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Abstract. The paper revisits the issue of necessary optimality conditions for infinite-horizon optimal
control problems. It is proved that the normal form maximum principle holds with an explicitly specified
adjoint variable if an appropriate relation between the discount rate, the growth rate of the solution and
the growth rate of the objective function is satisfied. The main novelty is that the result applies to general
non-stationary systems and the optimal objective value needs not be finite (in which case the concept of
overtaking optimality is employed). In two important particular cases it is shown that the current-value
adjoint variable is characterized as the unique bounded solution of the adjoint equation. The results in
this paper are applicable to several economic models for which the known optimality conditions fail.
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1 Introduction

Infinite-horizon optimal control problems arise in many fields of economics, in particular
in models of economic growth. Typically, the initial state is fixed and the terminal state
(at infinity) is free in such problems, while the utility functional to be maximized is defined
as an improper integral of the discounted instantaneous utility on the time interval [0, o).
The last circumstance gives rise to specific mathematical features of the problems. To be
specific, let x.(-) be an optimal trajectory and (¢°,9(-)) be a pair of adjoint variables
corresponding to x,(-) according to the Pontryagin maximum principle. Although the
state at infinity is not constrained, such problems could be abnormal (i.e. 1/ = 0) and the
“standard” transversality conditions of the form lim; o 1(t) = 0 or im0 (¥(2), 24(t)) =
0 may fail. Examples demonstrating pathologies of these types are well known (see [4, 7,
13, 15, 18]).

In the end of 1970s it was suggested in [6] that a normal form version of the Pontrya-
gin maximum principle involving even a stronger ”transversality” condition holds if the
discount rate p is sufficiently large, and this condition provides bounds (in appropriate
L-space) for (+) rather only the asymptotics at infinity. Such a stronger ”transversality”
condition was proved in [6] for linear autonomous control systems.

Recently, the result in [6] was extended in [3, 4] for nonlinear autonomous systems.
Moreover, it is proved in [3, 4] that if the discount rate p is sufficiently large then the adjoint
variable () that satisfies the conditions of the maximum principle admits an explicit



representation similar to the classical Cauchy formula for the solutions of systems of linear
differential equations. In the linear case this Cauchy-type representation of ¢ (-) implies
the integral ”transversality” condition suggested in [6] and an even stronger exponential
pointwise estimate for ¢(-) (see [4, 5] for more details).

The requirement for the discount rate p > 0 to be sufficiently large is expressed in
[3, 4, 6] in the form of the following inequality:

p>(r+1)A, (1)

where » > 0 and A € R' are parameters characterizing the growth of the instantaneous
utility and trajectories of the control system, respectively (see [3, 4, 6] for precise definitions
of the parameters r and A). Condition (1) requires that the discount factor p “dominates”
the parameters r and A. In the sequel we refer to conditions of this type as dominating
discount conditions.

Note that the approaches used in [6] and [3, 4] for establishing additional characteriza-
tions of the adjoint variable ¢(-) are different. The approach used in [6] is based on methods
of functional and non-smooth analysis. This approach essentially exploits the linearity of
the control system under consideration. The method of finite-horizon approximations used
in [3, 4] is based on an appropriate regularization of the infinite-horizon problem, namely
on an explicit approximation by a family of standard finite-horizon problems. Then op-
timality conditions for the infinite-horizon problem are obtained by taking the limit in
the conditions of the maximum principle for the approximating problems with respect to
the perturbation parameters. As it is demonstrated in [3, 4] this approach is applicable
to a broad class of nonlinear control systems, however sometimes under rather restric-
tive assumptions of boundedness and convexity akin to the perturbation methodology, in
general.

The contribution of the present paper is twofold. First we extend the version of the
Pontryagin maximum principle for infinite-horizon optimal control problems with domi-
nating discount established in [3, 4] to a more general class of non-autonomous problems
and relax the assumptions. Second, we adopt the classical needle variations technique [17]
to the case of infinite-horizon problems. Thus, the approach in present paper essentially
differs from the ones used in [3, 4, 6]. The needle variations technique is a standard
tool in the optimal control theory. The advantage of this technique is that as a rule it
produces (if applicable) the most general versions of the Pontryagin maximum principle.
Nevertheless, application of needle variations technique is not so straightforward in the
case of infinite-horizon problems (see discussion of some difficulties that arise in Chapter 4
in [17]).

Another important feature of our main result is that it is applicable also for problems
where the objective value may be infinite. In this case the notion of overtaking optimality
is adapted (see [7]). In contrast to the known results, the maximum principle that we
obtain has a normal form, that is, the multiplier of the objective function in the associated
Hamiltonian can be taken equal to one.

In addition, we mention that the approach presented in this paper seems to be appro-
priate also for obtaining transversality conditions for optimal control problems on infinite



horizon for distributed parameter systems — a challenging issue that is yet undeveloped
(although such conditions are used in a number of economic papers without strict proofs).
This is demonstrated in [10] for a very specific distributed problem with age-structure.

