EXTENSION OF WHITNEY JETS OF CONTROLLED GROWTH

ARMIN RAINER AND GERHARD SCHINDL

ABSTRACT. We revisit Whitney’s extension theorem in the ultradifferentiable
Roumieu setting. Based on the description of ultradifferentiable classes by
weight matrices, we extend results on how growth constraints on Whitney jets
on arbitrary compact subsets in R™ are preserved by their extensions to R™.
More precisely, for any admissible class C of ultradifferentiable functions on
R™ we determine a class C’ such that all ultradifferentiable Whitney jets of
class C’ on arbitrary compact subsets admit extensions in C. The class C’ can
be explicitly computed from C.

1. INTRODUCTION

Whitney’s classical extension theorem [27] provides conditions for the extension
of jets defined in a closed subset of R™ to infinitely differentiable functions on R™.
The present paper focuses on the question how growth constraints on the jets are
preserved by their extension: Let E C R™ be any compact subset and let M = (Mj)
be a positive sequence. A jet F = (F*), € C°(E,R)N" is said to be a Whitney jet
of class BYM} if there exist C,p > 0 such that

(1.1) |F*(a)| < Cpl* M., a€N", a€E,
|b— a|pti-lel
(p+1—la))’
where (REF)*(z) == F*(2) = X2 5/<p—|a| B!=Y(x — a)PF**F(a). Characterize the
sequences N = (Nj) with the property that every Whitney jet F' = (F®), of class
BIM} on E admits an extension f € C°°(R") such that there exist p > 0 and C > 1
with

(1.3) |F(z)| < C’pla‘NM, aeN' zeR"

We denote the space of all such functions by BV} (R™).

There is a vast literature on this problem and its variations. The problem as
formulated was solved by Chaumat and Chollet [9]: under the assumptions

(1.2)  [(REF)*(b)| < CpPT M,y peEN, |a|<p, a,b€EE,

(1) My /k! is logarithmically convex,

(2) M has moderate growth, i.e., Mjy; < CITFM;M, for all j,k and some
constant C,

(3) Ni/k!is logarithmically convex,

(4) N is non-quasianalytic, i.e., >, Ni—1/Nj < oo,

Date: November 15, 2016.

2010 Mathematics Subject Classification. 26E10, 30D60, 46E10.

Key words and phrases. Whitney extension theorem in the ultradifferentiable setting, Roumieu
type classes.

Supported by FWF-Projects P 26735-N25 and J 3948-N35.

1



2 A. RAINER AND G. SCHINDL

all Whitney jets of class B{™} on any compact E C R™ have extensions in BV} (R™)
if and only if

Ne—y _ kM
1.4 < —

(For real valued functions f and g we write f < g if and only if f < Cg for some
positive constant C. We write f ~ g if and only if f < g and g < f.)

Our main goal was to prove an analogous extension theorem without the rather
restrictive assumptions of log-convexity and moderate growth. We were motivated
by the fact that the related ultradifferentiable classes introduced by Beurling [1]
and Bjorck [2] (see also Braun, Meise, and Taylor [7]) which are described by
weight functions w can be equivalently represented by one parameter families 20 =
{W=*},50 of weight sequences (so-called weight matrices) associated with w; see
[2T]. The sequences W? typically do not have moderate growth and W7 /k! is not
log-convex.

We managed to completely dispense from the log-convexity condition and to
replace the moderate growth assumption by some weaker conditions which are sat-
isfied by weight matrices 20 = {WW*},~0 associated with suitable weight functions
w. In fact, we replace the single sequence N in the above problem by an admis-
sible weight matrix 91 which incorporates these weaker conditions and define the
descendant M of N € 0N (see which turns out to satisfy (1) and to be max-
imal with property . Our main result, Theorem [5.3] states that, for every
descendant M of N, all Whitney jets of class BIM} on any compact F C R™ have
extensions in | Jyco BN} (R™). By a standard partition of unity argument, this can
be generalized to arbitrary closed subsets of R"™; therefore we restrict to compact
sets. Combining our theorem with a result of Schmets and Valdivia [25], we obtain
a characterization of the extension property in the special case that the class is
preserved by the extension: all Whitney jets of class (Jycn BN} on any compact
E C R™ have extensions in |Jycy BV} (R™) if and only if for each M € N there is
N € M such that holds; see Theorem

Our main theorem generalizes the result of Chaumat and Chollet [9]. More-
over, we reprove the extension theorem of Bonet, Braun, Meise, and Taylor [3] for
admissible weight functions w by different methods. Beyond that, we deduce an
extension result in the mixed weight function setting, see Corollary which to
our knowledge was so far only considered in the special cases that either E = {0}
(by Bonet, Meise, and Taylor [6]) or that E is convex with non-empty interior (by
Langenbruch [I5]). Our method builds on the approach of Chaumat and Chollet
[9] who in turn combined the construction of optimal partitions of unity of Bruna
[8] with an extension procedure due to Dynkin [12]. This approach is quite direct
and reproves the result for the special case E = {0}. By contrast, [3] follows more
closely Bruna’s observation that the extension theorem for arbitrary compact sets
E is essentially a consequence of the result for E = {0} and the existence of special
cut-off functions which, in [3], are constructed using Hérmanders d-method; the
case E = {0} for weight functions was treated by Bonet, Meise, and Taylor [5] and
[6]. We do not know whether the approach of [3] can be adapted to the mixed
weight function setting.

In this paper we exclusively consider Roumieu type spaces.
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2. WEIGHTS

2.1. Weight sequences. Let u = (1) be a positive increasing sequence, 1 = pp <
w1 < po < ---. We associate the sequence M = (M},) given by

(2.1) My, := popapz -+ - pos
and the sequence m = (my,) defined by

We call M a weight sequence if M,i/k — 00.

Remark 2.1. We wish to warn the reader that some authors (e.g. [9], [2I]) prefer to
work with “sequences without factorials”, that is my instead of M. Consequently,
conditions on weight sequences sometimes look slightly different depending on the
used convention.

