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Abstract. We prove that a function in several variables is in the local Zyg-

mund class Zm,1 if and only if its composite with every smooth curve is of class

Zm,1. This complements the well-known analogous result for local Hölder–
Lipschitz classes Cm,α which we reprove along the way. We demonstrate that

these results generalize to mappings between Banach spaces and use them to

study the regularity of the superposition operator f∗ : g 7→ f ◦ g acting on the
global Zygmund space Λm+1(Rd). We prove that, for all integers m, k ≥ 1,

the map f∗ : Λm+1(Rd) → Λm+1(Rd) is of Lipschitz class Ck−1,1 if and only

if f ∈ Zm+k,1(R).

1. Introduction

The main goal of this note is to prove the following 1-dimensional characteriza-
tion of the local Zygmund class Zm,1 of functions in several variables.

Theorem 1.1. Let m ∈ N. Let f : U → R be a function defined on an open subset
U ⊆ Rd. The following conditions are equivalent:

(1) f ◦ c ∈ Zm,1(R) for each c ∈ C∞(R, U).
(2) f ∈ Zm,1(U).

By definition, Zm,1(U) consists of all Cm-functions f : U → R such that for all
compact subsets K ⊆ U and all multiindices γ ∈ Nd with |γ| = m the set{f (γ)(x+ h)− 2f (γ)(x) + f (γ)(x− h)

h
: x, x± h ∈ K, h ̸= 0

}
is bounded.

The local Zygmund classes Zm,1(U) fit in the scale of local Hölder–Lipschitz
classes: in fact, Cm,1(U) ⊆ Zm,1(U) ⊆ Cm,α(U) for all m ∈ N and α ∈ (0, 1) with
strict inclusions. In some respects (e.g. in harmonic analysis, cf. [8]) the Zygmund
class Zm,1(U) is more natural and important than the Lipschitz class Cm,1(U). We
speak of the scale of local Hölder–Zygmund classes, where for α = 1 the Zygmund
class replaces the respective Lipschitz class:

{Cm,α(U) : m ∈ N, α ∈ (0, 1)} ∪ {Zm,1(U) : m ∈ N}.

It corresponds to the scale of global Hölder–Zygmund classes {Λs(Rd) : s > 0}
which are the Besov classes Bs,∞

∞ (Rd); see Section 2 for precise definitions.
The Hölder–Lipschitz analogue of Theorem 1.1 is due to Boman [1]:
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Theorem 1.2. Let m ∈ N and α ∈ (0, 1]. Let f : U → R be a function defined on
an open subset U ⊆ Rd. The following conditions are equivalent:

(1) f ◦ c ∈ Cm,α(R) for each c ∈ C∞(R, U).
(2) f ∈ Cm,α(U).

Faure [4] generalized this result to Cm,ω, where ω is any modulus of continuity.
The results of Theorem 1.1 and Theorem 1.2 have a certain similarity with the

well-known fact (e.g. [8, Theorem 9.1]) that a function f : Rd → R belongs to
Λs(Rd) if it does so uniformly in each variable separately. There is no uniformity
(with respect to c) required in condition (1) of Theorem 1.1 and Theorem 1.2,
respectively; on the other hand, f is tested on the much larger set of all C∞-curves
in the domain (instead of just affine lines parallel to the axes).

We will prove Theorem 1.1 in Section 3. Only a few modifications are necessary
to obtain also a proof of Theorem 1.2. The general proof scheme is the one used in
[7, Section 4.3] and [10, Section 12] for the Lipschitz case. It is combined with the
characterization of Hölder–Zygmund classes in terms of finite differences; see [8].

The characterization in Theorem 1.1 enables us to extend the notion of local Zyg-
mund classes to mappings between convenient vector spaces (i.e. Mackey–complete
locally convex spaces) such as has been done for Hölder–Lipschitz classes in [7, 6, 10].
This leads to a version of Theorem 1.1 for maps between Banach spaces; see Corol-
lary 4.4.

We also discuss versions of Theorem 1.1, where the domain of definition of f
is not an open set. Then a loss of regularity depending on the geometry of the
boundary occurs; see Theorem 4.7, Theorem 4.8, and Theorem 4.9 as well as [9]
and [14, 15].

In the final section we utilize a version of Theorem 1.2 for maps between Banach
spaces to study the regularity of the nonlinear superposition operator f∗ : g 7→ f ◦g
acting on the global Zygmund class Λm+1(Rd).

Theorem 1.3. Let m, k ∈ N≥1 and f : R → R a function. Then f∗ acts on
Λm+1(Rd) and f∗ : Λm+1(Rd) → Λm+1(Rd) is of Lipschitz class Ck−1,1 if and only
if f ∈ Zm+k,1(R).

This complements results of [2] on the Ck-regularity of f∗ : Λm+1(Rd) →
Λm+1(Rd) based on totally different methods.

Notation. We denote by N = {0, 1, 2, . . .} the set of nonnegative integers and set
N≥k := {n ∈ N : n ≥ k}. We will make use of standard multiindex notation. The
partial derivative of a function f with respect to the j-th variable is denoted by
∂jf . If γ ∈ Nd is a multiindex, then we use the notation f (γ) = ∂γf = ∂γ1

1 · · · ∂γd

d f
for the corresponding partial derivative of higher order.

2. Hölder–Zygmund classes

2.1. Function spaces. By a modulus of continuity we mean an increasing subad-
ditive function ω : [0,∞) → [0,∞) such that limt→0 ω(t) = 0 and t 7→ t/ω(t) is
locally bounded.

Let ω be a modulus of continuity. Let U ⊆ Rd be an open set. Recall that
C0,ω(U) denotes the set of functions f : U → R such that

sup
x,x+h∈K, h̸=0

|f(x+ h)− f(x)|
ω(|h|)

<∞



HÖLDER–ZYGMUND CLASSES ON SMOOTH CURVES 3

for all compact subsets K ⊆ U . For a positive integer m,

Cm,ω(U) :=
{
f ∈ Cm(U) : f (γ) ∈ C0,ω(U) for all γ ∈ Nd with |γ| = m

}
.

For ω(t) = tα, where α ∈ (0, 1], we obtain the Hölder–Lipschitz classes Cm,α(U).
The Zygmund class Z0,1(U) is the set of all continuous functions f : U → R

such that

(2.1) sup
x,x±h∈K, h̸=0

|f(x+ h)− 2f(x) + f(x− h)|
|h|

<∞,

and if m is a positive integer,

Zm,1(U) :=
{
f ∈ Cm(U) : f (γ) ∈ Z0,1(U) for all γ ∈ Nd with |γ| = m

}
.

Continuity of f does not follow from (2.1) and has to be imposed (cf. [8, Proposition
2.7]). All classes Cm,ω(U) and Zm,1(U) are endowed with their natural locally
convex topologies.

