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Abstract

This paper investigates stability properties of affine optimal control problems constrained by semilin-
ear elliptic partial differential equations. This is done by studying the so called metric subregularity of
the set-valued mapping associated with the system of first order necessary optimality conditions. Pre-
liminary results concerning the differentiability of the functions involved are established, especially the
so-called switching function. Using this ansatz, more general nonlinear perturbations are encompassed,
and under weaker assumptions, than the ones previously considered in the literature on control con-
strained elliptic problems. Finally, the applicability of the results is illustrated with some error estimates
for the Tikhonov regularization.

1 Introduction

We consider the following optimal control problem

31613{/9 [w(m) +S(ac,y)u] dac}, (1.1)

subject to

—div (A(z)Vy) +d(z,y) = Blx)u in Q
(1.2)

A(x)Vy v+ b(z)y 0 on ON.

The set Q2 C R™ is a bounded domain with Lipschitz boundary, where n € {2,3}. The unit outward normal
vector field on the boundary 02, which is single valued a.e. in 02, is denoted by v. The control set is given
by

U :={u:Q— R measurable : by(z) < u(x) <bs(x) for ae. x € Q},

where b; and by are bounded measurable functions satisfying by (z) < ba(z) for a.e. x € . The functions
W:AXRR s:AXRIR d:AXxR—-R, 5:Q—=Randb: 02— R are real-valued and measurable,
and A : Q — R™ ™ is a measurable matrix-valued function.

There are many motivations for studying stability of solutions, in particular for error analysis of numerical
methods, see e.g., [30, 31]. Most of the stability results for elliptic control problems are obtained under
a second order growth condition (analogous to the classical Legendre-Clebsch condition). For literature
concerning this type of problems, the reader is referred to [18, 21, 22, 24, 25, 35] and the references therein. In
optimal control problems like (1.1)—(1.2), where the control appears linearly (hence, called affine problems)
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this growth condition does not hold. The so-called bang-bang solutions are ubiquitous in this case, see
[4, 9, 10]. To give an account of the state of art in stability of bang-bang problems, we mention the works
[1, 28, 29, 33, 37] on optimal control of ordinary differential equations. Results for optimization problems
constrained by partial differential equations have been gaining relevance in recent years, see [5, 8, 9, 10, 12, 34].
However, its stability has been only investigated in a handful of papers, see e.g., [12, 32, 34]. From these
works, we mention here particularly [34], where the authors consider linear perturbations in the state and
adjoint equations for a similar problem with Dirichlet boundary condition. They use the so-called structural
assumption (a growth assumption satisfied near the jumps of the control) on the adjoint variable. This
assumption has been widely used in the literature on bang-bang control of ordinary differential equations in
a somewhat different form.

The investigations of stability properties of optimization problems, in general, are usually based on the
study of similar properties of the corresponding system of necessary optimality conditions. The first order
necessary optimality conditions for problem (1.1)—(1.2) can be recast as a system of two elliptic equations
(primal and adjoint) and one variational inequality (representing the minimization condition of the associated
Hamiltonian), forming together a generalized equation, that is, an inclusion involving a set-valued mapping
called optimality mapping. The concept of strong metric subregularity, see [11, 16], of set-valued mappings
has shown to be efficient in many applications especially ones related to error analysis, see [2]. This also
applies to optimal control problems of ordinary differentials equations, see e.g., [15, 28].

In the present paper we investigate the strong metric subregularity property of the optimality mapping
associated with problem (1.1)—(1.2). We present sufficient conditions for strong subregularity of this map-
ping on weaker assumptions than the ones used in literature, see Section 6 for precise details. The structural
assumption in [34] is weakened and more general perturbations are considered. Namely, perturbations in
the variational inequality, appearing as a part of the first order necessary optimality conditions, are consid-
ered; which are important in the numerical analysis of ODE and PDE constrained optimization problems.
Moreover, nonlinear perturbations are investigated, which provides a framework for applications, as illus-
trated with an estimate related to the Tikhonov regularization. The concept of linearization is employed in
a functional frame in order to deal with nonlinearities. The needed differentiability of the control-to-adjoint
mapping and the switching function (see Section 3) is proved, and the derivatives are used to obtain ad-
equate estimates needed in the stability results. Finally, we consider nonlinear perturbations in a general
framework. We propose the use of the compact-open topology to have a notion of “closeness to zero” of
the perturbations. In our particular case this topology can me metrized, providing a more “quantitative”
notion. Estimates in this metric are obtained in Section 5.

2 Preliminaries

The euclidean space R® is considered with its usual norm, denoted by |-|. As usual, for p € [1,00), we denote
by LP(£2) the space of all measurable p-integrable functions 1 : @ — R® with the norm

V] Le () = (;/Q \wi(x)|”da:)%.

The space L () consists of all measurable essentially bounded functions v : Q — R® with the norm

|¢|L°°(Q) := esssup |9 (x)].
TEQ

We denote by C (Q) the space of continuous functions on € that can be extended continuously to € equipped
with the L*°-norm. We denote by H'(2) the space of functions ¢ € L*(Q) with weak derivatives in L?(Q)
endowed with its usual norm. The space H!(Q) N C(Q) is endowed with the norm

[Vl @)nc@) = [Pl @) + [¥lcq)-

A function ¢ : Q x R — R is said to be Carathéodory if 1(-,y) is measurable for every y € R, and 9 (z, ) is
continuous for a.e. x € Q. A function ¥ : 2 x R — R is said to be locally Lipschitz uniformly in the first
variable if for each M > 0 there exists L > 0 such that

[Y(x,y2) —¥(x,y1)| < Lly2 — 1]



for a.e. € Q and all y1,y2 € [-M, M]. In order to abbreviate notation, we define f,g: 2 x R x R — R by

The following assumption is supposed to hold throughout the remainder of the paper. It ensures that the
mathematical objects related to problem (1.1)—(1.2) that we consider are well defined. Assumption 1 is quite
standard in the literature, see the book [39].

Assumption 1. The following statements are assumed to hold.

(i) The set Q@ C R™ is a bounded Lipschitz domain. The matriz A(x) is symmetric for a.e. x in Q, and
there exists o > 0 such that £ - A(z)€ > a|&|? for a.e. z in Q and all £ € R™.

(i) The functions w, s and d are Carathéodory, twice differentiable with respect to the second variable, and
their second derivatives are locally Lipschitz uniformly in the first variable.

(i1i) The functions A, 8,b,d(-,0),dy(-,0),wy(-,0) and s,(-,0) are measurable and bounded.

(iv) The function dy(-,y) is nonnegative a.e. in § for all y € R. The function b is nonnegative a.e. in O
and |b‘L<x>(aQ) > 0.

Ttems (¢) and (iv) of Assumption 1 ensure that the partial differential equations appearing in this paper
have unique solutions in the space H!(Q) N L>(Q).

2.1 The elliptic operator
We consider the set D(L) of all functions y € H(2) N L>°(Q2) for which there exists h € L*(Q) such that

/ A(x)Vy - Vodr + b(x)ypds(z) = / hodr Yo € HY(Q). (2.1)
Q Q

[2}9)

As usual, ds denotes the Lebesgue surface measure. It is easy to see that for each y € D(L) there exists a
unique element h € L?(Q) such that (2.1) holds. We define the operator £ : D(£) — L?*() by assigning
each y € D(L) to the function h € L?(Q) satisfying (2.1). By definition, a function y € H(Q) N L>=(Q)
belongs to D(L) if, and only if, it is the weak solution of the linear elliptic partial differential equation

—div(A(z)Vy) = h in Q
AX)Vy-v+bz)y = 0 on 00
for some h € L?(€). The following lemma is of trivial nature.

Lemma 2.1. The set D(L) is a linear subspace of H'(Q)NL>(Q). Moreover, the operator £ : D(L) — L?()
is a well defined linear mapping.

If D(L) is endowed with the norm of L2(£2), then £ is an unbounded operator from D(L£) to L?(£2). Since
A(x) is symmetric for a.e. x € Q, by (2.1) we have

/Eytpdm:/yﬁcpdm (2.2)
Q Q

for all y, p € D(L), the so-called integration by parts formula.

Remark 2.2. If 09 is of class C!, A is Lipschitz in €, and b is Lipschitz and positive in 02, then
D(L) = {y € H*(Q) : A()Vy-v+b(-)y = 0},

and Ly = — div (A(-)Vy) for all y € D(L), see [19, Theorem 2.4.2.6].