Note that p uniquely determines M and m, and vice versa. In analogy we shall
use v <> N <> n, 0 <> S <> s, etc. That p is increasing means precisely that M
is logarithmically convex (log-convex for short). Log-convexity of m is a stronger
condition.

Since p is increasing, (2.1)) entails

(2.3) Vk € Nog : M/F < i,

or equivalently, M ,i/ " is increasing. Another consequence is M;M;, < Mjyy, for all
k,j.

A weight sequence M is called non-quasianalytic if >, 1/pur < oo; by the
Denjoy—Carleman theorem (e.g. [I3l, Theorem 1.3.8]) this is the case if and only
if the associated class of ultradifferentiable functions contains non-trivial elements
with compact support.

Two weight sequences M and N are said to be equivalent if M,i/k ~ N,i/k; a
sufficient condition for this is 4 ~ v. This means that the associated classes of
ultradifferentiable functions coincide; see Section [3.1

2.2. Associated functions. The following facts are well-known; we refer to [I7]
and [9]. With a weight sequence M we associate the function

(2.4) B (t) := gnngtk, t>0, hu(0):=0.
€
Then hy; is increasing, continuous, and positive for ¢ > 0. For ¢t > 1/u; we have

hat(t) = 1. From hp; we may recover the sequence M by My = sup,-ot *ha(t).
We associate the counting function I'y; by setting

(2.5) Dar(t) == min{k : hps(t) = Myt*} = min{k : g1 >t}
for this identity we need that u is increasing. Then:

(2.6) k — Myt* is decreasing for k < T (t),

(2.7) har(t) = Mr,, (iyt™ " < Mt" for all k.

We shall also use

(2.8) Sp(t) = {k>1: pp <t} =max{k: ux <t}
Note that

Tar(t™1) < Sps(t) for all ¢ > 0, and Tpr(t71) = Spr(t) if ¢ & {unbn.
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It is well-known (cf. [I7] and [I4]) that wys defined by hp(t) = exp(—war(1/t))
satisfies

(2.9) wnm(t) = /Ot 21O du.

u

2.3. Moderate growth. A weight sequence M is said to have moderate growth if
the equivalent conditions of the following lemma are satisfied; some authors call it
stability under ultradifferentiable operators, e.g. [14, (M.2)].

Lemma 2.2. Let M be a weight sequence. The following are equivalent:
(0) 3C > 1Vj,k € N:mjpy < CIrmmy.
(1) 1C >1 Vi, ke N: Mj+k < Cj+ijMk.
) e S MY".

(3) par S p-

(5) dC'> 1Vt >0: QwM(t) < wM(C’t) +C.

Proof. Most of this is well-known. (0) < (1) since 1 < (k;”) < 2k For (1) & (3)
see [19, Appendix B] and for (1) < (5) see [14, Proposition 3.6].

(1) = (2) We have puf < pff < piegr - - piox = Mag /My < C*F M.

(2) = (1) Note that ux < C M,/* if and only if M./* < CV/k=1 prl/(=1 By
iteration, My/*" < € M}* and thus My, < C2*M2. By [I8, Theorem 1], this
implies (1).

(3) = (4) follows from the definition of ¥ ;.

(4) = (5) By 9,
2ot = [ gy [ 2O [TIO gy icny.

Remark 2.3. In [J] and [I0] a weight sequence is said to have moderate growth
if it satisfies (1) and M}, < C* MFH for all k. Tt is easy to see that the latter
condition is equivalent to (2); so it is superfluous by the lemma.

The proof of the lemma shows that M having moderate growth is also equivalent
to pri1 < M;/k, and with (2.3) we obtain,

(2.10) Pkt S Hk-

This condition means that the sequence log My, is almost concave in the sense that
there is a constant C' > 0 such that

log My, 1 +log My11 < 2log My + C

for all k. There are weight sequences of non-moderate growth that satisfy ,
for instance, M, = A*, where A > 1 and 0 < p < 2; cf. Section

The weight sequences associated with a weight function w (see Section do in
general not have moderate growth (nor is the weaker condition guaranteed);
cf. Section [5.5] However, we shall see in Lemma [2.6] below that all associated
sequences together fulfill a moderate growth condition. In the next lemma we show
how this condition translates to the functions hj; and I'j;.
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Lemma 2.4. Let M = (My,) and M = (My,) be weight sequences such that

(2.11) Mok S fok-

Then

(2.12) 3C > 1Vt > 0: hay(t) < by (C1)?,
(2.13) A< 1IVE> 02T, (1) < Tar(AE).

Proof. Condition (2.11)) implies 23, (t) < Xp/(Ct) for all t > 0 and some C > 1,
by (2.8). Using (2.9)), we obtain 2w, (t) < wp(Ct) for all t > 0, which is clearly
equivalent to . Similarly, (2.11)) implies 2I",(Ct) < I'p(t) for all t > 0, i.e.,
213). O

Remark 2.5. Note that (2.12)) is equivalent to
(2.14) 3C > 1Vk,j € N: Myy; < CHHI M, M.

In fact, that implies was shown in [23, Proposition 3.6]. For the oppo-
site direction, note that Ny, := ming< <k Mij,j is log-convex, by [14, Lemma 3.5].
By , M, < CFNy, for all k, and thus hps(t) = infp Mpt* < infp Np(Ct)F =
hn(Ct). Now follows from the fact that Ay = (hy,)?, see [14, Lemma 3.5].

2.4. Weight functions. A weight function is a continuous increasing function
w :[0,00) = [0,00) with w|p,1] = 0 and lim; o w(t) = oo that satisfies

(2.15) w(2t) = O(w(t)) ast— oo,
(2.16) w(t)=0() ast— oo,
(2.17) logt = o(w(t)) ast— oo,
(2.18) o(t) := w(e') is convex.

For a weight function w we consider the Young conjugate ¢* of ¢,
©*(x) :=supzy — p(y), x>0,
y=0

which is a convex increasing function satisfying ¢*(0) = 0, ¢** = @, and z/¢*(z) —
0 as z — oo; cf. [1].