Note that for all m ∈ N and 0 < α < β < 1, we have the strict continuous
inclusions

Cm+1(U) ⊊ Cm,1(U) ⊊ Zm,1(U) ⊊ Cm,ω(U) ⊊ Cm,β(U) ⊊ Cm,α(U) ⊊ Cm(U),

(2.2)

where ω(t) := t log 1
t . For instance Z0,1(R) contains the Weierstrass function t 7→∑

k 2
−k sin(2kt) which is nowhere differentiable and thus not locally Lipschitz.

The spaces Cm,α(U), 0 < α < 1, and Zm,1(U) are local versions of the global
Hölder–Zygmund spaces Λs(Rd), s > 0, which are Banach spaces defined as follows.
For 0 < s ≤ 1, Λs(Rd) consists of all bounded continuous functions f : Rd → R
such that ∥f∥Λs <∞, where

∥f∥Λs
:= sup

x∈Rd

|f(x)|+ sup
x,h∈Rd, h ̸=0

|f(x+ h)− f(x)|
|h|s

, if 0 < s < 1,

∥f∥Λ1 := sup
x∈Rd

|f(x)|+ sup
x,h∈Rd, h ̸=0

|f(x+ h)− 2f(x) + f(x− h)|
|h|

For s > 1 the space Λs(Rd) is defined recursively: take the unique m ∈ N with
m < s ≤ m+ 1. Then Λs(Rd) consists of all functions f : Rd → R of class Cm such
that

∥f∥Λs := ∥f∥Λs−1 +

d∑
j=1

∥∂jf∥Λs−1 <∞.

For 0 < s < t there is a continuous inclusion Λt(Rd) ↪→ Λs(Rd). For integer
s = m+ 1 > 0, Λs(Rd) strictly contains the Lipschitz space

Lips(Rd) :=
{
f ∈ Cm(Rd) : ∥f∥Lips

<∞
}
,

where (again recursively)

∥f∥Lip1
:= sup

x∈Rd

|f(x)|+ sup
x,h∈Rd, h ̸=0

|f(x+ h)− f(x)|
|h|

,

∥f∥Lips
:= ∥f∥Lips−1

+

d∑
j=1

∥∂jf∥Lips−1
for s > 1.

Note that Λt(Rd) ↪→ Lips(Rd) ↪→ Λs(Rd) if s is an integer and t > s.
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2.2. Difference quotients and finite differences. Let f : R → R be a function.
The difference quotient δmf(x0, . . . , xm) of order m on the pairwise disjoint points
x0, . . . , xm ∈ R is recursively defined by δ0f(x0) := f(x0) and

δmf(x0, . . . , xm) := m
δm−1f(x0, . . . , xm−1)− δm−1f(x1, . . . , xm)

x0 − xm
.

It is symmetric in x0, . . . , xm. One checks easily that

δmf(x0, . . . , xm) = m!

m∑
i=0

f(xi)
∏

0≤j≤m
j ̸=i

1

xi − xj
.

We will mainly use the equidistant difference quotient

δmeqf(x;h) := δmf(x, x+ h, . . . , x+mh)

=
1

hm

m∑
i=0

(−1)m−i

(
m

i

)
f(x+ ih) =:

1

hm
∆m

h f(x),

where ∆m
h f(x) is the (forward) finite difference of order m recursively defined by

∆0
hf(x) := f(x), ∆1

hf(x) := f(x+ h)− f(x), ∆m
h f(x) := ∆1

h(∆
m−1
h f(x)).

Note that, for f ∈ C1(R),

(2.3) ∆2
hf(x) =

∫ x+h

x

∆1
hf

′(t) dt.

2.3. Product and chain rule. Let f, g, fi : R → R. We have

∆m
h (f1 · · · fn)(x) =

∑
i1+···+in=m

(
m

i1, . . . , in

) n∏
j=1

∆
ij
h fj

(
x+

(
m−

n∑
k=j

ik

)
h
)
.(2.4)

We also need a chain rule for finite differences of order one and two:

∆1
h(f ◦ g)(x) = ∆1

∆1
hg(x)

f(g(x)),

∆2
h(f ◦ g)(x) = ∆1

∆2
hg(x)

f(2g(x+ h)− g(x)) + ∆2
∆1

hg(x)
f(g(x)).

(2.5)

The validity of these formulas is easily established by expanding the right-hand
sides.

2.4. Hölder–Zygmund classes in terms of difference quotients. First we
recall a description of local Lipschitz classes.

Theorem 2.1 ([10, Lemma 12.4]). Let m ∈ N. Let f : R → R be continuous. The
following conditions are equivalent:

(1) f ∈ Cm,1(R).
(2) (x, h) 7→ δm+1

eq f(x;h) is locally bounded on R× (R \ {0}).

As a consequence we obtain

Corollary 2.2. Let m ∈ N. Let f : R → R be continuous. That (x, h) 7→ δmeqf(x;h)

is locally bounded implies that (x, h) 7→ δjeqf(x;h) is locally bounded for all j ≤ m.

To get a similar characterization of local Hölder–Zygmund classes we recall

Theorem 2.3 ([8, Theorem 6.1]). If f ∈ L∞(R) ∩ C0(R) and 0 < s < n with
n ∈ N, then f ∈ Λs(R) is equivalent to |∆n

hf(x)| ≤ C |h|s for all x, h ∈ R.
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For local Zygmund classes we may infer

Theorem 2.4. Let m ∈ N. Let f : R → R be continuous. The following conditions
are equivalent:

(1) f ∈ Zm,1(R).
(2) (x, h) 7→ h δm+2

eq f(x;h) and (x, h) 7→ δmeqf(x;h) are locally bounded on R×
(R \ {0}).

Proof. (1) ⇒ (2) Let f ∈ Zm,1(R) and I ⊆ R a bounded interval. Then f |I has an
extension F ∈ Λm+1(R) (such that ∥F∥Λm+1(R) ≤ C ∥f∥Λm+1(I) for some C > 0);

see [8, Section 14]. By Theorem 2.3, |∆m+2
h F (x)| ≤ C |h|m+1 for all x, h ∈ R. From

this it is easy to conclude that (x, h) 7→ h δm+2
eq f(x;h) is locally bounded. That

also (x, h) 7→ δmeqf(x;h) is locally bounded is trivial for m = 0 and follows from

Theorem 2.1 for m ≥ 1, since f ∈ Zm,1(R) ⊆ Cm−1,1(R) by (2.2).
(2) ⇒ (1) Fix a bounded interval I ⊆ R and a C∞-function χ : R → [0, 1] with

compact support which is 1 in a neighborhood of I. Then, by the product rule (2.4),
g := χf satisfies |∆m+2

h g(x)| ≤ C |h|m+1 for all x, h ∈ R and thus g ∈ Λm+1(R),
by Theorem 2.3. Indeed, |∆m+2

h g(x)| is bounded by a finite sum of terms which

are up to constant factors of the form |∆i
hχ(y)∆

j
hf(z)|, where i + j = m + 2. If

j ≤ m, then |∆j
hf(z)| ≤ C|h|j and |∆m+1

h f(z)| ≤ C|h|m, by Corollary 2.2. Thus

|∆i
hχ(y)∆

j
hf(z)| ≤ C|h|m+1 for j ≤ m + 1. For j = m + 2 this follows from local

boundedness of (x, h) 7→ h δm+2
eq f(x;h). Since I was arbitrary, we may conclude

that f ∈ Zm,1(R). □

Remark 2.5. The local boundedness of (x, h) 7→ δmeqf(x;h) is used for the “local
to global” argument in (2) ⇒ (1). It is possible that it can be dropped from the
formulation of (2).

