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TESTED IN LOWER DIMENSIONS
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Abstract. We show that, in contrast to the real analytic case, quasianalytic

ultradifferentiability can never be tested in lower dimensions. Our results are
based on a construction due to Jaffe.

1. Introduction

In a recent paper [5] Bochnak and Kucharz proved that a function on a compact
real analytic manifold is real analytic if and only if its restriction to every closed
real analytic submanifold of dimension two is real analytic. A local version of this
theorem can be found in [6]. It is natural to ask if a similar statements holds in
quasianalytic classes of smooth functions C which are strictly bigger than the real
analytic class, but share the property of analytic continuation:

Is a function defined on a C-manifold of class C provided that all its
restrictions to C-submanifolds of lower dimension are of class C?

We will show in this paper that the answer to this question is negative for all
standard quasianalytic ultradifferentiable classes defined by growth estimates for
the iterated derivatives, even if we already know that the function is smooth. We
shall always assume that the classes C are stable under composition and admit an
inverse function theorem, consequently, manifolds of class C are well-defined.

This article is partly motivated by the development of the convenient set-
ting for ultradifferentiable function classes in [13, 14, 15] which provides an (ul-
tra)differential calculus for mappings between infinite dimensional locally convex
spaces with a mild completeness property. Typically, the convenient calculus is
based on Osgood–Hartogs type theorems which describe objects by “restrictions”
to certain better understood test objects (cf. [20]). While many non-quasianalytic
classes can be tested along non-quasianalytic curves in the same class [13], the anal-
ogous statement is false for quasianalytic classes even if the function in question is
smooth. This was shown by Jaffe [10] for quasianalytic Denjoy–Carleman classes
of Roumieu type. In [15] we overcame this problem by testing along all Banach
plots in the class (i.e. mappings defined in arbitrary Banach spaces) which raised
the question if there is a subclass of plots sufficient for recognizing the class.

The results of this paper show that in finite dimensions quasianalytic C-plots
with lower dimensional domain are never enough for testing C-regularity (even if
smoothness is already known). In particular, restrictions to C-submanifolds of lower
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2 A. RAINER

dimensions cannot recognize C-regularity. Actually, we will prove more: For any
n ≥ 2, any regular quasianalytic class C, and any positive sequence N = (Nk) there
exists a function f ∈ C∞(Rn) such that f ◦ p ∈ C for all C-plots p : Rm ⊇ U → Rn
with m < n, but

sup
x∈K
α∈Nn

|∂αf(x)|
ρ|α||α|!N|α|

=∞

for all neighborhoods K of 0 in Rn and all ρ > 0. It will be specified in the next
two subsections what we mean here by a regular quasianalytic class.

All our results follow from slight modifications of Jaffe’s construction.

1.1. Denjoy–Carleman classes. Let U ⊆ Rn be open. Let M = (Mk) be a
positive sequence. For ρ > 0 and K ⊆ U compact consider the seminorm

‖f‖MK,ρ := sup
x∈K
α∈Nn

|∂αf(x)|
ρ|α||α|!M|α|

, f ∈ C∞(U).

The Denjoy–Carleman class of Roumieu type is defined by

E{M}(U) := {f ∈ C∞(U) : ∀ compact K ⊆ U ∃ρ > 0 : ‖f‖MK,ρ <∞},

and the Denjoy–Carleman class of Beurling type by

E(M)(U) := {f ∈ C∞(U) : ∀ compact K ⊆ U ∀ρ > 0 : ‖f‖MK,ρ <∞},

We shall assume that M = (Mk) is

1. logarithmically convex, i.e. M2
k ≤Mk−1Mk+1 for all k, and satisfies

2. M0 = 1 ≤M1 and

3. M
1/k
k →∞.

A positive sequence M = (Mk) having these properties 1.–3. is called a regular
weight sequence. The Denjoy–Carleman classes E{M} and E(M) associated with a
regular weight sequence M are stable under composition and admit a version of the
inverse function theorem (cf. [18]).

