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PREFACE i

Preface

These are lecture notes for the course Riemann surfaces held in Vienna in
Spring 2018 (three semester hours). The presentation is primarily based on the
book [4] which is followed quite closely. Also [13] had some influence. Apart from
some familiarity with basic complex analysis, general topology, and basic algebra
no other prerequisites are demanded. All necessary tools will be developed when
needed.

Riemann surfaces were originally conceived in complex analysis in order to
deal with multivalued functions. The analytic continuation of a given holomorphic
function element along different paths leads in general to different branches of
that function. Riemann replaced the domain of the function by a multiple-sheeted
covering of the complex plane to get a single valued function on the covering space.

Abstract Riemann surfaces are by definition connected complex one-
dimensional manifolds. They are the natural domains of definitions of holomorphic
functions in one variable.

In we introduce Riemann surfaces and discuss basic properties. We
develop the fundamentals of the theory of topological covering spaces including the
fundamental group, the universal covering, and deck transformations. It will turn
out that non-constant holomorphic maps between Riemann surfaces are covering
maps, possibly with branch points.

In we get acquainted with the language of sheaves. It proves very
useful in the construction of Riemann surfaces which arise from the analytic con-
tinuation of germs of holomorphic functions. Some attention is devoted to the
Riemann surfaces of algebraic functions, i.e., functions which satisfy a polynomial
equation with meromorphic coefficients.

For the further study of Riemann surfaces we need the calculus of differen-
tial forms which is introduced in We also briefly discuss periods and
summands of automorphy.

Another important tool for the investigation of the geometry of Riemann sur-
faces is Cech cohomology. We develop the basics of this theory in We
shall only need the cohomology groups of zeroth and first order. The long exact
cohomology sequence will prove useful for the computation of cohomology groups.
On Riemann surfaces we prove versions of Dolbeault’s and deRham’s theorem.

The next is devoted to compact Riemann surfaces. We present and
prove the main classical results, like the Riemann—Roch theorem, Abel’s theorem,
and the Jacobi inversion problem. Following Serre, all the main theorems are
derived from the fact that the first cohomology group with coefficients in the sheaf
of holomorphic functions is a finite dimensional complex vector space. The proof of
this fact is based on a functional-analytic result due to Schwartz. Its dimension is
the genus of the Riemann surface. By means of the Serre duality theorem we will
see that the genus equals the maximal number of linearly independent holomorphic
one-forms on the compact Riemann surface. Eventually, it will turn out that the
genus is a topological invariant. Much of this chapter is concerned with the existence
of meromorphic functions on compact Riemann surfaces with prescribed principal
parts or divisors.

Non-compact Riemann surfaces are at the focus of The function the-
ory of non-compact Riemann surfaces has many similarities with the one on regions
in the complex plane. In contrast to compact Riemann surfaces, there are analogues
of Runge’s theorem, the Mittag—Leffler theorem, and the Weierstrass theorem. The
solution of the Dirichlet problem, based on Perron’s method, will provide a further



existence theorem. It will lead to a proof of Radd’s theorem that every Riemann
surface has a countable topology. We shall also prove the uniformization theorem
for Riemann surfaces: any simply connected Riemann surface is isomorphic to one
of three normal forms, i.e, the Riemann sphere, the complex plane, or the unit
disk. Evidently, this is a generalization of the Riemann mapping theorem. As a
consequence we get the classification of Riemann surfaces: every Riemann surface
is isomorphic to the quotient of one of the three normal forms by a group of Mobius
transformations isomorphic to the fundamental group of the Riemann surface which
acts discretely and fixed point freely.

Notation. A domain is a nonempty open subset U C C. A connected domain is
called a region. We denote by D,(c) = {z € C : |z — ¢| < r} the open disk of
radius 7 and center c. D,(c) denotes the closed disk and 9D, (c) its boundary; if
not stated otherwise, it is always assumed to be oriented counterclockwise. By D
we denote the unit disk D = D1(0), by H := {z € C : Imz > 0} the upper half
plane. The Riemann sphere C U {oo} is denoted by C. We use C* = C \ {0} and
Cx =C\ {a}, for a € C, as well as D* := D\ {0} and D}(a) := D,.(a) \ {a}. TV
is a relatively compact open subset of U we write V € U.
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CHAPTER 1
Covering spaces

1. Riemann surfaces

1.1. Complex manifolds. An n-dimensional (topological) manifold is a Haus-
dorff topological space which is locally euclidean, i.e., every point has an open
neighborhood which is homeomorphic to an open subset of R™.

Let X be a 2n dimensional manifold. A complex chart on X is a homeo-
morphism ¢ : U — V of an open subset U C X onto an open subset V' C C". A
complex atlas on X is an open cover 2 = {¢; : U; = V;};cr of X by complex
charts such that the transition maps

@i © 05 o, winuy) 05 (Ui NU;) = @i(Us NU;)

are holomorphic for all 7,5 € I. We say that the charts are holomorphically
compatible.

Two complex atlases on X are said to be equivalent if their union is again a
complex atlas. A complex structure on X is an equivalence class of equivalent
complex atlases on X.

A complex manifold is a 2n dimensional manifold X equipped with a complex
structure. Then n is the complex dimension of X.

A complex structure on X can be given by the choice of a complex atlas 2.
Every complex structure on X contains a unique maximal atlas. Indeed, if the
complex structure on X is represented by an atlas 2, then the maximal atlas
consists of all complex charts on X which are holomorphically compatible with 2.

1.2. Riemann surfaces. A Riemann surface is a connected complex manifold
X of complex dimension 1. We shall see below, that every Riemann
surface has a countable base of its topology, by a theorem of Radé.

Henceforth, by a chart on X we always mean a complex chart in the maximal
atlas of the complex structure on X.

Example 1.1 (complex plane). The complex structure is defined by the atlas
{id: C — C}.

Example 1.2 (open connected subsets of Riemann surfaces). Let X be a Riemann
surface. Let Y C X be an open connected subset. Then Y is a Riemann surface
in a natural way. An atlas is formed by all complex charts ¢ : U — V on X with
UcCy.

