration of
equation (1) with respect to a, provided that N is a differentiable function and the equation is
satisfied in the classical sense. This is not necessarily the case (due to a possible inconsistency
of the initial and the boundary conditions (2), (3), or due to discontinuities of u; the optimal
control for the problem described in the next section is discontinuous indeed). Therefore we
give a strict proof below, see Lemma 3.

Let us introduce also the number of births

B(t) :=
∫ ∞

0
ϕ(a) N(t, a) da. (5)

3



Now we pass to a strict formulation of the previous consideration, starting with some basic
assumptions (BA).

(BA) The functions µ, ϕ, N0 : [0,∞) → R are non-negative, bounded and Lipschitz continuous;
µ satisfies µ(a) ≥ µ0 > 0 for all sufficiently large a; ϕ(a) and N0(a) are equal to zero for all
sufficiently large a; there is a0 ≥ 0 such that ϕ(a0) > 0 and N0(a) > 0 for a ∈ [0, a0]; N0 satisfies∫∞
0 N0(a) da = M with some positive M < ∞.

Remark 1 The Lipschitz continuity assumption is made just for technical convenience and can
be relaxed. The remaining assumptions about the fertility ϕ(a), the present age-density of the
population, N0(a), and that the population is non-void until some fertile age a0 are factual. The
boundedness assumption for the mortality rate needs some explanation. There is no empirical
evidence about boundedness or unboundedness of µ(a). We can assume equally well that the
mortality rate is unbounded close to some maximal age a = ω in such a way that all the
population dies till age ω. An alternative (not less plausible, in our opinion) is that µ(a) is
bounded and large enough after a certain age, say 110 years, so that individuals of age above
130 exist only mathematically. We chose the second option about the mortality rate just for a
minor technical convenience.

A few notations are introduced below. For any positive number T we abbreviate

DT := [0, T ]× [0,∞), D := [0,∞)× [0,∞). (6)

By definition the space N consists of all functions N : D → R which are
(i) measurable and the function t 7→ ∫∞

0 |N(t, a)|da < ∞ is finite and locally bounded;
(ii) locally absolutely continuous on almost every line t − a = const. intersected with D (these
are the characteristic lines of the differential operator in (1)).

Then for any N ∈ N the directional derivative

DN(t, a) = lim
h→0

N(t + h, a + h)−N(t, a)
h

, (7)

is well-defined for a.e. (t, a) ∈ D.
Let u : D → R be an immigration age-profile, that is u is measurable and locally bounded,

u(t, a) ≥ 0 and
∫∞
0 u(t, a) da = 1. Moreover, let R : [0,∞) → R be also measurable and

locally bounded. Then by definition N ∈ N is a solution of (1)–(3) if the equations are satisfied
almost everywhere with

(
∂
∂a + ∂

∂t

)
N interpreted as DN . Notice that property (i) of the functions

from N implies that the right-hand side of (3) makes sense, and property (ii) implies that the
traces N(0, ·) and N(·, 0) are (a.e.) well-defined and measurable (see Feichtinger et al. (2003)
for more details; the above definition of a solution is equivalent to the ones commonly used in
the literature, e.g. Anita (2000) and Webb (1985)).

Note, that since we consider a human population, negative values for R and N make no
sense. However, so far it is not clear whether a solution to the system exists nor that itis non-
negative. In the following lemmas, existence, boundedness and non-negativity as well as fixed
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size of a solution are discussed, both for the original system and R chosen in the feedback form
(4).

Lemma 1 Let u and R be fixed as above. Then system (1)–(3) has a unique solution N ∈ N
and N ∈ L∞(DT ) for every T > 0. The function B is locally bounded.

The proofs of this and of the next lemmas in this section will be given in the Appendix.

In parallel we consider the system

DN(t, a) = −µ(a) N(t, a) +
∫ ∞

0
(µ(a)− ϕ(a))N(t, a) da u(t, a) (8)

with side conditions (2) and (3). The meaning of a solution N ∈ N is the same as for (1)–(3),
regarding the fact that the integral on the right-hand side of (8) is well-defined and finite due
to property (i) of N .

Lemma 2 Let u be fixed as above. Then equation (8) with side conditions (2)–(3) has a unique
solution N ∈ N and N is (essentially) bounded on every subset DT ⊂ D, 0 < T < ∞. Moreover,
the functions R and B, defined by (4) and (5), are locally Lipschitz continuous.

Lemma 3 Let u and R be as above and let N be the unique solution of (1)–(3). Then the
population N has a fixed size (that is,

∫∞
0 N(t, a) da = M) if and only if the function R satisfies

(4). In this case N coincides with the unique solution of (8) with side conditions (2)–(3).

Lemma 4 Let u be fixed as above. Assume that for the unique solution N ∈ N of (8) with side
conditions (2)–(3) it holds that R(t) ≥ 0 for every t ≥ 0, where R is defined by (4). Then the
functions N , B and R are non-negative and bounded, uniformly with respect to u as above for
which the assumption R(t) ≥ 0 is fulfilled.

3 The optimization problem

The main aim of this paper is to determine optimal age patterns of immigrants in a population
of fixed size. The specific optimization problem that we will introduce below arises only for
populations that need a positive immigration in order to sustain their size, as it is the case for
most European countries. Many of these countries had to face below-replacement fertility

∫ ∞

0
ϕ(a) e−

∫ a
0 µ(θ) dθ da < 1, (9)

for a long period. Below replacement fertility implies extinction of the population without immi-
gration and thus immigration is needed to sustain the size. However, it does not imply that the
native population will decrease in the short run, therefore negative immigration, i.e. emigration,
R(t) < 0 may be needed for some t (see Keyfitz (1971)). In Figure 3 we provide an illustrative
example which shows that the immigration rate R(t) determined by (4) takes negative values
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for some t several generations after the initial time, although fertility and mortality satisfy con-
dition (9). Figure 1 presents the fertility, mortality and the immigration profile u(a). The initial
population N0(a) and the population N(T, a) at time T = 90 are depicted in Figure 2.

Since in the present paper we use immigration as a policy instrument and negative immi-
gration is not admissible, we have to eliminate this possibility by introducing assumption (A2)
below, which is stronger than the below-replacement fertility condition.

Let m(a) be the present immigration profile, that is, at time t = 0, which is historically deter-
mined by habits, policies or other factors. . Then the present normalized age-density of immi-
gration is given by

û(a) :=
m(a)∫∞

0 m(a) da
. (10)

Therefore when using the age-density of the immigration as a control (policy) variable we
can implement only slight changes in û(a). For this reason we consider control constraints of the
form u(a) ≤ u(t, a) ≤ ū(a), where the lower and the upper bounds are not much different from
the present values û(a), say u(a) = (1− ε)û(a) and ū(a) = (1 + ε)û(a) with some small ε > 0.
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The optimization problem we consider in what follows is:

max
R,u

∫ ∞

0
e−rt

[∫ ∞

0
p(a)N(t, a) da− q R(t)

]
dt, (11)
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the number of immigrants R(t) (solid line) over time. Below replacement fertility is not enough
to ensure R(t) > 0.

subject to

DN(t, a) = −µ(a)N(t, a) + R(t) u(t, a), (t, a) ∈ D, (12)
N(0, a) = N0(a), a ≥ 0, (13)

N(t, 0) =
∫ ∞

0
ϕ(a) N(t, a) da, t ≥ 0, (14)

∫ ∞

0
N(t, a) da = M, (15)

u(a) ≤ u(t, a) ≤ ū(a),
∫ ∞

0
u(t, a) da = 1, (16)

R(t) ≥ 0. (17)

Here, function p(a) is a weight function that is higher if people of a certain age are more
valuable from point of view of the policy maker solving this optimization problem. For example,
p(a) could be the function taking the value 1 for ages a ∈ [20, 65], representing the working ages,
and 0 otherwise.