The paper is organized as follows. In Section 2 we state the problem and formulate our
main result. In Section 3 we present the proof. In Sections 4 and 5 we elaborate the main
result in two important particular cases: for systems with one-sided Lipschitz dynamics
and for systems with regular linearization. An illustrative economic example is given in
Section 6.

2 Statement of the problem and main result

Let G be a nonempty open convex subset of R" and U be an arbitrary nonempty set in
R™. Let
f:]0,00) x Gx U R* and g:[0,00) x G x U+ R

Consider the following optimal control problem (P):
Ta)u()) = [T e gt ale), u(e) dt — max. ®)
0

2(t) = f(t,2(t),u®),  x(0) = o, (3)
u(t) e U. (4)

Here zg € G is a given initial state of the system and p € R! is a “discount” rate (which
could be even negative).

Assumption (A1): The functions f : [0,00) x G x U — R"™ and g : [0,00) x G x U + R!
together with their partial derivatives fy(-,-,-) and g;(-,-,-) are continuous in (x,u) on
G x U for any fized t € [0,00), and measurable and locally bounded in t, uniformly in
(x,u) in any bounded set. *

In what follows we assume that the class of admissible controls in problem (P) consists
of all measurable locally bounded functions w : [0,00) — U. Then for any initial state
xo € G and any admissible control u(-) plugged in the right-hand side of the control system
(3) we obtain the following Cauchy problem:

x(t) - f(tvw(t)vu(t))7 .’L’(O) = Zo- (5)

Due to assumption (A1) this problem has a unique solution z(-) (in the sense of Carathéodory)
which is defined on some time interval [0, 7] with 7 > 0 and takes values in G (see e.g.

!The local boundedness of these functions of ¢, z and u (take ¢(-,-,-) as a representative) means that
for every T' > 0 and for every bounded set Z C G x U there exists M such that ||¢(¢, z, u)|| < M for every
t€[0,7] and (z,u) € Z.



[11]). This solution is uniquely extendible to a maximal interval of existence in G and is
called admissible trajectory corresponding to the admissible control u(-).

If u(-) is an admissible control and the corresponding admissible trajectory x(-) exists
on [0,7] in G, then the integral

T
Jr(@()u() = /0 ePlg(t, o (t), u(t)) dt

is finite. This follows from (A1), the definition of admissible control and the existence of
x(+) on [0,T7.

We will use the following modification of the notion of weakly overtaking optimal
control (see [7]).

Definition 1: An admissible control u.(-) for which the corresponding trajectory x.(-)
exists on [0,00) is locally weakly overtaking optimal (LWOO) if there exists 6 > 0 such
that for any admissible control u(-) satisfying

meas{t > 0:u(t) #u(t)} <6

and for every e > 0 and T > 0 one can find T' > T such that the corresponding admissible
trajectory x(-) is either non-extendible to [0,T"] in G or

I (22 (), ws () = I (), ul-)) — &

Notice that the expression d(u(-),u.(-)) = meas{t € [0,T] : u(t) # u(t)} generates a
metric in the space of the measurable functions on [0,7], T' > 0, which is suitable to use
in the framework of the needle variations technique (see [2]).

In the sequel we denote by wu.(-) an LWOO control and by z.(-) — the corresponding
trajectory.

Assumption (A2): There exist numbers up > 0, 7 >0, K > 0, 8> 0 and ¢; > 0 such
that for everyt >0

(i) [z ()] < cret;

(ii) for every admissible control u(-) for which d(u(-),u.(-)) < [ the corresponding
trajectory x(-) exists on [0,00) in G and it holds that

92t y, us (@) < & L+ llyll")  for every y € co{x(t), z.(t)}-



Assumption (A3): There are numbers X € R', v > 0 and co > 0 such that for every
¢ € G with || — xo|| < v equation (5) with u(-) = u.(-) and initial condition x(0) = ¢
(instead of x(0) = zo) has a solution x((;-) on [0,00) in G and

(¢ 8) = 2 ()] < e2l¢ — ol €.

Finally, we introduce the following dominating discount condition.

Assumption (A4):
p> A+ rmax{\ pu}.