Example 1.3 (Riemann sphere). Let C:= CuU{oo} and we introduce the following
topology. A subset of C is open if it is either an open subset of C or it is of the
form U U {oo}, where U C C is the complement of a compact subset of C. With
this topology Cis a compact Hausdorff topological space, homeomorphic to the
2-sphere S? = {x € R3 : |z| = 1} via the stereographic projection. Let U; := C
and Uy := C* U {oo}. Let 1 :=id : U3 — C and let @5 : Us — C be defined
by w2(z) = 1/z if z € C* and @a(c0) = 0. Then ¢, g are homeomorphisms.

1



2 1. COVERING SPACES

Thus C is a two-dimensional manifold. Since U1, Us are connected and have non-
empty intersection, C is connected. The transition map @ o <p2_1 Do (U NU;) —
p1(U; NUy) is the mapping z — 1/z from C* to itself. This complex structure
makes the Riemann sphere Ctoa compact Riemann surface. It is also called the
complex projective line and denoted by P'; cf. Section m

Example 1.4 (complex tori, I). Let wy,ws € C* be linearly independent over R.
The set
A = Zwy + Zwq
is called the lattice spanned by w; and wy. Then A is a subgroup of C and acts
on Cby AMz) = 24+ A\, A € A, z € C. Consider the equivalence relation on C
defined by z ~ w if z — w € A. Let C/A be the quotient space and 7 : C — C/A
the canonical projection. With the quotient topology (i.e., U C C/A is open if
7~ 1(U) C C is open) C/A is a Hausdorff topological space and 7 is continuous.
Since C is connected, so is C/A. Moreover, C/A is compact, since it is the image
under 7 of the compact parallelogram {sw; + tws : s,t € [0,1]}. For an open set
V C C we have
(V) = J(V +w)
weA
which shows that 7 is open.

Let us define a complex structure on C/A. Let V C C be an open set no two
points of which are equivalent under A. Then U = w(V) is open and 7|y : V — U
is a homeomorphism. Its inverse ¢ : U — V is a complex chart on C/A. Let 2 be
the set of all charts obtained in this way. Any two charts in 2 are holomorphically
compatible. For, if z € 1 (U; NUs) then

(291 (2))) = 91 (2) = 7(2).
Thus @a(p;*(2)) — 2z € A. Since A is discrete and ¢ o ;' is continuous,

©a(p7'(2)) = z + A for some constant A € A on every connected component of
»1(U; NUs), and hence is holomorphic.

The Riemann surface C/A defined by this complex structure is said to be a
complex torus. A model of C/A is obtained by identifying opposite sides of the
parallelogram with vertices 0, wy, wg, and wy + ws.

Example 1.5 (orbit spaces H/T'). Let I' be a discrete fixed point free subgroup of
Aut(H) = {z — (az +b)/(cz+d) : a,b,¢c,d € R, ad — be = 1}.

With the quotient topology the orbit space H/T' is a Hausdorff topological space
and the quotient map 7 : H — H/T is continuous. In analogy to there
is a natural complex structure on H/T' (with z — ~(z), v € T, as transition maps)
which makes H/I' to a Riemann surface.

1.3. Holomorphic functions and maps. Let X be a Riemann surface, and let
Y C X be an open subset. A function f : Y — C is holomorphic if for every chart
©:U — V on X the function fop=!:p(UNY) — C is holomorphic. We denote
by O(Y') the set of all holomorphic functions on Y. Clearly, O(Y) is a C-algebra.

It is enough to verify the condition on any atlas. Note that every chart ¢ :
U — V is trivially holomorphic. We call (U, ¢) a coordinate neighborhood of
any point a € U and ¢ a local coordinate.

Let X, Y be Riemann surfaces. A continuous map f : X — Y is called
holomorphic if for every pair of charts ¢; : Uy — V5 on X and ¢ : Uy — V5 on
Y with f(Uy) C Uy,

paofopr! Vi = Vo
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is holomorphic. A map f: X — Y is a biholomorphism if there is a holomorphic
map ¢ : Y — X such that fog=1idy and go f =idx. Two Riemann surfaces are
called isomorphic if there is a biholomorphism between them.

In the case that Y = C, holomorphic maps f : X — C clearly are just holo-
morphic functions.

Holomorphic maps behave well under composition. In fact, Riemann surfaces
with holomorphic maps between them form a category.

Let f: X — Y be a continuous map between Riemann surfaces. Then f is
holomorphic if and only if for each open V' C Y and every ¢ € O(V) the function
f (@) =pof:f (V) — C belongs to O(f~*(V)). The pullback

frroWV) = O(f V), fe)=yof,

is a ring homomorphism. It satisfies (g o f)* = f* o g*.

1.4. Elementary properties of holomorphic maps. Many results for holo-
morphic functions defined on domains (i.e., non-empty open subsets) in C persist
on Riemann surfaces.

Theorem 1.6 (identity theorem). Let X, Y be Riemann surfaces. Let fi, fa :
X — Y be holomorphic maps which coincide on a set A C X with a limit point a
i X. Then f1 = fg.

Proof. Let Z :={x € X : fi = fa near z}. Then Z is open. We claim that Z is also
closed. Let b € Z. Then f;(b) = f2(b) by continuity. Choose charts ¢ : U — V on
Xand ¢ : U — V' onY with b € U and such that f;(U) CU’, i =1,2. Assume
that U is connected. Then the maps g; = o fop ' : V = V' i = 1,2, are
holomorphic. By the identity theorem for domains in C, g1 = g, since U N Z # (.
It follows that f; and fs coincide on U, and Z is closed. The set Z is non-empty, in
fact, a € Z, again by the identity theorem for domains in C. Since X is connected,
we may conclude X = Z which gives the assertion. O

Theorem 1.7 (local normal form of holomorphic maps). Let X,Y be Riemann
surfaces and let f : X — Y be a non-constant holomorphic map. Let a € X and
b = f(a). Then there is an integer k > 1 and charts ¢ : U — V on X and
Y:U =V onY such that a € U, ¢(a) =0,beU’, (b)) =0, f(U) CU' and

Yofop L VoV :izm

Proof. Let F := 1o fop~!. Then F(0) = 0 and so there is a positive integer k
such that F(z) = 2¥g(z), where ¢g(0) # 0. Thus, there is a neighborhood of 0 and
a holomorphic function h on this neighborhood such that h* = g. The mapping
a(z) := zh(z) is a biholomorphism from an open neighborhood of 0 onto an open
neighborhood of 0. Replacing the chart ¢ by a o ¢ implies the statement. O

The number k is called the multiplicity of f at a and denoted by m,(f). The
multiplicity is independent of the choice of the charts.

