UNIFORM EXTENSION OF DEFINABLE C™“-WHITNEY JETS

ADAM PARUSINSKI AND ARMIN RAINER

ABSTRACT. We show that definable Whitney jets of class C""“, where m is
a nonnegative integer and w is a modulus of continuity, are the restrictions of
definable C"“-functions; “definable” refers to an arbitrary given o-minimal
expansion of the real field. This is true in a uniform way: any definable
bounded family of Whitney jets of class C™“ extends to a definable bounded
family of C""“-functions. We also discuss a uniform C"-version and how the
extension depends on the modulus of continuity.

1. INTRODUCTION

Let an o-minimal expansion of the real field be fixed. Throughout the paper, a
set X C R" is called definable if it is definable in this fixed o-minimal structure.
A map ¢ : X — R™ is definable if its graph I'(¢) := {(z,¢(z)) : 2 € X} is a
definable subset of R™ x R™ = R™*™ (this natural identification is used throughout
the paper). We assume familiarity with the basics of o-minimal structures; see [5]
and [4].

Due to Kurdyka and Pawlucki [9, 10] and Thamrongthanyalak [14] we have the
definable C™ Whitney extension theorem:

Theorem 1.1. Let 0 < m < p be integers. Let E C R"™ be a definable closed set.
Any definable Whitney jet of class C™ on E extends to a definable C™-function on
R™ which is of class CP outside E.

We prove a C™“-version of this result.

Theorem 1.2. Let 0 < m < p be integers. Let w be a modulus of continuity. Let
E C R"™ be a definable closed set. Any definable Whitney jet of class C™% on E
extends to a definable C™Y -function on R™ which is of class CP outside E.

By a modulus of continuity we always mean a positive, continuous, increasing,
and concave function w : (0,00) — (0,00) such that w(t) — 0 as ¢ — 0. We say
that w is a modulus of continuity for a function f : S — R, defined on a subset
S C R™, if there exists a constant C' > 0 such that

(L1) f@) ~ f)| < Cw(le —yl) forall ey e S.
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The class C™“ consists of C™-functions that are globally bounded together with
its partial derivatives up to order m and whose partial derivatives of order m satisfy
a global w-Hélder condition of the type (1.1). See Section 3.

We use Theorem 1.2 in [11] to show that a definable function f : E — R on a
definable closed set £ C R™ that has a C1%“-extension to R™ also has a definable
Cl¥-extension. (In [11] we assume that w is definable, but not in the present paper.)
In fact, this application was one of our main motivations for proving Theorem 1.2.

We will show that the definable extension of Whitney jets of class C™% can be
done in a bounded way:

Theorem 1.3. Let 0 < m < p be integers. Let w be a modulus of continuity. Let
(Eo)aca be a definable family of closed subsets of R™. For any definable bounded
family (Fu)aca of Whitney jets of class C™% on (E,)qaca there exists a definable
bounded family (fa)aca of C™%-extensions to R™ of (F,)aca such that f, is of
class C? outside E, for all a € A.

Clearly, boundedness is understood with respect to the natural norms; see Sec-
tion 3 for precise definitions. Theorem 1.2 follows as a special case from The-
orem 1.3. And already the case that (F,)sca is a definable bounded family of
Whitney jets of class C"™* on a fized set E = E,, for all a € A, is very interesting.
However, the method of proof (by induction on dimension) necessitates to consider
the general case that the families of Whitney jets are defined on definable families
of sets (Fu)acA-

The construction of the extension in Theorem 1.3 depends on w only in a weak
sense. We may, for instance, let the modulus of continuity w, depend as well on
a € A if we impose that there is a constant C' > 0 such that C~! < w,(1) < C for
all @ € A. This will be discussed in detail in Section 5.B in which we present a more
general version of Theorem 1.3. As a consequence, we deduce from Theorem 1.3 a
uniform version of the C"™-result Theorem 1.1 on compact sets:

Theorem 1.4. Let 0 < m < p be integers. Let (Ey)qca be a definable family of
compact subsets of R™. For any definable bounded family (Fy)aca of Whitney jets
of class C™ on (Eq)aca there exists a definable bounded family (fu)aca of C™-
extensions to R™ of (Fy)aca such that f, is of class CP outside E, for all a € A.

Theorem 1.4 is proved in Section 5.C. We deduce a local version of Theorem 1.3
in Section 5.A and apply Theorem 1.3 in Section 5.D to get a definable version of
a correspondence, due to Shvartsman [13], between Whitney jets of class C™% and
certain Lipschitz maps.

The proof of Theorem 1.3 (which builds upon the one of Theorem 1.1 devised
in [9, 10, 14] and also Pawtucki [12] and is very different from Whitney’s classical
method [16]) rests on two main cornerstones:

(1) Two versions of Gromov’s inequality [7]; one classical, the other incorporat-
ing the modulus of continuity. These are inequalities for the derivatives of a
definable function. Since the constants that appear in them are universal,
it is not difficult to get them uniform for definable families of functions.
See Corollary 2.18 and Proposition 2.19.

(2) Uniform Ap-stratification of definable families of sets. Roughly speaking,
definable families of sets admit a stratification into a finite number of cells
that are defined by functions satisfying certain estimates (for their deriva-
tives up to order p). The constants in these estimates and the number of
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cells are independent of the parameter of the family. See Theorem 2.16.
This is essential for the uniform extension theorem 1.3. We think that it is
also of independent interest.

It is a natural question if there exists even a continuous and/or linear extension
operator for definable Whitney jets of class C"™* (or C™) on a definable closed set
E C R™. This remains an open problem. The theorem of Bartle and Graves [2]
(see also [3, Theorem 1.6]) is not applicable since the normed spaces of definable
jets and functions (defined in Section 3) are not complete.

Azagra, Le Gruyer, and Mudarra [1] give an explicit formula for the extension of
Whitney jets of class C**! with an optimal control of the norms; for definable input
this explicit formula yields a definable C':!-extension. See [11, Sections 4.2-4].

Let us point out that Pawhucki [12] presents a continuous linear extension op-
erator for (not necessarily definable) Whitney jets on definable closed sets which
preserves (up to a multiplicative constant) the modulus of continuity. This exten-
sion operator is a finite composite of operators that preserve definability on the
one hand or are defined by integration with respect to a parameter (more precisely,
convolution) on the other hand; in general, the latter leads out of the original
o-minimal structure.

While [12] was a important source of inspiration for handling the modulus of
continuity, the main difficulty (besides getting everything uniformly bounded) was
to replace the convolution operators by definable operations which at the same time
allow for preserving the modulus of continuity.

The paper is organized as follows. In Section 2 the main geometric tools are pre-
pared: Gromov’s inequality and uniform Ap-stratification. We present in Section 3
background on definable bounded families of Whitney jets of class C""“, most no-
tably, how they behave under pullback along a definable family of A,-regular maps.
The proof of Theorem 1.3 is carried out in Section 4. In the final Section 5 we give
the mentioned applications, discuss dependence on the modulus of continuity, and
prove Theorem 1.4.

Notation. Let N = {0,1,2,...} be the set of nonnegative integers. We denote by
d(z,S) = inf,cg |z — y| the Euclidean distance in R™ of a point x to a subset S
of R™, with the convention d(z, ) := +o0o. The open Euclidean ball with center
x € R™ and radius r > 0 is denoted by B(z,r) := {y € R" : |t —y| < r}. The
closure of a set S is denoted by S and the frontier of S by 95 := S\ S. If S is a
subset of R¥, we write S x 0 for the set {(u,w) € RF x R* : u € R¥,w = 0}. The
graph of a map ¢ is denoted by I'(¢). For real valued nonnegative functions f, g we
write f < g if f < Cg for some universal constant C' > 0. In particular, it should
be always understood that C' is independent of a € A, i.e., the parameter which
we consistently use in parameterized families of sets and maps. We write f ~ g
if f<gandg < f. We use standard multi-index notation and in this context
(i) € N™ is the multi-index (0,...,0,1,0,...,0) with 1 in the i-th entry.

2. UNIFORM A,-STRATIFICATIONS

The existence of uniform Aj,-stratifications (Theorem 2.16) is based on an in-
equality of Gromov [7], of which we need two versions, and on uniform L-regular
decomposition due to Kurdyka and Parusinski [8].



4 ADAM PARUSINSKI AND ARMIN RAINER

2.A. Definable families of sets and maps. Let A be a definable subset of RV.
A family (E,)qca of definable sets E, C R™ is called a definable family if the
associated set

(2.1) E:=|J{a} x E,
acA

is a definable subset of RN x R™. Conversely, any definable subset £ C RV x R”
defines a definable family (E,)qeca by setting A := {a € RY : 3z € R", (a,z) € E}
and E, := {x € R" : (a,z) € E}, where a € A. If we allow E, = (), we may just
take A = RV,

A family (E.)qea of subsets E/, C E, is said to be a definable subfamily of
(Eo)aca if the associated set E’ (defined in analogy to (2.1)) is a definable subset
of E.

A family (¢q)aca of definable maps ¢, : E, — R™ is called a definable family if
the map ¢ : E — R™, where E is the associated set (2.1) and

(2.2) ola,u) := @q(u), u€ Ey,
is definable. This is consistent with the first paragraph, since
T(¢) = {(a,u, p(a,u)) € RN x R" x R™ : (a,u) € E}
= (J{(a,u,0a(u)) € RN x R" x R™ : u € E,}

acA
= (J{a} x {(u,0a(w)) €R" xR™ 1w € Eo} = | J {a} x I'(a).
a€A a€A

2.B. Gromov’s inequality. We need two versions of an inequality due to Gromov
[7]. We start with a C"™-version.

Lemma 2.1 ([9, Lemma 2]). Let m > 1. Let f : I — R be a C™ " -function, where
I=[tg—r,to+7] CR, r >0, is an interval. Suppose that, for all j =2,...,m+1,
we have either f(j) >0onl or f(j) <0onlI. Then

gy 0]
(m) (1)) < 2("F%) =2 SWPeer T (O]
£ (10)] < -
We combine Lemma 2.1 with the following lemma in order to get a C"™“-version
in Lemma 2.3.