The following lemma shows the inclusion D(L£) C C(). Its proof can be found in [39, Theorem 4.7] and
follows the arguments in [4, 38].



Lemma 2.3. Let o € L°°(2) be nonnegative and h € L*(Q). There exists a unique function y € D(L) such
that

Ly+a()y=nh (2.3)

and this function belongs to C(Q). Moreover, for each v > n/2 there exists a positive number ¢ such that

1Yl (@)nc@) < clhlir @)
for all a € L>(Q) nonnegative, y € D(L), and h € L*(2) N L™ () satisfying (2.5).

The following technical lemma can be deduced from Lemma 2.3, see the proof of [10, Lemma 3.4]. Its
use in optimal control of elliptic partial differential equations dates from the paper [9, Lemma 2.6]. It has
shown to be useful for diverse estimates, see [9, 34].

Lemma 2.4. There exists a positive number ¢ such that
[Ylr2() < clhlpa)
for all o € L>=(Q) nonnegative, y € D(L) and h € L*(Q) satisfying (2.3).

The proof of the next result can be found in [7, Theorem 2.11] in the case of a Dirichlet problem, see
also [20, Lemma 6.8]. Here we adapt the argument below Theorem 2.1 in [6, p. 618].

Lemma 2.5. Let v € L*(Q) be nonnegative, {hm}p—, be a sequence in L*(Q) and h € L*(Q). For each
m €N, let y, € C() be the unique function satisfying Lym + (-)Ym = hm, and let y € C(Q) be the unique
function satisfying of Ly + a(-)y = h. If hy, — h weakly in L*(Q), then v, — y in C(Q).

Proof. Let p € (2n/(n+2),n/(n—1)). Then W?(Q) is compactly embedded in L?(2) and consequently, by
Schauder’s Theorem, L?()) is compactly embedded in WP (Q)*. By the latter compact embedding, every
weakly convergent sequence in L2(Q) converges also in W1 (2)* to the same limit. Define K : L%(Q) — C(Q)
by Kh := y, where y € C(f) is the unique function satisfying Ly + «(-) = h. The result follows from [27,
Theorem 3.14], since that theorem asserts that the linear operator K is continuous from L?(Q2) endowed with
the norm of W1P(Q)* to C(f). O

Remark 2.6. Using the definitions of the set D(£) and the operator £, we can write in a shorter way the
partial differential equations involved in this paper. For example, given u € U, to say that y belongs to D(L)
and satisfies Ly +d(-,y) = B(-)u is equivalent to say that y belongs to H(Q) N L>(Q) and satisfies the weak
formulation of (1.2), that is

/QA(J;)Vy-Vgodx—i—/Qd(ay)apda:—&-/m b(x)yp ds(x) :/Qﬁ(x)ugpdx

for all ¢ € H*(Q). This weak formulation makes sense since, by (ii) and (iii) of Assumption 1, for any
y € L>®(Q), the function d(-,y) belongs to L>(2).

2.2 The control model

Having in mind Remark 2.6, given a function v € U we say that y,, € D(L) is the associated state to u € U
if

The following proposition shows that the mapping u — y,, from U to D(L) is well defined. Its proof can
be found in the standard literature; it follows from [39, Theorem 4.8], see also [39, p. 212].

Proposition 2.7. For each u € U there exists a unique state y, € D(L) associated with v € U. Moreover,
{yu : u € U} is a bounded subset of H*(2) N C(Q) and for each r > n/2 there exists ¢ > 0 such that

|Yup — ZUu1|H1(Q)mc(Q) < clug — u1|LT(Q)

for all uy,us € U.



We call the function G : & — H'(Q) N C(Q) given by G(u) := y, the control-to-state mapping. The
functional J : U4 — R given by

J(u) ::/Qg(a:,yu,u)da:

is called the objective functional of problem (1.1)—(1.2).
Definition 2.8. Let @ belong to U.
(i) We say that @ is a global solution of problem (1.1)-(1.2) if 7 (@) < J(u) for all u € U.

(ii) We say that @ is a local solution of problem (1.1)—(1.2) if there exists g > 0 such that J(a) < J(u)
for all w € U with |u — @[z () < €o.

(iii) We say that @ is a strict local solution of problem (1.1)—(1.2) if there exists €9 > 0 such that J(u) <
J (u) for all uw € U with u # @ and |u — u[z1(q) < 0.

Under Assumption 1, problem (1.1)—(1.2) has at least one global solution. The proof is routine and can
be obtained by standard arguments; namely, taking a minimizing sequence and using the weak compactness
of U in L?(1).

Lemma 2.9. Problem (1.1)-(1.2) has at least one global solution.

In order to make notation simpler, from now on we fix a local solution 4 € U of problem (1.1)—(1.2). We
call the function H : @ x R x R x R — R, given by

H(z,y,p,u) = g(x,y,u) +pf(r,y,u),

the Hamiltonian of problem (1.1)—(1.2). Given u € U, we say that p, € D(L) is the costate associated with
u el if

;Cpu == Hy('ayu7p1m’u’)'

The following proposition shows that the mapping u — p,, from U to D(L) is well defined. We give the proof
of this elementary result because it seems not to be explicitly stated in the literature.

Proposition 2.10. For each u € U there exists a unique costate p, € D(L) associated with u € U. Moreover,
{pu :u €U} is a bounded subset of H(2) N C(Q) and for each r > n/2 there exist ¢ > 0 such that

|Pus — Pus |H1(Q)OC(Q) < cluz - U1|L"‘(Q)
for all uy,us € U.
Proof. The existence and uniqueness follows from Lemma 2.3. Given u € U, the function p, satisfies
Lp, + dy('v yu)pu = gy('7 Yu, u)

By (i), (iti) and (iv) of Assumption 1, for each v € U, the function dy(-,y,) is nonnegative and belongs
to L>°(Q). By (#) and (iii) of Assumption 1, for each u € U the function g, (-, yu,u) belongs to L>(Q2).
Furthermore, since by Proposition 2.7 the set {y, : © € U} is bounded in C(£2), there exists M; > 0 such
that

‘gy(a Yu,s u)'LOO(Q) < M
for all u € Y. By Lemma 2.3, there exists a positive number ¢; such that for all u € U
\Pu|H1(Q)mC(Q) < Cl|gy('ayuau)|L°°(Q)-

Thus, Ms := ¢ M; is a bound for the set {p, : u € U} in H(Q) N C(Q). Let ur,us € U and r > n/2. We
have then

‘C(pUQ _pul) + dy("yu2)(pu2 _pul) = Hy('ayu27pu1au2) - Hy('vyulvpunul)'



By Lemma 2.3, there exists a positive number ¢y (independent of uy and ug) such that

|pu2 _pu1|H1(Q)ﬁC(Q) < 62|Hy("yu27pu17u2) - Hy('vyu17pu17ul)|L"(Q)'

By (ii) of Assumption 1 and the boundedness of the set {p, : u € U} in C(Q), there exists L > 0 such
that

|Hy('7yuzapu1au2) - Hy('ﬂyuupuuul” S L(|yu2 - yu1‘ + |U2 - U1|) a.e. in ).
Consequently,

Puz — Pusl i @ync@) < 2L([Yur — Yualr(@) + 1 — u2|Lr@))

1
< CQL((meas Q) v |yu2 — Yu, |Loo(Q) + |u2 — u1|L7‘(Q)) .

By Proposition 2.7, there exists a constant ¢z > 0 (independent of u; and ug) such that

Yz = Yuslo@) < esluz —ualrr)-
Thus,
Puz — Dl @)no@) < c2L(1+ es(meas Q)7 ) lug — u1] (o).
The estimate follows defining ¢ := c2L(1 + c3(measQ)7). O

We call the function S : U — H'(2) N C(Q) given by S(u) := p,, the control-to-adjoint mapping. The
following proposition gives us another useful estimate; it can be easily proved employing Lemma 2.4 and the
argument in the proof of [39, Theorem 4.16].

Proposition 2.11. There exists ¢ > 0 such that

Yy = Yur | £2(Q) + [Pus = Pur [22(0) < lug — ur]p1(q)
for all uy,us € U.
We close this subsection with the following result.