Theorem 1.8 (open mapping theorem). Let f : X — Y be a non-constant holo-
morphic map between Riemann surfaces. Then f is open.

Proof. This an immediate consequence of if U is a neighborhood of
a € X then f(U) is a neighborhood of f(a) in Y. O

Corollary 1.9. Let f: X — Y be an injective holomorphic map between Riemann
surfaces. Then f is a biholomorphism from X to f(X).
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Proof. Since f is injective the multiplicity is always 1, so the inverse map is holo-
morphic. U

Corollary 1.10. Let X,Y be Riemann surfaces, where X is compact. Let f : X —
Y be a non-constant holomorphic map. Then f is surjective and Y is compact.

Proof. By the open mapping theorem, f(X) is open. Moreover, f(X) is compact
and thus closed. Since Y is connected, ¥ = f(X). O

Remark 1.11. This implies the fundamental theorem of algebra. Exercise.

Corollary 1.12. FEvery holomorphic function on a compact Riemann surface is
constant.

Proof. Apply the previous corollary. O
Remark 1.13. This implies Liouville’s theorem. Exercise.

Theorem 1.14 (maximum principle). Let X be a Riemann surface and let f :
X — C be holomorphic. If there is a € X such that |f(x)| < |f(a)| for all x € X,
then f is constant.

Proof. The condition means that f(X) C D)4 (0). So f(X) is not open, and the
statement follows from the open mapping theorem. O

Theorem 1.15 (Riemann’s theorem on removable singularities). Let U be an open
subset of a Riemann surface. Let a € U. If f € OU \ {a}) is bounded in a
neighborhood of a, then there is F' € O(U) such that Fly\(qy = f.

Proof. This follows immediately from Riemann’s theorem on removable singulari-
ties in the complex plane. O

1.5. Meromorphic functions. Let X be a Riemann surface and let Y be an
open subset of X. A meromorphic function on Y is a holomorphic function
f:Y" — C, where Y’ is an open subset of Y such that Y\ Y’ contains only isolated
points and

lim |[f(z)] =00 forallaeY \Y'

Tr—ra

The points of Y\ Y’ are called the poles of f. The set of all meromorphic functions
on Y is denoted by #(Y). It is easy to see that .Z(Y) is a C-algebra.

Example 1.16. Any non-constant polynomial is an element of .# (@) with a pole
at oo.

Theorem 1.17. Let X be a Riemann surface and let f € #(X). For each pole a
of [ define f(a) := oo. The resulting map f : X — C is holomorphic. Conversely,

let f: X — C be holomorphic. Then f is either identically equal to co or f~1(oc0)
consists of isolated points and f : X \ f~1(c0) — C is meromorphic on X.

So we may identify meromorphic functions f € .#(X) with holomorphic maps
f: X—=>C.

Proof. Let f € .#(X). The induced map f : X — C is clearly continuous. Let
©:U — V be achart on X and ¢ : U’ — V' a chart on C with fU)CcU. It
suffices to show that 1o fo@~!: V — V' is holomorphic. This follows easily from
Riemann’s theorem on removable singularities.

The converse is a consequence of the [identity theorem 1.6} O
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Corollary 1.18. Let X be a Riemann surface. Then .#(X) is a field, the so-called
function field of X.

Proof. Any function f € .#(X) induces a holomorphic map f : X — C. By the
[identity theorem 1.6] f has only isolated zeros unless it vanishes identically. O

Theorem 1.19 (function field of the Riemann sphere). The function field ///(@)
consists precisely of the rational functions.

Proof. Clearly, every rational function is in .4 ((E) Let f € A ((E) We may assume
that oo is not a pole of f; otherwise consider 1/f instead of f. Let aq,...,a, € C
be the poles of f in C; there are finitely many since C is compact. Let h; =
2 g, Cig(2 — a;)? be the principal part of f at a;, i = 1,...,n. Then f — (hy +
+ hn) is holomorphic on C and hence constant, by This implies
that f is rational. O

Let A = Zw; + Zws be a lattice in C. A meromorphic function f € .#(C) is
called an elliptic or doubly periodic function with respect to A if f(z+ ) = f(2)
for all A € A and all z € C.

Theorem 1.20 (complex tori, II). Let A = Zw; + Zws be a lattice. The func-
tion field 4 (C/A) is in one-to-one correspondence with the elliptic functions with
respect to A.

Proof Let f € #(C/A). We may assume that f is non-constant. Thus f : C/A —
Cis holomorphic and hence f =for:C— Cis holomorphic, where 7 : C — C/A
is the quotient map. Thus f is elliptic. Conversely, every elliptic function f with
respect to A induces a meromorphic function on C/A. O

Corollary 1.21. Every holomorphic elliptic function is constant. FEvery non-
constant elliptic function attains every value in C.

Proof. Follows from [Theorem 1.20] [Corollary 1.10} and [Corollary 1.12| O

2. The fundamental group

2.1. Homotopy of curves. Let X be a topological space and let a,b € X. Two
curves 9,71 : [0,1] = X from a to b are homotopic if there exists a continuous
map H : [0,1]> — X such that

(1) H(0,t) = v(t) for all ¢ € [0, 1],

(2) H(1,t) =y (¢) for all ¢t € [0, 1],

(3) H(s,0) =a and H(s,1) =b for all s € [0, 1].
We will set v,(t) := H(s,t). Then {vs}se[0,1 is @ continuous deformation of vy into
~v1. Homotopy defines an equivalence relation on the set of all curves from a to b
in X.