Lemma 2.2. Let f: [ — R be a C?-function, where I = [to —r,tg+71] CR, r >0,
is an interval, and let w be a modulus of continuity for f. Suppose that f"” >0 on
Iorf"<0onl. Then
w(r)
[ (to)] < :

r

Proof. We may assume that tg = 0. Suppose that f > 0 on I. Then f is convex
and, for 0 < s < r,

£6) = 10) _ f0) = £(0) _ wr)
s r T
Letting s — 0, we find that f/(0) < w(r)/r. The same reasoning applied to f(—t)
shows that also —f/(0) < w(r)/r so that the assertion is proved.
The case " < 0 follows from the previous one by considering — f. O
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Lemma 2.3. Let m > 1. Let f : I — R be a C™ 1 -function, where I = [tg—r,to+
r] CR, r >0, is an interval, and let w be a modulus of continuity for f. Suppose
that, for all j = 2,...,m+ 1, we have either f9) >0 on I or f9) <0 on I. Then
mt1 w(r
709 tg)] < 207 ez )
Proof. If m = 1, then the statement is immediate from Lemma 2.2. If m > 2, then,
by Lemma 2.1 applied to f’ and in turn Lemma 2.2, we have

m41 m+1
gy < 20 22 w(3) _ ey 1)
‘f( )(t0)| < (L")ﬁ sup |f/(t)| < (L“)ﬁ . £2 < 2( 2 )+ 2 TT
2 lt—to| <5 5 ;
as claimed, since w is increasing. 0

2.C. Uniform bounds for definable families of functions.

Proposition 2.4. Let (U,)aca be a definable family of open sets U, C R* and let
U C RN xRF be the associated definable set (see (2.1)). Let (¢a)aca be a definable
family of functions p, : Uy, — R and let o : U — R be the associated definable
function (see (2.2)). Let a € N¥ with |a| = p. There exists a definable subset
Z C U such that, for all a € A, Z, is closed in U,, dimZ, < k, ¢, is CP on
Ua\ Za, and, for each open ball B = B(u,r), r > 0, contained in U, \ Z,, we have

(23) 0% pa(w)] < Clksp) sup |pa(w) 1.

Proof. Consider the definable set
X :={(b,v) € U : (a,u) — ¢(a,u) is not CP™' at (b,v) in u}
= {(b,v) €U : ¢y is not CP at v}
and note that
X, ={ucU,: ¢, isnot CP™" at u}
is closed in U, and, by o-minimality, dim X, < k.

The operator 0% is a linear combination of directional derivatives dF, for a finite
collection V' of suitably chosen unit directions v in R*. Let ¢1,..., s be an enu-
meration of all functions dj¢ : U\ X =R, j =2,...,p+1, v € V (where dJ acts
only in the u-variable: dl¢(a,u) = 8/|;—0 p(a,u+tv)). Fori=1,...,s, set

Y :={(a,u) €e U\ X : Je > 0Vv € B(u,¢), p;(a,v) =0},
Z; :={(a,u) e U\ X : pi(a,u) =0} \ Y3,

Z:=Xxul]2z.
i=1
Then Z is a definable subset of U and, for all a € A, Z, is closed in U, and
dim Z, < k.
Now (2.3) follows easily by applying Lemma 2.1 to t — ¢(a, u + tv). O

Corollary 2.5. Let (Uy)aca be a definable family of open sets U, C R¥ and let
(0a)aca be a definable family of C*-functions ¢, : U, — R. Suppose that there is
a constant M > 0 such that

10jpa(uw)| <M, acA uel,, j=1,... k.
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Let p be a positive integer. There exists a definable family (Za)aca of closed defin-
able sets Z, C U, of dimension dim Z, < k such that, for all a € A, @, is of class
C? on U, \ Z, and

107 ¢a(u)| < Ck,p) M d(u, Z, UOUL)' ™, w e Ua\ Zay 1< ] < p.
Proof. Apply Proposition 2.4 to 9;¢,. O

Remark 2.6. We may assume that Z, is not empty so that d(u, Z,U0U,) is always
finite. We will tacitly make this assumption in all subsequent results of this type.

Proposition 2.7. Let (U,)aca be a definable family of open sets U, C R* and
(¢a)aca a definable family of continuous functions @, : U, — R. Let p be a positive
integer. Then there exists a definable family (Zy)aca of closed subsets Z, C U, of
dimension dim Z, < k such that, for all a € A, ¢, is CP? on U, \ Z, and

w(d(z, Z, UIU,))

d(z, Z, UoU,)’

where w is a modulus of continuity for @, .

(2.4) 07 ¢q(x)| < C(k,p)

r €Uy \ Za, 1 <[ <p,

Proof. Follow the proof of Proposition 2.4 and use Lemma 2.3. O

Remark 2.8. We want to emphasize that the construction of (Z;).c 4 is indepen-
dent of w.

2.D. A,-regular mappings. Let U C R* be an open set. Let p be a positive
integer. A CP-mapping ¢ : U — R" is said to be Ap-regular if there exists a
constant C' > 0 such that

(2.5) 076 (w)| < Cd(u,0U)' M, weU, 1< <p.

A,-regular maps behave nicely on quasiconvex sets. Let us first recall the defi-
nition of quasiconvexity.

Definition 2.9 (Quasiconvex sets). A set E C R" is called quasiconvez if there is
a constant C' > 0 such any two points x,y € E can be joined in E by a rectifiable
path of length at most C' |z — y|.

Let ¢ : U — R™ by Aj-regular. If E C U is a quasiconvex subset, then ¢|g is
Lipschitz on E and extends continuously to a map @ on F.

2.E. Ap-cells. Let p be a positive integer. We define recursively A,-cells in R™:
A definable subset S C R" is an open A,-cell in R™ if,
e in the case n = 1, S is an open interval in R,
e in the case n > 1, S is of the form

S = (Y1,02,T) :={(2',2,) : 2" €T, Y1 (2') < mp, < 1ha(z’)},

where 7' is an open Aj,-cell in R™ ! and each 1;, i = 1,2, is either a Ap-

regular definable function 7" — R or identically —oco or 400, and 11 < 19

on T. (Here 2’ = (x1,...,2p—1).)
Note that S is quasiconvex. If 1; is finite, then it is Lipschitz on T" and has a
continuous extension v, to 7'

A definable subset S of R™ is a k-dimensional Ay-cell in R™, where k =0,...,n—
1,if
S={(v,w):ueT, w=p)}=T(p),
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where u = (21,...,2%), W = (Tk41,...,2n), T is an open A,-cell in R*, and
¢ : T — R" % is a A,-regular definable map.

Definition 2.10 (A,-cell with constant C). A Ap-cell S in R™ is an open or a
k-dimensional Aj,-cell in R™. We say that S is a Ap-cell in R™® with constant C if
all the Ap-regular maps involved in the recursive definition of S satisfy (2.5) with
the same constant C.

2.F. Associated functions. We associate with any open A,-cell S in R" a se-
quence of 2n + 1 definable functions p; : S — [0, 0], for j =0,1,2,...,2n. We put
po = 1 and define p; for j > 1 as follows:

Case n=1: If S = (a1, a2) we set

r—ay ifa; €R,
pi(x) =

400 if a3 = —o0,
as —x if as € R,
p2(x) := .
+o00 if ap = 4o00.
Case n>1: If S = (¢1,¢2,T) and 0;, j = 1,...,2n — 2, are the functions
associated with T, we set p;(z) = o;(2), for j=1,...,2n -2, and
Ty — O, (x')  if 4 is finite,
pon—1(T) := Y1) . v _
+o00 if ¥ = —o0,

Py(2’) — @, if s is finite,
pan(T) = . B

Remark 2.11. We add the function py (which is not present in [9, 10, 14]) in order
to handle the extension from unbounded A,-cells (see the proof of Theorem 1.3).

Each of the functions p;, that is finite, is Ap-regular on S and Lipschitz on S,
see [9, Lemma 4]. There is a positive constant C' > 0 such that

1 _

— min o. < < min o,
(2.6) c IJnZullpJ(:v) <d(z,05) < rjnzlglpj(:zc)7 ASICH
where d(z,)) = +oo by convention; see [9, Lemma 3]. Consequently,
1 _
. — minp;(z) < mi < minp; .
(2.7) ernz%lpj(x) < min{1,d(z,05)} _I;’lzlglp](w), resS

If p; for j > 1 is finite, then there exists a positive constant C' > 0 such that
(2.8) ‘87(;)(30)‘ < Cd(z,08) M=, zes |y <p;

see [9, Lemma 5] and (2.10). It follows that for all finite p;, j > 0, we have
(2.9) ‘m(:j)(m)‘ < O min{1,d(z,89)} "L, zeS, |y <p.

Remark 2.12. The constants C' in (2.6)—(2.9) only depend on the constants of the
A,p-regular maps involved in the definition of S.
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For later reference, we recall that for a non-vanishing CP-function r we have, for
1< <p,

) -3 X )
I
515£0,...,6;#0

where agl 5, are integers that only depend on v and d4,...,9;.

2.G. A,-stratification of definable sets. Recall that a definable CP-
stratification of a definable set £ C R™ is a finite decomposition . of E into
definable CP-submanifolds of R”, called strata, such that, for each stratum S € .,
the frontier (05) N E in E is the union of some strata of dimension < dimS. A
stratification is called compatible with a collection of finitely many definable subsets
of FE if each subset is a union of strata.

A definable CP-stratification . of E is called a A,-stratification if each stratum
S e 7 is a Aj-cell in R™ in some linear coordinate system.

Theorem 2.13 ([9, Proposition 4] and [10, Theorem 3]). Let E C R™ be a definable
set and let By, ..., E; be definable subsets of E. Then there exists a Ay,-stratification
< of E that is compatible with E1, ..., Ey.

2.H. Uniform Ap-stratifications of definable families of sets. We prove a
uniform version of Theorem 2.13. Let us first recall a result on uniform L-regular
decompositions.

Theorem 2.14 ([8, Proposition 1.4]). Let E* C RN x R, where i € I, be a finite
collection of definable sets. Then there exist finitely many disjoint definable sets
BJ C RN x R", where j € J, and linear orthogonal mappings ¢’ : R™ — R™, where
j € J, such that:
(1) For every a € RY, each ¢’/(BJ) is a standard L-regular cell in R"™ with
constant C' = C(n).
(2) For every a € RN, the family of BJ, where j € J, is a stratification of R™.
(3) For any i € I, there ewists J; C J such that EX = \J.., B for every
a € RV,

JEJ:

Here a standard L-regular cell in R™ with constant C' = C(n) (which is terminol-
ogy used in [8]) is by definition nothing else than a A;-cell with constant C' = C(n).