The intertemporal discount rate is r. The constant q represents the benefits or costs of
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immigration arising, for example, from possible integration or education expenditures. If q = 0
then maximizing the performance value is related to minimizing the dependency ratio of the
population (considered in a steady state in Simon et al. (2012)), that is the fraction of non-
workers to workers in a population, which is a measure of how solvent a social security system
is.

Additionally to (BA) we make the following assumptions.

(A1) The discount rate r is strictly positive, the function p : [0,∞) → R is measurable and
bounded; q is a real number; the functions u, ū : [0,∞) → R are measurable and bounded, and
satisfy the relations 0 ≤ u(a) ≤ ū(a) for all a ≥ 0, ū(a) = 0 for all sufficiently large a; moreover∫∞
0 u(a) da < 1 and

∫∞
0 ū(a) da > 1.

According to Lemma 3 we can reformulate problem (11)–(17) in the following way:

max
u∈U

J(u) :=
∫ ∞

0
e−rt

[∫ ∞

0
[p(a)− q(µ(a)− ϕ(a))] N(t, a) da

]
dt, (18)

DN(t, a) = −µ(a) N(t, a) + u(t, a)
∫ ∞

0
(µ(s)− ϕ(s))N(t, s) ds, (t, a) ∈ D, (19)

N(0, a) = N0(a), a ≥ 0, (20)

N(t, 0) =
∫ ∞

0
ϕ(a) N(t, a) da, t ≥ 0. (21)

Here, the set of admissible controls U is defined as

U :=
{

u : D → R : u(a) ≤ u(t, a) ≤ ū(a),
∫ ∞

0
u(t, a) da = 1

}
. (22)

Due to the last requirement in (A1) the set of admissible controls, U , is nonempty.
The condition for a non-negative immigration rate, R(t) ≥ 0, is disregarded in the above

reformulation. It will be stipulated by the following additional assumption.

(A2) For any u ∈ U the immigration intensity R, defined by (4) for the corresponding solution
of (19)–(21), is strictly positive for all t.

Even with below-replacement fertility, see (9), it could happen that R(t) < 0 for some t. We
assume that for the present immigration pattern û(a) the resulting immigration size satisfies
R̂(t) ≥ R0 > 0. Implicitly this property requires that the initial density N0(a) results from
a population which has experienced below-replacement fertility for quite a while before the
present time t = 0. This is the situation in most of the European countries in the 21st century,
for example, as in our case study in Section 6. We assume a bit more, namely that R(t) > 0 for
any admissible control u, having in mind that all admissible controls are close to û.

Since R(t) > 0, Lemma 4 together with r > 0 and the boundedness of p, µ and ϕ, imply
that J(u) is finite for every u ∈ U and that supu∈U J(u) is finite. Thanks to this we can use the
standard definition of optimality: u ∈ U is optimal if J(u) ≥ J(v) for every v ∈ U .
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Proposition 1 Let assumptions (BA), (A1), (A2) be fulfilled. Then the optimal control problem
(18)–(21) has a solution.

The proof is given in the Appendix. We mention that this proof is not routine since we deal
with a problem of maximization of a non-concave functional. Indeed, the mapping U 3 u −→
“objective value J(u)” is not concave, as argued in Feichtinger and Veliov (2007) even in the
substantially simpler case ϕ = 0.

4 Necessary optimality conditions

In this section we formulate and prove necessary optimality conditions of Pontryagin’s type for
problem (18)-(22). The problem at hand has a similar structure as those studied in Brokate
(1985), Feichtinger et al. (2003), Veliov (2008), with the substantial difference that here the
time-horizon is infinite. To our knowledge there are no results in the literature that provide
necessary optimality conditions for age-structured optimal problems on infinite horizon, except
the ones mentioned in the introduction, which are not applicable for problem (18)-(21).

The Pontryagin-type necessary optimality conditions involve (i) an appropriate adjoint
equation; (ii) an appropriate transversality conditions that uniquely determine a solution of the
adjoint equation; (iii) a maximization condition for each t separately. The word “appropriate”
in (i) and (ii) means that the maximization condition in (iii) holds true with the ”appropriate”
adjoint function.

The appropriate adjoint equation associated with our problem will be shown to have the
form

D ξ(t, a) = (r + µ(a)) ξ(t, a) − ϕ(a) ξ(t, 0) − (µ(a)− ϕ(a))
∫ ∞

0
ξ(t, α) u(t, α) dα (23)

−p(a) + q(µ(a)− ϕ(a)).

A main challenge is to define an appropriate transversality condition. Following ideas originating
in Aubin and Clarke (1979) and developed in Aseev and Veliov (2012) for ordinary differential
systems and also in Feichtinger and Veliov (2007) for a problem which is similar but substantially
simpler than (18)-(21), we introduce the “transversality” condition ‖ξ‖∞ < ∞. This is justified
by Proposition 2 and Theorem 1 below.

We start with some preliminary results and an additional assumption.
In the following (u,N) denotes an optimal solution of problem (18)–(21) and R and B are

the number of immigrants and births given by (4) and (5).
We introduce the notations

ρ(a) := r + µ(a), ν(a) := µ(a)− ϕ(a), f(a) := p(a)− q (µ(a)− ϕ(a)) (24)

and the auxiliary variables

λ(t) := ξ(t, 0), η(t) :=
∫ ∞

0
ξ(t, a) u(t, a) da. (25)
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Then the adjoint equation becomes

D ξ(t, a) = ρ(a) ξ(t, a)− ϕ(a) λ(t)− ν(a) η(t)− f(a). (26)

Lemma 5 Let assumptions (BA), (A1), (A2) be fulfilled. Then, for any given functions λ, η ∈
L∞(0,∞) equation (26) has a unique bounded solution on D and it is given by the formula

ξ(t, a) =
∫ ∞

a
e−

∫ s
a ρ(θ) dθ [ϕ(s) λ(s + t− a) + ν(s) η(s + t− a) + f(s)] ds, (27)

where the integral is absolutely convergent.

Proof. The integral in (27) is absolutely convergent and the function ξ is bounded due to the
boundedness of the term in brackets and the inequality

∫ ∞

a
e−

∫ s
a ρ(θ) dθ ds ≤ 1

r
. (28)

One can verify by substitution that ξ defined by (27) satisfies (26).
To prove the uniqueness assertion we consider the difference ∆ξ(t, a) between two bounded

solutions which is also bounded. It satisfies the equation

D∆ξ(t, a) = ρ(a) ∆ξ(t, a). (29)

If ∆ξ(t, a) 6= 0 for some t and a, then the function x(s) := ∆ξ(t + s, a + s), s ≥ 0, satisfies
ẋ(s) = ρ(a + s) x(s) with x(0) = ∆ξ(t, a). Due to ρ(a + s) ≥ r > 0, x(s) is unbounded since
x(0) = ∆ξ(t, a) 6= 0. This contradiction completes the proof. Q.E.D.