For an arbitrary 7 > 0 consider the following linear differential equation (the lineariza-
tion of (5) along (z«(-), us(+)):

Y(t) = folt, (), ue(t))y(t), t>0 (6)
with initial condition
y(1) = yo. (7)

Due to assumption (A1) the partial derivative f, (-, 2.(-), u«(-)) is measurable and lo-
cally bounded. Hence, there is a unique (Carathéodory) solution y.(-) of the Cauchy
problem (6), (7) which is defined on the whole time interval [0, c0). Moreover,

Yu(t) = Ku(t, T)y(7), t>0, (8)
where K,(+,) is the Cauchy matrix of differential system (6) (see [14]). Recall that
K*(t77-) = Y;(t)y;_l(T)a ta T Z 07

where Y (+) is the fundamental matrix solution of (6) normalized at ¢ = 0. This means that
the columns y;(-), i = 1,...,n, of the n xn matrix function Y, (-) are (linearly independent)
solutions of (6) on [0,00) that satisfy the initial conditions

?J@j(o) =0;j, 4,Jj=1,...,n,

where
5“':1, izl,...,n, and 51"3':0, 275], i,jzl,...,n.

)

Analogously, consider the fundamental matrix solution Z,(-) (normalized at ¢ = 0) of
the linear adjoint equation

() = = [falt, 2u(t), ua(£))]" 2(2). (9)



Then Z;1(t) = [Yi(t)]", t > 0.
Define the normal-form Hamilton-Pontryagin function H : [0,00) x G x U x R" — R!
for problem (P) in the usual way:

H(t,x,u, ) = ePlg(t,z,u) + (f(t,z,u),¥), tc[0,00), € G, ucl, pcR"

The following theorem presents the main result of the paper — a version of the Pon-
tryagin maximum principle for non-autonomous infinite-horizon problems with dominating
discount.

Theorem 1. Assume that (A1)—(A4) hold. Let u.(-) be an admissible LWOO control and
let x4(+) be the corresponding trajectory. Then
(i) For any t > 0 the integral

L(t) = /too e [Z.(5)] gu(s, 24 (s), ua(5)) ds (10)

converges absolutely.
(ii) The vector function 1 : [0,00) — R"™ defined by

P(t) = Zu(t)L(t), =0 (11)

is (locally) absolutely continuous and satisfies the conditions of the normal form mazimum
principle, i.e. () is a solution of the adjoint system

G(t) = —Ha(t, ma(t), wa (), (1)) (12)
and the mazximum condition holds:
Pt (0), (0 9(8)) € sup H(t, 2.(0) 0, 0(0). (13)

3 Proof of the main result

First we shall prove that
IOl < e, t>0, (14)

where c9 is the constant in assumption (A3). Indeed due to (A3) for any (; € R™: Cf =0,
i, =1,...n, and for all a € (0,7) we have

|x(zo + agist) — zs(t)]] < acae™. (15)

Due to the theorem on differentiation of the solution of a differential equation with respect
to the initial conditions (see e.g. Chapter 2.5.6 in [1]) we get the following equality

x(zo + agi;t) = ze(t) + ayi(t) + 0i(a,t), i=1,...,n, t>0.



Here the vector functions y;(-), i = 1,...,n are columns of Y,(:) and for any i = 1,...,n
we have ||o;(a,t)||/a — 0 as a — 0, uniformly on any finite time interval [0,7], 7" > 0.
Then in view of (15) we get

(ot
yz-(t)+OZ(O")H§cgeAt, i=1,....n, t>0.
o

Passing to the limit with @ — 0 in the last inequality for an arbitrarily fixed ¢ > 0 and
1=1,...,n we get
lya ()] < e2e™, i=1,...,n, t>0.
This implies (14).
Consider integral (10):

Due to (14) we have
[1Z(s)] 7] = MY ()]l = [IYa(s)]| < 26, s> 0. (16)
Further, due to (A2)(ii) applied to y = z.(t) and (A2)(i) we have
192(s, 2+ (s), ux ()| < K (14 [lzo(s)[") < 5 (1 + (c1")"), 520,

Combining this inequality with (16) we get the following estimate for the integrand in
(10):

e ()] a5, 20(8), (]| S e P (1 + e)
< cgenPTATTIS g >,

where c3 > 0 is a constant.
Then due to the dominating discount condition (A4) we get that for any ¢t > 0 the
improper integral (10) converges absolutely. This proves claim (i) of Theorem 1.

Further, due to the proved properties of the integral I,(-) and the definition of the
matrix function Z,.(-), the vector function ¢ : [0,00) — R™ defined by (11) is locally
absolutely continuous and by direct differentiation we get that it satisfies the adjoint
system (12). The first assertion in (i) is proved.

Now let us prove the maximum condition (13) by using a simple needle variation of
the control u.(-) [17].

Let us fix an arbitrary v € V. Denote by Q(v) the set of all 7 > 0 which are Lebesgue
points of each of the measurable functions f(-,z.(), us(+)), (-, x(-), us(+)), f(-,2£(+),v),
g(+,x«(+),v). This means (see [16]) that for every 7 € Q(v) and each of these functions of
t (take o(-) as a representative)

1 T
lim — o(t) dt = (7).

a—=0 Jr_,



Note that almost every 7 € [0, 00) belongs to Q(v).
Let us fix an arbitrary 7 € Q(v). For any 0 < «a < 7 define

o (t) {u*(t), t¢ (r—a,T1l,

v, te(r—a,rTl.