Definition 2.15 (Uniform A,-stratification). Let (E,)qca be a definable family of
sets £, C R™ and let £ C RY x R" be the associated definable set (see (2.1)). Let
p be a positive integer.
A finite collection . = {S7} ¢ s of disjoint definable sets $7 C RN x R™ is called
a uniform A,-stratification of (Eg)aeca if
(1) there exist linear orthogonal maps ¢’ : R® — R", j € J, such that, for
each a € A and each j € J, 9/(57) is a Ap-cell in R" with constant C
independent of a € A,
(2) for each a € A, the family S7, j € J, is a stratification of E,.
For all a € A, let .7, := {S7},c;. Abusing notation, we will also say that (.%,)sca
is a uniform Ap-stratification of (Eq)aca.
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Let I be a finite index set and, for each i € I, let (E.),ca be a definable
subfamily of (Ea)aeA._ A uniform Aj-stratification (7)qca of (Eg)aca is said to

be compatible with (E')qca, @ € I, if additionally

(3) for each i € I, there exists a subset J; C J such that E{ = J
each a € A.

J
e, i for

By Theorem 2.14, there always exist uniform Aj-stratifications. We shall see
that there exist uniform Ap-stratifications for all p > 1.

Theorem 2.16. Let (E,)qca be a definable family of sets E, C R™ and let (E%) e a,
i € 1, be a finite collection of definable subfamilies of (Eq)aca. Let p be a positive
integer. Then there exists a uniform Ay-stratification (F)aca of (Eq)aca compat-
ible with (E%)qea, i € 1.

Proof. Let k = max,ca dim F,. We proceed by induction on k. If £ = 0, then all E,
are finite and the number of elements of F, is bounded by a constant independent
of a. In that case, the assertion is trivially true.

Suppose that £ > 0. We claim that there exist a finite collection of disjoint
definable sets 79 C RN x R”, j € J, and linear orthogonal maps ¢/ : R® — R",
j € J, such that, for each a € A and each j € J,

e TJ is either empty or open in E, and compatible with E?, i € I,

o if TJ # () then ¢7(T7) is a k-dimensional Ap-cell in R" with constant C
independent of a € A, and

o dimE, \ ;. ,T¢ < k.

We allow T7 = ) to account for the case dim E, < k.

Then we can use the induction hypothesis for the definable family (E’)qca,
where E;, := E, \ U,¢; T, and the definable subfamilies (E, N E},)aca, i € I, and
((OTI) N E!)aca, j € J. The statement follows.

Let us prove the claim. Theorem 2.14 implies that the claim holds for p = 1:
let T7, j € J, be the corresponding sets with all the properties as listed in the
claim. Now we apply Corollary 2.5 and induction on the dimension. In fact, for
each fixed j € J, (T7)4ea is a definable family of k-dimensional Aj-cells T7 in
R" that are open in FE,. After the change of coordinates ¢/, we may assume
that 77 is a Aj-cell with constant C' independent of a € A. By Corollary 2.5,
there is a definable family (Z7),ca of closed definable sets ZJ C T4, dim ZJ < k,
such that the functions defining the cell 77 are Aj,-regular with uniform constants
independent of @ € A in the complement of ZJ. Thus there exists a definable
family (S7),ca of subsets SJ C T7 such that, for all a € A, S7 is a finite disjoint
union of k-dimensional definable A,-cells S7¢ that are open in E, with constant
C independent of @ € A and dimT? \ SJ < k. Thus the number of connected
components S7+* of S7 is uniformly bounded by a constant independent of a € A.
This implies the claim. ([l

jeJ

2.1. Consequences. We may use Theorem 2.16 in order to refine Proposition 2.4,
Corollary 2.5, and Proposition 2.7.

Corollary 2.17. Let (Uy)aca be a definable family of open sets U, C R¥. Let
(¢0a)aca be a definable family of functions v, : U, — R. Let p be a nonnegative
integer. There exists a uniform Ap-stratification (,)aca 0f (Ua)aca such that, for
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all a € A and each open stratum Sq € Sy, @q is CP on S, and
sup{|@a(v)| : v € Sa, [v —u| < d(u,dS.)}
d(u, 0S,)1 ’

Proof. This follows from Theorem 2.16 and Proposition 2.4. (I

07 ¢a(u)| < C(k, p)

u € Sa, 7] <p.

Corollary 2.18. Let (Uy)aca be a definable family of open sets U, C R*. Let
(0a)aca be a definable family of C*-functions ¢, : U, — R. Suppose that there is
a constant M > 0 such that

10jpa(w)| <M, a€A uel,,j=1,... k.

Let p be a positive integer. There exists a uniform Ap-stratification (F5)aca of
(Ua)aca such that, for all a € A and each open stratum S, € S, @, is CP on S,
and

107 pa(u)| < C(k,p) M d(u,dS,)* 1, we S, 1<y <p

Proof. This follows from Theorem 2.16 and Corollary 2.5. t

Proposition 2.19. Let (U,)qca be a definable family of open sets U, C R*. Let
(¢0a)aca be a definable family of continuous functions @, : U, — R. Let p be a
positive integer. There exists a uniform A, -stratification (%o)aca of (Ug)aca such
that, for all a € A and each open stratum S, € L, pq is CP on S, and

w(d(u,dS,))
d(u,dS,)’

where w is a modulus of continuity for @,.

107 pa(u)| < C(k,p) we S, 1< |y <p,

Proof. This follows from Theorem 2.16 and Proposition 2.7. O
We will need another uniform fact:

Proposition 2.20. Let (U,)aca be a definable family of open sets U, C R¥. Let
(¢0a)aca be a definable family of functions v, : U, — R. Let p be a positive integer.
There exists a uniform Ay -stratification (,)aca of (Ua)aca such that, for alla € A
and each open stratum S, € %, o is CP on S, and, for all j =1,... k,

(2.11) either  |0;pq] > 1 0on Sq  or  |0jpa] <1 on S,.
Proof. Let U C RN xR™ and ¢ : U — R be the associated definable set and function
(see (2.1) and (2.2)). Let X C U be the set defined in the proof of Proposition 2.4.
For j=1,...,k, let 0;¢(a,u) := 0jpq(u) and set
Y; :=={(a,u) €e U\ X : Je > 0Vv € B(u,¢),0;¢(a,v) =1},
Z; = {(a,w) U\ X : p(a,u) = 1]\ Y5,

k
z=xul]z.
j=1
Then Z is a definable subset of U and, for all « € A, Z, is closed in U, and
dim Z, < k. Now the statement follows from Theorem 2.16. O

3. BOUNDED DEFINABLE FAMILIES OF WHITNEY JETS

Recall that a modulus of continuity w is by definition a positive, continuous,
increasing, and concave function w : (0,00) — (0, 00) such that w(t) — 0 ast — 0.
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3.A. C"™%-functions. Let w be a modulus of continuity. Let U C R™ be an open
set. Let C%“(U) be the set of all continuous bounded functions f : U — R such
that

|[flcowwy :=inf{C >0:|f(x) - f(y)| £ Cw(|r —y]|) for all z,y € U} < o0.

For a nonnegative integer m, the set C™*“(U) consists of all C™-functions such
that 9“f is globally bounded for all |a| < m and 9%f € C%“(U) for all |a| = m.
Then C™%(U) is a Banach space with the norm

[fllgm.e@) :=sup sup [0%f(x)|+ sup [0%f|cow ().
z€U |a|<m al=m
We say that f € C™%(U) is m-flat outside an open set V C U if all 9% f, |a| < m,
vanish on U \ V.
Assume that the open set U C R™ is definable. We denote by Cj*(U) the
subspace of C"™*(U) consisting of the definable functions in the latter space. Note
that the normed space Cjj.;”(U) is not complete.

Definition 3.1 (Bounded families of C™“-functions). Let m € N and w a modulus
of continuity. A family (f,)aca of C™%“-functions f, : U, — R, where U, C R" is
open, is said to be a bounded family of C™“-functions if

sup || fallem.w,) < oo.
acA

We say that (fy)eca is a definable bounded family of C™*-functions if it is a
bounded family of C™“-functions and, additionally, the families (U,)qeca and
(fa)aca are definable. Moreover, (fq)aca is called m-flat outside (Vy)aca if, for
each a € A, V, CU, is open and f, is m-flat on U, \ V,. We will say that (f,)aca
is C? outside (Eq)qea if, for each a € A, E, C U, is closed and f, is C? on U, \ E,.

3.B. Whitney jets of class C"™“. Let F be a locally closed subset of R™. An
m-jet on E is a collection F' = (F%)|4|<pm of continuous functions F'* : E' — R. An
m-jet F' = (F%)|q)<m on E is said to be flat on a subset £’ C E if all functions
F*, |a] < m, vanish on E’.

For a € E we denote by T;"F' the Taylor polynomial

1
TrF(z) =Y @)@ —a), zeR",
ler|<m
and define the m-jet
R"F :=F — JMTMF),

where JZ'(f) := (0°f|E)|aj<m for f € CT(R™).

A C™¥ (or C™) function f:R™ — R is an extension to R™ of F' it JR(f) = F.
A necessary and sufficient condition for an m-jet to have a C"“-extension to R is
to be a Whitney jet of class C" ([16], [6]): by definition, an m-jet F' = (F*)|q)<m
on FE is a Whitney jet of class C™* on E if there exists C' > 0 such that

(3.1) sup sup |[F(z)| <C
z€FE |a|<m

and, for all z,y € F and |a| < m,
(3:2) (RZF)* ()| < Cwo(la =yl -yl .
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Remark 3.2. A condition equivalent to (3.2) is
T3 F(2) = T, F(2)] < C'w(lz = y)(]z — 2™ + |z — y|™)

for all z,y € E and z € R™; see [15, Proposition IV.1.5]. Moreover, (3.2) holds if
and only if

|FO(x) — T,)F(z)] < Cw(lz —y|)|lz —y|/™ forall z,y € E,
and, if m > 1,
O F = (F“+(i))|a‘§m,1 is a Whitney jet of class C™ 1% for all i = 1,...,n.
If E is quasiconvex with constant C’ (see Definition 2.9), then (3.2) follows from
[F(x) = F*(y)| < C"w(lz —yl), =y €E, |af=m;
see [15, IV (2.5.1)]; then the constant C' in (3.2) depends only on n, m, C’, and C”.