Similarly as in the proof of Lemma 2 in the Appendix, one can obtain by substituting (27)
in (25) that ξ is a bounded solution of (23) if and only if it is the unique bounded solution of
(27) with the functions λ and η determined as bounded solutions of the following equations:

λ(t) =
∫ ∞

t
e−

∫ s−t
0 ρ(τ) dτ [ϕ(s− t) λ(s) + ν(s− t) η(s) + f(s− t)] ds, (30)

η(t) =
∫ ∞

t

∫ ∞

0
u(t, a) e−

∫ a+s−t
a ρ(τ) dτ [ϕ(a + s− t) λ(s) + ν(a + s− t) η(s) (31)

+f(a + s− t)] da ds.

This system can be written as

x(t) =
∫ ∞

t
k(t, s)x(s) ds + F (t), (32)
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where x = (λ, η) , k(t, s) = (ki,j(t, s)) is the matrix

k(t, s) =

(
e−

∫ s−t
0 ρ(τ) dτϕ(s− t) e−

∫ s−t
0 ρ(τ) dτν(s− t)∫∞

0 u(t, a) e−
∫ a+s−t

a ρ(τ) dτϕ(a + s− t) da
∫∞
0 u(t, a) e−

∫ a+s−t
a ρ(τ) dτν(a + s− t) da

)
,

(33)

F (t) =

( ∫∞
t e−

∫ s−t
0 ρ(τ) dτf(s− t) ds∫∞

t

∫∞
0 u(t, a) e−

∫ a+s−t
a ρ(τ) dτf(a + s− t) da ds

)
. (34)

A key point in the subsequent analysis is that integral equation (32) has a unique bounded
solution. This, however requires an additional assumption about the kernel, which is formulated
in terms of the numbers κ introduced below:

κ11 :=
∫∞
0 e−

∫ a
0 ρ(θ) dθϕ(a) da, κ12 :=

∫ ∞

0
e−

∫ a
0 ρ(θ) dθ|ν(a)| da, (35)

κ21 := max
a≥0

∫∞
0 e−

∫ a+τ
a ρ(θ) dθϕ(a + τ) dτ, κ22 := max

a≥0

∫ ∞

0
e−

∫ a+τ
a ρ(θ) dθ|ν(a + τ)| dτ. (36)

The following condition ensures that the integral operator in (32) is contractive in an approprate
norm:

(A3) The following inequality is fulfilled

1
2

[
κ11 + κ22 +

√
(κ11 − κ22)2 + 4 κ12 κ21

]
< 1. (37)

Note, that (A3) imposes a condition solely on the data of the problem. This condition is not
only used in the proof of the optimality condition below, but also for the characterization of the
optimal solution in the next section (see the proof of Lemma 7). The results in this sections are
valid under an alternative condition that involves the set of admissible controls and the numbers

κ̄21 :=
∫∞
0 u∗(a)

∫∞
0 e−

∫ a+τ
a ρ(θ) dθϕ(a + τ) dτ da, (38)

κ̄22 :=
∫∞
0 u∗(a)

∫∞
0 e−

∫ a+τ
a ρ(θ) dθ|ν(a + τ)| dτ da, (39)

where û is a reference time-invariant control (see (10) and the explanations there around).

(A3’) For some ε > 0 it holds that

ū(a) ≤ (1 + ε)û(a), a ≥ 0, (40)

and the following inequality is fulfilled:

1
2

[
κ11 + (1 + ε)κ̄22 +

√
(κ11 − (1 + ε)κ̄22)2 + 4 (1 + ε)κ12 κ̄21

]
< 1. (41)
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Remark 2 Assumption (A3) and (A3’) implicitly require that κ11 < 1 which is equivalent to
the below-replacement fertility condition if r = 0. For r > 0 the below-replacement fertility
condition is stronger than κ11 < 1. We mention also that κ̄21 ≤ κ21 and κ̄22 ≤ κ22, so that (A3’)
may be a weaker assumption than (A3) if ε is sufficiently small.

Lemma 6 Under (BA) and (A1)–(A3), system (30), (31) has a unique solution in L∞(0,∞).
The same is true also under (BA), (A1), (A2), (A3’).

The proof will be given in the Appendix.

As a consequence of the above two lemmas in combination, we obtain the following proposition.

Proposition 2 Under (BA) and (A1)–(A3), the adjoint equation (23) has a unique solution in
L∞(D). The same is true also under (BA), (A1), (A2), (A3’).

Proof. According to Lemma 6 system (30), (31) has a bounded solution. Then according to
Lemma 5 equation (23) also has a bounded solution, obtained by substitution of the solution
(λ, η) of (30), (31) in (26).

For any bounded solution ξ of (23) the functions λ and η defined by (25) are bounded
and satisfy (30), (31). Therefore λ and η are uniquely determined (Lemma 6), hence ξ is unique
(Lemma 5). Q.E.D.

The next theorem gives a necessary optimality condition of the type of the Pontryagin
maximum principle for problem (18)-(21).

Theorem 1 Let assumptions (BA), (A1)–(A3) (or alternatively (BA), (A1), (A2), (A3’)) be
fulfilled and let (u,N) be an optimal solution of problem (18)-(21). Let ξ be the unique solution
in L∞(D) of the adjoint equation (23). Then for a.e. t ≥ 0 the optimal control u(t, ·) maximizes
the integral ∫ ∞

0
ξ(t, a)v(a) da, (42)

on the set of measurable functions v(·) satisfying

u(a) ≤ v(a) ≤ ū(a),
∫ ∞

0
v(a) da = 1. (43)

Proof. Let J be the optimal objective value and let ξ be the unique bounded solution of the
adjoint equation (23) on D (see Proposition 2). Let us fix an arbitrary θ > 0, let h > 0 be
arbitrary (and presumably small) and T > 0 be such that θ − h ≥ 0 and θ + h ≤ T . Denote
Θh := [θ − h, θ + h]× [0,∞) ⊂ D and define a “disturbed” control

ũ(t, a) :=
{

u(t, a) for (t, a) 6∈ Θh,
v(a) for (t, a) ∈ Θh,

(44)
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where v is any measurable function satisfying (43). Then ũ satisfies the control constraints. Let
Ñ be the corresponding solution of (19)–(21) and R̃, B̃ be corresponding functions (immigration
and birth flows) defined by (4) and (5), while R and B correspond to N . Denote ∆J = J(ũ)−
J(u), ∆u = ũ−u, ∆N = Ñ −N , ∆R = R̃−R, all depending on the chosen h and v. According
to (A2), R̃ is nonnegative, and all the functions introduced above are bounded (see Lemma 4).