If @ < 3 (see (A2)) then meas{t > 0 : uy(t) # u«(t)} < . Then according to the first
part of (A2)(i7) the trajectory x4 (-) corresponding to u,(+) exists on [0, c0).
Due to 7 € Q(v) and (A1) we have

xa(T) - x*(T) = [f(T, :C*(T), U) - f(T, x*(T),u*(T))] + 01(04),

where here and further o;(«) denotes a function of a that satisfies o;(a)/ac — 0 as @ — 0.
Note that o;(«) may depend on v and 7 (which are fixed in the present consideration),
but not on ¢, unless this is explicitly indicated in the notation.

Let y(-) be the solution on the time interval [0, c0) of the Cauchy problem

Y(t) = folt, 2 (t), us(t)) y(2), (17)
with the initial condition
y(7) = f(1,2.(7),v) — f(7, 2:(7), us(7)). (18)
Then
Tao(T) = 24(7) + ay(7) + 01(0)
and

Ta(t) = (1) + ay(t) + o2(a,t), t =T, (19)
where for arbitrary 7' > 7 we have o2(a,t)/a — 0 as @ — 0, uniformly with respect to
ter,T].

Let us prove that the following estimate holds:

t
o2l ) )H <, t>m, (20)
o

where constant ¢4 is independent of a and ¢.
Consider on [0, 7] the Cauchy problem

l‘(t) = f(tv .%'(t), u*(t))7 ZC(T) = xa(T)' (21)

Due to the theorems on continuous dependence and differentiability of the solution of a
differential equation with respect to the initial conditions (see e.g. chapters 2.5.5 and
2.5.6 in [1]) for all sufficiently small o > 0 the solution Z,(-) of the Cauchy problem (21)
is defined on [0, 7], |Z4(0) — zo|| < v (see (A3)), and

Ta(0) = zo + ay(0) + o3(a), (22)



where y(-) is the solution of the Cauchy problem (17), (18).
Let us extend Z4(+) on [1,00) as T4(t) = x4 (t) for t > 7. Then Z,(+) is the solution of
the Cauchy problem

i(t) = f(t o), w(t),  2(0) = 7a(0).
Due to (A3) and (22) we have
|Za(t) — 2. (t)]] < e2llay(0) + oz(a)lle™, ¢ € [0,00).
Then from (19) we obtain

Hy(t)JrOQ(Z’t)H < 03(e)

a

M < C5€M, t>T, (23)

0+
where c5 is independent of o and ¢. From this, due to (14) we get

< 046’\t t>T,

Y

2] o221

<y + Hy<t> ¥

where ¢4 is independent of a and ¢. Estimate (20) is proved.

Since the admissible trajectory z,(-) exists on [0,00) for all sufficiently small « > 0,
Definition 1 implies the following: there exists § > 0 such that for all sufficiently small
a € (0,6), e = &? and any natural number k one can find 7} = T} («) > k such that

T () ua()) = Ty (24, 1)) < 02,

Hence, using that 7 € Q(v) and (19), we have

I (@a() ual) = Jry (), us(-))

= [ et a(t). ) — gt (0,0 0)

7
+ / e gt walt), ua(t)) — gtz (£), us(1))] dt

= ae™ T g(7,24(7),v) = 9(7, 2:(7), ux(T))] + 0a() (24)

+a [ e < / et 2a(6) + 5(zalt) — w(6)), ua(0)) ds, y<t>> dt

o[ )+ saalt) (0,00 s, o)) < o,



Consider the integrals

L) = / o < /0 et (8) + 5(za(t) — a(1)), (1)) ds, y<t>> dt
and
D) = / E < /0 et (t) £ 5(za(t) — (1)), 1) ds,02<a,t>> dt

in (24).
Using (8) we obtain that

Ilyk(a)

T 1
= </ e Pt [K*(t,T)]*/O 9u (b, i () + s(xa(t) — 2£(t)), ux(t)) ds dt, y(7)>

= T T];e_pt ! T s(x —x u s T
= <Z*( )/T [Z:(1)] /O 9o (t, 2 (t) + 5(za(t) — (1)), us(t)) ds dt, y( )>,

where due to (A2), (16) and (23) the integrand in the outer integral can be estimated as
follows:

1
e [Z*(t)]_l/o 9 (t, 2+ (1) + 8(xa(t) — 24(t)), ux(t)) ds

< e PleseMie (1 + ([lon ()] + lay(®) + oa(a, OI))
< e—PtCQe)‘% (1 + (cle“t + 04056)‘t)r>
< CGG—(p—/\)teT max{/\,u}t. (25)

Here the constant c¢g does not depend on « and k. According to (A4) the right-hand side
is bounded. Hence taking a limit in the outer integral as k — co we get