2.5. The weight matrix associated with a weight function. With a weight
function w we associate a weight matriz 20 = {W?*},50 by setting
Wi = exp(%go*(xk)), keN;

cf. 211 5.5]. By the properties of ©*, each W7 is a weight sequence (in the sense of
Section . Moreover, setting 9% := W7 /W | we have 9% < ¢V if x < y, which
entails W* < WV,

Lemma 2.6. For all z >0 and all k € N>, 9%, < 9=,

Proof. The inequality 9%, < 3% is equivalent to

(" (k) — " (2 — 1)) < (0" (4ke) — "4l — 1)),

which follows from the convexity of p*. O
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3. SPACES OF FUNCTIONS AND JETS

3.1. Ultradifferentiable functions. Let M = (M},) be a weight sequence and
p > 0. We consider the Banach space B) (R") := {f € C=(R") : [|f||}! < oo},

where
Hf”M = |8Oéf(x)‘
P z€R™, €N p‘a|M|a\ ’
and the inductive limit
(3.1) BIMI(R™) = ind e BY (R™).

For weight sequences M and N we have BIM} C BN} if and only if M,i/k < N;/k;
one implication is obvious, the other follows from the existence of characteristic
B{M} _functions, cf. [21, Lemma 2.9 and Proposition 2.12].

Let w be a weight function and p > 0. We consider the Banach space By (R") :=
{f € C=(R") : || f[l¥ < oo}, where
Iflly == sup 0% f(x)|exp(—¢" (plal)),

z€R™, a€N"
and the inductive limit

(3.2) BYHR™) = indyen B (R™).

For weight functions w and ¢ we have B} C B{?} if and only if o(t) = O(w(t)) as
t — oo; cf. [2I], Corollary 5.17].

The associated weight matrix 20 allows us to describe any class B{“’}(R") as a
union of spaces of type (3.1)):

Theorem 3.1 (21, Corollaries 5.8 and 5.15]). Let w be a weight function and let
W = {W?},50 be the associated weight matriz. Then, as locally convez spaces,

x

BYHR™) = indyso B (R) = ind,soindpso BY (R™).
We have B} (R™) = BIW"HR") for all z > 0 if and only if
(3.3) JH > 1Vt >0 2w(t) < w(Ht) + H.

Moreover, (3.3) holds if and only if some (equivalently each) W* has moderate
growth.

Remark 3.2. Let us emphasize that the fact that B{} = BIM} for some weight
sequence M if and only if w satisfies (3.3) is due to [4].

Motivated by this result we define a weight matriz to be a family 9t of weight
sequences which is totally ordered with respect to the pointwise order relation on
sequences, i.e.,

(1) MCRY,
(2) each M € 9 is a weight sequence in the sense of Section
(3) for all M, M € MM we have M < M or M > M.

For a weight matrix 99t we consider
B (R") = indprean B (R™) = indpsean indpso BY (R™).

For weight matrices 9 and 9N we have B} € B if and only if VM € 9 3N €
N: M,i/k < N;/k; cf. [21, Proposition 4.6].
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3.2. Whitney jets of controlled growth. Let E be a compact subset of R". We
denote by J>(E) the vector space of all jets F = (F®),enn € CO(E,R)N" on E.
For a € E and p € N we associate the Taylor polynomial

(x —a)*

TP J¥(E) — C(R",R), F = TPF(z) == Y -

la|<p

F%(a),
and the remainder REF = ((REF)%)|a|<p With

—a)B
(RDF)®(z) = F(z) = > %F“*B(a), a,x € E.
|B|<p—|al '
Let us denote by j3 the mapping which assigns to a C'°°-function f on R™ the jet
Jx(f) == (0%f|E)a. By Taylor’s formula, F' = j¥(f) satisfies
(RPF)*(z) = o(|z — a|P~1?l)  fora,z € E,peN, |o| <pas |z —y| — 0.

Conversely, if a jet F' € J°°(F) has this property, then it admits a C*°-extension to
R™, by Whitney’s extension theorem [27] (for modern accounts see e.g. [16, Ch. 1],
[26, TV 3], or [I3, Theorem 2.3.6]).

Definition 3.3 (Ultradifferentiable Whitney jets). Let E C R™ be compact. Let
M = (My) be a weight sequence. For fixed p > 0 we denote by B} (E) the set

of all jets F satisfying (1.1]) and (1.2); the smallest constant C' defines a complete
norm on B (E). We define

BYMY(E) := ind en BY (E).

An element of BIM}(E) is called a Whitney jet of class BIM} on E.
Let 9 be a weight matrix. A jet F is said to be a Whitney jet of class B} on
E if F € BIM}(E) for some M € 9M; we set

B (E) = indpream B (E) = indarean ind .0 BY (E).

Let w be a weight function and 20 the associated weight matrix. A jet F' is said
to be a Whitney jet of class Bt} on E if F € B} (E); the topology on B{“}(E)
is given by the identification B} (F) = BIW}H(E).

Remark 3.4. This definition of Whitney jet of class B{“} on E coincides with the
one given in [3]. This follows from the fact that any weight matrix 20 associated
with a weight function has the following property:

(3.4) Vp>03H >1Vx >03C > 1Vk € N: pFWF < CW/H=;
cf. [2Il Lemma 5.9].

4. A SPECIAL PARTITION OF UNITY

4.1. The descendant of a non-quasianalytic weight sequence. Following an
idea in the proof of [20, Proposition 1.1] we associate with any non-quasianalytic
weight sequence N a weight sequence S with many good properties.

Definition 4.1 (Descendant). Let v = (1) be an increasing positive sequence
with v = 1 and ), 1/v, < co. Let us associate a positive sequence o = o(v) in
the following way. We define

k 1
4.1 = — —, k>1
( ) Tk Vk+z K - 4

U
>k 7
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and set
k
(4.2) o) = Tl—, k>1, o9:=1.
Tk
We say that o is the descendant of v; we shall also say that Sy = ogoy - - - o is the
descendant of Ny = vy -+ - g

We shall also use the abbreviations o} := oy/k and v} := v /k.