For the local Hölder classes we have

Theorem 2.6. Let m ∈ N and α ∈ (0, 1). Let f : R → R be continuous. The
following conditions are equivalent:

(1) f ∈ Cm,α(R).
(2) (x, h) 7→ |h|1−αδm+1

eq f(x;h) and (x, h) 7→ δmeqf(x;h) are locally bounded on
R× (R \ {0}).

Proof. This follows in analogy to Theorem 2.4 again from Theorem 2.3. □

3. Testing on smooth curves

This section is devoted to the proof of Theorem 1.1. A few adjustments are
all that is needed to also prove Theorem 1.2 in one go. These adjustments are
indicated in Section 3.7.

3.1. Composition with smooth curves preserves the class.

Proposition 3.1. Let U ⊆ Rd be an open subset and c ∈ C∞(R, U). Then:

(1) For each m ∈ N and f ∈ Zm,1(U) we have f ◦ c ∈ Zm,1(R).
(2) For each m ∈ N, α ∈ (0, 1], and f ∈ Cm,α(U) we have f ◦ c ∈ Cm,α(R).

The proposition is a consequence of sharper versions: e.g. [13], [2], and [3]. For
m ≥ 1 a proof of (1) can be assembled from the arguments in Section 5; see
Remark 5.2.
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3.2. Curve lemma. We will repeatedly use the general curve lemma [10, 12.2]
which we restate here in a simple form for the convenience of the reader.

Lemma 3.2. Let cn ∈ C∞(R,Rd) be a sequence of C∞-curves that converges fast
to 0, i.e., for each k ∈ N the sequence (nkcn)n is bounded in C∞(R,Rd). Let sn ≥ 0
be reals with

∑
n sn <∞. Then there exist a curve c ∈ C∞(R,Rd) and a convergent

sequence tn of reals such that c(t+ tn) = cn(t) for |t| ≤ sn and all n.

3.3. Degree zero. The proof of Theorem 1.1 is based on induction on m. The
following lemma treats the base case m = 0.

Lemma 3.3. Let U ⊆ Rd be an open set and f : U → R a function. The following
conditions are equivalent:

(1) f ◦ c ∈ Z0,1(R) for all c ∈ C∞(R, U).
(2) f ∈ Z0,1(U).

Proof. That (2) implies (1) follows from Proposition 3.1. Let us assume that (1)
holds and suppose for contradiction that f ̸∈ Z0,1(U). Note that (1) implies that
f is continuous (cf. [10, Theorem 4.11]). Thus there is a compact set K ⊆ U and
points xn, xn ± hn in K such that

qn :=
|f(xn + hn)− 2f(xn) + f(xn − hn)|

|hn|
is unbounded. Passing to subsequences, we may assume that |xn − x| ≤ 4−n,
|hn| ≤ 4−n, and qn ≥ n2n. Consider the curves cn(t) := xn + t hn

2n|hn| and note that

cn − x converges fast to 0. By Lemma 3.2, there is a C∞-curve c : R → U and a
convergent sequence of reals tn such that c(t+ tn) = cn(t) for all |t| ≤ sn := 2n|hn|.
Then

|(f ◦ c)(tn + sn)− 2(f ◦ c)(tn) + (f ◦ c)(tn − sn)|
sn

=
qn
2n

≥ n

contradicting (1). □

Lemma 3.4. Let α ∈ (0, 1], U ⊆ Rd an open set, and f : U → R a function. The
following conditions are equivalent:

(1) f ◦ c ∈ C0,α(R) for all c ∈ C∞(R, U).
(2) f ∈ C0,α(U).

Proof. Repeat the proof of Lemma 3.3 with qn := |f(xn + hn) − f(xn)|/|hn|α; cf.
[5], [10, Lemma 12.7], or [11]. □

3.4. Proof of Theorem 1.1. The key step is the following proposition.

Proposition 3.5. Let m ∈ N≥1. Let f : R2 → R be such that f ◦ c ∈ Zm,1(R) for
all c ∈ C∞(R,R2). Then ∂2f(·, 0) ∈ Zm−1,1(R).

Let us now use Proposition 3.5 to complete the proof of Theorem 1.1. The proof
of Proposition 3.5 will be given in Section 3.6.

Proposition 3.6. Let m ∈ N≥1. Let U ⊆ Rd be an open set. Let f : U → R
be a function such that f ◦ c ∈ Zm,1(R) for all c ∈ C∞(R, U). Then dvf(x) :=
∂t|t=0f(x+tv) exists for all (x, v) ∈ U×Rd and defines a mapping df : U×Rd → R
such that df ◦ (x, v) ∈ Zm−1,1(R) for each (x, v) ∈ C∞(R, U × Rd).
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Proof. The directional derivative dvf(x) exists, since s 7→ f(x + sv) belongs to
Zm,1 ⊆ C1 for s near 0. Let (x, v) ∈ C∞(R, U × Rd) and consider the C∞-map
g(t, s) := x(t) + sv(t). Then the open set Ω := g−1(U) contains R × {0}. Fix
R, r > 0 such that [−R,R]× [−r, r] ⊆ Ω. For any u > 0 choose a C∞-function φu :
R → [−u, u] such that φu(x) = x for all x ∈ [−u

2 ,
u
2 ]. Then g̃(t, s) := g(φR(t), φr(s))

maps R2 to U and coincides with g on [−R
2 ,

R
2 ]× [− r

2 ,
r
2 ]. Thus f ◦ g̃ : R2 → R has

the property that f ◦ g̃ ◦ c ∈ Zm,1(R) for all c ∈ C∞(R,R2), by assumption. By
Proposition 3.5, t 7→ ∂2(f ◦ g̃)(t, 0) belongs to Zm−1,1(R). For t ∈ [−R

2 ,
R
2 ] we have

∂2(f ◦ g̃)(t, 0) = ∂s|s=0

(
f(x(t) + sv(t))

)
= dv(t)f(x(t)) = (df ◦ (x, v))(t).

Since R > 0 was arbitrary, we may conclude that df ◦ (x, v) ∈ Zm−1,1(R). □

Now we may complete the proof of Theorem 1.1. One implication simply follows
from Proposition 3.1. For the other implication suppose that f : U → R has the
property that f ◦ c ∈ Zm,1(R) for all c ∈ C∞(R, U). We proceed by induction on
m. The case m = 0 follows from Lemma 3.3. Suppose that m ≥ 1. We may infer
from Proposition 3.6 that the partial derivatives ∂jf(x), j = 1, . . . , d, of first order
exist at all x ∈ U and ∂jf ◦ c ∈ Zm−1,1(R) for each c ∈ C∞(R, U) and all j. The
induction hypothesis implies that ∂jf ∈ Zm−1,1(U) for all j, that is, f ∈ Zm,1(U).
This ends the proof of Theorem 1.1.