Let M = (Mk) and N = (Nk) be positive sequences. Then boundedness of the
sequence (Mk/Nk)1/k is a sufficient condition for the inclusions E{M} ⊆ E{N} and
E(M) ⊆ E(N) (this means that the inclusions hold on all open sets). The condition is
also necessary provided that k!Mk is logarithmically convex, see [21] and [8], (so in
particular if M is a regular weight sequence). For instance, stability of the classes
E{M} and E(M) by derivation is equivalent to boundedness of (Mk+1/Mk)1/k (for
the necessity we assume that k!Mk is logarithmically convex). If (Mk/Nk)1/k → 0
then E{M} ⊆ E(N), and conversely provided that k!Mk is logarithmically convex.
Hence regular weight sequences M and N are called equivalent if there is a constant
C > 0 such that C−1 ≤ (Mk/Nk)1/k ≤ C.

For the constant sequence 1 = (1, 1, 1, . . .) we get the class of real analytic
functions E{1} = Cω in the Roumieu case and the restrictions of entire functions
E(1) in the Beurling case. Note that the conditions 1. and 2. imply that the sequence

M
1/k
k is increasing. Thus, if M satisfies 1. and 2. then the strict inclusions Cω (
E{M} and Cω ( E(M) are both equivalent to 3. (for the latter observe that 3. and

Cω = E(M) would imply that all classes Cω ⊆ E(
√
M) ⊆ E{

√
M} ⊆ E(M) actually

coincide, a contradiction).
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A regular weight sequence M = (Mk) is called quasianalytic if∑
k

Mk

(k + 1)Mk+1
=∞. (1)

By the Denjoy–Carleman theorem, this is the case if and only if the class E{M} is
quasianalytic, or equivalently E(M) is quasianalytic. See e.g. [9, Theorem 1.3.8] and
[11, Theorem 4.2].

A class C of C∞-functions is called quasianalytic if the restriction to C(U) of
the map C∞(U) 3 f 7→ Taf which takes f to its infinite Taylor series at a is
injective for any connected open U 3 a. For example, the real analytic class Cω
has this property and indeed (1) reduces to

∑
k

1
k+1 = ∞ in this case. Further

examples of quasianalytic classes E{M} and E(M) that strictly contain Cω are given
by Mk := (log(k + e))δk for any 0 < δ ≤ 1.

Let V ⊆ Rm be open. A mapping p : V → U of class E{M} (which means
that the component functions pj are of class E{M}) is called a E{M}-plot in U of
dimension m. If m < n we say that p is lower dimensional.

Now we are ready to state our first results.

Theorem 1. Let M = (Mk) be a quasianalytic regular weight sequence. For any
n ≥ 2 and any positive sequence N = (Nk) there exists a C∞-function f on Rn of
class E{M} on Rn \ {0} which does not belong to E{N}(Rn), but f ◦ p ∈ E{M} for
all lower dimensional E{M}-plots p in Rn.

The following Beurling version is an easy consequence; E(M)-plots are defined in
analogy to E{M}-plots.

Theorem 2. Let M = (Mk) be a quasianalytic regular weight sequence. For any
n ≥ 2 and any positive sequence N = (Nk) there exists a C∞-function f on Rn of
class E(M) on Rn \ {0} which does not belong to E{N}(Rn), but f ◦ p ∈ E(M) for all
lower dimensional E(M)-plots p in Rn.

The proofs can be found in Section 2.

Remark. The theorems also show that non-quasianalytic ultradifferentiability can-
not be tested on lower dimensional quasianalytic plots: Suppose that L is a non-
quasianalytic regular weight sequence, M ≤ L is a quasianalytic regular weight
sequence, and N is an arbitrary positive sequence. By Theorem 1 there is a C∞-
function f on Rn of class E{M} off 0 not in E{N}(Rn), but of class E{M} ⊆ E{L}
along every E{M}-plot.

1.2. Braun–Meise–Taylor classes. Another way to define ultradifferentiable
classes which goes back to Beurling [2] and Björck [4] and was generalized by
Braun, Meise, and Taylor [7] is to use weight functions instead of weight sequences.
By a weight function we mean a continuous increasing function ω : [0,∞)→ [0,∞)
with ω(0) = 0 and limt→∞ ω(t) =∞ that satisfies

1. ω(2t) = O(ω(t)) as t→∞,
2. ω(t) = O(t) as t→∞,
3. log t = o(ω(t)) as t→∞, and
4. ϕ(t) := ω(et) is convex.
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Consider the Young conjugate ϕ∗(t) := sups≥0
(
st − ϕ(s)