Lemma 4.2. Let o be the descendant of v. Then:
(1) o S

(2) ijk 1/vj S k/ok.

(3) 1 <o} is increasing to oo.

(4) ok41 S ok if and only if

)

1
IC>ovkeN: 2 <oty rovpy, Y —,

(4.3
Yk j>k+1 7
in particular, if V41 < k.
(5) If p is an increasing positive sequence satisfying p < v and 30,53 1/v; <
k/pg, then u < o, i.e., o is the largest sequence satisfying (1) and (2).
(6) Let v be another increasing positive sequence with y_, 1/, < oo and & its
descendant. Then voy, < vy, implies oo, < Ok

Proof. (1), (2), and (3) are immediate.
(4) This follows by a straightforward computation using that ox1 < oy is equiv-
alent to 7, < 7,41 and

1 1
Tk — Tk+1 :(k—i—l)(;k — Vk+1).

(5) The assumptions on y imply

k k k
TS S

Ve Hk Kk
(6) If v, < I)k, then

which implies ogp < dk. O

Remark 4.3. Notice that the descendant S of N has the property that even
& = Sk/k! is a weight sequence (not only S). Hence we can work with the functions
hs, T's, and X, introduced in Section [2:2]

The descendent o is equivalent to v, i.e., o ~ v, if and only if ijk 1/v; < k/vg;
this follows from (1), (2), and (5) in Lemma [4.2] The latter is the so-called strong
non-quasianalyticity condition (cf. [I4], [8], [9], and [20], where it is condition (7)).
It is well-known that, if v* is increasing and /N has moderate growth, then the strong
non-quasianalyticity condition is equivalent to j% : BIN}(R") — BIN}(E) being
surjective for every compact E C R"™; see e.g. [0, Theorem 30] and Section
below.

Moreover, we want to remark that one can recover a predecessor v from its
descendant o. Provided that a positive sequence o satisfying (4.2 -(3 is given one
can choose 7, := 2 and v; := 1 and then solve the equations and .
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recursively for v;,. The resulting sequence v is increasing, satisfies >, -, 1/vp = 1,
and its descendant is o.

4.2. A special partition of unity. We construct a partition of unity which will
be crucial for the proof of the extension theorem. The idea goes back to Bruna [8]
who considered a single weight sequence M satisfying » ", 1/ps < k/p,. Chaumat
and Chollet [9] extended the construction to the case of two weight sequences M
and N satisfying > ,~, 1/ve < k/pi. We make adjustments to this construction in
order to compensate for the moderate growth condition which was heavily used in
[9] and [§].

Recall that o} = o /k and s, = o - - - 0}

Lemma 4.4. Let v be an increasing positive sequence satisfying vo =1, >, 1/ <

oo, and (4.3). Let v be another increasing positive sequence such that vy < N,i/k,
Let o be the descendant of v. There is a constant A > 1 such that for all integers
p > 1 there exists a sequence (o)) gen satisfying

aj, p
(4.4) o <1, «of=1,
k>0  k+1
1 \\=1/ A \Fk.
(4.5) 0<al < (h( )) ( ) Ni.
303 Opt1

Proof. Let A > 1 be a constant which shall be specified later. Define

ol (Afos ) )*Ny  if k> p,
(2p)* if k <p.

By Lemma okl Sop S S N,i/k and thus, for some constant C' > 1,

2C \P -
af = 2pr < ()N,
Op+1
So, for k > p,
o < Tpt1

04£+1 ~ Avg ’
provided that A > 2C. Hence, since >, 1/0; S 30554 1/v; S k/oy by (2.3) and
Lemma [£.2] - -

Oéz 1 U;+1 1
of < Z M + A Z o =1
>0 Y1 o 2P k>p kTl

if A is chosen large enough. Since always hs < 1, (4.5)) is obvious for k > p. If
k < p, then, using ox 1 < 0 and o < v,

ol _ 2k pk < Ty < Uj
(Afop )P Nk (Afor )P Nk — (A/2)FNy, — Sk

provided that A is large enough. Since aﬁ/Sk < 05/5’1, if £ < p, we obtain

()

P p
ol %p

| - *
Sy, plsp Sp 305

(Ao ;+1)k N, k
by (2.4)). The proof is complete. [

<
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Proposition 4.5. In the setup of Lemma[[.]) there is a constant B > 1 such that
for all e > 0 and all t > 1 there exists a C°°-function ¢ satisfying

(1) 0 < pee(z) <1 for all x € R™,
(2) Pet(x) =1 for all x € R™ with |x| <1,
(3) ¢ei(x)) =0 for all z € R™ with |x| > t,
(4) for all B € N" and all x € R™,

6\BlNlﬁl

B8)
[pes ()] < he(Be(t— 1))

Proof. 1t suffices to consider the case n = 1 and ¢ = 2; the general case follows by
composition with suitable functions, e.g., ¢c¢(7) := d—1)e2(0(x)) where 6 is an
odd diffeomorphism of R satisfying 0(z) = (z +t —2)/(t — 1) for x > 1.

Let A be the constant from Lemma Fix 0 <np <2A4/0} = 2A. Since o* is
increasing and tends to oo, by Lemma [4.2] there is an integer p > 1 such that

24 24
Tp+1 Tp

By Lemma and [I3] Theorem 1.3.5] (cf. [0, p.14-15]), there exists a smooth
function v, with support contained in [—2,2] satisfying 0 < ¢, < 1, ¥, (t) = 1 if
t € [~1,1], and

, _ 1 \\~l/ 24 \k . n* Ny,
P (t)] < 2" ol < (o ) N < ———,
oo (£)] k ( (3%)) (apﬂ) hs(n/(6A))
by (4.6). For n > 2A we put ¢, := 1)24; then since hs <1,
kN kN
T i A B S
hs(2A/(6A)) ~ hs(1/3)) hs(n/(6A))
If § :=1/hs(1/3) then for every n > 0,

(k) (6m)* Ny,
RO Wy

The statement follows with B := 1/(65A) if we set € = 01 and ¢ 2 := ¢/s. O

Before we continue the construction of the partition of unity let us specify suit-
able weight matrices.