A closed curve v : [0,1] = X (i.e. v(0) =~(1) = a) is null-homotopic if it is

homotopic to the constant curve a.

Suppose 71 is a curve from a to b and 72 is a curve from b to c¢. Then we can
define the product curve v; - v2 from a to ¢ by

(- 2)(t) = {72(%_1) if1/2<t<1.
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It runs first through ; then through v, at twice the speed. The inverse v~ of ~y
passes through ~ in the opposite direction,

yT(t) =1 —1t), teo,1].

If 1 and o7 are homotopic curves from a to b and 2 and o2 are homotopic curves
from b to ¢, then 7y - 72 and oy - o2 are homotopic. Moreover, 7; and o, are
homotopic.

2.2. The fundamental group.

Theorem 2.1. Let X be a topological space and a € X. The set m(X,a) of
homotopy classes of closed curves in X with initial and end point a forms a group
under the operation induced by the product of curves. It is called the fundamental
group of X with base point a.

Proof. Exercise. U

If [y] denotes the homotopy class of a closed curve v, then the group operation
in 71(X,a) is by definition [y][o] = [y - 0]. The identity element is the class of
null-homotopic curves. The inverse of [y] is given by [y]~™! = [y~].

For an path-connected space X the fundamental group is independent of the
base point; in that case we write 71 (X) instead of 71 (X, a). Indeed, if a,b € X and
o is a curve in X joining a and b then the map 71 (X, a) — m (X, 0), [y] = [07-v-0],
is an isomorphism. (The isomorphism depends on o. One can show that there is a
canonical isomorphism if 71 (X, a) is abelian.)

A path-connected space X is called simply connected if its fundamental
group is trivial, m (X) = 0.

Two closed curves 9,71 : [0,1] = X which do not necessarily have the same
initial point are called free homotopic as closed curves if there is a continuous
map H : [0,1]2 — X satisfying (1), (2), and

(3’) H(s,0)= H(s,1) for all s € [0,1].

Theorem 2.2. A path-connected space X is simply connected if and only if any
two closed curves in X are free homotopic as closed curves.

Proof. Exercise. U

Example 2.3. (1) Star-shaped sets in R™ are simply connected.
(2) The Riemann sphere Cis simply connected.
(3) The complex tori C\ A are not simply connected.

Let f: X — Y be a continuous map between topological spaces. If vg,71 :
[0,1] — X are homotopic curves in X, then f o1, f o7, are homotopic curves in
Y. It follows that f induces a map

fe:m(X,a) = m (Y, f(a))

which is a group homomorphism since fo (yi-72) = (foy1) - (foy) Ifg: Y = Z
is another continuous map, then (go f). = gx o fs.

3. Covering maps

We will see in this section that non-constant holomorphic maps between Rie-
mann surfaces are covering maps, possibly with branch points. Let us recall some
background on covering maps and covering spaces.
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3.1. Discrete fibers. Let X and Y be topological spaces. Let p: Y — X be a
continuous map. For x € X, the preimage p~!(x) is called the fiber of p over .
Points y € p~1(z) are said to lie over x.

Suppose that p: Y — X and ¢ : Z — X are continuous. A map f:Y — Z is
called fiber-preserving if the following diagram commutes.

!

N

X

It means that every point lying over = is mapped to a point also lying over x.

We say that p : Y — X is discrete if all fibers p~!(z), * € X, are discrete
subsets of Y (i.e., each point y € p~!(x) has a neighborhood V in Y such that

Vnp~Ha) = {y}).

Lemma 3.1. Letp:Y — X be a non-constant holomorphic map between Riemann
surfaces. Then p is open and discrete.

Proof. By the jopen mapping theorem 1.8} p is open. If there is a fiber which is not
discrete, p is constant, by the identity theorem 1.6] O

Example 3.2 (multivalued functions). Let p : Y — X be a non-constant holomor-
phic map between Riemann surfaces. A holomorphic (resp. meromorphic) function
f: Y —=C(resp. f: Y — @) can be considered as a holomorphic (resp. meromor-
phic) multivalued function on X. Indeed, this multivalued function takes z € X
to the set {f(y) : y € p~(z)}. Clearly, it might happen that p~!(z) is a single
point or empty. For example, let p = exp : C — C*. Then the identity id : C — C
corresponds to the multivalued logarithm on C*.

Y A

3.2. Branch points. Let p: Y — X be a non-constant holomorphic map between
Riemann surfaces. A point y € Y is called a branch point of p if there is no
neighborhood of y on which p is injective, or equivalently, if m,(p) > 2. We say
that p is unbranched if it has no branch points.

Proposition 3.3. A non-constant holomorphic map p: Y — X between Riemann
surfaces is unbranched if and only if it is a local homeomorphism.

Proof. If p is unbranched and y € Y, then p is injective on a neighborhood V of y.
Since p is continuous and open, p : V — p(V) is a homeomorphism. Conversely, if
p is a local homeomorphism, then p is locally injective and hence unbranched. [

Example 3.4. The exponential map exp : C — C* is an unbranched holomorphic
map. The power map py : C — C, pr(z) = 2¥, has a branch point at 0 if k > 2; off

0 it is a local homeomorphism. By [[heorem 1.7, every holomorphic map has this
form near a branch point.

Theorem 3.5. Let X be a Riemann surface, letY be a Hausdorff topological space,
and let p : Y — X be a local homeomorphism. Then there is a unique complex
structure on'Y such that p is holomorphic.