)
, for t > 0, of ϕ. For

compact K ⊆ U and ρ > 0 consider the seminorm

‖f‖ωK,ρ := sup
x∈K,α∈Nn

|∂αf(x)| exp(− 1
ρϕ
∗(ρ|α|)), f ∈ C∞(U),

and the ultradifferentiable classes of Roumieu type

E{ω}(U) := {f ∈ C∞(U) : ∀ compact K ⊆ U ∃ρ > 0 : ‖f‖ωK,ρ <∞},
and of Beurling type

E(ω)(U) := {f ∈ C∞(U) : ∀ compact K ⊆ U ∀ρ > 0 : ‖f‖ωK,ρ <∞}.

The classes E{ω} and E(ω) are in general not representable by any Denjoy–Carleman
class, but they are representable (algebraically and topologically) by unions and
intersections of Denjoy–Carleman classes defined by 1-parameter families of positive
sequences associated with ω [17]. The classes E{ω} and E(ω) are quasianalytic if
and only if ∫ ∞

0

ω(t)

1 + t2
dt =∞.

If σ is another weight sequence then E{ω} ⊆ E{σ} and E(ω) ⊆ E(σ) if and only
if σ(t) = O(ω(t)) as t → ∞. The inclusion E{ω} ⊆ E(σ) holds if and only if
σ(t) = o(ω(t)) as t → ∞. For details see e.g. [17]. Thus ω and σ are called
equivalent if σ(t) = O(ω(t)) and ω(t) = O(σ(t)) as t→∞.

We will assume that the weight function ω satisfies ω(t) = o(t) as t→∞ which
is equivalent to the strict inclusion Cω = E{t} ( E(ω). If ω is equivalent to a concave
weight function, then the classes E{ω} and E(ω) are stable under composition and
admit a version of the inverse function theorem (and conversely, see [16, Theorem
11]). They are always stable by derivation.

We shall prove in Section 2:

Theorem 3. Let ω be a quasianalytic concave weight function such that ω(t) = o(t)
as t → ∞. For any n ≥ 2 and any positive sequence N = (Nk) there exists a C∞-
function f on Rn of class E{ω} on Rn \ {0} which does not belong to E{N}(Rn), but
f ◦ p ∈ E{ω} for all lower dimensional E{ω}-plots p in Rn.

Theorem 4. Let ω be a quasianalytic concave weight function such that ω(t) = o(t)
as t → ∞. For any n ≥ 2 and any positive sequence N = (Nk) there exists a C∞-
function f on Rn of class E(ω) on Rn \ {0} which does not belong to E{N}(Rn), but
f ◦ p ∈ E(ω) for all lower dimensional E(ω)-plots p in Rn.

E{ω}- and E(ω)-plots are defined in analogy to E{M}-plots.

1.3. New quasianalytic classes. Let us turn the conditions of the theorems into
a definition.

Let M = (Mk) be any quasianalytic regular weight sequence and let ω be any
quasianalytic concave weight function with ω(t) = o(t) as t→∞. In the following
? stands for either {M}, (M), {ω}, or (ω).

Let Ā?1(Rn) be the set of all C∞-functions f on Rn such that f is of class E?
along all affine lines in Rn. Then Ā?1(Rn) is quasianalytic in the sense that Taf = 0
implies f = 0 for any a ∈ Rn. Indeed, if f is infinitely flat at a, then so is the
restriction of f to any line ` through a. Since the class E? is quasianalytic, f |` = 0
for every line ` through a and thus f = 0 on Rn. On the other hand Ā?1(Rn)
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contains E?(Rn) but is not contained in any Denjoy–Carleman class whatsoever, by
Theorems 1 to 4.

There are many ways to modify the definition: Let U be an open subset of an
Euclidean space. If A?m(U) is the set of all C∞-functions f on U such that f is of
class E? along all E?-plots in U of dimension m, then A?m(U) is quasianalytic and
stable under composition. Thus A?m-mappings between open subsets of Euclidean
spaces form a quasianalytic category askew to all Denjoy–Carleman classes. We
have strict inclusions

E?(Rn) = A?n(Rn) ( A?n−1(Rn) ( · · · ( A?1(Rn).