Definition 4.6 (Admissible weight matrix). A weight matrix 9 is called admissible
if the following conditions hold.

(1) For all N, N € 90 we have v < i or v < v.

2) > 1/vp < oo for each N € 9.
3) (4.3) holds for each N € 91.

(2)
3) . '
(4) For each N € 91 there is N € 9 such that v < N,i/k.
(5) For each N € M there is N € M such that vay, < .

We remark that (4) and (5) imply that for each N € 0 there is N € 91 such that
v < N,i/k and vor, < Uy which we shall frequently use; indeed, v, < vorp S o S

~

NY* < i, by @23).
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Remark 4.7. The relatively strong condition (3) is needed for technical reasons
(in Lemma and Proposition . There are situations in which the extension
result holds although (3) is violated; see the end of Section

Example 4.8. A weight matrix 91 = { N} which consists of a single weight sequence
N is admissible if and only if N is non-quasianalytic and has moderate growth. This
follows from Lemma 2.2

Definition 4.9 (Admissible weight function). We say that a weight function w is
admissible if and only if the associated weight matrix 20 is admissible. That means
that w is non-quasianalytic (i.e. [~ ¢t 2w(t)dt < o) and 20 satisﬁesS)&(4);
the other conditions in Definition hold automatically, see Lemma and 21,
Corollary 5.8]. Note that a non-quasianalytic weight function w is admissible if it
satisfies (see Lemma and [21, Lemma 5.7]).

Lemma 4.10. Let N be an admissible weight matriz, and let ng € N. For every
N € M there exists N € N such that the descendants S of N and S of N satisfy

(4.7) hs(t) < hs(At)™, t>0,
for some constant A = A(ng, N).

Proof. Let N € 91 be fixed. There exist N7 N, ... € M such that
Vo Sk Sk Sk S S
and the same relations hold for the respective descendants, by Lemma [£.2] and so

0% SO < 00 SO < 03 S

~ ~

By Lemma there are constants A, A, ... > 1 such that
he(t) < hs(At)? < hs(AAL)* < hy(AAAL)S < .-
After finitely many iterations we obtain (4.7]). O

Now we are ready to finish the construction. We will use the following lemma.
We denote by B(z,r) = {y € R™ : |x — y| < r} the open ball centered at x € R”
with radius r > 0 and by d(z, E) = inf{|x — y| : y € E} the Euclidean distance of
z to some set £ C R".

Lemma 4.11 ([9, Proposition 5],[11]). There exist constants 0 < a < 1, b > 1,
c>1, ng € Nsq, such that for all compact E C R"™ there is a family of open balls
{B(z;,7i) }ien with the following properties:
(1) R*"\ E =U; B(z;, i) = U; B(ws, cri),
(2) for x € B(z;,cr;) we have ar; < d(z, E) < br; and ad(z, E) < d(z;, E) <
bd(z, E),
(3) for each j the ball B(xj,cr;) intersects at most ng balls of the collection
{B(xi, cri) bien-
Proposition 4.12 (Partition of unity). Let E C R™ be a compact set and let
{B(z;,1;) bien be the family of balls provided by Lemma. Let I be an admissible
weight matriz, N € M, and S the descendant of N. Then there exists N €N and
By > 1 such that for all e > 0 there is a family of C*°-functions {@;. }ien satisfying
(1) 0< ;e <1 forallieN,
(2) supp ;e C B(z;,cry) for alli € N,
(3) 2ienPie(x) =1 for allz € R"\ E,
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(4) for all 5 € N" and x e R™\ E,

18I N
P < e P
be hs(Bred(z, E))
Proof. By Lemma , there is N € 91 such that its descendant S satisfies (14.7).

There is N € 9 such that Uk S N,i/k and o S V. Let ¢, be the functions from
Proposition 4.5 applied to © and 7, in particular,

181 N7
®) L
e (@) = 3Bt —1)

Set
Gi (@) = bers e (),

T
where ng and c are the constants from Lemma and define

j—1

Ple = '(/Jl,ea Pje = "l}j,e H(l - ’(/)k,e)a J=>2.

k=1
It is easy to check that (1)—(3) are satisfied (cf. [9] for details). To see (4) observe
that, by Lemma [4.11

PECLDLD (¢/n0) | Nig .
= hg(Ber;(c—1)/ng) ~ hg(Be(c —1)(ngb)~1d(z, E))

7 (z)

Since in the product defining ¢; . at most ng factors are different from 1, we get

181 7
B) ([ < € Nig
Pre @I < 5 Bete 1) (nob) TG B
By (4.7), we obtain (4) with By = B(c — 1)/(Angb). O

5. THE EXTENSION THEOREM

5.1. Preliminaries. Let £ C R™ be a compact set. Let S = (Sg) be a weight
sequence such that o} = o /k is increasing and let F' = (F'*), be a Whitney jet of
class B} on E, i.e., there exist C' > 0 and p > 1 such that

(5.1) |F(a)| < Cple Sla), a€N' a€kFE,
(5.2)  |(REF)*(b)] < CpP |l spyr b —alP 1l peN, o <p, a,be E,

where s; = o] -+ - 0}. The next lemma is straightforward; for details see [9, Propo-
sition 10].