T/

v 1
lim {e_pt (Z.(t)] " /0 9o (t, x4 (t) + s(za(t) — z(t)), ux(t)) ds} dt

k—oo J,

= [z [ ot + st 0 - a0 00) s} ar

0
Hence, there is a limit

Li(a) = khﬂrgo I k(o)

(%) 1
= T e P Z. (1)t (T, Ty s(xa(t) — x4 (1)), uyg sdt, y(1) ).
—<Z*<> [ 207 [ gulti )+ s(aa(®) 0.0, 0.0 d, o >>

10



As shown above, the integrand in the outer integral is uniformly bounded by an integrable
exponent. Then the limit in a — 0 also exists:
lim lim [ p(a) = limo I ()
oa—

a—0 k—oo

= (20 [{em 207 sltn .00} )

= (W), f(1,24(7),0) = f(7,2:(7), ux (7)) - (26)

For the second integral in (24) we have
I T ! t
wle)_ | ’“e—pt</ gm(t,:c*(t)—l—s(:ca(t)—:L‘*(t)),u*(t))ds,%(z’)> dt.
T 0

Here due to (A2), (23) and (20) we obtain, in a similar way as (25), that the integrand is
bounded by an integrable exponent. Hence, there is a limit

T e’} 1

im 200 _ e_pt< | gultn(0) + sttt —x*(t))7u*(t))d5»w> d,
k—o0 o - 0 (0}

and due to the Lebesgue theorem we get

I
Iim lim 2R ()

a—0 k—oo «

(27)

00 1
—lim [ e </0 9o (t, 2o (t) + 5(za(t) — T4 (1)), ux(t)) ds, °2<a’t)> dt = 0.

a—0 /. «

Now dividing the last inequality in (24) by o > 0 we obtain that

P [g(r, 4 (7),0) — g(7, 24 (7), un (7)) + Tr(a) + 12,,;(&) Loule) o

Taking the limit in this inequality first with & — oo and then with o — 0 and using (26)
and (27) we obtain that

e T g(7, 2(7), 0) = g(7, 24 (7), ua(7))]

+ (1), (7, 2:(7), 0) = [T, 24(7), us(7))) <0

For the fixed v € U, this inequality holds for every 7 € Q(v). Let U? be a countable
and dense subset of U. From the above inequality we have

H(t, 4 (1), we(t), (1)) > H(t, z4(t),v,%(t)) for every v € U?

and for every ¢t € N, cyaf2(v), that is, for almost every t. Due to the continuity of the
Hamiltonian with respect to u the last inequality implies the maximum condition (13).
This completes the proof of Theorem 1.

11



4 One-sided Lipschitz and dissipative systems

Without targeting generality we consider problem (P) under the following conditions, in
addition to (Al):

(f(t,z,u) — f(t,y,u),z —y) < Nz — gyl Vt>0,z,ye G, uel, (28)

lgo(t, z,u)| <ez Vt>0,z€G, uel, (29)
p> A, (30)

where A € R! and ¢; > 0 are constants. In addition, we assume that for the LWOO
solution (u(-),z«(+)) (if such exists) there is v > 0 such that

z,(t) +veMB C G, (31)
where B is the unit ball in R".

Condition (28) is often called one-sided Lipschitz condition. In contrast to the standard
Lipschitz condition (with respect to x), which obviously implies (28), it may be fulfilled
with a negative constant A\. An example is f(x) = —z. In the case A\ < 0 condition (28)
is also referred to as dissipativity or as strong monotonicity.

Clearly, due to (29) assumption (A2)(ii) is fulfilled with » = 0, therefore (A2)(i) is not
needed at all, since rmax {\, u} = 0. (In fact, in order to verify that the growth of the
optimal z,(-) does not matter in the case r = 0 one has to go trough the proof of Theorem
1). The dominating discount condition (A4) is also fulfilled; it takes the form (30). The
next lemma claims that (A3) also holds true. Although the proof is standard we present
it for completeness.

Lemma 1. If (A1), (28)-(31) are fulfilled then (A3) is also fulfilled with co = 1 and =y
from (31). Moreover, ||K.(t,7)| < e**=7) for every t, T € [0,00).

Proof. Let us fix an arbitrary ¢ such that || — z¢|| < 7. For all ¢ for which the
corresponding solution x((;t) still exists in G we denote A(t) = ||x(¢;t) — x«(¢)||. Due to
the uniqueness of the solution of (3) we have that A(¢) > 0. Then

1d

ADA() = 5 S (AW = (#(G1) — Ea(8), 2(G: ) — 22(0)

(f(t2(G 1), u(t) = f(tza(t), u(t)), 2(C 1) — 24(8)) < MA(H)?.

Hence,

A(t) < AA(),  A0) = [ = oll.

Then A(t) < eM||¢ — zo]| < e and due to (31) this holds on [0,00). This proves the
first part of the lemma.