Indeed the first inclusion is strict by the theorems proved in this paper. That the
other inclusions are strict follows immediately: if f ∈ A?n−1(Rn) \ A?n(Rn) then

f̃(x1, . . . , xn, xn+1, . . . , xn+k) := f(x1, . . . , xn) ∈ A?n−1(Rn+k) \ A?n(Rn+k) for all
k ≥ 1.

None of the categories A?m is cartesian closed:

A?m(Rm,A?m(Rm)) 6= A?m(Rm × Rm) (via f(x)(y) 7→ f∧(x, y)).

In fact, the left-hand side equals E?(Rm, E?(Rm)) and is contained in E?(Rm×Rm),
by [15, Theorem 5.2] and [19], which in turn is strictly included in the right-hand
side.

Each A?m is closed under reciprocals: if f ∈ A?m and f(0) 6= 0 then 1/f ∈ A?m
on a neighborhood of 0. This follows from stability under composition and the fact
that x 7→ 1/x is real analytic off 0.

Suppose that E? is stable under differentiation. If f ∈ A?m then dkvf ∈ A?m−1 for
all m ≥ 2, all vectors v, and all k, thus also ∂αf ∈ A?m−1 for all multi-indices α.
Indeed, if p is a E∗-plot of dimension m− 1, then

dkvf(p(s) + tv) = ∂kt
(
f(p(s) + tv)

)
is of class E? in s for all t, since (s, t) 7→ p(s) + tv is an E?-plot of dimension m and
E? is stable under differentiation.

Another interesting stability property of A?1 and Ā?1, under the assumption that
E? is stable under differentiation, is the following: Assume that the coefficients of
a polynomial

ϕ(x, y) = yd + a1(x)yd−1 + · · ·+ ad(x)

are germs of A?1 (resp. Ā?1) functions at 0 in Rn and h is germ of a C∞-function
at 0 such that ϕ(x, h(x)) = 0. Then h is actually also a germ of a A?1 (resp. Ā?1)
function. This follows immediately from the case n = 1 due to [22]; in this reference
only the case ? = {M} was treated, but the arguments apply to all cases. It seems
to be unknown whether a similar result holds for E? and n > 1, but see [1].

2. Proofs

2.1. Proof of Theorem 1. The proof is based on a construction due to Jaffe [10].

Lemma 5 ([10, Proposition 5.2]). Let M be a regular weight sequence. For any
integer n ≥ 2 there exists a function f ∈ E{M}(Rn) with the following properties:
there is a constant B = B(n) such that for all compact K ⊆ Rn and all α ∈ Nn

|∂αf(x)| ≤ B|α|(|K|+ 1)|α||α|!M|α| for all x ∈ K,

|∂αf(x)| ≤ B|α|(|K|+ 1)|α||α|!
(
1 + |x|−2(|α|+1)

)
for all x ∈ K \ {0},
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and for all k ≥ 1 and i = 1, . . . , n∣∣∣∂2kf
∂x2ki

(0)
∣∣∣ ≥ (2k)!Mk

2k
.

Here |K| := supx∈K |x|.

It is not hard to see that the fact that M is logarithmically convex, or equiva-
lently, mk := Mk+1/Mk is increasing, implies that

Mk =
mk+1
k

ϕ(mk)
, where ϕ(t) := sup

k≥0

tk+1

Mk
.

This can be used to see that

f(x) :=

∞∑
k=1

2−kϕ(mk)−1
(
x− i/mk

)−1
defines a smooth function on R with ‖f (k)‖L∞ ≤ k!Mk, |f (k)(x)| ≤ k!/|x|k+1 if
x 6= 0 and |f (k)(0)| ≥ k!Mk/2

k for all k. Composing f with the squared Euclidean
norm in Rn gives a function with the properties in the lemma. For details see [10].

Let ϕ : [0, 1] → [0, 1] be a strictly monotone infinitely flat smooth surjective
function with ϕ(t) ≤ t for all t ∈ [0, 1]. Let ϕ[n] := ϕ◦ϕ[n−1], n ≥ 1, with ϕ[0] := Id
denote the iterates of ϕ. Consider the arc

A :=
{

Φ(t) := (t, ϕ(t), ϕ[2](t), · · · , ϕ[n−1](t)) : t ∈ (0, 1)
}
⊆ Rn.

Note that t ≥ ϕ(t) ≥ · · · ≥ ϕ[n−1](t) for all t.