Lemma 5.1. Foraj,as € E, z € R™ and |a| < p,
(53) |(T0F — T2,F) (2)] < C(2n2p) al! spsa(lar — 2l + Jar — a1l

For every x € R™ we denote by & some point in F with |z — Z| = d(x, E). For
simplicity of notation we shall use the abbreviation d(z) := d(z, E). We need a
variant of [9, Proposition 9].
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Lemma 5.2. Let S and S be weight sequences such that o} and &} are increasing
and satisfying oo, S 0. There is a constant D1 = D1(S,S) > 1 such that, for all

Whitney jets F = (F), of class B} that satisfy (5.1) and (5.2), all L > Dip,
all x € R", and o € N",

(5.4) (@ D Y ()] < C2L) M S,

and, if |a| < 2T;(Ld(x)),

(5:5) (RO @) - F@)] < 0Dl s d().
Proof. For we may restrict to the case |o| < 2T';(Ld(z)). By (5.1),

_ 4|1Bl=lal
$ Ld(x (6% x X
(T g <y BT GO
a<p '

|B]<2Ts (Ld(x))

! (nd(z))181-1al
<ot Y

a<
|B1<2T': (Ld(x))

< m;fé)gla Z (and(x))lmsml

a<p
|8|<2T:(Ld())
C|a|' 2T ; (Ld(x)) '
j=lal

since the number of 3 € N with |3| = j is bounded by n’.
The assumption og; < 0 is equivalent to o3, < &y. So, by Lemma [2.4] there is
some A < 1 such that 2T'4(t) < T's(A¢) for all £ > 0, and thus

Ts(LAd(x
(e pyergey < Sl TS
T — (nd(x))|a\ P .

By ([2:6), (LAd(2))7s; < (LAd(z))l*ls|,, for || < j < T's(LAd(z)), and hence

Ls(LAd(z))

‘(Tjré(Ld(x))F)(a)(mﬂgCSM(%)lal Z (QZiP)j'

j=|a

We obtain (5.4) if L is chosen such that 2n?p/(L)\) < 1/2; then D; = 4n?/\.
For (5.5)) note that, if |a] < 2T's(Ld(z)),

215 (Ld(s (e QA (’JJ — ‘%)Bia -~
(17 ( (»c))F)( )(z) — F*(2) = Z WFﬂ(x)
= a)!
la]<| 8] <205 (Ld(x))
Thus the same arguments yield (5.5)). O

5.2. The extension theorem.

Theorem 5.3 (Extension theorem). Let N be an admissible weight matriz, N € N,
and S the descendant of N. Let E be a compact subset of R™. Then the jet mapping
3% B (R — BISHE) is surjective.
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Proof. Let €, L > 0 be given. Since 91 is admissible, there exist
e N € 91 such that vy < N,i/k and vor, < v,
e N € 91 such that i < N;/k and oy, < U,

and, by Lemma we have 02k+1 S o3 S o) and 03, S &5, for the respective
descendants. Then by Lemma [2.4] and Remark [2.5 there are constants B, D > 1
and A < 1 such that

(5.7) Sopgp1 < B¥T1s2 0 for all k,
(5.8) T () <T(At), fort >0,
(5.9) hs(t) < hz(Dt)?,  for t > 0.

Note that N, N, S, S, S and thus also the constants B, D and X only depend on N.
Let { B(z;, ;) }ien be the family of balls provided by Lemma By Proposition

[412] there is
e N € 0N and a collection of C*°-functions {¢; }ien satisfying 1)—(3)
and
18I N7
(8) € 18]
5.10 _£ el
(5.10) W20 < e

for some constant By = B1(N).

Let F = (F®), be a Whitney jet of class BS} on E satisfying (5.1)) and (-2).
We define

BeN' zeR"\ E,

e @i @) TV E(), if e e R\ B,
flw) = {Fo(ex), ifrekE.

Clearly, f is C*° in R™ \ E. The theorem will follow from the following claim.

Claim. There are constants K; = K;(N), i = 1,...,4, such that the following
holds. If e = K1L and L > Ksp, then for all x € R™ \ E with d(z) < 1 and all
a e N,

(5.11) 0% (f - T?FS<Ld<’”)>F><z>| < C(LK3) I Njq hg(LEKd(x));
C and p are the constants from (5.1) and ( .

In fact, let us assume that the claim holds. We may additionally assume that
L > Dy p for the constant D; in Lemman So, by (5.4) and (5.11| - forx e R"\ E
with d(z) < 1 and o € N™,

1@ ()] < (T2 D FY @ (@) 4 02 (f — T2 O R (@)
(5.12) < O(LK)*HN,

for a suitable constant K = K (n, N), because hy <1 and o < V.
Let us fix a point ¢ € F and o € N". Since I';(t) — oo as t — 0, we have
la| < 2T5(Ld(z)) if € R™ \ E is sufficiently close to a. Thus, as  — a,

11 (@) — F(a)]
< 10°(f — 2" PN By (@) 4 (177 I FY O (2) — FO&)| + |F2 (&) — F(a)|
= O(hs(LE4d())) + O(d(z)) + O(|& — a),
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by (5.2), (5.5), and (5.11). Hence f(®)(z) — F*(a) as x — a. We may conclude
that f € C°(R™). After multiplication with a suitable cut-off function of class

BV} with support in {z : d(x) < 1}, we find that f € B{N}(R") thanks to (5.1)
and (5.12)). The result follows.
Proof of the claim. By the Leibniz rule,

aa(f o T;FS(Ld(m))F) (.’13)

(5.13) -y (g) 3 o) () 08 (T2 B p 2B py )

B<a i

Let us estimate 85(Tfir‘é(Ld(Ii))F - T;Fé(Ld(m))F)(m) = H, + H; for x € B(x;, cry),
where

Hy :=9° (T?Fé(Ld(xi))F _ T?Fé(Ld(Ii))F) (2)
Hy :=9° (T?Fé(Ld(fi))F _ T?Fé(Ld(m))F) (z).