Proposition 2.12. Let {u,, };5_; be a sequence inU and u € U. If uy, = u weakly in L*(Q), then y.,, — Yu
and py,, — Py n C(£2).

Proof. We prove only the convergence p,, — p, in C({2), the convergence y,,,, — v, in C(Q2) is analogous.
Let {pu,,, }72; be an arbitrary subsequence of {py,, }7;—;. By the compact embedding HY(Q) — L*(Q),
there exists a subsequence of {pumk}?;l, denoted in the same way, and p € L?(f2) such that Pu,,, — P in
L?(Q). Since Yup, — Yu in C(€), one can deduce that

Hy('ayumk 7pumk’umk) - Hy(" Yu, Py u) weakly in LQ(Q>-

By Lemma 2.5, we have py,, — py in C (Q). The result follows, since every subsequence of {p,,, }3°_; has
a further subsequence that converges to p, in C(Q). O

3 Differentiability of the mappings involved

In this section, we prove some preliminary results concerning the differentiability of the control-to-state
mapping, the control-to-adjoint mapping and the switching mapping (to be defined later). Some of these
properties are well known for the control-to-state mapping; see, e.g., [5, 9, 10, 34, 39]. Nevertheless, we require
more specific estimates than the ones in the literature. The differentiability of the control-to-adjoint mapping
and the switching mapping has not been studied before in the literature on elliptic control-constrained
problems, therefore we devote this section to obtain appropriate estimates needed in the study of stability in
the next section. In the sequel, we treat differentiability by means of Gateaux differentials, as they provide
a very natural setting that adjusts in a very versatile way to our purposes.



3.1 The state and adjoint mappings

We begin this subsection recalling the definition of Gateaux differential, see [17, pp.2-4] or [23, p.171]. Let
Y be a Banach space and F : i/ — Y a mapping. Given v € U and v € U — u, if the limit

exists in Y, we say that F(u;v) is the Gateaux differential of F at w in the direction v. Note that by
convexity of U, u + ev belongs to U for every u € U, v €Y —u and € € [0, 1].

Recall that u € U is a fixed solution of problem (1.1)—(1.2). As it is well-known, the Gateaux differential
of the control-to-state mapping at @ is related to the linearization of the system equation around . Bearing
this in mind, given v € L?(Q), we denote by z, the unique® solution of the equation

Lz, = fy('vyﬂaﬂ)zv + fu('vyﬁva)v' (31)

The proof of the following estimate can be found in the standard literature, see the proof of [39, Theorem
4.17] for the case of a Neumann boundary problem (the proof is the same for Robin or Dirichlet boundary).
It can also be deduced by the same arguments given in the proof of Proposition 3.2.

Proposition 3.1. For each r > n/2 there exists ¢ > 0 such that

Yu — Ya — Zu—a|H1(sz)mC(Q) <clu— ﬂ|%r(9) Yuel.

One of the first things that can be deduced from Proposition 3.1 is the differentiability of the control-
to-state mapping G. Given v € L?(Q) satisfying @ + v € U, the Gateaux differential of the control-to-
state mapping G at @ in the direction v exists and is given by dG(4;v) = z,. Moreover, one can prove
that G is of class C?. This is a standard application of the Implicit Function Theorem to the function
F :D(L) x L"(Q2) — L"(Q) given by F(y,u) = Ly +d(-,y) — B(-)u, where r > n/2; see [7, Theorem 2.12]
for details in the Dirichlet boundary case.

In order to study the Gateaux differential of the control-to-adjoint mapping we introduce the following
notations. Given v € L?(f2), we denote by g, the unique? solution of the equation

Eqv = Hyy(a Ya, Pa, ﬂ)Zv + Hyi”(v Yus Pu, ﬂ)qv + Hyu('7 Yu, Pu, ’L_l,)l}. (32)

The following estimate is concerned with the differentiability of the control-to-adjoint mapping. To the
best of our knowledge, this result does not appear in the literature; therefore we present its proof, although
it is standard.

Proposition 3.2. For each r > n/2 there exists ¢ > 0 such that
[Py — P — qufﬂ‘Hl(Q)r‘nC(Q) <clu— ﬁ@r(g) Vuel.

Proof. Given u € U, we define 1, : Q — R* by ¥, (z) := (z,yu (), pu(z),u(z)). For each u € U, we denote
by Gu_z the unique solution of the equation

Lqu—u = Hyy(Ya)(Yu — Ya) + Hyp(Ya)Gu—a + Hyu(Pz)(u — 1),
Let u € U and r > n/2 be arbitrary. Using the Taylor Theorem and (4i)-(4ii) of Assumption 1, one can find
aq, a9, a3 € L(Q) such that
Hy(wu) :Hy(1/’ﬂ) + Hyy(1/’ﬂ)(yu — Ya) + Hyp(wﬁ)(pu —pa) + Hyu(wﬁ)”
+ a1 () (Yu = ya)® + @2()(Yu — ya) (Pu — Pa) + @3(-) (Yu — ya)v,
1The uniqueness follows from Lemma 2.3, and the fact that equation (3.1) can be rewritten as

Lzy + dy('u yu)zv = B(-)v.

2The uniqueness follows from Lemma 2.3, and the fact that equation (3.2) can be rewritten as

Lay + dy (-, ya)aw = Hyy (-, ya, pa, @) 20 + Hyu (-, ya, a, @)v.



where v = u — 4. Hence
L(pu — pa — Gv) = Hyp(¥a)(Pu — pa — @) + [a1()(Yu — ya) + 02(-)(pu — pa) + as()v| (yu — ya)-
By Lemma 2.3, Proposition 2.7 and Proposition 2.10, there exists ¢; > 0 such that
Pu — Pa — @l 1 ()nc@) < alvlirg)

Now,

L(Go — qv) = Hyy (V) (Yu — ya — 20) + Hyp(¥a)(Go — q)-
By Lemma 2.3 and Proposition 3.1, there exists ca > 0 such that

|Gy — @l (@)nc@) < 02|U|%T(Q)'
Finally, by the triangle inequality
IPu — Pu — Gl (@)nc@) < 1Pu = Pa — Gl @)nc@) + 14 — @lo@)nc@)-

The result follows taking ¢ := ¢y + cs. O

Given v € L () satisfying @+ v € U, the Gateaux differential of the control-to-adjoint mapping S at @
in the direction v exists and is given by dS(w;v) = g,. It is worth mentioning that the map S is of class C?,
this can be seen applying the Implicit Function Theorem to the function H : D(L£) x L™(Q) — L"(£2) given
by H(p,u) := Lp — Hy(", Yu, p, u), where r > n/2.

We now state further properties concerning the mappings v — z, and v — q,.

Proposition 3.3. The following statements hold.
(i) For each v > n/2 there exists a positive number ¢ such that
20l @)no@ + 1@l @yne@) < elvlor@) Yo € L2(Q) N L7(Q).
(i) There exists a positive number ¢ such that

|ZU|L2Q + |QU|L2Q < C|U|L1(Q) Yv € Lz(Q)

(iii) Let {vp}p2, be a sequence in L*() and v € L*(Q). If vy — v weakly in L*(Q), then z,, — z, and
Qu, — Gv in C(Q).

Proof. Ttems (i) and (i) follow from Lemma 2.3 and 2.4, respectively. Item (¢i¢) follows from Lemma 2.5. O

3.2 The switching mapping

Let us begin this subsection recalling the first order necessary condition (Pontryagin principle in integral
form) for problem (1.1)—(1.2). If w € U is a local solution of problem (1.1)—(1.2), then

/Q [s(x,yu) + B(x)pu} (w—u)dx >0 Ywel. (3.3)

The variational inequality (3.3) motivates the following definition. For each u € U, define

The mapping Q : U — L>®(Q) given by Q(u) := o, is called the switching mapping. Given v € L?(Q), we
define the linearization

Ty = Huy('7yﬁapﬁ)zv + Hup('7yﬁapﬁ)QU-

This definition is justified by the following estimate.