It is not hard to see that the set of all Whitney jets of class C™“ on E with the
natural addition and the multiplication FG := JZ(T™F - T™G) is an R-algebra.

Let F be an m-jet on E C R™. Let G1,...,G, be m-jets on A C R¥ such that
(&9,...,G9)(A) C E. The composite F oG = Fo (Gy,...,G,) of m-jets F and G
on A is defined by

(FoG)(x) i= T (T F o TG (x).

(z
Note that
T (F o G)(2) = 7 (T, (TG a)),

where 7, is the natural truncation operator (which truncates monomials of order
> m). One can show (using Remark 3.2) that, for m > 1, the composite F' o G is a
Whitney jet of class C™ % if F' and G are Whitney jets of class C™“. We will not
use this fact, but the pullback of Whitney jets of class C™* along a A,,-regular
map will be crucial; see Proposition 3.5.

Definition 3.3 (Bounded families of Whitney jets of class C"™*). A family (Fy,)aca
of Whitney jets F, of class C"™* on E, C R" is said to be a bounded family of
Whitney jets of class C™* if the constant C' > 0 in (3.1) and (3.2) can be chosen
independent of a € A, that is,

(3.3) sup sup sup |F)(z)| < oo
a€Axz€E, |[y|[<m
and
R F,)Y
(3.4) Ssup sup sup (5 Fa)" ()] < 0.

a€A xzAYEE, |v|<m w(|$ - y|)|(£ - y|m7h‘

We say that (F,).ca is a definable bounded family of Whitney jets of class C™ if
it is a bounded family of Whitney jets of class C™* and, additionally, the families
(Ea)aca and (F))aca, |v| < m, are definable. We say that it is flat on a subfamily
(E!)aca of (Eg)aea if F, is flat on E/, for all a € A.

A (definable bounded) family (f,)qea of C™“-functions f, : R™ — R is called
a (definable bounded) family of C™% -extensions to R™ of (Fy)aca if fq is a C™%-
extension of F, to R™, for each a € A.
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3.C. Separation. Let X,Y, Z be subsets of R”. Recall that X and Y are said to
be Z-separated if there exists C' > 0 such that

(3.5) d(z,Y)>Cd(z,2), ze€X,
or equivalently, if there is C’ > 0 such that
d(z,X)+d(z,Y) > C"d(z,Z), ze€R"
If X and Y are XNY -separated, then we will simply say that X and Y are separated.

Definition 3.4 (Uniformly separated families of sets). Let (X,)aca, (Ya)aca, and
(Z4)aca be definable families of subsets of R™. Then (X,)aca and (Y, )aca are said
to be uniformly (Z,)aca-separated if, for all a € A, X, and Y, are Z,-separated
with a constant C' > 0 (in (3.5)) independent of a € A. We will say that (X,)aca
and (Y,)aca are uniformly separated if they are uniformly (X, NY,)qca-separated.

3.D. Pullback along a definable family of A -regular maps. Let ¢ : U — R¢
be a A,,41-regular map, where U C RF is open and quasiconvex. Let @ : U — R’
be the continuous extension of ; see Section 2.D. Consider

o UXRE S U xR, (u,w) = (u,w + @(u)),
and
P UxRES T xR (u,w) = (u,w + B(u)).

Let M be a closed subset of U x Rf and F' an m-jet on M. The pullback of F along
@+ is the m-jet

L F = FolJy(py)

on N =" (M) = {(u,w) € U x R®: (u,w+ p(u)) € M}.

We shall need the following result on the pullback of a definable bounded family
of Whitney jets of class C™* along a definable family (¢q)aca Of Apy1-regular
maps. For each a € A, let p, + and p, ; be defined in analogy to ¢ and ©, .

Proposition 3.5 ([12, Proposition 4.3]). Let (Uy)aca be a definable family of
open quasiconver sets U, C R¥ with constant (in Definition 2.9) independent of
a € A. Let (¢q)aca be a definable family of A, 1-reqular maps @, : Uy — R with
constant (in (2.5)) independent of a € A. Let (My)aca be a definable family of
closed quasiconvex subsets M, of Uy x R such that (M)eca and (0U, x RY) e
are uniformly separated.

If (Fo)aca is a definable bounded family of Whitney jets of class C™% on
(My)aca which is flat on (OMy)aca, then (Ga)aca is a definable bounded fam-
ily of Whitney jets of class C™ on (Na)aca, where Gq := ¢y Fy and N, :=
@;71(Ma). If, moreover, for each a € A, t, : U, — (0,00) is a function satisfying
to(u) < d(u,dU,) for every u € U, and

|5 (u,w)] S wita(w)ta(w)™ 1", (u,w) € My, 1] < m,
then, for each a € A,
|G (u,w)] S wlta(w)ta(w)™ ™, (u,w) € Ny, 5] < m.

Proof. Follows from the proof of [12, Proposition 4.3]. O
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We will be interested in the case that M, = T'(¢,), @ € A. Then (Gg)qca extends
to a definable bounded family of Whitney jets of class C"™* on (N, = Uy X 0)qea
which is flat on (ON, = U, X 0)aca. This follows from the following lemma and
Hestenes’ lemma (e.g., [14, Theorem 1.10]); see [12, Remark 4.2].

Lemma 3.6. Let (E,)qca be a family of locally closed, quasiconver sets E, C R™
with constant (in Definition 2.9) independent of a € A. Suppose that (Fy)eca is a
bounded family of Whitney jets of class C"™* on (Ey)qca such that, for alla € A
and || < m, F* has a continuous extension F, to Eq. Then (Fq)aca is a bounded

family of Whitney jets of class C™% on (Eg)aca-

Proof. Let z,y € E,. There exist sequences (zx), (yx) C E, such that z; — = and
yr — y. By assumption, there exist a constant C; > 0, independent of a € A and
of k, and a rectifiable path oy joining xj and y; in E, such that for the length of
o we have

Uok) < Cr |z — yil-
Let F' = (F%)|q)<m be a Whitney jet of class C"*“ on (E,).ea- By [15, IV (2.5.1)],
for all || < m,

m a m—lal
[(RFa)® (yk)| <n” 2

71Ny — g1 sup sup [F2(€) — F2 ().
£€oy |Bl=m

We may assume that oy, is parameterized by t € [0, 1] with 01 (0) = x, and oy (1) =
yx. By (3.4), for ¢t € [0, 1],

Sup |FP(ok(t)) = FP(ax)] < Cow(|ok(t) — zx]) < Cow(l(oklo.))
Bl=m

< Caw(l(or)) < Crw(Crlar —yil) < Csw(|ze — yrl),
for constants C; > 0 independent of a € A. Thus

m—|al

(R F)(yi)] < n 7 O 1z, — ya 1 Cy (|2 — yal)

and letting k — oo shows that (3.4) is satisfied for (Fy)aca. It is clear that (3.3)
is satisfied. 0

3.E. Cutoff. We finish this section with a technical cutoff result which will be used
in the proof of Theorem 1.3.

Proposition 3.7 ([12, Proposition 3.9]). Let (U,)aca be a definable family of open
quasiconver sets U, C R¥ with constant (in Definition 2.9) independent of a € A.
Let (h)aca be a definable family of C™-functions hq : U, x RY — R and (pa)aca
a definable family of C™*-functions p, : Uy, — R. Let (tq)aca be a definable
family of positive Lipschitz functions t, : U, — (0,00) with Lipschitz constants
independent of a € A such that t,(u) < d(u,0U,) for alla € A and u € U,. For
e > 0, consider the definable family (AS)aca, where

AS = {(u,w) € Uy x R : |w| < etq(u)}.

Assume that, for all a € A,

(3.6) aa(i)(u)) Sto(w) Y we U, o] <m+ 1.

Pa
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Let £ : R — R be a definable C™-function with compact support, fir 1 < i < /¥, and
set, for all a € A,
wy
falu,w) =

(u, w) (@)
If (ha)aca is a definable bounded family of C™% -functions on (AS)aca such that,
for each a € A,

|07 ha(u, w)] S wlta(w))ta(w)™ M, (u,w) € AG, 7| < m,

then (fo)aca is a definable bounded family of C™-functions on (AS)aca such that,
for each a € A,

)ha(u,w), (u,w) € Uy x RE

107 fu(u,w)| S wita(w)ta(w)™ M, (u,w) € AL, |y| < m.

Proof. Tt suffices to repeat the proof of Proposition 3.9 in [12] (as well as Lemma
3.5 and Proposition 3.6 which are used in the proof). O

Remark 3.8. Proposition 3.5 and Proposition 3.7 remain true if we remove every-
where the attribute “definable”.

4. BOUNDED DEFINABLE EXTENSION OF WHITNEY JETS

This section is devoted to the proof of Theorem 1.3. Let us recall the setup:

Let 0 < m < p be integers and w a modulus of continuity. Let (Ey)qaca be a definable
family of closed subsets of R™. Let (Fy)aca be a definable bounded family of Whitney
jets of class C™% on (Ey)aca. We will show that there exists a definable bounded
family (fo)aca of C™¥-extensions to R™ of (Fy)aca that is CP outside (Eq)qcA-

For each a € A, let supp F, denote the closure of |, <,,{z € Ea : F§(z) # 0}
and let (E/)qca be a definable subfamily of (E,).ca consisting of closed subsets
E! of E, such that supp F, C E.

Let A’ := {a € A :suppF, = 0}. The family (F,)sca can be extended by
(0)aear to R™. So we may assume that, for all a € A, supp F, # 0 and thus E!, # (.

We proceed by induction on k := max,ec 4 dim E/, and show:
(Ix) Let (Ey)aca be a definable family of closed subsets E, of R™ and (Fy)aca @
definable bounded family of Whitney jets of class C™* on (Eg)aca. Let (E!)qca be
a definable subfamily of (E,)aca of closed subsets E!, of E, such that supp F, C E/,
and dim E!, <k, for alla € A. Then there exists a definable bounded family (fu)aca
of C™* -extensions to R™ of (Fy)aca that is CP outside (E.)qca-

Let us fix an integer p > m+ 1. (We need that p > m+1 in the proof. The case
p =m in Theorem 1.3 is evidently a trivial consequence.)