Proof. Let ¢ : U — V be a chart for the complex structure on X such that p :
p~1(U) — U is a homeomorphism. Then pop: p~1(U) — V is a complex chart
on Y. Let 2 be the set of all complex charts on Y obtained in this way. Then the
charts in 2 cover Y and are all compatible. Equip Y with the complex structure
defined by 2. Then p is locally biholomorphic, hence holomorphic.
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It remains to show uniqueness. Suppose there is another altas 8 on Y such
that p : (Y,9) — X is holomorphic, and thus locally biholomorphic (by
lary 1.9). Then id : (Y,2A) — (Y,) is a local biholomorphism, and consequently a
biholomorphism. O

3.3. Lifting of continuous maps. Let X,Y, Z be topological spaces and let p :
Y - X and f: Z — X be continuous maps. A lifting of f over p is a continuous
map ¢g: Z — Y such that f =pog.

Y
7

9// \L

_ P
R X

Lemma 3.6 (uniqueness of liftings). Let X,Y be Hausdorff spaces and let p :
Y — X be a local homeomorphism. Let Z be a connected topological space. Let
f:Z — X be continuous and assume that g1,go are liftings of f. If there exists
20 € Z such that g1(z0) = g2(20), then g1 = go.

Proof. Let A ={z € Z : gi1(z) = g2(2)}. Then zy € A and A is closed, since YV’
is Hausdorff (Y is Hausdorff if and only if the diagonal A CY x Y is closed, A is
the preimage of A under (g1,92)). We claim that A is also open. For, let z € A
and y = g1(z) = g2(z). There is an open neighborhood V' of y such that p(V) =U
is open and p|y is a homeomorphism onto U. Since ¢1,¢g2 are continuous, there
is a neighborhood W of z such that g; (W) C V, go(W) C V. For every w € W,
p(g1(w)) = f(w) = p(g2(w)), and thus, since p|y is injective, g1 = g2 on W. That
is W C A, and A is open. The statement follows, since Z is connected. O

Theorem 3.7 (holomorphic lifting). Let X,Y,Z be Riemann surfaces. Let p :
Y — X be an unbranched holomorphic map and let f : Z — X be holomorphic.
Then every lifting g : Z —'Y of f is holomorphic.

Proof. This follows from the fact that p is a local biholomorphism, by [Corollary 1.9

and [Proposition 3.3|

Corollary 3.8. Let X,Y,Z be Riemann surfaces. Letp:Y — X andq: 7 — X
be unbranched holomorphic maps. Then every continuous fiber-preserving map f :
Y — Z is holomorphic.

Proof. Apply O

3.4. Lifting of homotopic curves.

Theorem 3.9 (monodromy theorem). Let X,Y be Hausdorff spaces andp:Y —
X a local homeomorphism. Let a € Y and a = p(a). Let H : [0,1]> = X be a
homotopy between o and 1 fizing the initial point a = vo(0) = v1(0). Suppose
that each curve vs := Hs, s € [0,1], has a lifting 4s over p :' Y — X with initial
point a. Then H(s,t) :=7,(t) is a homotopy between 5y and 7, .

Proof. We must show continuity of H : [0,1]> — Y. Let I :=[0,1].
Fix (so,t9) € I%. Since 7, is continuous and hence s, (I ) is compact, we may

choose open sets Vy,...,V, in Y and points 0 = 79 < 7y < --- < 7, = 1 such that
plv, =:pj is a homeomorphlsm onto an open set U; in X and ¥so ([T5, Tj41]) C V5,
7=0,1,...,n—1. We may assume without loss of generahty that tg is an interior

point of some [Tj,, Tjo+1), unless tq is 0 or 1.
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By the continuity of H, there exists € > 0 such that vs(t) € U; for |s — so| < ¢,
sel, ter,Tjt1], and 7 =0,1,...,n — 1. We will prove that, for |s — so| < ¢,
sel, ter,mj4],and j=0,1,...,n—1,

Fs(t) = pj (1 (1)) (3.1)

This implies that H is continuous at (so,%o), since (so,to) is an interior point
(relative to I?%) of the set {s € I : |s — so| < €} X [T}y, Tjo+1]-

We show by induction on j. Let j = 0. Fix s € I with |s — so| < e.
The curves 75 and py ' o s are both liftings of v, on the interval [ry, 7], and
75(0) = @ = (py* 0 75)(0) (because @ = 7s,(0) € Vo). By [uniqueness of liftings 3.6}
holds for j = 0.

Suppose that has been proved for all 0 < j < k. For fixed s, the curves
s and plzl o7, are both liftings of v, on the interval [rg, Tg41]. By it
is enough to prove

s (k) :p,zl(%(rk)) for |s — so| <€, s €I (3.2)
By induction hypothesis, (3.1) for j = k — 1 and ¢ = 74 gives
As(Tk) = p;;h(%(m)) for |s —so| <€ s €I (3.3)

In particular, for s = sg,
p;Zl (Y0 (Th)) = Ao (Th) = p;Lll (Vso (Tk)),

since g, (1) € Vi1 N Vj. Thus, s — p,;_ll('ys(m)) and s — p,zl(fys(rk)) are both
liftings of s — ~4(7x), for |s — sg| < €, s € I, and they coincide for s = sy. By

Lemma 3.6, p; ", (7s(7x)) = pi ' (vs(7)) for all |s — so| < ¢, s € I, which together
with (3.3) implies (3.2)) and hence (3.1)) for j = k. O
Corollary 3.10. Let X,Y be Hausdorff spaces and p:Y — X a local homeomor-
phism. Leta € Y, a=1p(a), andb € X. Let H : [0,1]> — X be a homotopy between
Yo and y1 fizing a = v9(0) = 1(0) and b = vo(1) = y1(1). Suppose that each curve

vs := Hs, s € [0,1], has a lifting 45 over p: Y — X which starts at a. Then the
endpoints of Yy and 31 coincide, and ¥5(1) is independent of s.

Proof. By [Theorem 3.9, the mapping s — J5(1) is continuous. Thus it is a lifting
of the constant curve s +— v5(1) = b, and so it is itself constant, by O

3.5. Covering maps. We say that a continuous map p : ¥ — X has the curve
lifting property if for every curve 7 : [0,1] — X and every yo € p~*(7(0)) there
exists a lifting 4 : [0,1] = Y of v with (0) = yo.