Proposition 3.4. For each r > n/2 there exists ¢ > 0 such that
|ow — 0a — Tu—alLe() < c|u—@\%T(Q) Yu € U.
Proof. Given u € U, we define 9, : Q — R3 by ¥, (z) := (z,y.(2), pu(x)). For each u € U, we denote
Ty—g = Huy(@/fﬁ)(yu —Ya) + Hup(wﬂ)(Pu — Pa)-

Let w € U and r > n/2 be arbitrary, and abbreviate v = v — 4. Using the Taylor Theorem and (i%)-(7i%) of
Assumption 1, one can find a1, as € L>®(Q) such that

Hy () =Hy(Yu) + Huy(wﬂ)(yu — Ya) + Hup(wﬁ)(pu — Pa)
+ a1 () (Wu — va)® + a2 () (Yu — va) (Pu — Pa)-
Therefore, by Proposition 2.7 and 2.10, there exists ¢; > 0 such that
low — 0a — oL (@) < cl|v|2Lr(Q).
Now,
[T — 7ol Lo (@) < [Huy (5 Ya, Pa) (Yu — Ya — 20) + Hup(; Ya, pa)(qu — Ga — @)= ()-
Hence, by Proposition 3.1 and 3.2, there exists ¢ > 0 such that
[Ty — TolL (@) < 02|’U|%7‘(Q)'
Finally, by the triangle inequality,
low — 0a — M| 1) < |ow — Ta — Tu|poe () + |To — To| Lo ()

The result follows defining ¢ := ¢; + co. O

Proposition 3.4 yields immediately that the Gateaux differential of the switching mapping Q at @ in any
direction v € U — 4 exists and is given by dQ(u;v) = z,.

One of the important features of the mapping v — m, is the following.

Proposition 3.5. For all v € L*(Q), we have
/ myvde = / [Hyy($7yﬂapﬂa 7-_")212; + QHuy(l'vyTupﬁ»ﬂ)Zvv} dz.
Q Q

Proof. In order to simplify notation, we write 1z (z) := (@, ya(z), pa(x), u(z)) for each x € Q. Let v € L*(Q)
be arbitrary. By the integration by parts formula (2.2), we get

/Hup(wﬁ)%)vdw :/ (ﬂzv +dy(m>yﬁ)zv)(h d.’E:/ (‘qu +dy<xayﬁ)Qv)Zv dz
Q Q Q

— /Q (Hyy(Ya)zo + Huy(Pa)v) 2 = /

[ [Hu )2l + Huy(a) 0] da

The result follows since

/m,vd:c:/Huy(wﬂ)zvvder/Hup(wﬁ)qvvdac.
Q Q Q

O

We give further properties of the mapping v — 7, in the next proposition, its proof follows trivially from
Proposition 3.3.

Proposition 3.6. The following statements hold.



(i) For each r > n/2 there exists a positive number ¢ such that
|Tolro () < clv|pr) Vv e LA(Q)NL"(Q).
(i) There exists a positive number ¢ such that
[molr2(0) < vl Yo € L*(9Q).

(iii) Let {vg}52, be a sequence in L*(Q) and v € L*(Q). If vy — v weakly in L*(Q2), then m,, — m, in
L>(Q).

Proposition 3.5 motivates the following definition. For each v € L?(2), define
Alw) = / [Hyy(q:,yﬁ,pﬁ,ﬂ)zg + 2Huy($,ya,pa,ﬂ)zvv} dx. (3.4)
Q

Remark 3.7. We mention that the quadratic form A : L?(2) — R is the second variation of the objective
functional J : Y — R at u. By Proposition 3.5, we also have the following representation

A(v) = /Qﬂ'vvdx Yo € L*(Q).

We close this section with a result concerning the quadratic form (3.4).
Proposition 3.8. Let {v;}52, C L?(Q) and v € L*(). If vy — v weakly in L?(SY), then A(vy) — A(v).
Proof. By Proposition 3.6, m,, — m, in L*°(2), therefore

A(vg) :/Q(va —wv)vkdx—i—/gmvk dm—>/97rvvdm.

4 Stability

In this section, we study the stability of the optimal solution of problem (1.1)—(1.2) with respect to per-
turbations. As usual in optimization, the stability of the solution is derived from stability of the system
of necessary optimality conditions. The investigated stability property of the latter is the so-called strong
metric Holder subregularity (SMHSr), see e.g., [16, Section 3I] or [11, Section 4]. After introducing the as-
sumptions we study the SMHSr property of the variational inequality (9). Then the result is used to obtain
this property for the whole system of necessary optimality conditions

4.1 The main assumption

We begin the section recalling that @ € U is a local minimizer of problem (1.1)—(1.2), and the definition of
the quadratic form A : L2(Q2) — R in (3.4).

Assumption 2. There exist positive numbers ag,7yo and k* € [1,4/n) such that

*

/Qaa(u— a)dr 4+ Au—1a) > yolu—1a ’Z[&%),

(4.1)

for all uw € U with |u —u|p1 ) < ap.

Assumption 2 resembles the well-known L?-coercivity condition in optimal control, with two substantial
differences: (i) the left-hand side of (4.1) involves a linear term (not only the quadratic form in the L2-
coercivity condition); (ii) the L!-norm appears in the right-hand side of (4.1). Assumption 2 in the particular
case k* = 1 has been used before in the literature on optimal control problems constrained by ordinary
differential equations, see [28, Assumption A2’] or [29, Assumption A2]. A similar assumption was used in
[14, Assumption 2]. We first point out that if @ satisfies Assumption 2, then it must be bang-bang. A control
u € U is bang-bang if u(x) € {b1(z),b2(x)} for a.e. x in Q. The proof of this result follows the arguments
given in the proof of [10, Theorem 2.1].
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Proposition 4.1. If u € U satisfies Assumption 2, then u is bang-bang.

Proof. Let ag and 79 be the positive numbers in Assumption 2. Suppose that there exists ¢ > 0 and a
measurable set £ C ) of positive measure such that

u(z) € [bi(x) +e,ba(x) — ] forae xz€E.

Define ¢* := min{ag(meas E)~1,e}. Let {v,}_; C L%*(Q) be a sequence converging to zero weakly in
L?(Q) such that for each m € N, vy, (z) € {—e*,&*} for a.e. x € Q. For each m € N, define
U (X) i=

a(z) +vm(z) if zekE.
Clearly, for each m € N, u,, belongs to U and
| — U|p1(0) = €" meas E.
Hence, by Assumption 2
k41
/ i (U — @) dz + Auy, —7) > Yo (6* meas E) (4.2)
Q

for all m € N. Since u,, — @ weakly in L?*(Q), we have by Proposition 3.8 that the left hand side of (4.2)
converges to 0; a contradiction. O

Proposition 4.1 makes the following lemma relevant.

Lemma 4.2. Let u € U be bang-bang, and {ux}3, C U be a sequence. If up — u weakly in L* (), then
u — u in L1(Q).

Proof. Let Q; :={z € Q:u(z) =b;(x)},i=1,2. Let xq, : @ = {0,1} denote the characteristic function of

the set €, i = 1,2. Now, by definition of weak convergence

/|uk—u|dx:/xgl(un—ﬁ)dx—/ng(un—ﬂ)dx—>0.
Q Q Q

O

The next proposition shows that the switching mapping satisfies a growth condition. The proof consists
of two steps. The first one is to show that Assumption 2 implies this growth condition for the linearization
of the switching mapping. The second step is to adequately use the linearization as an approximation of the
switching mapping.

Proposition 4.3. Let Assumption 2 be fulfilled. Then there exist positive numbers o and v such that
/ oy(u—a)de > ylu— ﬂ|lz*l(+é)
Q

for all w € U with |u — @|p1 ) < a.

Proof. Let ag,7yo and k* be the positive numbers in Assumption 2. Fix r € (n/2,2/k*). Using Proposition
3.4, a constant ¢ > 0 can be found such that

|0y — 0a — Tu—alr~(q) < clu— ﬂ|2L/1T(Q) Yu e U. (4.3)
From Proposition 3.5 and Assumption 2, we have

kK 41
e (4.4)

g+ Ty—z|(u—10)de = [ oz(u—1a)dx+ Alu—1a) > ylu—1
Q Q

11



for all uw € U with |u — u[z1(q) < ap. Define v := /2 and
o := min {ao,'y?;*rcff;*r} .
Then, by (4.3)
- Sir kT k" il
low — 0a — Tu—alLe Q) < clu — u\Ll(Q) = clu — u|L1(Q)|u — |7 < vlu—1ulfyg) (4.5)

for all uw € U with |u — u[z1(q) < a. We have for all u € U

/chu(u—ﬂ,)dxzfg[aﬂ—kﬂu_a](u—ﬁ)dx—k/ﬂ[au—aa—wu_a}(u—ﬂ)dm

Consequently, by (4.4) and (4.5),

/ ou(u — ) dx > yolu — 12|’Z*1‘(g) —|ouw — 0a — Tu—a|r= @)U — @|p1(0)
Q
= (o —Mlu—aly:{g) = vlu—al} o

for all u € U with |u — u[r1(q) < a. O

4.2 Some existence and stability results

We now pass to some preparatory lemmas concerning the existence of solutions of inclusions (also called
generalized equations, see [36]) related to the first order necessary condition of problem (1.1)—(1.2). Given
r € [1,00], we denote by B (c; ) the closed ball in L"(Q2) with center ¢ € L"(Q2) and radius a > 0.