Without loss of generality we may assume that the sequence M
1/k
k is strictly

increasing [10, Lemma 4.3]. We define a sequence of points ak in A by fixing the
n-th coordinate of ak to

(ak)n := M
−1/(4k)
k .

For each ` ∈ N≥1 define a sequence M (`) = (M
(`)
k ) by

M
(`)
k :=

{
1 if 0 ≤ k < `,

c2k−2`+1
` Mk if k ≥ `,

where c` ≥ M` are constants to be determined below. Notice that each M (`) is a
regular weight sequence equivalent to M .

By Lemma 5, for each ` ∈ N≥1 there is a function f` ∈ E{M
(`)}(Rn) = E{M}(Rn)

such that for all compact K ⊆ Rn and all α ∈ Nn we have (for a := 1 + sup` |a`| )

|∂αf`(x)| ≤ B|α|(|K|+ a)|α||α|!M (`)
|α| for all x ∈ K, (2)

|∂αf`(x)| ≤ B|α|(|K|+ a)|α||α|!
(
1 + |x− a`|−2(|α|+1)

)
for all x ∈ K \ {a`}, (3)

where B = B(n), and for all k ≥ 1∣∣∣∂2kf`
∂x2k1

(a`)
∣∣∣ ≥ (2k)!M

(`)
k

2k
. (4)

Define

f :=

∞∑
`=1

2−`f`.

It is easy to check that f is C∞ on Rn and of class E{M} on Rn \ {0}.
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Note that f depends on the choice of the coefficients c`. Next we will show that,
given any positive sequence N = (Nk), we may choose the constants c` and hence
f in such a way that f does not belong to E{N} in any neighborhood of the origin.

Lemma 6. The constants c` ≥M` can be chosen such that for all k ≥ 1∣∣∣∂2kf
∂x2k1

(ak)
∣∣∣ ≥ (2k)!M2kN2k.

Proof. Since M
(k)
k = ckMk, (3) and (4) give∣∣∣∂2kf

∂x2k1
(ak)

∣∣∣ ≥ 4−k(2k)!ckMk −
∑
` 6=k

2−`B2k(|K|+ a)2k(2k)!
(
1 + |ak − a`|−2(2k+1)

)
.

The sum on the right-hand side is bounded by a constant (depending on k) since the

sequence M
1/k
k is strictly increasing and hence inf` 6=k |ak − a`| > 0. The assertion

follows easily. �

Lemma 6 implies that f cannot be of class E{N} in any neighborhood of the
origin. Otherwise there would be constants C, ρ > 0 such that, for large k,

(2k)!M2kN2k ≤
∣∣∣∂2kf
∂x2k1

(ak)
∣∣∣ ≤ Cρ2k(2k)!N2k

which leads to a contradiction as M
1/k
k →∞.

It remains to show that f ◦ p ∈ E{M}(V ) for any E{M}-plot p : V → Rn, where
V ⊆ Rm with m < n. We will use the following lemma.

Lemma 7. Let K ⊆ Rn \ {ak}k be a compact set such that

dist(ak,K) ≥M−1/(4k)k for all k > k0.

Then there exists ρ > 0 such that ‖f‖MK,ρ < ∞. Neither ρ nor ‖f‖MK,ρ depend on
the choice of the constants c`.

Proof. For x ∈ K and |α| ≥ 1,

|∂αf(x)| ≤
∞∑
`=1

2−`|∂αf`(x)| =
|α|∑
`=1

2−`|∂αf`(x)|+
∞∑

`=|α|+1

2−`|∂αf`(x)|.

By (2) and the definition of M (`), the second sum is bounded by B|α|(|K|+a)|α||α|!.
For the first sum we have, by (3),

|α|∑
`=k0+1

2−`|∂αf`(x)| ≤ B|α|(|K|+ a)|α||α|!
|α|∑

`=k0+1

2−`
(
1 + |x− a`|−2(|α|+1)

)
≤ B|α|(|K|+ a)|α||α|!M|α|

|α|∑
`=k0+1

1

≤ (eB)|α|(|K|+ a)|α||α|!M|α|.