Clearly,

∆J =
∫ T

0
e−rt

∫ ∞

0
f(a)∆N(t, a) da dt. (45)

In order to obtain an expression for ∆N we multiply the equation

D∆N(t, a) = −µ(a)∆N(t, a)

+
∫ ∞

0
ν(α) [∆N(t, s) u(t, a) + N(t, s)∆u(t, a) + ∆N(t, s)∆u(t, a)] ds (46)

resulting from (19) by e−rtξ(t, a) and integrate on D. Since D = {(s, x + s) : s, x ≥ 0} ∪ {(x +
s, s) : s, x ≥ 0} and the two sets on the right intersect only on a set of measure zero, we may
represent

∫ ∞

0

∫ ∞

0
D∆N(t, a)e−rtξ(t, a) dt da =

∫ ∞

0

∫ ∞

0
e−rsξ(s, x + s)

d
ds

∆N(s, x + s) dsdx (47)

+
∫ ∞

0

∫ ∞

0
e−r(x+s)ξ(x + s, s)

d
ds

∆N(x + s, s) dsdx

By integration by parts the first term on the right-hand side gives
∫ ∞

0

[
e−rsξ(s, x+s)∆N(s, x+s)|∞s=0−

∫ ∞

0
∆N(s, x+s)e−rs(−rξ(s, x+s)+

d

ds
ξ(s, x+s)) ds

]
dx.

(48)
The term with s →∞ is zero because both ξ and N (and therefore ∆N) are bounded, and the
term with s = 0 is zero because ∆N(0, a) = 0. The second term on the right-hand side of (47)
is treated in the same way and combining the two terms we obtain that the right-hand side of
(47) is equal to

−
∫ ∞

0
e−rtξ(t, 0)∆N(t, 0) dt−

∫ ∞

0

∫ ∞

0
e−rt(Dξ(t, a)− rξ(t, a))∆N(t, a) dadt. (49)

Then taking into account that N(t, 0) =
∫∞
0 ϕ(a)N(t, a) da we obtain from (47), by using (12)

and rewriting it again in the (t, a)-plane, the equality

0 =
∫ ∞

0

∫ ∞

0
e−rt

[
ξ(t, 0)ϕ(a) + (Dξ(t, a)− rξ(t, a)− µ(a)ξ(t, a))∆N(t, a) (50)

+
∫ ∞

0
ν(s)ξ(t, a) (∆N(t, s)u(t, a) + N(t, s)∆u(t, a) + ∆N(t, s)∆u(t, a)) ds

]
dadt.
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Using the adjoint equation (23) we obtain that

0 =
∫ ∞

0

∫ ∞

0
e−rt

[
− f(a)∆N(t, a) (51)

+
∫ ∞

0
(ν(s)ξ(t, a)N(t, s)∆u(t, a) + ν(s)ξ(t, a)∆N(t, s)∆u(t, a)) ds

]
dadt.

Adding this to (45) we get

∆J =
∫ ∞

0

∫ ∞

0

∫ ∞

0
e−rtν(s)ξ(t, a)

[
N(t, s)∆u(t, a) + ∆N(t, s)∆u(t, a)

]
dsdadt (52)

=
∫ ∞

0

∫ ∞

0
e−rtR(t)ξ(t, a)∆u(t, a) da dt +

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−rtν(s)ξ(t, a)∆N(t, s)∆u(t, a) dsdadt.

Next we shall show that the second term on the right-hand side above is of second order with
respect to h (cf. (44)). Note, that ∆u(t, a) = 0 for t 6∈ [θ− h, θ + h], thus we need an estimation
of ∆N only on the time-horizon [0, T ] with some T > θ, say T = θ + 1.

By solving equation (19) along the characteristic lines we obtain the representation

N(t, a) = B(t− a)e−
∫ a
0∧(a−t) µ(τ) dτ +

∫ t

0∧(t−a)
e−

∫ a
a−t+s µ(τ) dτR(s)u(s, a− t + s) ds, (53)

where B is extended as B(t) = N0(−t) for t < 0 and 0 ∧ α := max{0, α}. Due to assumption
(BA) we can estimate e−

∫ a
α µ(τ) dτ ≤ 1. A similar equality holds for Ñ(t, a) corresponding to the

control ũ. Subtracting the two expressions we obtain

|∆N(t, a)| ≤ |∆B(t− a)|+
∫ t

0∧(t−a)

∣∣∆R(s)ũ(s, a− t + s) + R(s)∆u(s, a− t + s)
∣∣ds. (54)

From (4), (5) we can estimate |∆R(t)| and |∆B(t)| by c1

∫∞
0 |∆N(t, a)| da = c1‖∆N(t, ·)‖L1 ,

where c1 is a constant depending only on ϕ and µ. Then it is a matter of routine estimations
(taking into account that ∆u is non-zero on a set of measure proportional to h) to obtain the
inequality

‖∆N(t, ·)‖1 ≤
∫ t

0
c2‖∆N(x, ·)‖1e

−(t−s)µ0 dx + c3h, t ∈ [0, θ + 1], (55)

where c2 and c3 are independent of h (although may depend on θ and the data of the problem).
Since T = θ + 1 is finite, Gronwall’s lemma gives

‖∆N(t, ·)‖1 ≤ Ch, t ≤ T. (56)

Now it is straightforward to estimate the last term in (52) by

∫ θ+h

θ−h
e−rtC h ‖ν‖L∞‖ξ‖L∞

∫ ā

0
|∆u(t, α)| dα dt ≤ C h2. (57)
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Using this in the estimation (52) and having in mind that ∆J ≤ 0 due to the optimality of u
we obtain that

1
2h

∫ θ+h

θ−h
e−rt

∫ ∞

0
R(t) ξ(t, a) u(t, a) dadt ≥ 1

2h

∫ θ+h

θ−h
e−rt

∫ ∞

0
R(t) ξ(t, a) v(a) da dt− C

2
h.

(58)
Almost every s is a Lebesgue point of the function t → ∫∞

0 R(t)ξ(t, a)u(t, a) da, and R(t) > 0.
Therefore, we can conclude the proof of the theorem by taking the limit h → 0. Q.E.D.

5 Uniqueness, stationarity, and structure of the optimal immi-
gration pattern

In this section we use Theorem 1 to obtain some qualitative properties of the optimal solution of
problem (18)-(21). The most interesting one is that the optimal control u (that is, the optimal
immigration profile) is unique and time-invariant: u(t, a) = u(a). This fact is not evident. Its
proof is based on stability condition (A3) and on an additional well-posedness condition, which
implies also a bang-bang structure of the optimal control u(a).

To prove uniqueness and stationarity of the optimal solution we rewrite the adjoint equation
in a feedback form. To do this we introduce the functional σ(·):

σ(g) = max
v∈V

∫ ∞

0
g(a)v(a) da, g ∈ L∞(0,∞), (59)

where V is the set of functions v : [0,∞) → R satisfying (43). Then using the optimization
condition in Theorem 1 we can rewrite the adjoint equation (23) in the feedback form

Dξ(t, a) = (r + µ(a))ξ(t, a)− ϕ(a)ξ(t, 0)− (µ(a)− ϕ(a))σ(ξ(t, ·))− f(a). (60)

The existence of a solution in L∞(D) to this equation follows from the necessity of the maximum
principle.

Lemma 7 If assumption (A2) is fulfilled, then equation (60) has a unique bounded solution.

The proof is given in the Appendix.

Now we introduce a regularity assumption that ensures that the maximization condition in
Theorem 1 determines a unique control. As shown in Feichtinger and Veliov (2007) in a simpler
version of the problem considered here, without a certain regularity assumption the uniqueness
fails and this is due to non-concavity of the problem. On the other hand the regularity assumption
is in a reasonable sense generic and easy to check.

(A4) For all real numbers d0, d1 and d2 it holds that

meas{a ∈ [0,∞] : d0 + d1µ(a) + d2ϕ(a)− p(a) = 0} = 0. (61)
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This assumption requires that µ, ϕ and p must not be linearly related on a set of positive
measure.