Estimation of Hy. It suffices to consider |8 < 2I';(Ld(x;)) =: 2p. By Lemma [5.1]
[Hi| < C2n°p)* B! sopra (12 — | + |23 — &)+ 7101,

By Lemma [£.11)2), for = € B(x;, cr;),
|#; — x| <& — x| + |z — x| < d(z;) +eri < (1 +c¢/a)d(z;),
|2 — & <& —z|+ ]z — 2] < A+ (c+1)/a)d(z;).
If we set K :=2(1+ (c+1)/a) and use (5.7), we obtain
|| < C(2n2Bp) 1 8]t 82 (Kd(zi) 1V,
Since hi(Ld(z;)) = $p(Ld(x;))P < $5(Ld(z;))P!, by @2-7), and d(z;) < bd(z), by
Lemma 2),

2n’BKp
L

If L >2n2BKbp and d(z) < 1, then

1] < OB )" bata) 81815111 hs(Ld(z)).

(5.14) |Hy| < CLIPIFLS 5 hs(Ld(x)).
Estimation of Hy. Here we differentiate a polynomial T;FS'(Ld(wi))F—Tgré(Ld(I))F of

degree at most 2I's(Lad(z)) < T'y(LAad(x)), by Lemmal4.11}(2) (as T'; is decreasing)
and (5.8). Again by Lemma 2), the valuation of the polynomial is at least
2T';(Lbd(x)) =: 2q. Thus, by the calculation in ({5.6)),

T's(LXad(z))

|Ha| < (n(if)g"ﬁ Z (2npd(x))'s;.

J=2q
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By 2.6)), s;(LAad(z))? < saq(LAad(z))??, for j in the above sum, and by (2.7),
his(Lbd(z)) = $4(Lbd(x))? < $5/(Lbd(z))!?|. Hence, using (5.7), we find

\Ha)| L _Clar (Lid(x ( ) saq(LAad(x))*
2 (nd@)l & 2
(L)\ad(a:
CB|j|! 2n2p
= (nd(2)) P 724 ( ) (BLAad(z))™
Nan 24 T's(Lxad(x)) 277,2Bp j
<CB< ) 18! 3,5, hs (Lbd( ))(?) ];q ( — ) .

If we choose L > @ then the sum is bounded by 2. Let us furthermore assume
that L > 2nB/b. Then, as A <1,a<1,b>1,

(5.15) Hy| < O(%)‘B‘HSwhS(Lbd(az)).

Let us finish the proof of the claim. By (5.14)) and (5.15)), for = € B(x;, cr;) with
d(z) < 1, using Lemma [4.11|2) and the fact that h; is increasing,

|85( 2F (Ld(xz))F T2F (Ld(ﬁf))F)( )| < C(QbL)lﬁH»lS‘BI hs(Lbd(:c))
Thus, by (5.10), (5.13), and Lemma [£.11}3),
m%f—T?*“@hwuﬂ
Gla‘_lmﬁ\alflﬁl
- Z ﬁ' a— ros hs(Bléd(fE))

BLla

- C(2bL) P18, 5, hy(Lbd(z))

|a\'n‘a|+ﬂ'

el =7 ‘al*j(QbL)j“j\ﬂa‘_jS hi(Lbd(x))
al—=J
Jj= 0

7 hs(Bied(z))

||

. ! . .
< 2bLCnon!® N, hS(Lbd(”“"))) 3 ( loft elal=i (2 Ln Ay

hs(Bied(z) = i'(la] = )!
= 2bLCng(n(e + 2bLnA))a|Na|fis'((Blei§2)))7

since 0 < v < U, whence Sj < Aij, and since N‘a|_ij < N\al' Let us fix L,
according to the restrictions above, and set € := LbD /B, where D is the constant
from (5.9). Then, by (5.9),
he(Lbd(x) _ ha(Lbd(a))
hs(Bied(z))  hg(DLbd(x))
and we obtain (5.11). The claim is proved. O

< hs(DLbd(x)),

Remark 5.4. The proof of Theorem shows that for each p > 0 there is a
continuous linear extension operator Bf (E) — BY ,(R™) for a suitable constant K.

This extension operator depends on p (through L and €) and in general there is no
continuous extension operator B{SH(E) — BI™H(R™), cf. [20] and [24, p. 223].
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5.3. Applications.

Corollary 5.5. Let 0N be an admissible weight matriz. Let I be a weight matriz
such that for all M € I there is N € M with Yo, 1/ve S k/p, and p S v. Let
E be a compact subset of R™. Then the jet mapping j3 : BUH(R™) — BT (E) is
surjective.

Proof. Let M € 9 be fixed. Lemma implies ¢ < 0 < v, where o is the
descendant of v. By Theorem [5.3, j& : BU"™(R") — BISH(E) is surjective and
BIMY(E) C BISH(E). O

Corollary 5.6 (Extension preserving the class). Let 0 be an admissible weight
matriz such that for all N € 0N there is N € M with Y, 1/t S k/vy. Let E

be a compact subset of R™. Then the jet mapping j5 : B (R?) — BIW(E) is
surjective.

Proof. This is a special case of Corollary O

If 91 consists just of a single weight sequence we recover a slightly sharper version
of the result of Chaumat and Chollet [9, Theorem 30].

Corollary 5.7. Let N be a non-quasianalytic weight sequence of moderate growth.
Then the descendant S of N has moderate growth. The mapping j5 : BN R™) —
BYSY(E) is surjective for every compact E C R™.

Proof. That S has moderate growth follows from Lemma and Lemma 6)
(applied to v = »). O

Chaumat and Chollet show that if M is a weight sequence of moderate growth
such that p* is increasing and N is a non-quasianalytic weight sequence with p < v
then the following are equivalent:

o j*: BIVHR") — BIM}(E) is surjective for every compact E C R”.
* iy BWVHR") — BIM}({0}) is surjective.
[ ] Zézk 1/1/[ 5 k/,uk.
In the situation of the corollary we see, by Lemma 5), that, for arbitrary E,
BIS}(E) is the largest space of Whitney jets among the B{*}(E) which is contained
in jBIVHR™).
Let us collect the immediate consequences for classes defined by weight functions.

Corollary 5.8. Let 7 be an admissible weight function with associated weight
matriz €. Assume that w is a weight function with associated weight matriz 2
such that for all W € 20 there is T € T with Y ,u) To1/Te S kWi—1 /Wi and
Wi/Wi1 < Ti/Ti_1. Let E be a compact subset of R™. Then the jet mapping
3% BITHR™) — BIWH(E) is surjective.