The variational inequality (3.3) can be written as the inclusion

0€ o, + Nu(’u),

where the normal cone at u to the set i is given by

Ny(u) = {a € Lo(Q) - /

o(w—u)dr <0 VwEU}
Q

Lemma 4.4. For all p € L>®(Q) and € > 0 there exists u € U N Br1(u;e) satisfying
pEOoy+ NMﬂIBLl(ﬁ;e)(u)-
Proof. Let p € L>(2) and € > 0. Consider the functional 7, : if — R

Tp(u) = /Q [9(ys ) — pu] de = T () — /Q o de.

The functional J, has at least one global minimizer u, € U since U N By, (u;¢) is a weakly sequentially
compact subset of L?(2) and 7, is weakly sequentially continuous. By the Pontryagin principle,

/ [0, = p](u—uy)de >0 Vuel.
Q

We have then that u, satisfies p € 0w, + Nyng, , (a:e) (Up)- O
Lemma 4.5. Let Vi and Vs, be closed and convex subsets of L'(Q) such that Vi N intVy # 0. Then
NV10V2 (U) = NVl (U) + NV2 (u) (46)

for allu e ViNVs.

12



Proof. Given a set W C LY(Q), let syy : L>(Q) — R U {00} denote the support function to W, that is

sw(h) := sup / hw dx.
wew JQ

By [3, Proposition 3.1], the set Epi sy, + Epi sy, is weak* closed in L>°(£2). Then the representation (4.6)
holds according to [3, Theorem 3.1]. O

We can now prove existence of solutions of the inclusion p € o, + Ny(u) that are close (in the L'-norm)
to @ whenever p is close to zero (in the norm L°°-norm). The proof follows the arguments in [13, p. 1127].

Lemma 4.6. Let Assumption 2 hold. For each € > 0 there exists § > 0 such that for each p € B (0;0)
there exists w € U NBr1(u;e) satisfying p € oy + Ny(u).

Proof. Let o and v be the numbers in Proposition 4.3. Define ¢y := min{e,a} and § := &§ v/2. Let
p € L*>(Q) with |p|r~(q) < 6. By Lemma 4.4, there exists u € U NB1(u;¢0) such that

p € 0u+ Ny, (aseo) (0)-
Since trivially w € Y Nint By (u,e0), by Lemma 4.5 we have
Nurs, 1 (weo) (0) = Ny(u) + N, (aseo) (1) (4.7)
Thus there exists v € Ng_, (a;c,)(u) such that
p—oy—vE Ny(u).

By definition of the normal cone,

OZ/Q(p—Uu)(ﬂ—u)da:—/u(a—u)dx. (4.8)

Q

As @ € Bpa1(us€0) and v € Ny, (e ) (1), We have

/Qy(ﬂ—u)dmgt).

Consequently, by (4.8) and Proposition 4.3

02 [ (o= o) (@ u)do = ~lplpmolu ~ aluro) +7lu - alfi,
Q
which implies

1 . 1
lu—tlpr) <7 F |plf ) < 27 F o < <o
As u € int Br1(4;69), we have Ng | (a.c)(u) = {0}. Thus by (4.7),
pET,+ NL{OBL1(E;50)(U) =0y + NM(U) (49)
O

The following lemma shows how Proposition 4.3 (and consequently Assumption 2) is related to Holder-
stability.

Lemma 4.7. Let Assumption 2 hold. There exist positive numbers a and ¢ such that

1
lu — |1 () < C|P|fo¢(m (4.10)

for all p € L>(Q) and u € Bp1(u; «) satisfying p € oy + Nyg(u).
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Proof. Let « and v be the positive numbers in Proposition 4.3. Since p — o, € Ny (u), we have
/(p —oy)(a—wu)dr <0.
Q
By Proposition 4.3,

0

v

/Q(p—au)(a—u)dx:/Qau(u—a)dx+/p(a—u)dx

Q

k*+1
3 ([rualas) =l [ Ju-alas
Q Q

_ 1 Ve 1
/ lu —a|dx < <f|p|Loo(Q)) =TT
Q v

The result follows defining ¢ = ’y_f%*. O

Y

Hence

1
3

%
Leo(Q)”

p

Lemma 4.7 requires that the controls are close (in the L!-norm) a priori for the inequality (4.10) to hold.
This assumption can be removed if the solution of the inclusion 0 € o,, + Ny (u) is unique.

Lemma 4.8. Let Assumption 2 hold, and suppose additionally that u € U is the unique solution of 0 €
o + Ny (u). There exist positive numbers § and ¢ such that

lu—1lpio) < C|P|ﬁo(g)-
for all p € Br<(0;6) and uw € U satisfying p € oy + Ny(u).

Proof. Let a and ¢ be the positive numbers in Lemma 4.7. First we prove that there exists 6 > 0 such
that if u € U and p € L*>(Q) satisfy p € o, + Ny(u) and |p|pe(q) < 9, then v € Bri(a;a). Suppose
not, then there exist sequences {px}72, C L>(Q) and {ux}?2, C U such that py € oy, + Ny(ux) and
|up — | 1(q) > . Since U is weakly sequentially compact in L?(£2), there exists a subsequence of {uj}72;,
denoted in the same way, and u* € U such that ux — u* weakly in L?(Q2). Using Proposition 2.12, one
can see that py — oy, — oy~ in L(Q). Consequently, as pr € oy, + Ny(ug) for all n € N, we obtain
0 € oy + Nyy(u*). Then, by assumption, u* = 4, so u* is bang-bang. By Lemma 4.2, we have uy — v* in
L' (Q); a contradiction. The result follows from Lemma 4.7. O

4.3 Strong metric subregularity

Let us begin considering the following system representing the necessary optimality conditions (Pontryagin
principle) for problem (1.1)—(1.2):

0 = Ey*f('»?%u)a
0 = Lp—Hy(-,y,p,u), (4.11)
0 € Hu<7yap)+NL{(u)a

If uw € U is a local solution of problem (1.1)—(1.2), then the triple (i, pu, «) is a solution of (4.11). Therefore,
the mapping that defines the right-hand side is referred to as the optimality mapping. In order to give a
strict definition and recast system (4.11) in a functional frame, we introduce the metric spaces

V:=DL)x D(L)xU and Z:=L*Q)x L*(Q) x L™=(Q),
endowed with the following metrics. For ¢; = (y;, pi,u;) € Y and ¢; = (&, m:, p:) € Z, 1 € {1, 2},

dy(P1,92) = [y1 — y2lr2() + [P1 — P2lL2() + (U1 — u2|L1(q),
dz(C1,C2) = |61 — &2lr2(Q) + Im — m2lr2Q) + |p1 — p2lL~(9)-
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Both metrics are shift-invariant. We denote by By (; «) the closed ball in ), centered at ¢ and with radius
a. The notation for the ball Bz((; a) is identical. Then the optimality mapping is defined as the set-valued
mapping ® : Y — Z given by

‘Cy - f(7 ZU)U)
Hu('vyvpa u) +NL{(U)

Then the optimality system (4.11) can be recast as the inclusion
0€ ®(y,p,u). (4.13)

Our purpose is to study the stability of system (4.11), or equivalently of inclusion (4.13), with respect to
perturbations in the right-hand side. From now on, we denote ¢ := (4,p,4) = (ya,Pa, @) , where @ is the
fixed local solution of problem (1.1)—(1.2).

Definition 4.9. The optimality mapping ® : J — Z is called strongly Holder subregular with exponent
A >0 at (¢,0) if there exist positive numbers oy, as and « such that

dy (1, V) < kdz(¢,0)* (4.14)
for all ¢ € By (1); ;) and ¢ € Bz(0; az) satisfying ¢ € ®(v)).