Overview of the proof. Before we actually start the proof of (Ix), let us give a
brief general overview. Besides the induction on the dimension k, we use, for fixed k,
an induction on the number of the k-dimensional strata of E/,. This is possible since
this number is uniformly bounded independently of a € A, thanks to Theorem 2.16.
In this way, we can reduce the proof to the case that E!/ has dimension k and is
the closure of a single stratum S, that is the graph of a A,-regular map ¢,. We
can assume that the Whitney jet F, is flat on 95,; see Proposition 4.2. This case
is then checked in three gradually more general steps:

(1) In the first step, we assume that ¢, =0 and E/, = E,.
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(2) In the second step, we still suppose that ¢, = 0 but allow that E/ is a
proper subset of F,.

(3) The general case in the final third step is reduced to the previous steps by
means of Proposition 3.5.

Induction basis (Iy). If ¥ = 0, then each E! is a finite set (but E, might be
infinite) and there is a constant which bounds the number |E’| of elements of E/,
independently of a € A, by uniform finiteness; see [5, 4.4].

Let us make induction on s := max,e |F,|. The base case s = 1 is treated in
the following lemma.

Lemma 4.1. Let (E,)qca be a definable family of closed subsets E, of R™ and
(El)aca a definable subfamily of (Ey)aca such that, for each a € A, E! = {x,}.
Let (Fp)aca be a definable bounded family of Whitney jets of class C™* on (Eg)aca
such that supp F, C {x,}, for all a € A. Then there exists a definable bounded
family (fo)aca of C™¥-extensions to R™ of (Fy)aca that is CP outside (E!,)qca-

Proof. Note that, for each a € A, x, is an isolated point of E,, by continuity of F,.
Let x : R® — R be a definable CP-function that equals 1 in a neighborhood of 0
and has support contained in the unit ball. For each a € A, set

. min{l,d(zq, E, \ {za})} if Eo \ {z.} #0,
“T )1 otherwise.

Define, for each a € A,
T — Xq
fa(z) = x( a

Then (fa)aca is a definable family of CP-functions f, : R” — R such that each f,

has support contained in the ball B, := B(z,,d,) with radius d, around z, and

extends the jet F,. We will prove that the family (f4)qca is bounded in C™*(R").
Let v € N, where |y| < m. Then

Y — T — Tq
D falx) =Y ( )da ol 9oy (——2)9° T F, ().
aipey \O ( dg )
By (3.4) (for y € E, \ {zs} with d, = |z, —y| if d, < 1) and (3.3) (if d, = 1),
|Fl (wa)| < Cw(da)dy =P, (8] < m,

for a constant C' > 0 independent of a € A. For the rest of the proof, C' will denote
a constant independent of a € A; its actual value may change. Thus, for x € By,

) T Fy(x), @ €R"

PTIE@ =] Y LR E) @ - )| < Cold)ar T, |5 <m.
[c|<m—|8]
It follows that, for all x € R™,
(4.1) 07 fo(@)] < Cw(da)d M < Cw(1), |y <m.

Now assume that |y| = m. To see that |07 f,]|co.w(gny is bounded by a constant
independent of a € A, it suffices to estimate, for o + 8 = v,

D(z,y) := ’dg'a‘ 3ax<x;7xa)8ﬂTZFa(x) —d; 1o 6o‘x<y;7%>8ﬁT;’ZFa(y)’.
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Let us first assume that x,y € B,. Then

il o (S ) oo (g 0" T Pt
<oy y) <2cue -y,

since w is concave and |z — y| < 2d,. On the other hand,

g-lol aax(?/;J)MaﬁT;jFa(x) — T Fu(y))|

a

— | 1 K K K
<cdl*l E|Fa+5(xa)\|($—$a) —(y — xa)"|
|| <m—|B]
d

<o M) 4yl < 207w — ).

So D(z,y) < Cw(|x — yl|) for a constant C' > 0 independent of a € A.
If z and y lie outside of B,, then D(x,y) = 0. If z € B, and y ¢ B, and z is

the point, where the line segment [z, y] meets 0B,, then

D(z,y) = D(z,2) < Cw(lz — 2]) < Cuw(lz —yl).
This ends the proof. (I

Assume that s > 1. For each a € A, choose a numbering of the ele-
ments of E!, = {zq1,...,%a,s,}, Where s, < s. By the induction hypothe-
$18, (Fal B,\{2a.2,...,7a., } JacA admits a definable bounded family (f;)aca of C"™*-
extensions to R™ that is C? outside ({x4,1})aca. Then (F, — Jg (f1))aca is a
definable bounded family of Whitney jets of class C™* on (F,)aeca which is flat on
(Ea\ {%a.2,.-,Tas, })aca and has a definable bounded family (f2),ea of C™*-
extensions to R™ that is C? outside ({z42;...,%a,s, })acA, again by the induction
hypothesis. Thus, (f! + f2)aseca is the desired definable bounded family of C™ -
extensions to R™ of (Fy)aca-

This ends the induction on s and the base case (Ip) of the induction on k.

Setup for the induction step. Let k£ > 0 and suppose that (I;_;) holds. We
will prove (I). This will be accomplished by showing Proposition 4.2 below, but
first we make a few preparatory reductions.

By Theorem 2.16, there is a uniform A,-stratification (:#3)eeca of (Eq)qca com-
patible with (E!)sca such that, for each a € A and each |k| < m, F¥ is of class CP
on the strata in .%,.

By (Ix—1), we may assume that dim E/ = k for all a € A and there is a definable
bounded C™“-extension (f2)c to R™ of the restriction of (F,)aea to (Eo\Pa)aca,
where

Py =|J{S € Lu: 5. C E}, dim S, = k}.

Replacing F,, by F, — Jg (f9), for each a € A, we may assume that F, is flat on
all strata S, € .%,, S, C E/, with dim S, < k and also on F, \ E..

Let us now see that we may furthermore reduce to the case that, for each a € A,
E! is the closure of just one k-dimensional stratum S, and that F, is flat on its
frontier. Indeed, the number s, of k-dimensional strata of E! is uniformly bounded
by a constant not depending on a € A. We may use induction on s := max,e 4 S of
which the above statement is the base case that we take for granted for the moment.
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The induction step works just as for finite sets E/: for each a € A, let S 1,...,S54,,
be a numbering of the k-dimensional strata of E!. By the induction hypothesis,
(FalB,\R.)aca, where Ry := J;~5 Sa,i, admits a definable bounded family (FDaea
of C™“-extensions to R™ that is C? outside (E},\Rq)aca- Then (Fo—J3' (f1))aca is
a definable bounded family of Whitney jets of class C"™* on (E,).c 4 which is flat on
(Eo\ Ra)aca and has a definable bounded family (f2),ec4 of C™%“-extensions to R™
that is CP outside (R,)ac4, again by the induction hypothesis. Thus, (f! + f2)aca
is the desired definable bounded family of C™“-extensions to R™ of (Fy)aecA-

In the case that k = n, S, is open in R™ and extending F, by 0 outside S, for
all a € A, yields a definable bounded family (F}),c4 of Whitney jets of class C™%
on (R™)gea so that (FQ)aea is the desired family of C"“-extensions. This follows
from Hestenes’ lemma (e.g., [14, Theorem 1.10]); indeed, if z € S, and y & S,
and z is the point, where the line segment [z,y] meets 9S,, then, by (3.4) and
Remark 3.2, for any u € R",

T2 Fa(u) = Ty Fo(u)| = [T Fo(u)| = |T" Fa(u) = T." Fa(u)]
< Cuw(lz = 2)(lu—2[™ + [u = 2|™)
<2Cw(|lz =y (lu = 2|™ + [u —y[™),

for a constant C' > 0 independent of a € A, since |u — z| < max{|u — z|, |u — y|}.
Consequently, we may assume that £ :=n —k > 0.
We reduced the proof to showing the following. (We may assume that S, is a
A,-cell in a fixed orthogonal system of coordinates of R™, which is independent of
a € A, thanks to Theorem 2.16.)

Proposition 4.2. Let (E,)aca be a definable family of closed sets E, in R™.
Let (E.)aca be a definable subfamily of (Eg)aca of closed subsets E! of E, with
dim E!, = k such that E!, = S,, where

Sa = {(u, pa(u)) € RF x R s w € T,} = T(a),

and (¢q)aca is a definable family of A,-reqular maps ¢, : T, — R¢, T, an open
A,-cell in R*, and all constants in the definition of T, and ¢, are independent of
a € A. Then any definable bounded family (F,)aca of Whitney jets of class C™
on (Ey)aca such that, for all a € A, supp F, C E!, F, is flat on dS,, and FF,
|k| < m, is C? on S,, admits a definable bounded family (fo)aca of C™¥ -extensions
to R™ that is CP outside (E.)aca-

The proposition is proved in three gradually more general steps:

Step 1: ¢, =0 and E, = E, for all a € A.
Step 2: ¢, =0 for all a € A.
Step 3: The general case.

Step 1. For alla € A, E, = El, =T, x 0, where T, C R¥ is an open A,-cell with
constant C' independent of a € A. We will prove Proposition 4.2 in this special case
with the additional property that (fa)aca is m-flat outside (A(T, X 0))qea, where

(4.2) A(T, x 0) := {(u,w) € T, x R®: |w| < min{1,d(u, dT,)}}.
For each a € A, we write

Fo = (FY) (0. 8)enk <Nt 418] <m-
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Fix 8 € N* with |3| < m. Let F, g be the m-jet which results from F, by setting
all Féa”g/) equal to 0 whenever ' # (. Then (F, 3)qca is a definable bounded
family of Whitney jets of class C™* on (T, X 0)4ea. Indeed, for each a € A,
the definable Whitney jet F, of class C™%“ on T, x 0 can be identified with a
collection F, g, || < m, where F, g is a definable C"~1%l_function on T, such
that O°F, 5(u) = F(Ea’ﬁ)(u,()) for all u € T, and o € N*_ |a| < m — |B]; see [10,
Remark 5] and [6, pp. 87-88]. It suffices to prove that, for each 5, (F, 3)aca
admits a definable bounded family of C""“-extensions to R™ that is m-flat outside
(A(T, % 0))aea and CP outside (T, x 0)qea. Thus, we may suppose that, for each
a € A, F{%) = 0 whenever 8" # B. By assumption, F.? is CP on T, x 0.