Theorem 2 Let assumptions (BA), (A1)–(A4) be fulfilled. Then optimal control problem (18)
– (22) has a unique optimal control u and it is time-invariant: u(t, a) = u(a).

Proof. First we shall prove that (60) has a stationary bounded solution ξ̂(t, a) = ξ̂(a). To do
this we show that the equation

ξ′(a) = (r + µ(a))ξ(a)− ϕ(a)ξ(0)− (µ(a)− ϕ(a))σ(ξ(·))− f(a) (62)

has a bounded solution. Denote λ = ξ(0) and η = σ(ξ(·)) , then we can write the solution to the
differential equation as

ξ(a) =
∫ ∞

a
e−

∫ s
a ρ(θ) dθ[ϕ(s)λ + ν(s)η + f(s)] ds. (63)

Using the definition of σ(ξ(·)), (59), the equations for η and λ are

λ =
∫ ∞

0
e−

∫ s
0 ρ(τ) dτ [ϕ(s)λ + ν(s)η + f(s)] ds (64)

η =max
v∈V

∫ ∞

0
v(a)

∫ ∞

a
e−

∫ s
a ρ(τ) dτ [ϕ(s)λ + ν(s)η + f(s)] dsda (65)

Denoting the terms independent from λ and η by (b1, b2) we can write the equations above as

(I −K)
(

λ
η

)
=

(
b1

b2

)
, (66)

where I is the 2×2 identity matrix and K is the matrix defined by the right hand side. As in the
proof of Lemma 6 and 7, define a norm on R2 as ‖(x, y)‖ = max{|x|, α|y|}, α > 0. Estimating
the operator norm of K in the same way as in the proof of Lemma 6 gives that the norm is
smaller or equal to the left hand side in (41). Then assumption (A3) states that the norm is
smaller than one, thus (I −K) is invertible and therefore a unique solution to (66) exists. Thus,
a bounded solution ξ̂(a) of (62) exists and it is obviously a stationary bounded solution of (60).

According to Lemma 7 the stationary function ξ̂(a) is the unique bounded solution of (60).
On the other hand, Theorem 1 claims that for every optimal control u, the adjoint equation (23)
has a unique bounded solution ξ(t, a) and for a.e. t ≥ 0

∫ ∞

0
ξ(t, a)u(t, a)da = max

v∈V

∫ ∞

0
ξ(t, a)v(a) da = σ(ξ(t, ·)). (67)

Then ξ is a bounded solution also of (60), which implies that ξ = ξ̂. The above maximization
condition reads now as

∫ ∞

0
ξ̂(a)u(t, a)da = max

v∈V

∫ ∞

0
ξ̂(a)v(a) da, (68)
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where ξ̂ is the unique bounded solution of (62).
Assumption (A4) obviously implies that the solution ξ̂ of (62) cannot be constant on a

set of positive measure. Then similarly as in Corollary 5.1. in Feichtinger and Veliov (2007) one
can prove that (68) uniquely determines (modulo a set of measure zero) a control u ∈ U , it is
time-invariant and has the following structure: there is a real number l such that

u(t, a) =
{

u(a) if ξ̂(a) ≤ l,

ū(a) if ξ̂(a) > l.
(69)

Q.E.D.

We formulate the last finding in the proof of the above theorem as a corollary.

Corollary 1 Let ξ̂ be the unique bounded solution of (62). Then, there is l ∈ R such that the
unique optimal control u(t, a) = û(a) is determined by (69). This number l is the only one for
which the resulting û satisfies

∫∞
0 û(a) da = 1.

Thus the optimal solution is of bang-bang type. A related result is obtained in Simon et
al. (2012) for a static counterpart of the problem considered in this paper. Since ξ(a) can be
interpreted marginally as “shadow price” of an a-year-old individual, the above corollary asserts
that there is a critical value l such that it is optimal to encourage as much as possible migration
in ages for which the shadow price is higher than l (u(a) = ū(a)) and restrict as much as possible
migration in ages for which the shadow price is smaller than l. The remarkable fact here is that
the shadow price is time-invariant.

6 A case study: the Austrian Population

In this section, we numerically determine the optimal immigration policy of (18)–(21) for the
case study of the Austrian population. The numerical results for the optimal time-invariant
immigration profile and the population’s age structure obtained in this section are based on
the analytical results above. In all the numerical calculations below, we specify p(a) in (18) as
the characteristic function of the age interval [20, 65]. If we additionally set q = 0 the objective
function (18) is the discounted and aggregated number of workers over time. It is related to the
so-called dependency ratio, which is the ratio of nonworking age population to the working age
population. The dependency ratio is an important demographic indicator for the solvency of the
social security system of a population. The case of q > 0, which is also discussed below, accounts
for possible costs for the integration of immigrants.

For the computations, we initialize the age structure of demographic variables referring
to Austrian data as of 2009 and interpolate these data piecewise linearly to obtain continuous
representations of the vital rates, ϕ(a), µ(a). As already mentioned in Remark 1, we assume that
µ(a) = µ(95) for a ≥ 95. These demographic data together with an intertemporal discount rate
of r = 0.04 satisfy assumption (A3) with κ11 = 0.0737, κ12 = 0.0774, κ21 = 0.1480, κ22 = 0.1506.
For these values the quantity in the left hand side of (37) equals 0.2259 and is therefore well
below 1. For the initial age structure N0(a) we take the annual average numbers of the Austrian
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female population in 2009, see Figure 5 (solid line). The normalized immigration age-density
of 2009 is denoted by û(a), see Figure 4. We set the lower and upper age-specific limits for
immigration to

u(a) = 0 and u(a) = 2û(a). (70)

In the following, we analyze three scenarios: in the uncontrolled case the immigration age density
remains the same in the future u(t, a) = û(a); then we assume that q in (18) takes the value
zero and the immigration age density is chosen optimally u(t, a) = u∗(a); and additionally we
set q = 200 where again u(t, a) = u∗(a) is chosen optimally. With the last scenario we analyze
the effect of immigration costs on the optimal immigration age-pattern, see Figure 4.

The optimal solution u(t, a) = u∗(a) in the above scenarios is depicted in Figure 4. As
it can be seen in this figure, the optimal age profile of immigrants is at its upper bound from
slightly before the lowest working age of a = 20 until the mid thirties. It is on its lower bound
at any other ages. Note, that increasing the costs of immigration shifts the optimal age pattern
to the left.

In Figure 5 we compare the age structure of the initial population with the stationary
population at t = 400 which results in the uncontrolled case and when applying the optimal
u∗(a) for q = 200. The sharp increase of the optimal population N∗(400, a) at the low working
ages is due to the annual inflow of immigrants at these ages.

In Figure 6 we plot the evolution of the number of newborns B(t), the number of deaths
D(t) and the recruitment rate R(t) on the time horizon [0, 400], where D(t) = R(t)+B(t). Note,
that for the uncontrolled as well as for the controlled immigration, there is a huge increase in the
number of immigrants R(t) at the beginning, caused by the high number of deaths as a result
of the baby boom, that occurred in Austria in the 50s and 60s.
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grants R(t) (middle solid line) and the births B(t) (lower solid line) over time for the optimal
control and q = 0 compared with the uncontrolled case (corresponding dashed lines).