Corollary 5.9. Let w be an admissible weight function with associated weight ma-
triz 0 such that for all W € 20 there is W € 20 with Dok 1/0¢ < k/Oy. Let E
be a compact subset of R™. Then the jet mapping 5% : BWHR") — BWHE) is
surjective.



18 A. RAINER AND G. SCHINDL

5.4. Characterization of the extension property. In this section we prove a
converse to Corollary using a result of Schmets and Valdivia [25].

For weight sequences M = (M},) and N = (Nj) and positive integers p and k set
( Mk )U(k*j)

M,N . _
©p k= Sup N,

0<]<k:
and consider the condition
1 k
(5.16) Z Us N “MN-
ik 7 Pok
Provided that M < N we have QD;W,;N < uy, for every positive integer p, indeed,
( M;, )1/(16*7') < (Mk)l/(k*j)
PEN; TN
Thus >~ 1/ve S k/pu, implies (5.16) for every p € N5g. A partial converse holds
for suitable weight matrices.

< (- ) ) < s

Lemma 5.10. Let N be a weight matrix satisfying
(5.17) YN e M3AN € N: vy S NV

Then the following are equivalent:

1 k
<
(5.18) VN e MIN eMNIpeNyg: ZWN s
>k Pp,k
k
(5.19) YN € M3IN €N Z—<—
ot vk

Proof. That (5.19)) implies (5 is clear by the arguments above. Suppose that
- ) holds and lot N € 0 be fixed. Then, by (5.17) and ( -D there exist

N,N € N such that v < N k< p(pNN and >y l/yj < k/ga g N which entails
(.19). O

Proposition 5.11. Let 9 be an admissible weight matriz.  The inclusion

B ({0}) C i, BTY({R}) implies (5.19).
Proof. By Lemma | it suffices to show (5.18).
Claim. B ({0}) C j O}B{m}({R}) if and only if (B.13).

We use the following result of Schmets and Valdivia [25, Theorem 1.1]: Let M
and N be weight sequences such that Ml/k < Nl/lC and N is mon-quasianalytic.
Then BIM}({0}) C j O}B{N}( ) if and only zf - holds for some p. In [25)] the
assumptions on M and N are slightly more restrictive, but the same proof yields
the result.

This result implies the claim, since BI™ ({0}) C j}L’g}B{m}({R}) entails that for

all N € 90 there is N € 0N such that BN} ({0}) C j{og}B{N}({R}) which follows
from a simple modification of the proof of [25] Proposition 3.3]. (I

Theorem 5.12 (Characterization of the extension property). Let M be an admis-
sible weight matriz. The jet mapping j% : B (R™) — BYWY(E) is surjective for
every compact set E CR™ if and only if (5.19).
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Proof. Corollary [5.6] and Proposition O
For weight functions this implies the following.
Corollary 5.13. Let w be an admissible weight function. Then the following are
equivalent:
(1) j : BHR™) — BIWH(E) is surjective for every compact set E C R™.
(2) For all x > 0 there is y > 0 such that y_,~, 1/9] < k/97.
We want to emphasize that [3] proved the equivalence of (1) with
(3) [° y2w(ty) dy < Aw(t) + B for positive constants A, B,
for arbitrary weight functions by different methods.

5.5. A class of admissible weight functions. For s > 1 consider the weight
function (cf. [22] Section 3.10])
w;s(t) ;== max{0, (logt)®}.
Then @4(t) = t° for ¢ > 0 and ¢,(t) = 0 for t < 0. Let us set r = s/(s — 1); then
r>1landr—1=1/(s—1). The Young conjugate of ¢, is %(t) = Cst" where
Cs = (s —1)s™". The associated weight sequences (W;”)i, p > 0, are given by
WP =exp(Cs p" k).
Proposition 5.14. Let s > 1. The weight function ws has the following properties.
(1) Forallp> 0 we have Y s, 1/977 S k/937 (thus 0P ~ 950 if 0*° denotes
the descendant of 95P).
(2) Condition (4.3]) holds for W= if s > 2 (condition (3.3) holds for nos > 1),
(3) For all p >0 and k € N> we have 9,7, < (W0P) Lk,
(4) floo vy 2w (ty) dy < Aw(t) + B for positive constants A, B,
In particular, ws is admissible if s > 2.

Proof. The function f(x) = a” is increasing on (0,00) with increasing derivative
f'(z) =ra"t. Thus f'(k) < f(k+1) — f(k) < f'(k+ 1), ie.,

(5.20) rkm < (B D) K <r(k+1)"L
(1) By (5-20),
274

G55 = €XD (Cop™ '@ = 1)(k" = (k—1)")) > 00 as k — o0,
k
which implies (1) by [20, Proposition 1.1].

(2) By (1), (4.3) for W** is equivalent to 9;2{; < 9;’”. We have s > 2 if and only
if 1 < < 2. Then the function f’ is concave on (0, 00) since f"'(z) = r(r —1)(r —
2)2" 3 < 0. Thus (by a look at its derivative) the function (x +1)" + (z —1)" — 22"
is decreasing, which implies 9,7, < 9.7

(3) By (5.20),

Y, = exp (Csp" H(k+1)" — k")) <exp (Corp" ' (k+1)")
< exp (Cs(2ep) k") < (WRO0)VE,

(4) This follows from (1) in view of [I4, Proposition 4.4] and [2I, Lemma 5.7].
Alternatively, it can easily be seen by checking some equivalent condition from
[B, Theorem 1.7], or directly by using the asymptotic behavior of the incomplete
Gamma function. O
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Since each w; violates , and thus the corresponding class cannot be described
by a single weight sequence, the extension property does not follow from the result of
Chaumat and Chollet. Our results imply that the jet mapping jg : BlesH(R") —
Blws}(E) is surjective for every compact subset E C R" provided that s > 2.
However, by [3] it is so also for 1 < s < 2.
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