3.5. Auxiliary results. We need some preparatory results for the proof of Propo-
sition 3.5. First we derive some properties of functions in Zm,1(R).

We use the Landau O-notation at 0 in the following way. Let I ⊆ R be a
bounded interval. If φx(h) is a function in h which may also depend on x ∈ I and
ψ(h) > 0 is a function of h, then φx(h) = OI(ψ(h)) shall mean that there is a
constant C = C(I) > 0 such that |φx(h)| ≤ C ψ(h) for all x ∈ I and all sufficiently
small h.

Of crucial importance will be a Taylor formula for functions in Zm,1(R):

Lemma 3.7. Let m ∈ N and f ∈ Zm,1(R). Then, for each bounded interval I ⊆ R,

(3.1)
1

2m
f(x+ 2h)− 2f(x+ h) +

m∑
j=0

(
2− 1

2m−j

)f (j)(x)
j!

hj = OI(|h|m+1).

Proof. We proceed by induction on m. For m = 0 the statement follows from the
definition. Let us assume that the identity holds for m and show it for m+ 1. We
suppose that h > 0; if h < 0 the arguments are similar. Let F ∈ Zm+1,1(R) with
F ′ = f ∈ Zm,1(R). Integrating (3.1) in h yields

1

2m+1

(
F (x+ 2h)− F (x)

)
− 2

(
F (x+ h)− F (x)

)
+

m∑
j=0

(
2− 1

2m−j

)F (j+1)(x)

(j + 1)!
hj+1

=
1

2m+1
F (x+ 2h)− 2F (x+ h) +

m+1∑
i=0

(
2− 1

2m+1−i

)F (i)(x)

i!
hi

= OI(h
m+2)

completing the induction. □

Let f : R → R and m ∈ N. We set

Dm(f)(x;h) :=
1

2m
f(x+ 2h)− 2f(x+ h), x, h ∈ R.
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If m ≥ 1 we can approximate hf ′(x) to order m + 1 in h by a suitable linear
combination of Dm(f)(x; jh), for j = 0, 1, . . . ,m, in a uniform way for f ∈ Zm,1(R)
and x ∈ I:

Lemma 3.8. Let m ∈ N≥1. There exist constants a0, . . . , am ∈ R such that for all
f ∈ Zm,1(R) we have, for each bounded interval I ⊆ R,

hf ′(x)−
m∑
j=0

ajDm(f)(x; jh) = OI(|h|m+1).

Proof. By Lemma 3.7, for any choice of a0, . . . , am ∈ R we have

m∑
j=0

ajDm(f)(x; jh) =

m∑
j=0

aj

( m∑
i=0

( 1

2m−i
− 2

)f (i)(x)
i!

(jh)i +OI(|h|m+1)
)

=

m∑
i=0

( m∑
j=0

ajj
i
)( 1

2m−i
− 2

)f (i)(x)
i!

hi +OI(|h|m+1).

To obtain the assertion it suffices to choose a0, . . . , am such that

m∑
j=0

ajj =
( 1

2m−1
− 2

)−1

,

m∑
j=0

ajj
i = 0, 0 ≤ i ≤ m, i ̸= 1,

which is possible, since the coefficients of this linear system of equations form a
Vandermonde matrix. □

Let us set

Am(f)(x;h) :=

m∑
j=0

ajDm(f)(x; jh),

where a0, . . . , am ∈ R are the constants provided by Lemma 3.8.

3.6. Proof of Proposition 3.5. For f : R2 → R we define

Dm(f)(x, h) :=
1

2m
f(x, 2h)− 2f(x, h)

and

Am(f)(x, h) :=

m∑
j=0

ajDm(f)(x, jh),

where a0, . . . , am ∈ R are the constants provided by Lemma 3.8.
From Lemma 3.8 we get an approximation result for functions in two variables:

Lemma 3.9. Let m ∈ N≥1. Let f : R2 → R be such that f ◦ c ∈ Zm,1(R) for all
c ∈ C∞(R,R2). For each compact interval I ⊆ R there is a constant C > 0 such
that for all x, h ∈ I we have∣∣h∂2f(x, 0)−Am(f)(x, h)

∣∣ ≤ C|h|m+1.
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Proof. In the case 0 ̸∈ I so that h is bounded away from 0, it is enough to check that
x 7→ ∂2f(x, 0) is bounded on I. (That f and consequently (x, h) 7→ Am(f)(x, h)
is bounded on I × I follows easily from Lemma 3.2 or [10, 2.8].) Suppose, for
contradiction, that there exist xn, x ∈ I with |xn − x| ≤ 4−n and |∂2f(xn, 0)| ≥
n2n. Applying Lemma 3.2 to cn(t) := (xn, 2

−nt) and sn := 2−n gives a C∞-curve
c : R → R2 and a convergent sequence of reals tn such that c(t + tn) = cn(t) for
|t| ≤ sn. Thus, |(f ◦ c)′(tn)| = |(f ◦ cn)′(0)| = 2−n|∂2f(xn, 0)| ≥ n, contradicting
that f ◦ c ∈ Zm,1(R) ⊆ C1(R).

Now assume that 0 ∈ I. Suppose, for contradiction, that there are xn, hn ∈ I
such that ∣∣hn∂2f(xn, 0)−Am(f)(xn, hn)

∣∣ ≥ n2n(m+1)|hn|m+1.

By passing to subsequences, we may assume that xn → x and hn → 0 (by the first
paragraph) and in turn that |xn − x| ≤ 4−n and |hn| ≤ 4−n. Applying Lemma 3.2
to cn(t) := (xn, 2

−nt) and sn = 2m · 2−n we find a C∞-curve c : R → R2 and a
convergent sequence of reals tn with c(t+ tn) = cn(t) for |t| ≤ sn. Then∣∣∣2nhn(f ◦ c)′(tn)−Am(f ◦ c)(tn; 2nhn)

∣∣∣
=

∣∣∣2nhn(f ◦ cn)′(0)−Am(f ◦ cn)(0; 2nhn)
∣∣∣

=
∣∣hn∂2f(xn, 0)−Am(f)(xn, hn)

∣∣
≥ n(2n|hn|)m+1.

But this contradicts Lemma 3.8. □

Now we are ready to show Proposition 3.5, assuming the validity of Theorem 1.2
which will be (re)proved in Section 3.7. Let m ∈ N≥1 and suppose that f : R2 → R
satisfies f ◦ c ∈ Zm,1(R) for all c ∈ C∞(R,R2). Then g := ∂2f(·, 0) is well-defined.
We have to prove that g ∈ Zm−1,1(R). By Theorem 2.4, it suffices to check the
following three claims.