In Figure 7 the change of the number of workers and in Figure 8 the dependency ratio
over time are shown. We compare the scenario with q = 0 to the case where current age-specific
immigration rates would remain the same in the future. Clearly, we can sustain a higher number
of workers and simultaneously a lower dependency ratio when applying the optimal immigration
pattern u∗(a).
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7 Conclusion

Two of the key assumptions in this paper pose questions: the stability conditions (A3) (or (A3’))
and the assumption that the discount rate r is strictly positive.

We were not able to prove our main results—the optimality conditions and the stationarity
of the optimal immigration age-profile—only assuming below-replacement fertility (9) (which has
a clear demographic meaning). A challenging question is whether the “stability” provided by (9)
is not enough for the validity of the results. Apparently this question requires more profound
analyses of the stability of the involved systems of integral equations.

The question whether the optimality conditions (especially our “transversality” condition
for the associated adjoint equation) and the stationarity result can be obtained in the case of no
discount (that is, for r = 0) seems to be important since discounting is not a common practice in
the “evaluation” of demographic processes. Of course, with no discount the notion of optimality
should be appropriately defined in the spirit of overtaking optimality.
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Appendix

The proofs are in the order as they appear in the paper. The proof of Lemma 1 is omitted as it
is essentially the same as that of Lemma 2, but easier, since R is given and we deal with only
one Volterra equation – that for B.

Proof of Lemma 2. Let us start with the uniqueness. Let N ∈ N be a solution of (8), (2),
(3). Let R(t) and B(t) be defined by (4) and (5), respectively. Both are measurable and locally
bounded, according to property (i) of N .

The function N has the following representation, resulting from solving (1) along the char-
acteristic lines:

N(t, a) :=

{
e−

∫ a
0 µ(τ) dτ B(t− a) +

∫ t
t−a e−

∫ a
a−t+s µ(τ) dτ R(s) u(s, a− t + s) ds if a < t,

e−
∫ a

a−t µ(τ) dτ N0(a− t) +
∫ t
0 e−

∫ a
a−t+s µ(τ) dτ R(s) u(s, a− t + s) ds if a ≥ t,

(71)

on [0,∞). Inserting this expression for N in (5) and (4) and changing the order of integration
in the double integrals we obtain the following system of Volterra equations of the second kind
for B and R:

B(t) =
∫ t

0
R(s)

∫ ∞

0
e−

∫ a+t−s
a µ(τ) dτϕ(a + t− s) u(s, a) dads (72)

+
∫ t

0
B(s) e−

∫ t−s
0 µ(τ) dτϕ(t− s) ds +

∫ ∞

0
e−

∫ t+s
s µ(τ) dτ ϕ(s + t) N0(s) ds, (73)

R(t) =
∫ t

0
R(s)

∫ ∞

0
e−

∫ a+t−s
a µ(τ) dτν(a + t− s) u(s, a) dads (74)

+
∫ t

0
B(s) e−

∫ t−s
0 µ(τ) dτν(t− s) ds +

∫ ∞

0
e−

∫ t+s
s µ(τ) dτ ν(s + t) N0(s) ds, (75)

where ν(a) := µ(a)− ϕ(a). Notice that all the four components of the kernel of this system are
bounded due to the properties of u and the data. Indeed, take for example the most complicated
component
∣∣∣∣
∫ ∞

0
e−

∫ a+t−s
a µ(τ) dτν(a + t− s) u(s, a) da

∣∣∣∣ ≤ sup
a≥0

{
e−

∫ a+t−s
a µ(τ) dτ |ν(a + t− s)|

}∫ ∞

0
u(s, a) da

≤ ν̄, 0 ≤ s ≤ t < ∞, (76)

where ν̄ = supa≥0 |ν(a)| < ∞.
According to Theorems 5.4 and 5.5 in Chapter 9 of Gripenberg et al. (1990) this system

has a unique locally bounded solution (B, R), so that B and R are uniquely determined, hence
N is also uniquely determined by (71).

On the other hand, from the existence of the locally bounded solution (B, R) we obtain a
function N from (71). Due to the local boundedness of B and R and due to

∫∞
0 N0(a) da = M ,

we have that N ∈ N . It is straightforward to check that N satisfies (8), (2), (3), which proves
the existence.
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It remains to prove that the functions R and B are locally Lipschitz continuous. We have

B(t + h)−B(t) =
∫ ∞

0
ϕ(a)(N(t + h, a)−N(t + h, a + h)) da (77)

+
∫ ∞

0
ϕ(a)(N(t + h, a + h)−N(t, a)) da. (78)

Notice that both N and DN are bounded on every set DT due to property (i) of N and
(7). Then the second integral is proportional to h because of the absolute continuity of N along
the characteristics. For the first integral it holds that

∫ ∞

0
ϕ(a)(N(t + h, a)−N(t + h, a + h)) da (79)

=
∫ h

0
ϕ(a) N(t + h, a) da +

∫ ∞

h
ϕ(a) N(t + h, a) da−

∫ ∞

0
ϕ(a) N(t + h, a + h) da (80)

=
∫ h

0
ϕ(a) N(t + h, a) da +

∫ ∞

0
(ϕ(a + h)− ϕ(a))N(t + h, a + h) da. (81)

The last integral is proportional to h due to the Lipschitz continuity of ϕ and the boundedness
of N . Therefore, the Lipschitz continuity follows. The proof for R is analogous. Q.E.D.

Proof of Lemma 3. The function t 7→ M(t) :=
∫∞
0 N(t, a) da is locally Lipschitz (which can

be concluded analogously as for R and B in Lemma 2) and thus almost everywhere differentiable.
Then the fixed size property is equivalent to d

dt
M(t) = 0 for a.e. t. The latter is equivalent to

having the weak derivative of M(·) equal to zero. That is, having
∫ ∞

0
Ψ(t)

d
dt

M(t) dt = 0 (82)

for every Ψ(t) ∈ C∞
0 (0,∞) (the space of all infinitely differentiable function with compact

support and Ψ(0) = 0) We have
∫ ∞

0
Ψ(t)

d
dt

M(t) dt = [Ψ(t)M(t)]∞t=0 −
∫ ∞

0
M(t)

d
dt

Ψ(t) dt (83)

The first term is zero because of the properties of Ψ(t). The second we can rewrite along the
characteristic lines of (1) as follows:

∫ ∞

0
Ψ(t)

d
dt

M(t) dt = −
∫ ∞

0

∫ ∞

0
N(t, a)

d
dt

da Ψ(t) dt (84)

= −
∫ ∞

0

∫ ∞

0
N(s, τ + s)

d
ds

Ψ(s) dsdτ −
∫ ∞

0

∫ ∞

0
N(τ + s, s)

d
ds

Ψ(τ + s) dsdτ.
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Integrating again by parts and using (3) we obtain
∫ ∞

0
Ψ(t)

d
dt

M(t) dt = −
[∫ ∞

0
N(s, τ + s)Ψ(s)

]∞

0

dτ +
∫ ∞

0

d
ds

∫ ∞

0
N(s, τ + s)Ψ(s) dsdτ (85)

−
[∫ ∞

0
N(τ + s, s)Ψ(τ + s)

]∞

0

dτ +
∫ ∞

0

d
ds

∫ ∞

0
N(τ + s, s)Ψ(τ + s) dsdτ (86)

=
∫ ∞

0

∫ ∞

0
ϕ(a)N(t, a) daΨ(τ) dτ (87)

+
∫ ∞

0

∫ ∞

0

d
ds

N(s, τ + s)Ψ(s) dsdτ +
∫ ∞

0

∫ ∞

0

d
ds

N(τ + s, s) Ψ(τ + s) dsdτ.