A similar estimate holds for
∑k0
`=1 2−`|∂αf`(x)| since dist(ak,K) ≥ ε > 0 for all

k ≤ k0. �

Let p = (p1, . . . , pn) : V → Rn be an E{M}-plot, where V ⊆ Rm is a neighbor-
hood of the origin and m < n.
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Lemma 8. There is a compact neighborhood L ⊆ V of 0 such that K := p(L)
satisfies

dist(Φ(t),K) ≥ ϕ[n−1](t) for all small t > 0. (5)

Proof. We may assume that no component pj vanishes identically; indeed, if pj ≡ 0
then K is contained in the coordinate plane yj = 0 and hence dist(Φ(t),K) ≥
ϕ[j−1](t) ≥ ϕ[n−1](t) for all t.

Suppose that p(0) 6= 0. Then there exists a compact neighborhood L of 0 such
that dist(0,K) =: ε > 0, where K = p(L). For sufficiently small t > 0 we have
|Φ(t)| ≤ ε/2. For such t,

dist(Φ(t),K) ≥ dist(0,K)− |Φ(t)| ≥ ε/2 ≥ |Φ(t)| ≥ ϕ[n−1](t).

Assume that p(0) = 0 and that pj(x) = xαjuj(x) for j = 1, . . . , n, where x =
(x1, . . . , xm), all uj are non-vanishing and the set of exponents {α1, . . . , αn} ⊆ Nm
is totally ordered with respect to the natural partial order of multiindices (that is,
for all 1 ≤ i, j ≤ n we have αi ≤ αj or αj ≤ αi). Let β1 ≤ β2 ≤ . . . ≤ βn be an
ordered arrangement of {α1, . . . , αn}. Let mi be the number of zero components
of βi, for i = 1, . . . , n. Since p(0) = 0, we have m1 ≤ m − 1. On the other hand
mi ≥ mi+1 for all i = 1, . . . , n − 1. Since m < n, we must have mi0 = mi0+1 for
some i0. That means there exist two distinct numbers i, j ∈ {1, . . . , n} with αi ≤ αj
such that αi and αj have the same number of zero components. Thus we may find
a positive integer d such that d · αi ≥ αj . Consequently, there is a constant C > 0
such that for all x in a neighborhood L of 0 ∈ Rm,

|pj(x)| ≤ C |pi(x)| and |pi(x)|d ≤ C |pj(x)|.
This implies that K = p(L) satisfies (5). In fact, the i-th component of Φ(t) is
ϕ[i−1](t) and the j-th component is ϕ[j−1](t) = ϕ[j−i]

(
ϕ[i−1](t)

)
. Since ϕ[j−i] is an

infinitely flat function while K is contained in the set {C−1|yi|d ≤ |yj | ≤ C|yi|},
dist(Φ(t),K) is larger than ϕ[j−1](t) for all sufficiently small t > 0.

The general situation can be reduced to these special cases by the desingulariza-
tion theorem [3, Theorem 5.12] using [3, Lemma 7.7] in order to get the exponents
totally ordered. Indeed, applying [3, Theorem 5.12] to the product of all nonzero
pj and all nonzero differences of any two pi, pj we may assume that after pullback
by a suitable mapping σ the components pj are locally a monomial times a non-
vanishing factor (in suitable coordinates), and the collection of exponents of the
monomials is totally ordered. Here we apply the desingularization theorem to the

quasianalytic class C =
⋃
k∈N E{M

+k}, where M+k is the regular weight sequence

defined by M+k
j := Mj+k, which has all required properties. This is necessary since

the class E{M} might not be closed under differentiation. �

Remark 9. For later reference we note that Lemma 8 holds for all lower dimen-
sional C-plots, where C is any quasianalytic class of smooth functions which contains
the restrictions of polynomials, is stable by composition, differentiation, division by
coordinates, and admits an inverse function theorem; cf. [3].

Now we can prove that f ◦ p ∈ E{M}(V ) for any lower dimensional E{M}-plot
p : V → Rn. To be of class E{M} is a local condition. So we may assume without loss
of generality that V is a neighborhood of 0. By Lemma 8, we may further assume
that (after shrinking) V = L is a compact neighborhood of 0 such that K = p(L)
satisfies (5). By Lemma 7, there exists ρ > 0 such that ‖f‖MK,ρ =: C < ∞. Since
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p ∈ E{M}, there exists σ > 0 such that ‖p‖ML,σ =: D < ∞. Logarithmic convexity

of M implies Mk
1Mk ≥MjMα1

· · ·Mαj for all αi ∈ N>0 with α1 + · · ·+αj = k (cf.
[13, Lemma 2.9]). Consequently, in view of the Faá di Bruno formula, for k > 0
and x ∈ L,

‖(f ◦ p)(k)(x)‖Lk(Rm,R)
k!