Generally, local homeomorphism do not have the curve lifting property. We
shall see that they have this property if and only if they are covering maps.

A continuous map p : Y — X (between topological spaces Y, X) is called a
covering map if every z € X has an open neighborhood U such that

-1
P U) = Vi
jed
where the Vj, j € J, are disjoint open subsets of Y and all maps p\vj :V; = U are
homeomorphisms. Evidently, every covering map is a local homeomorphism.

Example 3.11. (1) Let ¢ : U — C be the inclusion of a bounded domain U in C.
Then ¢ is a local homeomorphism, but not a covering map (the defining property
fails at points on the boundary of U).

(2) The map exp : C — C* is a covering map.
(3) For k € N1 the map py : C* — C*, pi(2) = z¥, is a covering map.
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(4) Let A be a lattice in C. Then the canonical projection 7 : C — C/A is a
covering map.

Lemma 3.12 (curve lifting property of coverings). Every covering map p:Y — X
has the curve lifting property.

Proof. Let v:[0,1] = X be a curve in X with v(0) = a, and let @ € p~!(a). Since
[0,1] is compact, there exist a partition 0 = tg < t; < --- < ¢, = 1 and open sets
U; C X, 1< j<n,such that v([t;_1,t;]) € U;, p~*(U;) is a disjoint union of open
sets Vi, C Y, and ply,, : Vjr — U; is a homeomorphism. We show by induction
on j the existence of a lifting 4; on [0,¢;] with 4;(0) = @ There is nothing to
prove for j = 0. Suppose that j > 1 and that ¥;_; is already constructed. Set
Yi—1 = Yj—1(tj—1). Then p(y;—1) = v(t;—1) € U; and y;_; lies in Vj;, for some k.
Setting

) Fi1(t) if t €0, 4,
35(t) = J_1 n !
p|‘/jk(’}/(t)) if t € [tj—1,t5],
yields a lifting on [0, ¢;]. O
Proposition 3.13 (number of sheets). Let X, Y be Hausdorff spaces with X path-

connected. Let p : Y — X be a covering map. Then the fibers of p all have the
same cardinality. In particular, if Y # 0, then p is surjective.

The cardinality of the fibers is called the number of sheets of the covering.

Proof. Let xo,z1 € X and choose a curve v : [0,1] — X with v(0) = z( and
v(1) = x;1. For each y € p~1(x) there is precisely one lifting 7 of v with 7(0) = v,
by the [uniqueness of liftings 3.6, The end point of 7 lies in p~!(z1). This defines a
bijective map between the two fibers. O

Theorem 3.14 (existence of liftings). Let X,Y be Hausdorff spaces andp : Y — X
a covering map. Let Z be a simply connected, path-connected and locally path-
connected topological space and f : Z — X continuous. For every zyp € Z and
every yo € Y with p(yo) = f(20) there exists a unique lifting f:Z =Y such that

f(z0) = vo-

Proof. For z € Zlet v : [0,1] — Z be a curve from zg to z. Then u = fo~is a curve
in X with initial point a = f(2¢) which admits a lifting i to Y with z(0) = yo, by
the [curve lifting property of coverings 3.12l We define

F(2) = (1),

Let us prove that f (z) is independent of v. Set 79 = and let 4; be another curve
in Z from zy to z. Since Y is simply connected, there is a homotopy H between g
and ; fixing the endpoints. Then f o H is a homotopy between p and puq := foyy
fixing the endpoints. If fi; is the lifting of 1 to Y with fi1(0) = yo, then i and iy
have the same endpoints, by |Corollary 3.10, Thus f (2) is independent of ~.

Clearly, f satisfies p o f = f. It remains to show that f is continuous. Let
z € Z,y = f(2), and let V be a neighborhood of y. We must show that there is
a neighborhood W of z such that f (W) C V. Shrinking V if necessary, we may
assume that there is a neighborhood U of p(y) = f(z) such that p|y : V — U is
a homeomorphism. Since Z is locally path-connected, there is a path-connected
neighborhood W of z such that f(W) C U.

Let 2’ € W and let 7/ be a curve in W from z to z’. Then ' := fo~/ is a curve
in U which has a lifting i’ = p|(/1 o/ with initial point y. The product curve i - i’
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is a lifting of p- ' = fo(y+7') with initial point yo. So fZ)=p-g1)=p01)eV.
This proves f(W) C V. O

Remark 3.15. The only properties of p used in the previous proof are that p is a
local homeomorphism and has the curve lifting property.

Theorem 3.16. Let X be a manifold, Y a Hausdorff space, andp:Y — X a local
homeomorphism with the curve lifting property. Then p is a covering map.

Proof. Let zo € X and p~*(z) = {y; : j € J}. Let U be a neighborhood of z
homeomorphic to a ball (here we use that X is a manifold) and let f: U — X be
the inclusion. By for each j € J there is a lifting f] U =Y of f
with fj(xo) = y;. It is easy to check that the sets V; := fJ(U) are pairwise disjoint,
plv, : V; = U is a homeomorphism, and p~!(U) = Ujes Vi (exercise). O

3.6. Proper maps. Recall that a map between topological spaces is called
proper if the preimage of every compact set is compact.

Lemma 3.17. Let X,Y be locally compact Hausdorff spaces. A proper continuous
map p:Y — X is closed.

Proof. In a locally compact Hausdorff space a subset is closed if and only if its
intersection with every compact set is compact. O

Proposition 3.18. Let X,Y be locally compact Hausdorff spaces. A proper local
homeomorphism p: Y — X is a covering map.

Proof. Let x € X. Since p is a local homeomorphism, the fiber p~1(z) is discrete.
Since p is proper, the fiber is finite, p~1(z) = {y1,...,yn}. We find for each
j an open neighborhood W; of y; and an open neighborhood U; of x such that
plw, : W; — Uj is a homeomorphism. We may assume that the W are pairwise
disjoint. Then W := Wj U---UW,, is an open neighborhood of p~!(x). We claim
that there is an open neighborhood U C Uy N---NU, of z such that p~*(U) C W.
For, Y \ W is closed, hence p(Y \ W) is closed, by and U = (X \
p(Y\W))NnUN---NU, is as desired.