12



Exactly in the same way one can prove that for any 7 € [0, 00), if ||¢ — z*(7)|| < 7e'7,
then the solution z(7,(;-) of (3) with u(-) = u«(-) and condition x(7,(;7) = ( exists on
[7,00) in G and ||z(7,¢;t) — 2*(t)|| < ||¢ — 2*(7)[|eMt=7) for all + > 7. The second claim
of the lemma follows from this fact exactly in the same way as inequality (14) in the
beginning of the proof of Theorem 1. The lemma is proved. [J

Then we obtain the following corollary of Theorem 1.
Corollary 1. If (A1), (28)-(31) are fulfilled then the claims of Theorem 1 hold true with
the additional property that 1(-) is the unique solution of the adjoint equation (12) for

which the corresponding current value adjoint variable &(t) := ePap(t), t > 0, is bounded.

Proof. To prove the additional claim in the corollary we first estimate, using (11),
(29) and Lemma 1,

e < er [ o]
t

Z.(t) [Z*(s)rlH ds

ds

= o / e () ()

t

o0
. / e P (K (s, 1)"|| ds
t

< o /00 e~ (PN g — T
0 p—A

Now let () and () be two solutions of the adjoint equation (12) such that there is
a constant cg > 0 for which [|e”'9)(t)|| < cs and ||e”’4)(t)|| < cg for every t > 0. Then

d

W) - D(t) = = (falt,ma(t), us ()" () — (1)),

hence, from the Cauchy formula we have for any 7 > 0
$(0) = (0) = [Z:()] 7 ((7) = &(7)).
Then
19(0) = DO < 1Ya(m)I[e(r) = D)l < X[eo(r) = (7)]| < 2ese™ P77

Since 7 can be taken arbitrarily large the dominating discount condition (A4) (see (30))
implies that 1(0) — 1(0) = 0, which completes the proof of the corollary. [
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5 Systems with regular linearization

First we recall a few facts from the stability theory of linear systems (see [8, 9] for more
details).
Consider a linear differential system

y(t) = A(t)y(1), (32)

where t € [0,00), y € R", and all components of the real n x n matrix function A(-) are
bounded measurable functions.
Let y(-) be a nonzero solution of system (32). Then, the number

1
A = limsup n In ||y (t)]
t—o0

is called characteristic Lyapunov exponent or, briefly, characteristic exponent of the so-
lution y(-). The characteristic exponent A of any nonzero solution y(-) of system (32) is
finite. The set of characteristic exponents corresponding to all nonzero solutions of system
(32) is called spectrum of system (32). The spectrum of system (32) always consists of at
most n different numbers.

The solutions of the system of linear differential equations (32) form a finite-dimensional
linear space of dimension n. Any basis of this space, i.e., any n linearly independent solu-
tions y1(+), ..., yn(), is called fundamental system of solutions of system (32). A fundamen-
tal system of solutions yi(),...,yn(-) is said to be normal if the sum of the characteristic
exponents of these solutions y1(-),...,yn(+) is minimal among all fundamental systems of
solutions of (32).

It turns out that a normal fundamental system of solutions of (32) always exists. If
y1(-)y .-+, yn(-) is a normal fundamental system of solutions, then the characteristic ex-
ponents of the solutions y1(+),...,yn(:) cover the entire spectrum of system (32). This
means that for any number A in the spectrum 5\1, e N of system (32), there exists a
solution of this system from the set y1(-),...,yn(-) that has this number as its character-
istic exponent. Note that different solutions y;(-) and yg(-) in the fundamental system
y1()s .-, yn(-) may have the same characteristic exponent. In this case denote by ns the
multiplicity of the characteristic exponent Xs, s = 1,...,1, of the spectrum of differential
system (32). Any normal fundamental system contains the same number ng of solutions
to (32) with characteristic number 5\5, 1 <s <, 1 <n, from the Lyapunov spectrum of

(32).
Let l
o= n,
s=1
be the sum of all numbers A1, ..., \; of the spectrum of differential system (32), counted
with their multiplicities ng, s = 1,...,1.

14



The linear system (32) is said to be regular if

t
o = liminf 1/ trace A(s) ds,
t—oo 0

where traceA(s) is the sum of all elements of A(s) that lie on the principal diagonal. If
system (32) is regular, then, for any € > 0, its Cauchy matrix K (-, -) satisfies the following
inequality: B
K (s,8)|| < e(e)eM*™0%%5 forany t>0 and any s>t (33)
where ) is the maximal element of the spectrum and the constant c(¢) > 0 depends only
on €.

Note that differential system (32) with constant matrix A(t) = A, t > 0, is always
regular. In this case the maximal element A of the spectrum of differential system (32)
equals the maximal real part of the eigenvalues of the matrix A.

Similarly to Corollary 1 we deduce another corollary of Theorem 1.