Claim (i). g is continuous.

Since f ◦ c ∈ C1,α(R) for all c ∈ C∞(R,R2) and all α ∈ (0, 1), by (2.2), we may
invoke the result for C1,α; cf. Theorem 1.2 and its proof in Section 3.7. Claim (i)
follows.

Claim (ii). δm−1
eq g(x;h) is locally bounded in (x, h) ∈ R× (R \ {0}).

By (2.2), we have f ◦ c ∈ Cm−1,1(R) for all c ∈ C∞(R,R2). By Theorem 1.2, g ∈
Cm−2,1(R) ifm ≥ 2 and thus δm−1

eq g(x;h) is locally bounded in (x, h) ∈ R×(R\{0}),
in view of Theorem 2.1. If m = 1 this is trivially true by Claim (i).

Claim (iii). hδm+1
eq g(x;h) is locally bounded in (x, h) ∈ R× (R \ {0}).

Suppose, for contradiction, that Claim (iii) is not true, say for x in a neighbor-
hood of 0. Then there exist xn and hn with |xn| ≤ 4−n and 0 < hn < 4−n (if
necessary replace f(x, y) by f(−x, y)) such that

|hnδm+1
eq g(xn;hn)| ≥ n2n(m+1).

Let cn(t) := (xn − hn + 2−nt, 2−nt) and sn := (m + 2)2−n. Lemma 3.2 gives a
C∞-curve c : R → R2 and a convergent sequence of reals tn with c(t + tn) = cn(t)
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for |t| ≤ sn. Set

f1(x, h) := hg(x),

f2(x, h) := hg(x)−Am(f)(x, h).

Then the sequence

Tn : = 2nhnδ
m+2
eq (f1 ◦ c)(tn; 2nhn)(3.2)

=
2nhn

(2nhn)m+2

m+2∑
i=0

(−1)m+2−i

(
m+ 2

i

)
f1(xn − hn + ihn, ihn)

=
1

(2nhn)m+1

m+2∑
i=0

(−1)m+2−i

(
m+ 2

i

)
ihng(xn + (i− 1)hn)

=
1

2n(m+1)

hn

hm+1
n

m+2∑
i=1

(−1)m+2−i

(
m+ 2

i

)
ig(xn + (i− 1)hn)

=
m+ 2

2n(m+1)

hn

hm+1
n

m+1∑
j=0

(−1)m+1−j

(
m+ 1

j

)
g(xn + jhn)

=
m+ 2

2n(m+1)
hnδ

m+1
eq g(xn;hn)

satisfies |Tn| ≥ (m + 2)n. On the other hand, Am(f) ◦ c ∈ Zm,1(R), by the
assumption on f , so that 2nhnδ

m+2
eq (Am(f) ◦ c)(tn; 2nhn) is bounded, by Theo-

rem 2.4. By Lemma 3.9, there is C > 0 such that |f2(x, h)| ≤ C|h|m+1 for all
x, h ∈ [−(m+ 2),m+ 2] which implies that

2nhn|δm+2
eq (f2 ◦ c)(tn; 2nhn)| ≤

2nhn
(2nhn)m+2

m+2∑
i=0

(
m+ 2

i

)
|f2(xn − hn + ihn, ihn)|

≤ C
(m+ 2

2n

)m+1 m+2∑
i=0

(
m+ 2

i

)
.

Consequently, Tn is bounded, a contradiction. Thus, Claim (iii) is shown and the
proof of Proposition 3.5 is complete.

3.7. Proof of Theorem 1.2. We will indicate how to show

Proposition 3.10. Let m ∈ N and α ∈ (0, 1]. Let f : R2 → R be such that
f ◦ c ∈ Cm+1,α(R) for all c ∈ C∞(R,R2). Then ∂2f(·, 0) ∈ Cm,α(R).

Then it is easy to finish the proof of Theorem 1.2 using a variant of Proposi-
tion 3.6 as well as Lemma 3.4 and Proposition 3.1.

We replace Lemma 3.7 by the following easy consequence of Taylor’s formula.

Lemma 3.11. Let m ∈ N, α ∈ (0, 1], and f ∈ Cm,α(R). Then, for each bounded
interval I ⊆ R,

f(x+ h) =

m∑
j=0

f (j)(x)

j!
hj +OI(|h|m+α).
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As in Lemma 3.8 we conclude: If b0, . . . , bm ∈ R is the solution of the system
m∑
j=0

bjj = 1,

m∑
j=0

bjj
i = 0, 0 ≤ i ≤ m, i ̸= 1,

then for all f ∈ Cm,α(R), m ≥ 1, and for each bounded interval I ⊆ R,

(3.3) hf ′(x) =

m∑
j=0

bjf(x+ jh) +OI(|h|m+α).

Now suppose that m ∈ N, α ∈ (0, 1], and f : R2 → R is such that
f ◦ c ∈ Cm+1,α(R) for all c ∈ C∞(R,R2). Then we infer from (3.3), in analogy
to Lemma 3.9, that on each compact interval I there is C > 0 such that

(3.4) |hg(x)−Bm(f)(x, h)| ≤ C|h|m+1+α, x, h ∈ I,

where g := ∂2f(·, 0) and Bm(f)(x, h) :=
∑m

j=0 bjf(x, jh).

To complete the proof of Proposition 3.10 we have to show that g ∈ Cm,α(R).
By Theorem 2.6, it is enough to check the following three claims.

Claim (I). g is continuous.

To see that g is continuous it suffices to finish the proof of Proposition 3.10
in the case m = 0. Theorem 2.6 is trivial for m = 0 and holds without the a
priori assumption that g is continuous: local boundedness of |h|1−αδ1eqg(x;h) =

|h|−α(g(x+ h)− g(x)) in x and h is equivalent to g ∈ C0,α. That means for m = 0
only Claim (III) must be shown.

Claim (II). δmeqg(x;h) is locally bounded in (x, h) ∈ R× (R \ {0}).

By (2.2), we have f ◦ c ∈ Cm,1(R) for all c ∈ C∞(R,R2). Thus it suffices to finish
the proof of Proposition 3.10 in the case α = 1. Indeed, by Theorem 2.1, Claim
(II) holds if and only if g ∈ Cm−1,1(R) as g is continuous by Claim (I).

Claim (III). |h|1−α|δm+1
eq g(x;h)| is locally bounded in (x, h) ∈ R× (R \ {0}).

We may assume that there exist xn and hn with |xn| ≤ 4−n and 0 < hn < 4−n

such that

h1−α
n |δm+1

eq g(xn;hn)| ≥ n2n(m+1+α).

With the same choices of cn and sn as in Section 3.6 we find a C∞-curve c and
a convergent sequence of reals tn such that c(t + tn) = cn(t) for |t| ≤ sn. Using
f1(x, h) := hg(x) and Tn from (3.2), we find

(2nhn)
−α|Tn| = (2nhn)

1−α|δm+2
eq (f1 ◦ c)(tn; 2nhn)|

=
m+ 2

2n(m+1+α)
h1−α
n |δm+1

eq g(xn;hn)| ≥ (m+ 2)n.