Letting V; := W; Np~*(U), the V; are disjoint, p~'(U) = Vi U--- UV, and
plv, : V; = U is a homeomorphism for all j. O

3.7. Proper holomorphic maps. Let X,Y be Riemann surfaces. Let f : X — Y
be a proper non-constant holomorphic map. By the [local normal form of holomor-|
the set A of branch points of f is closed and discrete. Since f is
proper, also B := f(A) is closed and discrete, by We call B the set
of critical values of f.

Let Y :=Y\Band X’ := X\ f }(B) C X\A. Then f|x: : X’ — Y"is a proper
unbranched holomorphic covering map. By [Proposition 3.18| [Proposition 3.13] and
by properness, it has a finite number m of sheets. That means that every value
y € Y is taken exactly m times. This statement extends also to the critical values
if we count multiplicities: The map f : X — Y is said to take the value y € Y,
m times (counting multiplicities) if

m = Z mg(f).
z€f~1(y)

Theorem 3.19 (degree). Let X,Y be Riemann surfaces, and let f : X =Y be a
proper non-constant holomorphic map. Then there is a positive integer n such that
f takes every value y € Y, n times. The number n is called the degree of f.
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Proof. Let n be the number of sheets of the unbranched covering f|x: : X' — Y.
Let b e B, f~1(b) = {a1,..., 2} and m; = my,(f). By the [local normal form of|
[holomorphic maps 1.7} there exist disjoint neighborhoods U; of ; and V; of b such
that for each ¢ € V; \ {b} the set f~1(c) N U; consists of exactly m; points. As in
the proof of [Proposition 3.18| there is a neighborhood V' C Vi N--- NV} of b such
that f~1(V) C Uy U---UUyg. Then, for every ¢ € VNY’, the fiber f~!(c) consists
of my + --- + my points. Thus n = mq + --- + my. O

Corollary 3.20. Let X be a compact Riemann surface and let f € #(X) be
non-constant. Then [ has as many zeros as poles (counted with multiplicities).

Proof. The mapping f: X — Cis proper, since X is compact. Apply[Theorem 3.19
O

Corollary 3.21 (fundamental theorem of algebra). Any polynomial p(z) = apz"™ +
a12" 1+ +a, € Clz], agp # 0, has n roots (counted with multiplicities).

Proof. The meromorphic function p € .# (@) has a pole of order n at co. O

A proper non-constant holomorphic map between Riemann surfaces is some-
times called a branched (holomorphic) covering. It may have branch points
and in that case it is not a covering map in the topological sense. By an un-
branched (holomorphic) covering we mean a proper non-constant holomorphic
map between Riemann surfaces without branch points. It is a covering map in the
topological sense.

4. The universal covering

Every Riemann surface X admits a universal covering by a simply connected
Riemann surface X. The group of fiber-preserving homeomorphisms of X is iso-
morphic to the fundamental group m (X).

4.1. Existence and uniqueness of the universal covering. Let X,Y be con-
nected topological spaces. A covering map p : ¥ — X is called the universal
covering of X if it satisfies the following universal property. For every covering
map q : Z — X, for connected Z, and every yg € Y, 29 € Z with p(yo) = ¢q(20) there
exists a unique continuous fiber-preserving map f : Y — Z such that f(yo) = zo.

Up to isomorphism there is at most one universal covering of a connected space X
which follows easily from the universal property.

Proposition 4.1. Let X,Y be connected manifolds, where Y is simply connected.
Let p: Y — X be a covering map. Then p is the universal covering of X.

Proof. This is immediate from O

Theorem 4.2 (existence of the universal covering). Let X be a connected manifold.

Then there exists a connected, simply connected manifold X and a covering map
p: X —X.
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Proof. Fix a point zy € X. For each x € X let m(xp,z) be the set of homotopy
classes of curves with initial point zg and end point x. Define

X :={(x,0):x € X, T €n(xgx)}

andp:)? — X by p(z,T) = z.

Next we will define a topology on X. Let (z,T) € X and let U be an open,
connected, simply connected neighborhood of z in X. Let (U,T") be the set of all
points (y,A) € X such that y € U and A = [y - o], where 7 is a curve from z( to x
such that T' = [y] and o is a curve from z to y in U. Since U is simply connected,
A is independent of the choice of 0. We claim that the family B of all such sets
is a base of topology. Indeed, B evidently covers X. If (z,X) € (U,T') N (V,A),
then z € U NV and there is an open, connected, simply connected neighborhood
W CUNYV of z. Thus, (2,X) € (W, X) C (U,T)N(V,A).

We claim that X endowed with the topology generated by % is Hausdorff.
For, let (z,T),(y,X) € X be distinct points. If # y then there are disjoint
neighborhoods U, V' of z, y, respectively, and so (U, T"), (V,X) are disjoint neighbor-
hoods of (z,T), (y,X), respectively. Let us assume that x =y and I # X. Let U
be an open, connected, simply connected neighborhood of z in X. We claim that
(U, T)N(U, %) = 0. Otherwise there exists (z,A) € (U,I')N(U, X). Suppose I' = [7],
Y = [o] and let 7 be a curve in U from = to z. Then A = [y- 7] = [0 - 7]. This
implies I' = [7] = [o] = £, a contradiction.

To see that p : X > Xisa covering map it suffices to check that it is a local
homeomorphism, has the curve lifting property, and X is connected. The first
assertion follows from the fact that for every (U,I') € B the restriction p|y ) :
(U,T') — U is a homeomorphism. Next we show the curve lifting property. First
let v : [0,1] = X be a curve with initial point z¢. For s € [0,1] set v,(t) := v(st).
Let o : [0,1] — X be a closed curve with ¢(0) = (1) = z9. Then

v [07 1] - X, t— (7(t>7[0"7t])

is a lifting of v with initial point 7(0) = (2o, [¢]). This also shows that X is path-
connected. Now let 7 : [0,1] — X be a curve with arbitrary initial point 7(0) = 1,
let ¥ € w(zp,x1) and o a curve from xy to x1 with ¥ = [¢]. Then the lifting 7 of
v := o -7 with initial point 5(0) = (zo, [zo]), where [2(] denotes the homotopy class
of the constant curve [xg], gives rise to a lifting of 7 with initial point (z1, ¥).