≤
∑
j≥1

∑
αi

‖f (j)(p(x))‖Lj(Rn,R)
j!

j∏
i=1

‖p(αi)(x)‖Lαi (Rm,Rn)
αi!

≤
∑
j≥1

∑
αi

CρjMj

j∏
i=1

DσαiMαi

≤ C(M1σ)kMk

∑
j≥1

(
k − 1

j − 1

)
(Dρ)j

≤ CDρ(M1σ)k(1 +Dρ)k−1Mk,

that is, there exists τ > 0 such that ‖f ◦ p‖ML,τ < ∞. This ends the proof of
Theorem 1.

2.2. Proof of Theorem 2. Set Lk := M
1/2
k . Then L = (Lk) is a quasianalytic

regular weight sequence satisfying (Lk/Mk)1/k → 0. Theorem 1 associates a func-
tion f with L which is as required. Indeed, f is of class E{L} ⊆ E(M) along the
image of lower dimensional E(M)-plots p, by Lemma 8 and Remark 9, and thus f ◦p
is E(M), since the class is stable by composition.

2.3. Proof of Theorem 3. By [16, Theorem 11], there is a family M of quasian-
alytic regular weight sequences M = (Mk) such that

E{ω}(U) = {f ∈ C∞(U) : ∀ compact K ⊆ U ∃M ∈M ∃ρ > 0 : ‖f‖MK,ρ <∞}.

Fix M ∈M and a positive sequence N = (Nk). Let f be the C∞-function associated
with M and N provided by Theorem 1. Then f is not of class E{N}. Let p be any
lower dimensional E{ω}-plot. Then f ◦p is of class E{ω}, by Lemma 8 and Remark 9,
since E{ω} is stable under composition as ω is concave.

2.4. Proof of Theorem 4. By [17], there is a one-parameter family M = {Mx}x>0

of quasianalytic positive sequences with (Mx
k )1/k →∞ for all x, Mx ≤My if x ≤ y,

and

E(ω)(U) = E(M)(U) :=
⋂
x>0

E(M
x)(U).

The next lemma is inspired by [12, Lemma 6].

Lemma 10. There is a quasianalytic regular weight sequence L such that
(Lk/M

x
k )1/k → 0 for all x > 0.

Proof. Choose a positive sequence xp which is strictly decreasing to 0. For every

p ≥ 1 we know that (M
xp
k )1/k →∞ as k →∞. Thus for every p there is a constant

Cp > 0 such that

1

(M
xp
k )1/k

≤ C
1/k
p

p
for all k.
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Choose a strictly increasing sequence jp of positive integers such that Cp ≤ 2jp for
all p. Consider the sequence L defined by Lj := 1 if j < j1 and

Lj :=
√
M

xp
j if jp ≤ j < jp+1.

First, for jp ≤ j < jp+1,

L
1/j
j =

√
(M

xp
j )1/j ≥

√
p

C
1/j
p

≥
√
p

2

which tends to infinity as j →∞. On the other hand, for jp ≤ j < jp+1 and xp ≤ x,

( Lj
Mx
j

)1/j
=
(√Mxp

j

Mx
j

)1/j
≤ 1√

(Mx
j )1/j

which tends to 0 as j →∞.

Let L be the log-convex minorant of L. Since L
1/k
k →∞, there exists a sequence

kj →∞ of integers such that Lkj = Lkj for all j. It follows that L
1/k
k →∞, since

L
1/k
k is increasing by logarithmic convexity. Thus L has all required properties. �

The proof of Theorem 4 now follows the arguments in the proof of Theorem 2.
Theorem 1 associates a function f with the sequence L from Lemma 10 which is of
class E{L} along the image of any lower dimensional E(ω)-plots p (by Lemma 8 and
Remark 9). Since (Lk/M

x
k )1/k → 0 for all x > 0, we have an inclusion of classes

E{L} ⊆ E(ω). Since ω is concave, the class E(ω) is stable under composition, whence
f ◦ p is of class E(ω). The proof of Theorem 4 is complete.
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