On the other hand, (3.4) implies that for f2 := f1 − Bm(f) the sequence
(2nhn)

1−α|δm+2
eq (f2 ◦ c)(tn; 2nhn)| is bounded. Since Bm(f) ◦ c ∈ Cm+1,α(R)

also (2nhn)
1−α|δm+2

eq (Bm(f) ◦ c)(tn; 2nhn)| is bounded, by Theorem 2.6, so that

(2nhn)
−α|Tn| is bounded, a contradiction.
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4. On Banach spaces and beyond

In this section we use the characterization in Theorem 1.1 to extend the local
Zygmund classes to convenient vector spaces. We shall see in Corollary 4.4 that a
version of Theorem 1.1 holds for maps between Banach spaces. For background on
convenient analysis we refer to [10] and also [7]. We will also discuss versions of
Theorem 1.1 and Theorem 1.2 where the domain of f is not an open set.

4.1. Convenient analysis of local Hölder–Zygmund classes. Recall that a
convenient vector space E is a Mackey-complete locally convex space. The c∞-
topology on E is the final topology with respect to all C∞-curves (equivalently, all
Mackey-convergent sequences) in E; it is not a linear topology.

Let m ∈ N and α ∈ (0, 1].

Definition 4.1. Let E,F be convenient vector spaces, U a c∞-open subset of E.
A map f : U → F is said to be of class Zygm (resp. Hölmα ) if for each c ∈ C∞(R, U)
and each ℓ ∈ F ′ the composite ℓ ◦ f ◦ c belongs to Zm,1(R) (resp. Cm,α(R)).

For Hölmα the results we are aiming for have already been established in [6] (for
α = 1 also in [7]). So we will exploit the fact that, by (2.2), if f is of class Zygm

then it is of class Hölmα for any α ∈ (0, 1).
Let f : U → F be of class Zyg1. Then, by [6, Lemma 7], f is weakly differentiable,

i.e., for all x ∈ U , v ∈ E, the limit

df(x, v) := lim
t→0

f(x+ tv)− f(x)

t

exists with respect to the weak topology. By [6, Proposition 9], f is also strictly
differentiable, i.e., for each Mackey-compact K ⊆ U and bounded B ⊆ E,

f(x+ sv)− f(x+ tv)

s− t

is Mackey-convergent to df(x, v) as s, t → 0 uniformly for x ∈ K and v ∈ B and
f ′(x) := df(x, ·) ∈ L(E,F ) for every x ∈ U .

Lemma 4.2. Let m ∈ N. Let f : U → F be of class Zygm+1. Then:

(1) df : U × E → F is of class Zygm.
(2) f ′ : U → L(E,F ) is of class Zygm.

Proof. (1) follows from the proof of Proposition 3.6: consider (t, s) 7→ ℓ(f(x(t) +
sv(t))) where ℓ ∈ F ′. By the uniform boundedness principle, to see (2) it suffices
to check that evv ◦f ′ : U → F is of class Zygm for all v ∈ E which holds by (1)
since evv ◦f ′ = df(·, v). Indeed, a curve c : R → G in a convenient vector space
G is of class Zygm if and only if hδm+2

eq c(t;h) and δmeqc(t;h) are locally bounded in
(t, h) ∈ R× (R \ {0}), by Theorem 2.4 and testing with ℓ ∈ G′. □

Assume that f : U → F is weakly differentiable and df is of class Zyg0. Let
c ∈ C∞(R, U). Then f ◦ c is differentiable and (f ◦ c)′(t) = df(c(t), c′(t)), by [6,
Proposition 11].

Theorem 4.3. Let m ∈ N. Let E,F be convenient vector spaces, U a c∞-open
subset of E, and f : U → F a map. The following conditions are equivalent:

(1) f is of class Zygm+1.
(2) f is strictly differentiable and f ′ : U 7→ L(E,F ) is of class Zygm.
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(3) f is weakly differentiable and df : U × E → F is of class Zygm.

Proof. (1) ⇒ (2) follows from Lemma 4.2 and the preceding remarks.
(2) ⇒ (3) The map f ′ × id : U × E 7→ L(E,F ) × E is of class Zygm. The

evaluation map ev : L(E,F ) × E → F is bilinear and smooth. It follows that
df = ev ◦(f ′ × id) is of class Zygm.

(3) ⇒ (1) Let c ∈ C∞(R, U). Then (f ◦ c)′(t) = df(c(t), c′(t)) (see remark before
the theorem) is of class Zygm, whence f is of class Zygm+1. □

Corollary 4.4. Let m ∈ N. Let E,F be Banach spaces, U open in E, and f : U →
F a map. Then f is of class Zygm if and only if f is m-times Fréchet differentiable
such that f (m) ∈ Z0,1(U,Lm(E,F )).

It is straightforward to adapt the definition of Z0,1 to maps between Banach
spaces. The proof of Lemma 3.3 shows that such a map is of class Z0,1 if and only
if it is of class Zyg0; note that Lemma 3.2 is valid in convenient vector spaces. So,
for maps between Banach spaces, Zygm coincides with the naive notion of local
Zygmund regularity.

The definition of difference quotient and finite difference of arbitrary order obvi-
ously makes sense for functions f : R → E with values in a vector space E. It turns
out that Theorem 2.4 (as well as Theorem 2.1 and Theorem 2.6) are still valid if E
is a convenient vector space:

Theorem 4.5. Let m ∈ N. Let E be a convenient vector space. Let f : R → E be
a function such that ℓ ◦ f is continuous for all ℓ ∈ E′. The following conditions are
equivalent:

(1) f is of class Zygm.
(2) (x, h) 7→ hδm+2

eq f(x;h) and (x, h) 7→ δmeqf(x;h) are bounded on bounded
subsets of R× (R \ {0}).

Proof. This is immediate from Theorem 2.4, since (1) and (2) can be tested by
composing with ℓ ∈ E′. □

Remark 4.6. Let E,F be convenient vector spaces and U ⊆ E a c∞-open subset.
Let us endow Zygm(R, F ) with the initial structure with respect to all maps c 7→
((x, h) 7→ δjeqc(x;h)), for j = 0, 1, . . . ,m, and c 7→ ((x, h) 7→ hδm+2

eq c(x;h)) into the
space of all maps R× (R \ {0}) → F that are bounded on bounded sets, where the
latter space carries the locally convex topology of uniform convergence on bounded
sets. Then the space Zygm(U,F ) of all maps f : U → F of class Zygm endowed with
the initial structure with respect to all maps c∗ : Zygm(U,F ) → Zygm(R, F ) for
c ∈ C∞(R, U), is a convenient vector space and it satisfies the uniform boundedness
principle with respect to the point evaluations evx : Zygm(U,F ) → F for x ∈ U .
This can be seen in analogy to [10, 12.11].