More explicitly, the inequality (4.14) reads as

A
|y — yalr2) + 1P — palr2@) + v —dlp1o) < H(\§|L2(n) + 7 L2) + \P\Loo(sz)) . (4.15)

Hence, if the optimality mapping is strongly Holder subregular, all solutions of the system

f = Ey—f('aya’U/)v
n = Lp—Hy(,y,p u), (4.16)
p Hy (-, y,p) + Ny(u).

that are near (ya,pa,u) satisfy the Holder estimate (4.15) with respect to the perturbations ¢ = (&, 7, p),
provided they are small enough.

m

Remark 4.10. If ¢ is strongly Holder subregular at (¥,0), then from (4.14) applied with ¢ = 0 we obtain
that ¢ is the unique solution of (4.13) in By(t); 1), hence @ is the unique local solution of problem (1.1)—(1.2)
in this ball. In particular, @ is a strict local minimizer.

We are now ready to state our main result.

Theorem 4.11. Let Assumption 2 hold. Then the optimality mapping ® is strongly Holder subregular at
(1, 0) with exponent A = 1/k*.

Proof. Let a and c be the positive numbers in Lemma 4.7. Let ¢ = (§,71,p) € Bz(0;1) and ¢ = (y,p,u) €
By (%; «) such that ¢ € ®(¢)). By a standard argument, there exists ¢; > 0 (independent of ¢ and () such
that

[y = YulLe (@) + [P — Pule(@) < 61(\§|L2(Q) + |77|L2(Q))- (4.17)

Since H,, is locally Lipschitz uniformly in the first variable, and the sets {y., : u € U}, {p, : v € U} are
bounded in C(2), there exists co > 0 (independent of 1)) such that

|Ho (9, 0) — Hu (-, Yus pu) Lo () < 02<|y — Yulre() + 0 — pu|L°°(Q)) (4.18)

Define v := p+ Hy (", Yu, Pu) — Hu (-, y,p). By (4.17) and (4.18), there exists c3 > 0 (independent of ¢ and ()
such that

[V Lo () < CS<|§\L2(Q) + nl2@) + |p|L°°(Q)) = cs/(z.
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As pe H,(-,y,p) + Ny(u), we have v € Hy(+, Yu, Pu) + Ny(u). Then by Lemma 4.7,

1 1
(I =caldlZ (4.19)

a1 a1
|u — 1) < c|u|£m(Q) < cck

Now, by Proposition 2.11, there exists c5 > 0 (independent of ) such that |y, — yalr2Q) < cslu — |11 ().
Consequently, by (4.19)

1Y — valr2) <Y — Yulr2) + [Yu — valzz)
1 _
< cimeas (22 (|5\L2(Q) + \77|L2(Q)) + cslu — L)

a1 1
< (cymeas 02 +c5cq)|CE =1 c6lC|E.

Analogously, there exists ¢; > 0 (independent of ¥ and () such that

1
Ip = Pulr20) < crlCl5 -

Putting all together,

1
|y — valr2) + 1P — Pulr2() + v — @lpiq) < (ca+c6 +e7)|C|5

Finally, let a1 := a, ag := 1 and K := ¢4 + ¢ + ¢7._Since the constants c4, ¢ and ¢7 are independent of ¢
and ¢, so is k. Thus we have (4.14) for all ¥ € By (¢; 1) and ¢ € Bz(0; o) satisfying ¢ € (). O

The strong subregularity property defined above does not require existence of solutions of the perturbed
inclusion (4.16) in a neighborhood of the reference solution ¢. The next theorem answers the existence
question.

Theorem 4.12. Let Assumption 2 hold. For each & > 0 there exists 6 > 0 such that for every ¢ € Bz(0;4)
there exists 1) € By (1;¢€) satisfying the inclusion { € ®(1)).

Proof. For each uw € U and ¢ = (&,n,p) € Z, define vy ¢ := p+ Hy (-, Yu, Pu) — Hul(o, Yucs Du,c), Where yy ¢
and p, ¢ are the unique solutions of

Ly

Lp

By a standard argument, one can find positive numbers ¢; and ¢y such that

f('7yau) + é-,
Hy(y,p,u) + 1. (4.20)

[Yu,c — Yulr2(@) + [Puc — Pulrz) < @ <|§|L2(Q) + |77|L2(Q))7 (4.21)

and [vy,¢|pe(q) < c2|¢|z for all w € U and ¢ € Z. Let € > 0 be arbitrary. By Lemma 4.6, the exists §o > 0
such that for each v € Br(0;0¢) there exists u € U N Bp1(u;e/2) satistfying v € o, + Ny (u). Define § :=
min{c; 8o, (2¢1) "'} and let ¢* € Bz(0;6) be arbitrary; we will prove that there exists u* € U N By (u;¢/2)
such that vy« ¢+ € gy + Ny(u*). First, observe that

|Vu,C* L>(Q) SCQ‘C*|Z§50 Yu € U.

Therefore, by Lemma 4.6, we can inductively define a sequence {ux}32, C U such that vy, ¢« € oy, , +
Ny(ur+1) and |ug, — @) < /2 for all k € N. Since U is weakly compact in L?(£2), we may assume that
u, — u* weakly in L%(Q) for some u* € Y. Weak convergence in L?(f2) implies weak convergence in L!({2)
and By (u;¢/2) is weakly sequentially closed in L'(Q), therefore u* € By:(u;¢/2). Using Proposition 2.12,
one can see that vy, ¢+ — 0y, — Vyr c» — 0y» in L(Q), and consequently that vy« o« € oy + Ny (u*). We
conclude then that ¢* € ®(¢*), where ¢* := (yy= ¢+, Pu~ ¢+, v*). Finally, by definition of § and (4.21)

[v* —Yly < alllz +e/2<e.

Thus, ¢* € ®(¢*) and ¥* € By(1); ), which completes the proof. O
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The next theorem claims that all solutions of the perturbed optimality system (4.16) are arbitrarily close
to the solution of the unperturbed optimality system, provided that the solution of the latter is globally
unique, Assumption 2 holds, and the perturbation is sufficiently small.

Theorem 4.13. Let Assumption 2 hold and suppose additionally that v is the unique element of Y that

satisfies 0 € ®(1)). For each € > 0 there exists § > 0 such that if ( € Bz(0;9) and ¢ € Y satisfy ¢ € (¢),

then 1 € By (1;¢).

Proof. Let §p and cg be the positive numbers in Lemma 4.8. Let ¢ = (£,n,p) € £ and ¢ = (y,p,u) € Y be
such that ¢ € ®(¢). Define v := p+ Hy (", Yu, Pu) — Hu(-,y,p). Arguing as in the proof of Theorem 4.11, we
can find positive numbers ¢; and ¢ (independent of ¢ and () such that |v|p~ o) < c1/¢|z and

|y — valr2) + P — palre) < e (|C\z + [u— 71|L1(Q))-

Let 6 := min{cy ', (2coca) * ¢ '€, (2¢2) "¢} and suppose that ¢ € Bz(0;6). As p € Hy(-,y,p) + Nu(u),
we have v € Hy, (-, yu, pu) + Ny(u). By Lemma 4.8,

= 1
(1 <cye/2

a1 e
lu —|p1 ) < co\u|£m(ﬂ) < ¢pcf

Thus,

|y — valr2 () + [P — palr2) + v — @lpi) < 2 (5 + 0515/2> <e.

5 Nonlinear Perturbations

In this section we apply the subregularity results in Section 4 for studying the effect of certain nonlinear
perturbations on the optimal solution. We consider the following family of problems

min {/Q [g(x,y,u) + n(amy,u)} dx} , (5.1)

e
subject to
—div (A(2)Vy) + d(z,y) + &(z,y) = B@)u in Q
A(z)Vy - v+ bz)y — 0 on 9. 2

In order to specify the perturbations under consideration and their topology, we begin the section recalling
some elementary notions of functional analysis.

As usual, C(R®) denotes the space of all continuous functions w : R® — R. For each m € N, let K,,
denote the closed ball in R? centered at zero with radius m. Consider the metric on C(R®) given by

> 1 W1 — W2|L>(K,,
dofun,wn) = 3 o 1 = 2l i)

ooy 2m 1 4+ ‘wl 7w2|th>(Km).