By Theorem 2.16, Corollary 2.17, and Proposition 2.19, there is a uniform A,-
stratification (Z,)aca of (T4)aca such that, for all @ € A, each open k-dimensional
D, € 9,, and all o, 3, FCEO"B) is CP on D, x 0, and, for all u € D, and v € N* with
|7] < p, we have

sup{|FCEO"ﬁ)(v,0)| :v € Dy, |v—u| < d(u,0D,)}
d(u,dD,)! ’

(4.3)  |9VF*P(u,0)] < L

and, if 1 < [y < p,
w(d(u,dDy,))
d(u,dDg)1
where L > 0 is a constant independent of a € A.
For each a € A, let Z, := | J{D, € Z, : dim D, < k}. Setting
Gul) = F,(x) %fx € Z, x0,
0 if x € R*"\ A(T, x 0),

defines a definable bounded family (Gg)qca of Whitney jets of class C"™* on ((Z, x
0) U (R™\ A(T, x 0)))aca. This follows from Hestenes’ lemma (e.g., [14, Theorem
1.10]) and the following reasoning. Clearly, (G4)aca satisfies (3.3). To see (3.4) it
suffices to consider the case that x € Z, x 0 and y € R™ \ A(T, x 0) and to show
that

(4.5) |F(@)] < Cowllz —yl)e —y[™ 7, [x] < m,
for a constant C' > 0 independent of a € A. We have

|FE(@)| < Cw(d(u, 0T,))d(u, 0T, |x| < m,
by (3.4), since (Fy,)aca is flat on (0T, x 0)4ca, and

(4.4) 07 E ) (u,0)] < L

C
(46) FE@I < €= 5 w1, el < m,
by (3.3). Then (4.5) follows, since we have |z — y| > ¢ min{1,d(u,9T,)} for a
universal constant ¢ > 0, by (4.2).

By (Ix—1), there exists a definable bounded family (g,)qeca of C™“-extensions
to R™ of (Gy)aca that is CP outside (Z, X 0)gea. So, instead of (Fy)qca, it is
enough to consider (Fy, — J3' (ga))aca-

If D, and D/, are distinct open k-dimensional strata in %,, then A(D, x 0) C
A(T, x0) and A(D, x 0)NA(D!, x 0) C Z, x 0. Thus it suffices to find, separately
for each (D, )qca, a definable bounded family (f,)aeca of C"™%“-extensions to R™ of
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((Fa = I3 (9a))l5, xo)aca that is m-flat outside (A(Dqy x 0))aca and CP outside
(Ba X 0)a€A~
For each a € A, set

1
—Féo’ﬁ)(u, O)wﬁ — ga(u,w),

he(u,w) := Al

and define f, : R — R by

ro(u, w)he (w, w ifu € Dy,
Falw) = (u, w)hq(u, w) '
0 otherwise,

where

(4.7) HHg(cf i ))

1=175=0

with £ : R — R a semialgebraic CP-function which is 1 near 0 and vanishes outside
(—1,1), pa,0;sPa,1s-- -5 Pa,2k the functions associated with the open A,-cell D, (see
Section 2.F), and C is the constant from (2.7) which may be taken independent
from a € A, since it is determined by the constants in the definition of the Ap-cells
D,, a € A; see Remark 2.12. Note that the m-jet of h, at (u,0) coincides with
(Fo — JE (9a))(u,0) for all u € D,.

By construction, (f,)aca is a definable family. We will see that it is a bounded

family of C"“-extensions to R" of ((Fu — JE' (9a))|5, x0)aca- It is m-flat outside
(A(D, % 0))qca, thanks to the propertles of 74, and it is CP outside (D, x 0)qca.
Indeed, if (u,w) € (Dq x RY)\ A(D, x 0), then, by (2.7),

1
> > > ;
Ve max |w;| > |w| > min{1,d(u,dD,} C,0£nl<r12kpa’](u)
so that rq is identically zero on (Dg x RY) \ A(D, x 0). It remains to check that
the family (f,)aeca is contained and bounded in C™*(R™). To this end, we need
two lemmas.

Lemma 4.3. For each a € A, hg is of class C™* on A(Dy x0) and the C™¥ -norm
of heg on A(D, x 0) is bounded by a constant independent of a € A.

Proof. By construction, each h, is of class C™. Since (g4)qca is a bounded family
of C™“-functions on R, it suffices to consider (u,w) — Féo’ﬁ)(u, 0)w?. We have to
check that there is a constant C' > 0 such that, foralla € A, all K = (0, 7) € NFxN¢,
|k] <m, and all (u,w) € A(D, x 0),

(4.8) |0 (F*P) (u, 0)w”)| < C,
and, if |k| = m, for all z; = (u;, w;) € A(D, x 0),7=1,2,
(4.9) 0% (FLOP) (uy, 0)wy ) — 0% (FL% (ug, 0)wh) | < Cw(]zy — a2).

Fix k = (o,7) with |x| < m. We may assume that 7 < . Let us decompose o as
o = a -+, where a,7 € N¥, |a] < m —|3|, and a is maximal with this property.
Thus, if |y| > 0 then |a| + |8| = m. To see (4.8), observe that, by (4.3), (3.3), and
|lw| < min{1, d(u,0D,)},

Sup{|Féa’B)(U’0)‘ RS Da, |1] - U‘ < d(u,aDa)} |w||'877|

Y p(ef) B—7 < [,
07 E) (u,0) 7] < ot
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<CL |w‘|5*‘r|*|’Y| < CL,

where C' > 0 is the supremum in (3.3); indeed, if v # 0 then |a| + |8] = m and thus
1B —7]= ]l

Let us prove (4.9). Now |k| = m and |a| 4 |8| = m, whence |8 — 7| = |y|. Then
it is enough to show

(4.10) |07 F) (uy, 0)wl ™™ — 0V FL) (ug, 0)wh ™| < Cw(|zy — za)).
If v = 0, this follows from (3.4). So let us assume that |y| > 1.
Set tq(u) := d(u,0D,). Then

T2

(4.11) lta(u1) — ta(u2)| < $lur — ual.
Note that, for i =1, 2,
(4.12) |wz| < d(ui, 8Da) = 2ta(ui).

We consider two cases.
Case 1. Suppose that t,(u;) < |1 — x2| for i = 1,2. Then, by (4.4) and (4.12),
07 FS) (1, 07| < Leo(2ta(ur)) < 2Leo(|a — wal),
since w is concave and increasing.
Case 2. Assume (without loss of generality) that t,(u1) > |z1—2|. Then |u;—uz| <
|21 — @2| < ta(u1) = 3d(u1,0D,) so that the line segment [z1,z5] is contained in
D, x R*. Furthermore, if u € [uy, us] then, by (4.11),
[ta(u1) = ta(w)] < 3lur —ul < Flar — xa| < Fta(w),
whence
Lta(ur) < ta(u) < 3ta(ur), u € [ug,ug).
The left-hand side of (4.10) is bounded by
|07 F{) (1, 0) = 07 FL) (uz, 0)wy |71 407 FLP (g, 0)||w] ™7 — w5 ™.
By (4.4) and (4.12),
|0V FL (u1,0) = 07 FL*P) (ug, 0)|wn |77

k

S sup Y TOFED (1w, 0)]fur — uz|ta(ur) !
u€lur,uz] 575y

w(2ta(u))

<
b I+1

~ u€luy,usz] la (u)
< w(tll(ul))
ta(ul)

< w(|lz1 — z2l),

|y — |t (ug)!

|21 — 23]

since w is concave. Again, by (4.4) and (4.12),
|07 F{*P) (uz, 0)[w) ™7 — wy |
< w(2ta(u2))
ta (u2)|’7|
The proof is complete. O

|y|—1 5 w(ta(ul))

o |21 — 22| < w(lzy — @2]).

lwy — wa|te(u1)
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The proof shows that (4.9) actually holds on the larger set {(u,w) € D, x R? :
|lw| < d(u,dD,)}.

Lemma 4.4. For each a € A,
(4.13) 0% ha(u,w)| < Cw(d(u,dDy))d(u, dDy)™ 151,

for all (u,w) € A(D, x0), all kK € N", |k| <m, and a constant C > 0 independent
of a € A.

Proof. Fix x = (u,w) € A(D, x0). If d(u,0D,) < d(u,0T,), then let v’ € D, be
such that |u — /| = d(u,dD,) and set ' = (uv/,0). The open line segment (x,z’)
is contained in A(D, x 0). Since u’ € T,, where Féo”B) is of class C?, and h, is of
class C™* on A(D, x 0) with C™“-norm bounded by a constant independent of
a € A, by Lemma 4.3, we may conclude the assertion from Taylor’s theorem.

So we assume that d(u,dD,) = d(u,0T,). Let ' € 9T, such that |u — /| =
d(u,0T,). Let us first assume that x = (0,7) € N¥ x N with |k| = m. By
construction, 9%g,(u’,0) = 0 so that

0 g, 0)| = 190 (o) — (' 0)] S eo(fu — o)) = w(d(,0D,),
where we used that |w| < d(u,0D,) = |u — v/|. Hence it suffices to consider
o (Féo’m (u,O)wﬂ) or equivalently 37Féa’ﬁ)(u,0)w5_7, where a,y € N* are such
that « +v = o, |a| + |8] = m, and 7 < . Thus |8 — 7| = |y]. If |y] > 1, (44)
implies
w(d(u,dDy))

d(a oy @I < Le(d(w,8D0),

\6“’F£°"5)(u, O)w5_7| <L

and, if v =0, (3.4) gives
|07 F{ P (u, 00w’ 7| = [F{* (u,0)] S w(d(u, 0T,)) = w(d(u,dD,)),
since (Fy)qca is flat on (0T, X 0)gea.

To prove the statement for || < m, we proceed by induction on m—|x|. Suppose
that the assertion is already shown for every A € N with || < |A] < m. Since
the open line segment (x,z') connecting z = (u,w) and 2’ = (v/,0) is contained in
A(D, x 0), we have, by induction hypothesis, where 2" = (u”, w"),

0% ha(u,w)] < sup > [T Db (u”,w")||z — 2|
z' €(x,x’) =1

< sup w(d(u”,0Dg))d(u”, D)™ 1M1 d(u, dD,)

z'€(x,z’)
< w(d(u, 8D,))d(u, 0Dg)™ 1",
since d(u”,0D,) < d(u,0Dy,). O
It follows from Lemma 4.3 and Lemma 4.4 that, for each a € A,
(4.14) |8 ha(u, w)| < Cw(min{1,d(u,dDy)}) min{1, d(u, dD,)}™ 1<,
for all (u,w) € A(D, x 0), all Kk € N”, || < m, and a constant C' > 0 independent
of a € A. Indeed, by Lemma 4.3,

C
K < - . m—|k| <
|0 he(u, w)] < C o) w(1)1 , |kl <m,

for all (u,w) € A(D, x 0), which, together with (4.13), gives (4.14).
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Now Proposition 3.7 (see also Remark 3.8) implies that the family (f;)qca is
bounded in C™%“(R™). Indeed, Lemma 4.3, Lemma 4.4, and (4.14) guarantee that
the assumptions of Proposition 3.7 are satisfied, where t,(u) = min{1, d(u,0D,)}.
Condition (3.6) holds thanks to (2.9) and Remark 2.12. We also get

(4.15) |0 fo(u, w)| < Cw(d(u,dDg))d(u, dDg)™ 1",

for all (u,w) € A(D, x 0), all Kk € N”, || <m, and a constant C' > 0 independent
of a € A.