Corollary 2. Let assumptions (Al)—(A4) be fulfilled and let the linearized system (6) be
reqular. Then the claims of Theorem 1 hold true with the additional property that 1(-) is
the unique solution of the adjoint equation (12) for which the corresponding current value
adjoint variable £(t) := el4p(t), t > 0, is bounded.

Proof. Let A« be the maximal element of the spectrum of system (6). Then due to
(14) we have A, < A. Hence for any € > 0 the Cauchy matrix K, (-, -) of system (6) satisfies
the inequality (see (33))

| K. (s,8)|| < e(e)eM*™9F25 forany t >0 and any s>t

where ¢(¢) > 0 is a constant depending only on &.
Then for a fixed € < p — A — ru, using also (11) and (A2)(ii), we obtain the following
estimate:

@l < [ e |20 1201 Igato (9. u. (D ds

< H/t e_P(S—t) H[(Y:k(t))*]_l (Y;(S))* (1 X ”:L'*(s)”T) s
o0
< /-f.;/ e~ ||(K (s,£))*]| (1 + (c1e#®)") ds
t
< (o) [T (1 )
t
< epcle) [ ertor gy e
B 0 p _ )\ _ T//L _ 57
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where ¢z > 0 is the same constant as in the proof of Theorem 1.
Now let 9(-) and 1(-) be two solutions of adjoint equation (12) such that there is a
constant cg > 0 for which [[e?'1)(t)|| < cg and ||e?'1)(t)]| < cg for every t > 0. Then

%(w(t) = (1) = —(folt,wa(t), (1)) () — (1)),

hence, from the Cauchy formula we have that for any 7 > 0

$(0) = 9(0) = [Z()] ((r) = (7).
Then

16(0) — SO < V(D7) — SN < ) — D) < 2e9e= 67,

Since 7 can be taken arbitrarily large the dominating discount condition (A4) implies that
¥(0) — ¢(0) = 0, which completes the proof of the corollary. [

6 An illustrative economic example

As an example, consider the following stylized (micro-level) economic problem (P1):

JE(),I() = /0 Y {eptmt))a = D)) dt — man

under the constraints .
K(t)=—-vK(t)+ I(t), K(0)= Koy,

I(t) > 0.

Here K (t) is interpreted as the capital stock at time ¢, I(¢) is the investment, v > 0 is
the depreciation rate, Ky > 0 is a given initial capital stock, d > 0 is the discount rate,
p > 0 is the (exogenous) exponential rate of technological advancement, bI%(t) (b > 0)
is the cost of investment I(t), and o € (0,1] defines the “production function”. We put
G = (0,00). The optimality of an admissible control I,(-) in problem (P1) is understood
in the sense of Definition 1.

Since an infinite growth is possible in this model, we introduce the “detrended” vari-

ables
p

z(t) = e “K(t), u(t)=e *I(t), with a= Sy

In the new variables the model takes the form of the following problem (P2):

J(x(),u() = /0 " eta-2ar [@c(mff ~ (2] dt - ma

subject to
i(t) = —(v + a)a(t) + u(t), (0) = Ko.
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u(t) > 0.

Here as above G = (0,00) and we are looking for an admissible LWOO control u,(-) in
problem (P2).

It is clear that for this problem the optimal trajectory (if it exists) is uniformly positive
(even if p = 0), so that without loss of generality we may take G = (n,00), where 7 is a
sufficiently small positive number. Then conditions (A1), (A2)(ii) and (A3) are fulfilled
with r = 0, kK = 0/n'77, A = —(v + @), c2 = 1 and any small enough v > 0, therefore
(A2)(i) is not needed at all, since rmax {\,u} = 0 (see discussion in the beginning of
Section 4). Further, since here p = d — 2« and r = 0, the dominating discount condition

(A4) reads as
dtv>a (— P ). (34)

C2-¢

We assume that this condition is fulfilled.
Notice that the “discount rate” p can be non-positive, namely if

d
§§a<d+u.

In this case a solution with a finite objective value does not exist, although a LWOO
solution exists, as it will be shown below.

Denote A )
o
M= - 2.
bnl—e (d+1/—oz+ )

We shall show that if an admissible control u(-) takes values greater than M on a set of
positive measure, then u(-) is not optimal in the problem (P27), which is (P2) considered
on a finite horizon [0, 7.

Take an arbitrary admissible control u(-) for which the set

Mar = {t >0:ut) > M}

is of positive measure. Let 7 € My be a Lebesgue point of the measurable functions u(-)
and u2(-). Almost all points 7 € 9y, are such.

For an arbitrary 0 < ¢ < 7 define a simple needle variation u.(-) of u(-) as follows (see
Section 3):

uJﬂ:{Mﬂ,t¢ﬁ—aﬂ,

0, te(r—e,T.