Using (1) and rewriting the integral again in the (t, a)-plane we obtain
∫ ∞

0
Ψ(t)

d
dt

M(t) dt =
∫ ∞

0

∫ ∞

0
Ψ(t)[−µ(a)N(t, a) + ϕ(a)N(t, a) + R(t)u(t, a)] dadt. (88)

The fact
∫∞
0 u(t, a) da = 1 and the arbitrary choice of Ψ ∈ C∞

0 (0,∞) imply that the left hand
side is zero if and only if R(t) =

∫∞
0 [µ(a)− ϕ(a)]N(t, a) da.

The last claim of the lemma is evident. Q.E.D.

Proof of Lemma 4. First we shall prove that under the conditions in Lemma 4 we have
B(t) ≥ 0 for all t ≥ 0. We recall that B is a continuous function due to Lemma 2. Moreover,
from (2) and assumption (BA) we have B(0) =

∫∞
0 ϕ(s)N0(s) ds > 0. Denote

θ = sup{t ≥ 0 : B(s) > 0 on [0, t)}. (89)

Assume that θ is finite (otherwise we are done). Then B(θ) = 0. On the other hand we have
from (2) that

0 = B(θ) ≥
∫ θ

0
B(s) e−

∫ θ−s
0 µ(τ) dτϕ(θ − s) ds +

∫ ∞

0
e−

∫ θ+s
s µ(τ) dτ ϕ(s + θ) N0(s) ds, (90)

where we use the assumption R(t) ≥ 0. Obviously both terms are non-negative. We shall show
that at least one of them is strictly positive, which contradicts (90). If ϕ(a) > 0 for some
a ∈ [0, θ), then the first integral in (90) is strictly positive since B(s) > 0 on [0, θ). Alternatively,
let ϕ(a) = 0 for all a ∈ [0, θ). Then a0 ≥ θ (see assumption (BA)). Take s = a0 − θ. Then the
integrand e−

∫ θ+s
s µ(τ) dτ ϕ(s + θ) N0(s) is strictly positive (see (BA)), hence the second integral

in (90) is strictly positive, too. The obtained contradiction proves that B(t) ≥ 0 for all t ≥ 0.
From (71) it follows also that N(t, a) ≥ 0.
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Then the boundedness follows easily:

R(t) ≤
∫ ∞

0
|µ(a)− ϕ(a)| |N(t, a)| da ≤ (µ̄ + ϕ̄)

∫ ∞

0
|N(t, a)| da (91)

= (µ̄ + ϕ̄)
∫ ∞

0
N(t, a) da = (µ̄ + ϕ̄) M, (92)

where ϕ̄ is the upper bound for ϕ. The same argument proves also boundedness of B. Then the
boundedness of N(t, a) follows from (71) and the fact that u(t, a) = 0 for all sufficiently large a.

Q.E.D.

Proof of Lemma 6. Consider the kernel k(t, s) of the integral equation (32) defined in (33).
It defines an operator K : (L∞(0,∞))2 → (L∞(0,∞))2. The operator depends on u, so we need
the existence of a solution of the integral equation for every admissible u. If the operator norm is
smaller than one, a resolvent L : (L∞(0,∞))2 → (L∞(0,∞))2 with kernel l(t, s) exists according
to Corollary 3.10 and Theorem 3.6 in Gripenberg et al. (1990) and can be written as

x(t) = F (t)−
∫ ∞

0
l(t, s)F (s) ds. (93)

To show that the norm is smaller than unity, we define for α > 0 a new norm on (L∞(0,∞))2

for α > 0.
‖(x1, x2)‖ = max{‖x1‖L∞ , α‖x2‖L∞}. (94)

Take x ∈ (L∞(0,∞))2 with ‖x‖ = 1, and estimate the norm of y = Kx.

‖y‖ = max{y1, αy2} (95)

= max
{

sup
t≥0

∫ ∞

t
[k11(t, s)x1(s) + k12(t, s)x2(s)] ds, (96)

α sup
t≥0

∫ ∞

t
[k21(t, s)x1(s) + k22(t, s)x2(s)] ds

}

≤ max
{

sup
t≥0

∫ ∞

t
|k11(t, s)| ds ‖x1‖∞ + sup

t≥0

∫ ∞

0

1
α
|k12(t, s)|ds α‖x2‖∞, (97)

sup
t≥0

∫ ∞

t
α|k21(t, s)| ds ‖x1‖∞ + sup

t≥0

∫ ∞

0
|k22(t, s)|dsα‖x2‖∞

}
.

Since
∫∞
0 u(t, a) da = 1, with κij defined in (36), it holds that:

sup
t≥0

∫ ∞

0
|kij(t, s)| ds ≤ κij , i, j ∈ {1, 2}. (98)

With this, (97) and ‖x‖ = 1 it can be concluded that

‖y‖ ≤ max{κ11 +
1
α

κ12, ακ21 + κ22}. (99)
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Thus, the right hand side is an estimation for the operator norm of K. The operator norm being
smaller than unity is implied by the existence of θ0 < 1 and α > 0 such that

κ11 +
1
α

κ12 ≤θ0, (100)

ακ21 + κ22 ≤θ0. (101)

Since the first line is monotonously decreasing and the second increasing in α, for the optimal
α, which allows for the smallest possible θ0, both equations are fulfilled as equality. Therefore,
we solve the equation

κ11 +
1
α

κ12 = ακ21 + κ22 (102)

for α and obtain
α1,2 =

1
2κ21

[
κ11 − κ22 ±

√
(κ11 − κ22)2 + 4κ12κ21

]
. (103)

We insert the positive solution for α into the second line of (101) to obtain θ0:

θ0 =
1
2

[
κ11 + κ22 +

√
(κ11 − κ22)2 + 4κ12κ21

]
. (104)

The requirement θ0 < 1 is exactly inequality (41) in condition (A3).

The sufficiency of (A3’) follows because the assumption implies that for all admissible u it
holds that supt≥0

∫∞
0 kij(t, s) ds ≤ (1 + ε)κ̄2j for j = 1, 2. System (100) – (101) then reads as

κ11 +
1
α

κ12 ≤θ0, (105)

(1 + ε)(ακ̄21 + κ̄22) ≤θ0. (106)

By following the same steps as above, we obtain that (37) is sufficient for the operator norm of
K to be smaller than one.

Q.E.D.