Step 2. Foralla € A, E! =S, =T, x 0, but possibly E’ is a proper subset of E,
for some a € A. Consider the definable family (r,)q.eca of functions r, : T, — (0, 00)
given by

ro(u) = {inf{|w| H(ww) € B\ Sa}if {w: (u,w) € By \ Sa} # 0,

1 otherwise.
Since F, is flat on E, \ S, we have (by (3.3) and (3.4))
(4.16) |F" (1,0)] < Cw(re(u))re(u)™ !

for all uw € T,, all kK € N |k| < m, and a constant C' > 0 independent of a € A.
(In the case that {w : (u,w) € E, \ So} = 0, it follows from (3.3) and we have to
replace C' by C'/w(1).)

By Theorem 2.16 and Proposition 2.20, there is a uniform A,-stratification of
(T4)aca such that

Ta :Qa,lu"'UQa,sUZaa
where, for each a € A and each i = 1,...,s, Z, is closed with dim Z, < k, each
Qa,i is an open k-dimensional Ap-cell with constant independent of a € A, r, is C?
on (g, ;, and either
(i) |0jrq] <1,foreach j=1,...,k, on Qg ;, in which case we may assume that
|0%7q (u)|d(u, 0Qq 4)1*71, 1 < |a| < p, is bounded on Q,; by a constant
independent of a € A, by Corollary 2.18, or
(ii) 10j7a(u)| > 1 for some j on Qq ;.

By (Ix—1), we may assume that (Fy)a.eca is flat on (Z, x 0)aea and hence on
(0Qaq,i X 0)gea foreachi=1,...,s.

Now it is enough to show that, for every i = 1,...,s, (Fa|Eam@a‘ixR’f))a€A
admits a definable bounded family (fs;)aca of C"™“-extensions to R™ that is m-
flat outside (A(Qa,i X 0))aca and CP outside (Q, ; X 0)aca. To this end, we fix i
and drop it from the notation.

Step 1 gives a definable bounded family (gq)qaca of C"™“-extensions to R™ of
(Falg, xo)aca that is m-flat outside (A(Qq X 0)aca and C? outside (Q, % 0)gea-
By Taylor’s formula and (4.16), for each a € A,

(4.17) |0" ga(u, w)| < Cw(ry(u)) ra(u)m_"'il

for all (u,w) € Q, x R, |w| < C'ry(u), and all k € N, |k| < m, where C,C’" >0
are independent of a € A. Similarly, we have

(4.18) |0% ga(u, w)| < Cw(d(u,0Q,))d(u, 8Qa)m_|“‘

for all (u,w) € Q. x RY, Jw| < C"d(u,0Q,), and all k € N, |k| < m, where
C,C’ > 0 are independent of a € A.
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In Case (ii), one can easily see (see [10, p. 94]) that, for each a € A, r,(u) >
d(u, 0Q,) for u € Qq, so that E, \ Su C R"\ A(Q, x 0). That means that g, is a
C"™“-extension to R™ of Fa|Ean(§ax0)v and we are done.

In Case (i), a modification is necessary: we define, for each a € A,

fa(u, w) = {Hf—l f(”ﬁ’&)) ga(u,w)  ifu € Qq,

0 otherwise,

where £ : R — R is a semialgebraic CP-function that is 1 near 0 and vanishes
outside (—1,1). Note that (f,)asca is a definable family of functions f, : R™ — R.
Moreover, we set

A(Qq % 0) == {(u,w) € Qq x R” : Jw| < t4(u)}
with
to(u) := min{r,(u), d(u, 0Q,)},
and claim that, for each a € A, f, is of class C™* on A'(Q, x 0) with C""*“-norm
bounded by a constant independent of a € A, and
(4.19) 107 folu, w)| < Cw(te(u))ta(u)™ "

for (u,w) € A'(Qq x 0) and all kK € N, || < m, where C' > 0 is independent of
a€ A

To see this, let us first assume that rq(u) < d(u,dQ,) so that t,(u) = rq(u).
Since we are in Case (i), we find that, thanks to (2.10),

1
0" (=) W) < Cra(w) ™7, weQu, fal <p.
for a constant C' > 0 independent of a € A. Thus, the claim follows from (4.17)

and Proposition 3.7.
If ro(u) > d(u, 0Q,) (that is, to(u) = d(u, dQ,)), then similarly

aa(ri)(u)‘ < Cd(u,0Q0) 1L, we Qu, ol <p,

Then we infer the claim from (4.18) and Proposition 3.7.
We conclude that (f;)aca is the required family of definable bounded C™%-
extensions to R™ of (Fu|p, g, «re))aca that is m-flat outside (A(Qq X 0))sca and

CP outside (Q, % 0)4c4. This ends Step 2.

Step 3. The general case of Proposition 4.2: for alla € A, S, = '(¢,), B, = S, C
E,, where ¢, : T, — R’ is not necessarily identically 0. Consider the definable
family (sq)aca of functions s, : S, — (0,00) given by

Sq(x) := min{d(z, B, \ Sa),d(2,08,)}, € S,.

For each a € A, let B, : T, — R’ be the continuous extension of ¢,; see
Section 2.D. Furthermore, we consider the maps

ot To xR = Ty xR (u,w) = (u, w =+ 0q(u))
and
Pat : Ta X R = Ty xRY,  (u,w) = (u,w =+ B, (u)).

Note that @, ; is a bi-Lipschitz homeomorphism with inverse , _ and Lipschitz
constants independent of a € A.
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Since F, is flat on E, \ S, and on 0S,, we have (by (3.4))
(4.20) |F(@)] < Cw(sa(x))sa(z)™

for all x € S, all kK € N |k| < m, and a constant C' > 0 independent of a € A.
Setting

ta(u) := sa(u, pa(u)), weT,,

we have

(4.21) |FX (1, pq(u))] < C’w(ta(u))ta(u)mf‘“', u €Ty, |k| <m.

The uniformity of the constants in the definition of T, and ¢, implies that (Sg)aca
and (0T, x R®)4ca are uniformly separated. Observe that (by the definition of s,)
ta(u) < C'd(u,0T,) for C" > 0 independent of a € A, since B, , is a bi-Lipschitz
homeomorphism with Lipschitz constants independent of a € A.

Thus Proposition 3.5 (and Lemma 3.6) implies that (Gg)eeca, where G, =
¢a +(Fals,), is a definable bounded family of Whitney jets of class C™“ on
(T, % 0)gea and extends to a definable bounded family of Whitney jets of class
C™ on (T, % 0)4ea which is flat on (9T, x 0)4ca and such that

(4.22) |G (1, 0)| < Cw(te(u))tq(uw)™ %

for all u € T,, all kK € N", || < m, and a constant C' > 0 independent of a € A.
For each a € A, set E, := 5, (E, N (T x RY)). Since @, , is a bi-Lipschitz
homeomorphism with constants independent of a € A, we may conclude

(4.23) |G (u,0)] < Cw(d((u,0), Eq \ (Ta x 0)))d((1,0), Eq \ (T x 0))™ %!

for all u € T,, all kK € N", || < m, and a constant C' > 0 independent of a € A.

Thus (G4)aca, where

~ ) Ga(u,0) if (u,w) € Ty x 0,
0 if (u,w) € B, \ (Tq x0),

is a definable bounded family of Whitney jets of class C"™* on (E,)qcg that is flat
on (B, \ (Ty X 0))aca-

By Step 2, there exists a definable bounded family (g,)qca of C™“-extensions
to R™ of (éa)aeA that is m-flat on (Ea \ (T, % 0))aca as well as outside (T, x R)qe 4
and C? outside (T4 X 0)qea.

For each a € A, define f, : R® — R by

Falw) o= {(ga e ) ) € T R
0 otherwise.
Then (f4)aca is a definable bounded family of C"™“-extensions to R™ of (Fy)aca
that is CP outside (S4)aca, which follows again from Proposition 3.5 (with M, =
T, xR and U, =T,).

This completes the proof of Proposition 4.2, hence of (Ij), and thus the proof of

Theorem 1.3.
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5. FURTHER APPLICATIONS

We present a local version of Theorem 1.3, we discuss the dependence of the
bounded extension on the modulus of continuity which leads to the proof of The-
orem 1.4, and finally we obtain a definable version of a correspondence between
Whitney jets of class C"™* and certain Lipschitz maps, which was first observed by
Shvartsman [13].

5.A. Definable C|;“-extensions. Let U C R" be open. We denote by C"=*(U)
the space of functions f : U — R such that f|y € C™“(V), for all relatively
compact open subsets V C U.

Let E C R™ be a closed set. An m-jet F on E is called a (definable) Whitney
jet of class C\)»* on E if F|k is a (definable) Whitney jet of class C"™* on K,
for all (definable) compact subsets K C E. A C[:“-function f : R” — R is a
Cl¥ -extension to R™ of F if Jg(f) = F.

Let (E,)aeca be a family of closed sets E, C R™. A family (F,)qeca of Whitney
jets of class C|)"” on E, is called a (definable) bounded family of Whitney jets of
class C:% if (Fy|k,)aca is a (definable) bounded family of Whitney jets of class
C™ for each (definable) subfamily (K,;)aca of (Fq)aca consisting of (definable)
compact sets K, C E,.

A family (fa)qea of CJu¥-functions f, : R" — R is called a (definable) bounded
family of C\)2”-extensions to R™ of (Fy)aca if f, is a C})”-extension to R™ of
F,, for each a € A, and, for each (definable) relatively compact subset V' C R",
(falv)aca is a (definable) bounded family of C™*“-functions.