If ¢ <6 then meas{t > 0 : us(t) # u(t)} < 6. Denote by z(-) and z-(-) the admissible
trajectories corresponding to u(-) and w.(-) respectively.
The direct calculations give that for any ¢t > 7 we have

2o (t) = x(t) — e~ WH)E=7) /T u(s) ds
= z(t) — e~ W) (u(1)e + 01(¢))
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where 01(¢) depends only on € and o01(¢)/e — 0 as ¢ — 0. This implies that for any ¢ > 7

(x(8)7 = (2:(1))” <

g

e e~ FIET) (4(1)e 4 01(e)) .

Hence (in view of (34)), for any T'> 7 and ¢ € (0, 1] so small that el=2%¢ < 2 we get

T
Jr (), u() = Jr(we(), ue() = / e~ =200 (4(1))7 — (22(1))7) dt

0

T (v+a)(t—e) T T
_b / (@200t ()2 gy < TE T / e~ (dHv—alt gy / u(t) dt
2 T—¢ 771 7 T—¢ T—¢

O.e(lj—‘rOl)T

+ 771—0

T
/ e~ (dtv—ajt (u(T)e +o1(g)) dt — ge_(d—2a)7 (5(U(7’))2 + 02(8))

where 0y(g) and og(¢) result from the Lebesgue property of (u(-))? and u(-) at 7. Due to
the definition of M the last expression is strictly negative for all sufficiently small € > 0.
Thus the control u(-) is not optimal in problem (P27).

Let us show that an optimal control in problem (P27) exists. If {u] ()}, k=1,2,...,
is a maximizing sequence of admissible controls in the problem (P2T) then there are
constants Cy > 0 such that ||u] (t)|| < Cy, t € [0,T]. Considering problems (P27, k =
1,2, -, with additional control constraints ||u(t)| < Cj. By a standard weak convergence
argument (in the space of measurable and square integrable controls u(-) on [0,7]) we
obtain existence of optimal controls ug*() in each problem (P27), and all uf*() are
bounded by M. As far as the sequence {u} (-)}, k = 1,2,... is maximizing in (P2r) and
the controls uz*() are optimal in (PQE), the latter form also a maximizing sequence in
(P27). Then taking if necessary a subsequence we obtain that the sequence {uf L)
k=1,2,---, converges weakly to an admissible control u! () which is optimal in problem
(P21).

Now let us sketch the prove of existence of a LWOO control wu.(-) in problem (P2).
Select a sequence {1}, k = 1,2,..., such that Ty < Tgy1 and T — o0 as k — oo,
and consider the corresponding sequence of problems (P27%), k =1,2,..., on finite time
intervals [0, Tx]. As it is shown above for any & = 1,2,... there is an optimal admissible
control ui*(-) in problem (P27%) on [0,7T}], and all these controls ul*(-) are bounded by
the same constant M. Let us extend ulk(-), k = 1,2,..., as constant to [0,00). Then
passing if necessary to a subsequence we define an admissible control u.(-) in problem
(P2) as the weak limit of sequence {ul*()}, k = 1,2,..., as k — oo on arbitrary finite
time interval [0, 77, T > 0. It turns out that the so constructed u.(-) is a LWOO control
n (P2). If d — 2 > 0 then this fact can be proved directly by assuming the contrary (in
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this case the integral utility functional is finite and wu,(-) is optimal in (P2) in the usual
sense). If d — 2a < 0 then one can prove LWOO optimality of control u.(-) assuming
the contrary and using the relations of the Pontryagin maximum principle for the optimal
controls uy(+) in problems (P27%) on [0,T}], k = 1,2,..., and inequality (34).

The current value adjoint system for problem (P2) reads as

f(t) = (p+ NE(t) — ox’ 1 = (v+d—a) - o1

According to Corollary 1 (or 2 as far as both Corollaries 1 and 2 are applicable in this
example) this equation has a unique bounded solution £(-) and the LWOO optimal control
satisfies (due to (13)) u.(t) = $£(t). Thus we come up with the following system of
equations determining the LWOO optimal solution:

H) = —a)et) + €0, a0)= Ko,

Et) = —ox(t) T+ (v+d— )E(t), £(+) is bounded.

According to Corollary 1 (or 2) this specific “boundary value problem” has a unique so-
lution. This property makes it possible to apply standard methods of investigation, based
on the fact that (2(0),£(0)) = (Ko, £(0)) must belong to the stable invariant manifold of
the above system (see e.g. [12]). In the particular case o = 1 the solution is explicit:

1

f(t) - m;

hence the LWOO optimal control for the original problem is
ePt
I(t) =
0=

v+d—p)’

provided that d + v > p. We stress again that in the case d + v < p a WLOO solution
does not exist, and that in the case ¢ < p < d 4+ v the LWOO solution produces infinite

2
objective value, thus it has no “classical” meaning.
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