4.2. Functions on non-open domains. Let E,F be convenient vector spaces
and let X ⊆ E be a convex subset with non-empty c∞-interior X◦. We say that
a map f : X → F is of class Zygm (resp. Hölmα ) if for each c ∈ C∞(R, X) (i.e.
c ∈ C∞(R, E) with c(R) ⊆ X) and each ℓ ∈ F ′ the composite ℓ ◦ f ◦ c belongs to
Zm,1(R) (resp. Cm,α).

Theorem 4.7. Let E,F be convenient vector spaces and let X ⊆ E be a convex sub-
set with non-empty c∞-interior X◦. Let f : X → F be of class Zyg2m (resp. Höl2mα )
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for m ∈ N≥1 (and α ∈ (0, 1]). Then f |X◦ is of class Zyg2m (resp. Höl2mα ) and for

j ≤ m the derivatives (f |X◦)(j) extend uniquely to maps f (j) : X → Lj(E,F ) of

class Zyg2(m−j) (resp. Höl2(m−j)
α ).

Proof. This can be shown in analogy to [9] and [10, Theorem 24.5]. The crucial
ingredient is an application of Theorem 1.1 (resp. Theorem 1.2) in dimension two.

□

In finite dimensions this has been generalized in the C∞- and the Hölmα -setting
by [14, 15] to a large class of closed sets X ⊆ Rd with X = X◦ admitting cusps.
Note that in Rd the c∞-topology coincides with the classical topology. In the
Hölmα -setting, a loss of regularity becomes apparent which is directly related to the
sharpness of the cusps. More precisely, for β ∈ (0, 1] let H β(Rd) denote the family
of closed subsets X ⊆ Rd with X = X◦ such that X◦ has the uniform β-cusp
property : for each x ∈ ∂X there exist ϵ > 0, a cusp

Γ =
{
(x′, xd) ∈ Rd−1 × R : |x′| < r, h

( |x′|
r

)β

< xd < h
}

for some r, h > 0, and an orthogonal linear map A : Rd → Rd such that y+AΓ ⊆ X◦

for all y ∈ X ∩B(x, ϵ). Consider the functions p, q : (0, 1] → N defined by

p(β) :=
⌈ 2
β

⌉
and q(β) :=

⌈ 1
β

⌉
.

Theorem 4.8 ([15, Theorem A]). Let m ∈ N and α, β ∈ (0, 1]. Let X ∈ H β(Rd).

If f : X → R is of class Hölmp(β)
α , then all partial derivatives of f of order j ≤ m

extend continuously from X◦ to X and are of class Höl(m−j)p(β)
α , and the partial

derivatives of order m are locally αβ
2q(β) -Hölder continuous on X.

Combining Theorem 1.1 with the proof of [15, Proposition 3.3 and 3.4] gives

Theorem 4.9. Let m ∈ N and β ∈ (0, 1]. Let X ∈ H β(Rd). If f : X → R is of

class Zygmp(β), then all partial derivatives of f of order j ≤ m extend continuously

from X◦ to X and are of class Zyg(m−j)p(β).

By the inclusion Z0,1 ⊆ C0,α for each α ∈ (0, 1) (cf. (2.2)), also in this case the

partial derivatives of order m satisfy a local αβ
2q(β) -Hölder condition on X for each

α ∈ (0, 1).

5. Regularity of superposition on Zygmund spaces

The goal of this section is to prove Theorem 1.3 which characterizes the Lipschitz
regularity of the superposition operator

f∗ : g 7→ f ◦ g

acting on the global Zygmund spaces Λm+1(Rd) for m ∈ N≥1.
To put our result in perspective we recall the characterization of the Ck-regularity

of f∗: Let m ∈ N≥1 and f : R → R a function. Then:

(1) f∗Λm+1(Rd) ⊆ Λm+1(Rd) if and only if f ∈ Zm,1(R); see [2, Theorem 1] or
Remark 5.2.
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(2) For k ∈ N the map f∗ : Λm+1(Rd) → Λm+1(Rd) is of class Ck if and only if
f ∈ Cm+k(R) and

f (m+k)(x+ h)− 2f (m+k)(x) + f (m+k)(x− h) = o(h) as h→ 0+

uniformly on compact subsets of R; cf. [2, Theorem 7].

Theorem 1.3 will follow from Proposition 5.1 and Proposition 5.3.

5.1. Sufficiency. We first show that f ∈ Zm+k,1(R) implies that f∗ acts on
Λm+1(Rd) and is of class Ck−1,1. Our approach is based on a version of Theo-
rem 1.2 for maps between Banach spaces (analogous to Corollary 4.4); see [7, 10].
This allows for a simple lucid proof. Similar results hold for f∗ acting on Hölder–
Lipschitz spaces; see e.g. [12, Theorem 2.14].

Proposition 5.1. Let m, k ∈ N≥1 and f ∈ Zm+k,1(R). Then f∗ acts on Λm+1(Rd)
and f∗ : Λm+1(Rd) → Λm+1(Rd) is of class Ck−1,1.

Proof. Let r := m+1. For simplicity let d = 1. For the fact that f∗Λr(R) ⊆ Λr(R)
we refer to [2, Theorem 1], but see also Remark 5.2. By [7, Theorem 4.3.27] or [6,
Corollary 15] (i.e. the Lipschitz analogue of Corollary 4.4), it suffices to check that
f∗ : Λr(R) → Λr(R) maps C∞-curves to Ck−1,1-curves. That t 7→ g(t, ·) is C∞ in
Λr(R) means that, for all ℓ ∈ N, ∥∂ℓ1g(t, ·)∥Λr

is locally bounded in t (cf. [7, 4.1.19]).
We first prove the case k = 1. Set h(t, x) := f(g(t, x)). In the following we

denote, for clarity, by ht, gt, etc. the partial derivatives with respect to t and write
∂x for partial derivatives with respect to x.

Then,

h(t, x)− h(s, x) =

∫ t

s

ht(τ, x) dτ =

∫ t

s

(f ′ ◦ g)(τ, x)gt(τ, x) dτ

and, for ℓ ≤ m,

∂ℓxh(t, x)− ∂ℓxh(s, x) =

ℓ∑
j=0

(
ℓ

j

)∫ t

s

∂jx(f
′ ◦ g)(τ, x)∂ℓ−j

x gt(τ, x) dτ.

By Faà di Bruno’s formula,

∂jx(f
′ ◦ g)(τ, x) =

j∑
i=1

∑
γ∈Γ(i,j)

cγ (f
(i+1) ◦ g)(τ, x)∂γ1

x g(τ, x) · · · ∂γl
x g(τ, x), (j ≥ 1),

where Γ(i, j) := {γ ∈ (N≥1)
i : |γ| = j} and cγ := j!

i!γ! , it is readily checked that t 7→
h(t, ·) is locally Lipschitz into Cm

b (R) := {u ∈ Cm(R) : supℓ≤m ∥u(ℓ)∥L∞(R) <∞}.
To see that t 7→ h(t, ·) is locally Lipschitz into Λr(R) it remains to show

Claim. For each bounded interval I ⊆ R the set{∆2
v∂

m
x h(t, x)−∆2

v∂
m
x h(s, x)

|v||t− s|
: x, v ∈ R, v ̸= 0, s ̸= t ∈ I

}
,

is bounded, where the second finite difference ∆2
v acts in the x-variable.