Proof of Lemma 7. The proof is similar to the one of Lemma 6. Let us take two bounded
solutions, ξ1 and ξ2 and denote by ∆ξ(t, a) the difference between the two. The solutions ξi can
be written as (cf. (27))

ξi(t, a) =
∫ ∞

a
e−

∫ s
a ρ(θ) dθ[ϕ(s)ξi(s + t− a, 0) + ν(s)σ(ξi(s + t− a, ·)) + f(s)] ds, i = 1, 2. (107)

Let ∆λ(t) := ξ1(t, 0)− ξ2(t, 0) and ∆σ(t) := σ(ξ1(t, ·))− σ(ξ2(t, ·)), then we obtain the homoge-
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neous system of integral equations

∆ξ(t, a) =
∫ ∞

0
e−

∫ s+a
a ρ(θ) dθ(ϕ(s + a)∆λ(s + t) + ν(s + a)∆σ(ξ(s + t, ·))) ds, (108)

∆λ(t) =
∫ ∞

0
e−

∫ s
0 ρ(θ) dθ[ϕ(s)∆λ(s + t) + ν(s)∆σ(s + t)] ds. (109)

Denote by K : (L∞(0,∞))2 → (L∞(0,∞))2 the integral operator representing the system of
integral equations above. The existence of a unique solution to the system is guaranteed if
‖K‖ < 1. To show this, take the norm in the system of equations and use that σ is Lipschitz
with Lipschitz constant 1 (cf. Lemma 4.1 in Feichtinger and Veliov (2007)),

‖∆ξ‖∞ ≤κ21‖∆λ‖∞ + κ22‖∆ξ‖∞ (110)
‖∆λ‖∞ ≤κ11‖∆λ‖∞ + κ12‖∆ξ‖∞. (111)

As in the proof of Lemma 6 we define a norm ‖(∆ξ,∆λ)‖ := max{‖∆ξ‖∞, a‖∆λ‖∞} for a > 0.
We choose a > 0 in such a way, that the norm of the operator K is minimized. The minimum
is exactly the left hand side of (37) and Assumption (A3) guarantees that it is smaller than
one. Therefore, a unique solution exists to the homogeneous system, which is obviously ∆ξ = 0.

Q.E.D.

Proof of Proposition 1. The proof is a modification of that in Feichtinger and Veliov (2007)
while the underlying idea stams from Anita et al. (1998). Denote by J(u) the objective value
for an admissible control u. Due to Lemma 4 and r > 0 the value J(u) is finite and uniformly
bounded with respect to u ∈ U . Then J∗ = supu∈U J(u) is also finite. Pick a maximizing sequence
{uk} of admissible controls for which J(uk) ≥ J∗− 1

k . Denote by Nk the corresponding solution
of (19)–(22), and let Rk be defined as in (4). According to Assumption (A2) and Lemma 4 there
is a constant C such that 0 ≤ Nk(t, a) ≤ C and 0 < Rk(t) ≤ C almost everywhere and for all k.

The sequence {e−rtNk} of elements of L1(D) is weakly relatively compact due to the
Dunford-Pettis criterion. Therefore, there exists a subsequence, which will also be denoted by
Nk, such that e−rtNk converges L1(D)-weakly to some e−rtN∗, and N∗ is obviously bounded
by the same constant C. According to Mazur’s lemma there exist a sequence

e−rtÑk :=
nk∑

i=k

pk
i e
−rtNi, pk

i ≥ 0,

nk∑

i=k

pk
i = 1, (112)

that (strongly) converges to e−rtN∗ in L1(D). Obviously for every T > 0 the sequence Ñk

converges to N∗ in L1(DT ). With the same weights pk
i we define

R̃k(t) :=
nk∑

i=k

pk
i Ri(t) =

∫ ∞

0
(µ(a)− ϕ(a))Ñk(t, a) da. (113)
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Since Rk(t) > 0 holds for all k > 0 and t > 0, this also holds for R̃k and we can define

ũk(t, a) :=
1

R̃k(t)

nk∑

i=k

pk
i Ri(t)ui(t, a). (114)

Obviously ũk is also an admissible control. Moreover we have that

DÑk =
nk∑

i=k

pk
i (−µNi + Riui) = −µÑk + R̃kũk, (115)

Ñk(t, 0) =
nk∑

i=k

pk
i Ni(t, 0) =

nk∑

i=k

pk
i

∫ ∞

0
ϕ(a)Ni(t, a) da =

∫ ∞

0
ϕ(a)Ñk(t, a) da, (116)

which means that (ũk, Ñk) is an admissible control-trajectory pair in problem (18)–(22).
Since Ñk converges to N∗ in L1(DT ), we may pass to an almost everywhere converging

subsequence that we denote again by Ñk. Moreover, we may assume (passing again to a subse-
quence) that e−rtũk converges to some e−rtu∗ weakly in L1(D). Now we will show that u∗ is an
admissible control. For every measurable and bounded set Γ ⊂ [0,∞) it holds that

∫

Γ

∫ ā

0
ũk(t, a) dadt →

∫

Γ

∫ ā

0
u∗(t, a) dadt (117)

where ā is such that ū(a) = 0 for a ≥ ā, hence also u∗(t, a) = 0 (see (A1)). Since ũk are
admissible controls the left hand side is equal to meas(Γ), and thus also the right hand side.
Since this holds for any measurable and bounded set Γ, this implies that ū satisfies the integral
constraint in (22). The inequality constraints are obviously also satisfied. Therefore, u∗ is an
admissible control. In the next paragraph we shall prove that the pair N∗ solves (19)–(21) with
u = u∗.

Let us define
R∗(t) =

∫ ∞

0
(µ(a)− ϕ(a))N∗(t, a) da. (118)

Due to the pointwise convergence of Ñk in DT we obtain by passing to a limit in (113) that
R̃k(t) −→ R∗(t) for a.e. t ∈ [0, T ), and since T is arbitrary this holds for a.e. t ≥ 0. Moreover,
for a.e. t the mapping [0, T − t] 3 s −→ Ñk(t+s, s) is uniformly Lipschitz continuous. From here
it easily follows (see Feichtinger et al. (2003) for more details) that N∗(t, 0) is well defined for
a.e. t and Ñk(t, 0) −→ N∗(t, 0). Then by passing to a limit in (116) we obtain that N∗ satisfies
the boundary condition (21) for a.e. t ∈ [0, T ], hence for all a.e. t ≥ 0. In a similar way one can
prove that N∗ satisfies the initial condition (20). In order to show that (19) is also satisfied we
take an arbitrary measurable set Γ ⊂ [0, T ] integrate with respect to a ∈ Γ the representation
(71) of the solution Ñk for u = ũk. Due to the established properties we can pass on to the limit.
Since Γ is arbitrary, we obtain that (u∗, N∗, R∗) satisfy (71) on DT , hence N∗ is a solution of
(19) on D for u = u∗.
Thus (u∗, N∗) is an admissible control-trajectory pair.
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Now let us show that J(u∗) ≥ J∗. We have

J(ũk) =
∫ ∞

0
e−rt

[∫ ∞

0
p(a)Ñk(t, a) da− qR̃k(t)

]
dt

=
∫ ∞

0
e−rt

[∫ ∞

0
p(a)

nk∑

i=k

pk
i Ni(t, a) da− q

nk∑

i=k

pk
i Ri(t)

]
dt

=
nk∑

i=k

pk
i J(ui) =

nk∑

i=k

pk
i

(
J∗ − 1

i

)
≥ J∗ − 1

k
. (119)

Using this we obtain

J∗ ≤ lim sup
k

(
J(ũk) +

1
k

)
= lim sup

k
J(ũk)

= lim sup
k

∫ ∞

0
e−rt

[∫ ∞

0
p(a)Ñk(t, a) da− qR̃k(t)

]
dt

=
∫ ∞

0
e−rt

[∫ ∞

0
p(a)N∗(t, a) da− qR∗(t)

]
dt

= J(u∗). (120)

Q.E.D.
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