Corollary 5.1. Let 0 < m < p be integers. Let w be a modulus of continuity.
Let (Ey)aca be a definable family of closed subsets E, of R™. For any definable
bounded family (Fy)aca of Whitney jets of class Cine on (Eq)qca there exists a

definable bounded family (fo)aca of Clo.’-extensions to R™ of (Fy)aca that is C?
outside (Eq)acA-

Proof. For integers k > 1, consider the definable sets Uy, := {x e R" : k—2 < |z| <
k}; note that Uy is the unit ball, Us is a punctured ball, and Uy, for k > 3, are annuli
centered at the origin. The sets Uy, for £ > 1, form an open cover of R™ with the
property that U, NUy # 0 if and only if |k —¢| < 1. Fix an integer p > m+1. There
exists a partition of unity {¢g}r>1 of class CP subordinated to the cover {Uj}r>1,
where each @y, is definable: ¢ € CP(R™), ¢ > 0, supp ¢ C Uy, for all k > 1, the
family {supp ¢ }r>1 is locally finite, and ), -, ¢ = 1. For instance, let h : R =+ R
be a nonnegative definable function of class C? such that supp h = [~3/4,3/4] and
set ¢1(z) == h(|z|?) and Yy (z) := h(|z| — (k — 1)), for k > 2. Then ¢ := Y, <, Yy
is of class CP and everywhere positive (locally it is a finite sum). Thus ¢y := ¥y /¢
is as required; it is definable, since in a neighborhood of supp ¢, = supp ¥ the
denominator 1 is represented by a finite sum of definable functions.

Let (F,)aca be a definable bounded family of Whitney jets of class Cv* on
(Ea)aca. Foreach k > 1, (Fy|g, Jaca is a definable bounded family of Whitney jets
of class C"™* on (E, NU})aeca. By Theorem 1.3, there exists a definable bounded
family (f*)4ea of C™“-extensions to R™ of (Fulg, Jaca such that f¥ is of class CP
outside E,NUy for all a € A; if E,NU}, = ) we set f¥:=0. Let f, := 2;11 orfk,
for a € A. The function f, is of class C|)v* on R™ and C? outside E,, since the
defining sum is finite on every compact set and p > m + 1. Let x € E,. There
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exist a neighborhood U of x and k > 1 such that U C U, U Ug41 U Ugyo and
U0 U it1,142y Ue = 0. So, for each r € N with || <m,

2

010 =30 X (5)oronsiteror 7 (0

%

- (:) 0 Pri () 0 ()
=00<k

Thus, f, is a C|.."-extension to R™ of Fj,.

Fix a definable relatively compact subset V' C R™. There exists K € N such that
VNU, =0 for all k > K. In particular, f,(z) := Zszl or(z)fE(z), for all x € V
and a € A. Hence, (f4|v)aca is a definable bounded family of C"*“-functions. O

Remark 5.2. We do not say that f, is definable as a global function f, : R” — R,
because the gluing argument (based on the partition of unity) involves an infinite
sum.

5.B. Dependence on the modulus of continuity. The main result, Theo-
rem 1.3, only depends in a weak sense on the modulus of continuity w, namely,
the uniform constant C' occasionally must be multiplied by w(1) or by w(1)~!; see
(4.1), (4.6), (4.14), and (4.16).

Thus, we can allow in Theorem 1.3 that, for each a € A, F, is a Whitney jet
of class C"™ % on E,, where w, is a modulus of continuity and there is a constant
C > 0 independent of a € A such that

(5.1) Cl<w,(1)<C, ac€A.
Then the statement is the following:

Theorem 5.3. Let 0 < m < p be integers. Let (wg)aca be a family of moduli of
continuity satisfying (5.1). Let (Ey)aca be a definable family of closed subsets E,
of R™. For any definable family (Fy)aca of Whitney jets Fy, of class C"™%« on E,
such that

(5.2) sup sup sup |FJ)(z)| < oo,
a€Az€E, |[y|[<m
and
RTF,)Y
(5.3) sup sup sup (' Fa)* ()] < 00,

aCA xz#AYEE, |y|<m Wa("x - y|)|x - y‘m—\’y\

there exists a definable family (fo)aca of C™¥a-extensions f, to R™ of F, such
that f, is of class CP outside E,, for all a € A, and

(5.4) sup || fallom.wa @mry < 00.
acA
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5.C. Proof of Theorem 1.4. Let (F,)q.ca be a definable family of Whitney jets of
class C™ on (F,)qca, where E, C R™ is compact. We say that the family (F},)aca
is bounded if

(5.5) sup sup sup |F)(z)| < oo
aC€AzEE, |y|<m
and
mFa 0
(5.6) sup sup sup [ Fa) ()]

A€A 2AYEE, [y|<m 1T — ym=1l

Proof of Theorem 1.4. We modify slightly an argument used in [15, Proposition
IV.1.5]. For each a € A, consider

R F, )Y
oq.(t):= sup sup ‘(xia}n_(ly)lk >0, 0,(0):=0
T#yEIEa y<m |z —yl[m=1
z—y|<t

Then oy, : [0,00) — [0,00) is an increasing function that is continuous at 0 and
04(t) = oo(diam E,), t > diam E,.

Thus also 7, : [0,00) — [0, 00), defined by
Ta(t) = {Z;i){ma(t)} 1: ; 1

is increasing and continuous at 0 with

(5.7) To(t) < max{l,o,(diam E,)}, ¢>0.

Let w, be the least concave majorant of 7, which is finite, thanks to (5.7). Then
w, is a modulus of continuity and

|(RyFa)(y)]
sup sup sup 7 <L
aEA wyEE, |y|<m Wa(|T — y|)|z —y|™~ 1

Moreover, wq(1) > 1 and, by (5.7),
wa(t) < max{l,o0,(diam E,)} < C, t>0,

for a constant C' > 0 independent of a € A, thanks to (5.6). In particular, (5.1) is
satisfied.

Thus Theorem 5.3 implies that there is a definable family (f,)qca such that, for
each a € A, f, is a C"™%a-extension to R" of F,, CP outside F,, and

sup ||fa||cmvwa(]Rn) < 00.
acA

In particular, (f;)aca is a bounded family of C™-functions. O

5.D. Definable Whitney jets as Lipschitz maps. We end with a few observa-
tions on a definable version of a correspondence, due to Shvartsman [13], between
Whitney jets of class C™“ and certain Lipschitz maps. Here the notation follows
closely the one of [13].

Let w be a modulus of continuity and m a positive integer. For o € N™ with
la| < m let 1, be the inverse of the (strictly increasing) function s +— s™1%lw(s)
and put @, :=w o 1,. For |a| =m, set p,(t) :=t.
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Let P,, denote the space of real polynomials of degree at most m in n variables.
For T; = (P, x;) € P x R™, i = 1,2, define

6s(T1, Tz) 1= max {w(|w1 — wa]), max o ([0 (Py - Py)(i)) }-
i=1,2

Then we get a metric d,, on P, x R™ by setting

k—1
(T, T') :=inf > 6,(T;, Tyy1),
§=0
where the infimum is taken over all finite sequences T = T1,7%,...,T, = T’ in

P X R™. Tt turns out (see [13, Theorem 2.1]) that
do((P,x), (P',2")) < 6,((P,x), (P',2)) < du((e" P, x), (" P',a')).

Let Ty n be the metric space (P, x R",d,,). For a nonempty subset X C R", we
denote by X, the metric space (X, (z,y) — w(|z — y|)). Let Lip(X,,, Trm,n) be the
space of Lipschitz maps T : x +— (P,, ;) such that max|q|<m, Sup,cx [0% P (z)| <
o0, equipped with the norm

ITlLocx) = max sup |0%Fy(z)]
lel<m zex

+inf{\ > 0: dy (AT (), \ T (y)) < w(|z —yl|) for all 2,y € X},

where A™1T'(x) :== (A1 Py, z,.). Let T™ f be the Taylor polynomial of order m at
of a C™-function f.
Now let us recall a result of [13].

Proposition 5.4 ([13, Propositions 1.9 and 2.8]). Let X C R™ be a closed set.
Given a family of polynomials { Py € Py, : © € X}, there exists f € C™*(R"™) such
that T"f = P, for oll x € X if and only if the map T : x — (Py,x) belongs to
Lip(Xy, Trn,n). We have

in the sense that either side is bounded by a constant C(m,n) times the other side.
If, moreover, T : x +— (P, x) belongs to Lip(Xy, Tm.n), then T has an extension

T:x— (Py,x) in Lip(R], Trm,n) satisfying

ITlLo@ny < Clm,n) [TLox)-

These results are based on the classical extension theorem for Whitney jets of
class C™*“. As a consequence of Theorem 1.2, we may conclude the following
definable version, where, provided that X is definable, Lipgy.¢(Xw, Tm,n) is the
subspace of definable maps T : z +— (P, z;) in Lip(Xy,, Tm,n), which means that
2z, and the coefficients of P, are definable maps in x. Recall that C}.;*(R"™) is the
subspace of C™“(R™) consisting of all definable functions in C™“(R"™).

Proposition 5.5. Let X CR"™ be a definable closed set. Given a definable family
of polynomials { P, € Py, : @ € X}, there exists f € Cioi”(R™) such that T)" f = Py
for all x € X if and only if the map T : x — (Py, x) belongs to Lipges(Xw, Tmon)-
If, moreover, T : x — (P, x) belongs to Lipges(Xw, Trm.n), then T has an extension
T:xs (ﬁz,x) in Lipges (RY, Tonn)-
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Concerning the existence of uniform bounds for the norms, remarks similar to the
ones in [11, Section 4.4] apply. But Theorem 1.3 implies the following supplement.

Proposition 5.6. Suppose that in the setting of Proposition 5.5, the family of
polynomials depends definably on additional parameters a € A, i.e., a definable
family of polynomials {P? € Py, : © € X, a € A} is given. Then there exists a
bounded family (f*)aca of definable C™* -functions f* : R™ — R such that

T f*=Py foraleeX andac A

if and only if (T : x — (P2,x))qca forms a bounded subset of Lipges(Xw, Trmn)-
If, moreover, (T* : x — (P2, x))aca forms a bounded subset of Lipges(Xw, Tm.n)s

then there is a family (T“ Lx (]3;}, x))aca of extensions T of T which forms a
bounded subset of Lip 4o (R, Trnn) -
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