In view of the above, it is enough to show that for all 0 ≤ i ≤ j ≤ m and
γ ∈ Γ(i, j),

(5.1) ∆2
v

[
(f (i+1) ◦ g)(τ, x)∂γ1

x g(τ, x) · · · ∂γl
x g(τ, x)∂

m−j
x gt(τ, x)

]
= O(|v|),
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uniformly in x ∈ R and τ ∈ I. Let us from now on suppress the dependence on τ
in the notation. We can assume that |v| is small; otherwise the result follows from
the fact that t 7→ h(t, ·) is locally Lipschitz into Cm

b (R).
Each of the factors in the product

(5.2) (f (i+1) ◦ g)(x)∂γ1
x g(x) · · · ∂γl

x g(x)∂
m−j
x gt(x)

is globally bounded in x, locally in τ . Thus, by the product rule (2.4), in order to
prove (5.1) it suffices to show the following two facts.

Fact 1: For each factor Π in the product (5.2) we have ∆2
vΠ = O(|v|), uni-

formly in x ∈ R and τ ∈ I.
Fact 2: For any two factors Π1 and Π2 in the product (5.2) we have ∆1

vΠ1 ·
∆1

vΠ2 = O(|v|), uniformly in x ∈ R and τ ∈ I.

Fact 1. For Π = ∂ℓxg(x) and Π = ∂ℓxgt(x), where ℓ ≤ m, the assertion ∆2
vΠ = O(|v|)

holds; either by assumption if ℓ = m or using (2.3) if ℓ < m. It remains to consider
Π = (f (ℓ+1) ◦ g)(x) for ℓ ≤ m. In order to estimate ∆2

v(f
(m+1) ◦ g)(x) we have, by

(2.5), to deal with terms of the form

(5.3) ∆1
∆2

vg(x)
f (m+1)(y) and ∆2

∆1
vg(x)

f (m+1)(y),

where y ranges over a bounded set. By assumption and (2.2), f (m+1) ∈ Z0,1(R) ⊆
C0,α(R) for all α ∈ (0, 1) so that

∆1
∆2

vg(x)
f (m+1)(y) = O(|∆2

vg(x)|α).

Because g ∈ Λr(R) ↪→ Λ1+β(R) for any β ∈ (0, 1) (as r ≥ 2), Theorem 2.3 implies

∆2
vg(x) = O(|v|1+β).

Taking α := (1 + β)−1 we conclude that

∆1
∆2

vg(x)
f (m+1)(y) = O(|v|).

For the second term in (5.3) we have

∆2
∆1

vg(x)
f (m+1)(y) = O(|∆1

vg(x)|) = O(|v|),

since g is globally Lipschitz. For ℓ < m use (2.3) and similar arguments.

Fact 2. By (2.5) and since f (m+1) ∈ Z0,1(R) ⊆ C0,ω(R) where ω(t) := t log 1
t , we

find

∆1
v(f

(m+1) ◦ g)(x) = ∆1
∆1

vg(x)
f (m+1)(g(x)) = O(ω(|∆1

vg(x)|)) = O(ω(|v|))

as well as ∆1
v∂

m
x g(x) = O(ω(|v|)) and ∆1

v∂
m
x gt(x) = O(ω(|v|)). If the order of

differentiation in x is lower than m, then all these terms are actually O(|v|). In any
case it follows that ∆1

vΠ1 ·∆1
vΠ2 = O(|v|).

This ends the proof for k = 1. Now we argue by induction on k. Let k > 1 and
f ∈ Zm+k,1(R). Then t 7→ ht(t, ·) = (f ′ ◦ g(t, ·))gt(t, ·) is of class Ck−2,1 into Λr(R),
since (f ′)∗ is of class Ck−2,1 by induction hypothesis. Consequently, t 7→ h(t, ·) is
of class Ck−1,1 into Λr(R) (cf. [7, Theorem 4.3.24]). □

Remark 5.2. It is not difficult to build a proof of the fact that f∗Λm+1(R) ⊆
Λm+1(R) if f ∈ Zm,1(R) from the arguments used above. To see that, conversely,
f∗Λm+1(R) ⊆ Λm+1(R) implies f ∈ Zm,1(R) consider f◦g, where g is a C∞-function
with compact support and g(x) = x on a compact interval.
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5.2. Necessity.

Proposition 5.3. Let m, k ∈ N≥1 and f : R → R a function. Suppose that
f∗ acts on Λm+1(R) and f∗ : Λm+1(R) → Λm+1(R) is of class Ck−1,1. Then
f ∈ Zm+k,1(R).

Proof. By Remark 5.2, f ∈ Zm,1(R), in particular, f ∈ Cm(R).
For any compact interval I ⊆ R let ρI : R → R be a C∞-function with compact

support such that ρI(x) = x for all x ∈ I. Then g(x) := ρI(x) belongs to Λm+1(R)
and c(t) := g + ρ[−1,1](t) defines a C∞-curve in Λm+1(R) with c(0) = g and c(t) =

g+t if t ∈ [−1, 1]. By assumption, f∗ maps C∞-curves in Λm+1(R) to Ck−1,1-curves.
Thus f∗(c) is a Ck−1,1-curve in Λm+1(R) and (f∗(c))(t)(x) = f(x+ t) if x ∈ I and

t ∈ [−1, 1]. Thus, by the Hölk−1
1 -version of Theorem 4.5, see also [10, Lemma 12.4],

δkeq∆
2
v(f∗(c))

(m)(x; t)

v
=

∆k
t∆

2
vf

(m)(x)

tkv

is bounded for all x ∈ I and all small v, t ∈ R \ {0}. For t = v we see that

∆k+2
t f (m)(x)

tk+1
= tδk+2

eq f (m)(x; t)

is bounded for all x ∈ I and all small t ̸= 0. Since Λm+1(R) ↪→ Lipm(R), f∗(c) also
is a Ck−1,1-curve in Lipm(R) whence similar considerations give that

∆k
t∆

1
vf

(m−1)(x)

tkv

is bounded for all x ∈ I and all small v, t. We see that δk+1
eq f (m−1)(x; t) is bounded

for x ∈ I and small t. Invoking Theorem 2.1 twice, we find that f (m−1) ∈ Ck,1(R)
which entails f ∈ Cm+k−1,1(R), and so δkeqf

(m)(x; t) is locally bounded in (x, t) ∈
R × (R \ {0}). By Theorem 2.4, we have f (m) ∈ Zk,1(R) and consequently f ∈
Zm+k,1(R). □
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