This metric induces the compact-convergence topology on C(R®). In this topology, a sequence {w,}5°_; C
C(R?) converges to w € C(R®) if and only if |w — wy|p~(x) — 0 for every compact set K C R°. This
topology is also known as the compact-open topology, see [26, Chapter 7].

Lemma 5.1. For each compact set K C R® there exists m € N such that
w1 — walpee (k) < 2™Mdo (Wi, w2)

for all wy,wy € C(R®) such that do(wy,ws) < 27™.
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5.1 The perturbations

We begin describing the space of perturbations appearing in equation (5.2). Let T be the set of all contin-
uously differentiable functions £ : R™ x R — R such that dy(x,y) + & (z,y) > 0 for all z € Q and y € R. The
set T, does not constitute a linear space, but it allows to have well-defined states for each perturbation.

Proposition 5.2. For each u € U and £ € Y, there exists a unique function y5 € D(L) satisfying
Lys +d(y) + €0 yz) = B()u.

Moreover, there exist positive numbers M and & such that |y§|Lm(Q) < M for allu e U and £ € T4 with

Proof. The existence follows from [39, Theorem 4.8]. Moreover, also from this theorem, there exists ¢ > 0
such that

|y5|L°°(Q) < c|ﬁ()u - d(,O) - 5(70)‘L00(Q)
for all u € U and € € T,. Let K := Q x {0}, then by Lemma 5.1 there exists m € N such that

95| Lo < C(|5\Lm(ﬂ)|U|Loc(Q) +1d(+, 0)| L= (o) + \€|Loo(1<))
< C<|ﬁ\L°°(Q) sup [ulpe @) +1d(+, 0)[ Lo () + dec(&o))
< C(W\Lw(g) sup [ulpe () 4 1d(+ 0)[ L (o) + 1)
for all u € Y and £ € YT with do(€,0) < 27™. The result follows defining § := 27™ and
M = C(|5|Loc(sz) sup [ul Lo (@) + 1d(+, 0)] Lo () + 1)-

O

We now proceed to describe the perturbations appearing in the cost functional (5.1). Consider the set
T. of all continuously differentiable functions 7 : R” x R x R — R such that n(x,y, ) is convex for all z € Q2
and y € R. We have the following result concerning the adjoint variable of the perturbed problem. Its proof
is similar to the one of Proposition 5.2.

Proposition 5.3. For eachu €U, £ € Ty and n € Y, there exists a unique function p5" € D(L) satisfying

Moreover, there exist positive numbers M and 6 such that |pg7n|Loo(Q) <M foralluel, €Yy andne T,
with de(€,0) + de(&y, 0) + de(ny, 0) < 6.

We denote T := YT x T, and write ¢ := (£,n) for a generic element of Y. We endow Y with the
pseudometric dy : T x T — [0, 00) given by

dT(Ca C/) = dC(fagl) + dC(&yaf;) + dC(’?yaU;) + dC(UuaTI;)

5.2 The stability result
We are now ready to state problem (5.1)-(5.2) in a precise way. Given ¢ € T, problem P¢ is given by

win {72(0) = [ [o€oo0) + e e 53)

Due to the convexity of the cost in the control variable, each problem P has at least one local solution.
For each ¢ € T, we fix a local minimizer 4; € U of problem Pc. By the Pontryagin principle, for each

¢=(&m) €T, the triple (g¢, Pe, U¢) = (ygg,pg’:,ﬁc) satisfies the system

0 = ‘Cy—f('ayvu)_f("y)’
0 = £p_Hy('ayap7u)+ny('ayau) _gy('ay)pa (54)
0 € Hu(yyvp)+nu(ayau)+Nu(u)

As a consequence of Theorem 4.11, we have the following result.
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Theorem 5.4. Let Assumption 2 hold. There exist positive numbers o, o’ and ¢ such that
|9 — yalz2(e) + [P — palz2(e) + i — Ul () < cdr (¢, 00
for all ¢ € Y such that | — @|p1 ) < o and dy(¢,0) < o'

Proof. By Theorem 4.11, the mapping ® is strongly Holder subregular at (¢,0) with exponent 1/k*. Let
a1,a9 and k be the positive numbers in the definition of strong subregularity. By Proposition 5.2 and 5.3
there exist positive numbers M and dg such that

|y§\Lw(Q) + \pﬁ’nhw(n) <M

for all u € U and ¢ € T with dy(¢,0) < 8. Let K := Q x [-M, M]. By Lemma 5.1, there exists m € N such
that

160+ 48) L2 () < meas QF [€] oo (k) < 2 meas Q2 de(€,0) < 2™meas Q2 dy(, 0)

for all w € U and ¢ € T with dy(¢,0) < min{27™,dp}. Repeating this argument, we can find positive
numbers ¢ and ¢y such that

1€y 20y + 16y G ¥5)PS  L2@) + 10y (85, W) p20 + [0 (- y5, w) L= < codr(¢,0) (5.5)

for all u € U and ¢ € T with dy({,0) < 4. Using Proposition 2.11 and Lemma 5.1, one can find positive
numbers « and §’ such that

[9¢ — yalr2() + [P¢ — palrz) + e — o) < o
for all ¢ € T with |t¢ — u|1(0) < @ and dy(¢,0) < ¢’'. Observe that by (5.4), we have

) {(agg) L o
=1y (9 ¢) + & Jo)pe | € 2(Ge, P tic)

for all ¢ € Y. Let o/ := min{cy 'z, d,6’}. Then by Hélder subregularity of ® and (5.5),

N A~ _ e 1
[9¢ — Yalz2() + [Pe — palrz) + [u¢ — @lpi) < keg™ dy(C,0)%

1

for all ¢ € T such that |4 — @|z1(q) < @ and dy(¢,0) < o'. The result follows defining ¢ := kelT . O

5.3 An application: Tikhonov regularization

In what follows we present an application of the theory derived in the previous chapters, namely the so-
called Tikhonov regularization. For a more detailed description and an account of the state of art, the reader
is referred to [32, 41, 40]. We derive estimates on the convergence rate of the solution of the regularized
problem when the regularization parameter tends to zero. The results that appear in the literature require
the so-called structural assumption and positive-definiteness (in some sense) of the second derivative of the
objective functional. Using Theorem 4.11, we can obtain this results under weaker assumptions than used
in the literature so far. One can compare this results with [32, Theorem 4.4] (where a tracking problem with
semilinear elliptic equation is considered) when it comes to stability of the controls. In Section 6, we give
more details on how the assumptions in the literature interplay with Assumption 2.
We consider the following family of problems {P:}.>¢.

. € 2
glelbl{/ﬂg(a:,y,u)dx—&— Z/Qu dx}, (5.6)

—div (A(z)Vy) + d(z,y)

subject to

Bx)u in Q
A(x)Vy - v+ b(x)y =0 on Of.

For each £ > 0 we fix a local solution 4. € U of problem P..
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Theorem 5.5. Let Assumption 2 be fulfilled. Then there exist positive constants o and k such that
|a€ — a|L1(Q) < IiEl/k* (58)

for every € > 0 such that |t. —u|p1(q) < a. If in addition, each . is a global solution of problem (5.6)—(5.7)
then the last claim holds with a = 400, i.e., for every e > 0.

Proof. Let a,o’and ¢ be the positive numbers in Theorem 5.4. Define 7. : R — R by n.(u) := eu?/2 and
Ce :==(0,m.) € T for each € > 0. Note that

for all € > 0. We conclude that dv(¢.,0) < 5e < o for all € € (0,eq), where ¢ := &’/5. By Theorem 5.4,
|G — ﬂ|L1(Q) < 5’%*681%*

for all € € (0,&¢) such that |4, — @] < a. Let M > 0 be a bound for ¢ in L>°(§2). We also have we have

1

~ _ 1 1 — =% 1
|tie — Ulp1q) < 2M < 2Me™ # v < 2Mey * e**

for all € > ¢¢. Hence, defining
K 1= max {51%*0, 2M€al/k } ,
we obtain the first claim.
Let us prove the second claim of the theorem. First we prove that there exists €* > 0 such that
|tie — @|p1(q) < a for all € € (0,). Suppose the opposite. Then there exists a sequence {e;}32, converging
to zero such that |d., — @|p1q) > « for all k € N. Since U is weakly compact in L?(Q2), we may assume

without loss of generality that uc, — u* for some u* € U. Since y,,., — yu~ in C(£2), we obtain that
* . €k N _ €k _ _
J(u*) < liminf [J(usk) + —|u€k|Lz(Q)} < liminf {J(u) + —lalr2 ) | = J(@).
k— o0 2 k— o0 2

By Remark 4.10, @ is a strict local solution, therefore u* = 4. By Proposition 4.1, v* = @ is bang-bang.
Weak convergence in L?(Q) implies that in L'(Q); consequently, by Lemma 4.2, u., — u* in L'(Q), which
is a contradiction. Then the first claim of the theorem implies (5.8) for all € € (0,e*). For ¢ > *, (5.8)
remains true if we increase the constant c (if needed) so that ¢ > 2M (e*)~1/". O

6 Assumptions related to subregularity

In this section, we gather some results concerning Assumption 2, in order to provide sufficient conditions un-
der which it is fulfilled. Furthermore, we analyze related assumptions and their relation between themselves.
Recall that @ € U is a local solution of problem (1.1)—(1.2). Since @ € U satisfies the variational inequality
(3.3), we have

bi(z) if oa(z)>0
ba(z) if ou(x)<O.

We introduce the following extended cone suggested in [5]. For a fixed 7 > 0 define

=0 if |og(x)| > 7 or a(x) € (bi(x),ba(x))
CI=Rvel?Q):vx){ >0 if |og(x)| <7 and a(z) = by ()
<0 if |og(z)| <7 and a(z) = ba(x)
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We introduce the following modification of Assumption 2.

Assumption 2'. There exist positive numbers ag and g such that
/ oulu — ) do + A — ) > olu— 515,
Q
for all v € U with u — u € CF NBri(q)(U; o).

This assumption is seemingly weaker than Assumption 2. However, we will prove that the two assumptions
are equivalent. Before that, for technical purposes, we introduce the bilinear form T' : L2(Q) x L?*(Q) — R
given by

1
[(v1,v9) := 5/ [mlvg + Ty, v1 | de. (6.1)
Q

The bilinear form is particularly useful because of the following property.
A(vy +v2) = T(vy,v1) + 2T (v1, v) + T(va,v2)  Vui,ve € LA(Q). (6.2)
We will require the following technical lemma.
Lemma 6.1. For every positive number M, there exits a positive number ¢ such that
IT(v1,v2)] < o] il 2l (@)
for all vi,ve € Br(0; M).
Proof. By Proposition 3.6, there exist c1,c2 > 0 such that |7,|p~ () < c1]|v|r2() and |7, |r2(0) < c2|v|p1 ()

for all v € L?(€2). Let M > 0 be arbitrary. Observe that

‘/levz dx‘ <oy L @) [v2|L1 ) < ClM%|Ul|%1(Q)‘U2|L1(Q)v
and that

| [ mwordo] < ol ol za < b or g ezlesco

for all vy,ve € Bre(0; M). There result follows defining ¢ := 271(c; + CQ)M%. O
Proposition 6.2. Assumptions 2 and 2’ are equivalent.
Proof. Let ag and 79 be the numbers in Assumption 2. Let v € U and define

w(@) —a(z) if low(@)] <7

vi(z) =
0 if loa(z)] >,

and

0 if @) <7
va(x) :=
u(z) —a(z) if J|oa(z)|>T.

Clearly v1 € CT and vy + v3 = u — @. Let M be a bound for U in L*°(2), and let ¢ be the positive number
in Lemma 6.1 corresponding to 2M. By Assumption 2’,

/oa(u— a)dx = / ozU1 dsc—i—/ ozVs dz
Q Q loa|>T

= / ogv1dz + A(vy) — A(vr) + / o2 dT
Q

log|>T

> yolvr | + Tlva| 1) — Alvr),
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and
Alu—a) = A(v1) + 2T (v1, v2) + A(ve)
> A(vr) = 2c|v| g [val (@) — elval il o2l )
> A(v1) = 3cfvz |1 (o)lu — ﬂllL/ler)

for u € U with |u — @[z1(q) < . Thus
/ oa(u— ) dz + Au — ) > yolv [T + 7|va| 11 () — Belva| 1 ()lu — ﬂ\i/lz(n)
Q

= yolv1 "t + |va| 1) (T — 3clu — 71&/12(9))

for u € U with |u—1t[z1(q) < ap. Now, by the reverse triangle inequality and Bernoulli’s inequality (consider
without loss of generality u # @)

k+1
o115y = 1w = @) = w2l g = (Ju = aluie) = loalni o))
k1 2|11 () )’Hl ( [v2| L1 () )
= Ju— - 28T (k)2
. ULI(Q)< [u — a1 > =i b )|U—ﬂ|L1(sz)
= lu “|12J1r(1sz (k+1)|u— ﬂ|il(ﬂ)|v2|L1(Q)'
Consequently,

[ oate =) d -+ A= a0 > solon [+ ol (7 el — al 145, )
> ol — gy = 200k + Dlu = @l gy valis o) + [v2lpi ey (7 = 3elu — al} g )
> volu — 11|’ZJ1F(1Q) + 2|01 () (7’ —vo(k + 1)|u — @\’Zl(m — 3clu — 1L/12(Q )
Choosing « small enough, one can ensure
/Qaa(u — ) dz + Au— ) > qolu — l§ 1oy + vl (7 = 20(k + Dl — s gy — elu — al/2g))
> Yolu — ”L_L|IZT(1Q) + %|v2|L1(Q) > Yolu — ﬂ\]ﬁ(lg)

for all u € U with |u — @[r1(q) < a.

O
Proposition 6.2 allows to split Assumption 2 in two parts, as it follows in the next theorem.
Theorem 6.3. Let there exist numbers pi1, 2 € R and a > 0 such that
/Qaﬁv dx > u1|v|lz*1'(g) (6.3)
and
Aw) = paloltTH (6.4)

for everyv € (U—u)NCTNBriy(@; ). If py+pe > 0, then Assumption 2 is fulfilled, hence the optimality
mapping © (see (4.12)) of problem (1.1)—(1.2) is strongly Holder subregular with exponent A = 1/k* at the
reference point (g, p, 4

The proof consists of summation of (6.3) and (6.4) and utilization of Proposition 6.2 and Theorem 4.11.
The splitting of Assumption 2 has the advantage that the inequalities in (6.3) and (6.4) can be analyzed
separately. The next proposition is related to (6.3).

The following assumption has become standard in the literature on PDE optimal control problems with
bang-bang controls, see, e.g., [9, 12, 34, 42].
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Assumption 3. There ezists a positive number pg such that
meas{x € Q: |og(z)] < e} < poe™ Ve > 0.
Proposition 6.4. The following statements hold.
(i) If Assumption 3 is fulfilled then there exists py > 0 such that (6.3) holds for every v € U — 4.

(ii) Suppose there exists v > 0 such that ba(x) —bi(x) > v for a.e. x € Q. If (6.3) holds for everyv € U —u
then Assumption 3 is fulfilled.

Proof. The proof of the first claim follows [34, Proposition 3.1], see also [9, Proposition 2.7]. It has been
also proved several times in the literature on ordinary differential equations in a somewhat stronger form;
see, e.g., [1, 28, 33, 37].

Let us prove the second claim. For each € > 0, define

a(x) if loa(x)| > €

bi(x) + ba(z)

bi(z) if |oa(z)] <e and a(z)e[ y

bo(a)]

by (z) + bg(x))

by(z) if |oa(z)|<e and ﬂ(x)e{bl(m), 5

Clearly each u. belongs to U, and

|ue(z) —u(z)| = %Ibz(w) = bi(z)] (6.5)

for a.e z € {s € Q: |0z(s)| < €}. From (6.3) we have

k41
1 (/ |ue — @l dx) < / og(ue —a)de < s/ |ue — @l de.
loal<e loal<e

low|<e

This implies
_1
/ lue — a|dx < py kek, (6.6)
loa|<e

Using (6.5) and (6.6) we obtain that

1 1 2
meas {z € Q : |og(2)] Sa}:f/ vdr < f/ |by — b1 da < f/ |ue — @| dz
YV Jjos|<e YV Jloul<e V Jjoa|<e
< 2(#1)7%1/716%.

Thus Assumption 3 is fulfilled with pg := 2(/11)_%1/_1. O
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