Finally, we show that X is simply connected. Let 7 : [0,1] — X be a closed
curve with initial and end point (zg, [zo]). Then v := p o7 is a closed curve in X
with initial and end point zg. Then ~ has a lifting ¥ through (zo, [z¢]), and by
uniqueness of liftings ¥ = 7. It follows that (1) = (xo, [y]) = (0, [r0]) and so
is null-homotopic. By the jmonodromy theorem 3.9, also 7 is null-homotopic. Thus

m1(X, (zo, [x0])) is trivial. Since X is path-connected, we may conclude that X is
simply connected. (|

Corollary 4.3. Every Riemann surface has a universal covering which is a Rie-
mann surface in a natural way.

Proof. This follows from [Theorem 4.2] and [Theorem 3.5} (|

4.2. Deck transformations. Let X,Y be topological spaces and let p: Y — X
be a covering map. A deck transformation is a fiber-preserving homeomorphism
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f:Y =Y ie., the following diagram is commutative.

! Y
X /

X
The set of all deck transformations of p : ¥ — X forms a group with respect to
composition of maps which is denoted Deck(p : ¥ — X)) or simply Deck(Y — X).

Y

Suppose that X,Y are connected Hausdorff spaces. The covering p : Y — X
is called normal if for every pair of points yo,y1 € Y with p(yo) = p(y1) there
is a deck transformation f :Y — Y with f(yo) = y1. (There exists at most one
f:Y =Y with f(yo) = y1 since f is a lifting of p.)

Theorem 4.4. Let X be a connected manifold and let p : X — X be its universal
covering. Then p is a normal covering and Deck(X — X) =2 m(X).

Proof. That p is a normal covering follows in a straightforward manner from the
universal property of the universal covering.

Fix zg € X and let yg € X sit above rg. We define a map
@ : Deck(X — X) — m1(X)

as follows. Let o € Deck(X — X). Let v be a curve in X from yo to o(yp).
Then p o+ is a closed curve through zy. Let ®(o) be the homotopy class of p o 7.
(Note that the homotopy class of v is uniquely determined because X is simply
connected.)

Let us check that ® is a group homomorphism. Let 01,05 € Deck(X — X)
and let v1,72 be curves from yo to o1(yo), 02(yo), respectively. Then oy 0 s is a
curve from o1 (yo) to o1(02(yo)) and 1 - (01 072) is a curve from yg to o1(o2(yo))-
Thus

P(o1002) = [po(m-(01072))]
=[pomllpo(cov2)] = [pomnlpore] = 2(01)P(02).

Injectivity of ® follows from |Corollary 3.10; Suppose that ®(o) = [z¢]. That

means that p o v is null-homotopic. Since 7 is a lifting of p oy, o(yo) = v(1) =
~v(0) = yo. It follows that o is the identity on X , because it is a homeomorphism.

For surjectivity let I' € 71 (X, zp) and let v be a representative of I'. Then ~
has a lifting 4 with initial point yo. Let y; = ¥(1). Since p is normal, there exists
a deck transformation o with o(yo) = y1. Then ®(c) =T. d

Example 4.5. Since C is simply connected, exp : C — C* is the universal covering
of C*. Let 7, : C — C denote the translation 7,(z) = z 4+ 2win. Then 7, is a
deck transformation for every n € Z. Suppose that o is any deck transformation.
Then exp(c(0)) = exp(0) = 1 and hence o(0) = 2min for some n € Z. It follows
that ¢ = 7,. That shows that Deck(exp : C — C*) = {r,, : n € Z}, and we may
conclude by that

m (C*) 2 Z.

Example 4.6 (complex tori, IIT). Let A = Zw; + Zws be a lattice in C. Then the
quotient projection C — C/A is the universal covering of the torus C/A. Analo-
gous to the previous example Deck(C — C/A) = {7, : w € A}, where 7, is the
translation by w. It follows that

m(C/A) X AXZ x Z.
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Theorem 4.7. Let X,Y be connected manifolds. Let p : X — X be the universal
covering and q : Y — X a covering map. Let f : X — Y be the fiber-preserving
continuous map which exists by the universal property. Then:

(1) f is a covering map.
(2) There exists a subgroup G of Deck(X — X)) such that f(x) = f(z') if and
only if there exists o € G with o(x) = '.

3) G=m(Y).
X\%/Y
X

Proof. (1) We prove that f is a local homeomorphism and has the curve lifting prop-
erty. Let x € X and set y = f(x) and z = p(x). Since p is a local homeomorphism,
there exist open neighborhoods Wi of 2 and U; of z such that ply, : Wi — Uy is a
homeomorphism. Since ¢ is a covering map, we find an open connected neighbor-
hood U C U; of z and an open neighborhood V of y in Y such that ¢q|y : V — U
is a homeomorphism. If W := p=1(U) N Wy, then y € f(W) C ¢ ' (U). Since
f(W) is connected, we may conclude that f(W) = V. And flw : W — V is a
homeomorphism, since p|lw : W — U and q|y : V — U are.

For the curve lifting property, let v be a curve in Y with initial point yo. Let
2o € f~(yo). Then qo~ is a curve in X which has a lifting 707 to X with initial
point 9. Then f o gov and v coincide since they are both liftings of q o v with
the same initial point. That means that g o is the desired lifting of v with initial
point xg.

(2) & (3) Set G := Deck(X — Y) which is a subgroup of Deck(X — X). Since
X is simply connected, f : X — Y is the universal covering of Y. By [Theorem 4.4
G =2 7 (Y). Now (2) follows from the fact that f : X — Y is a normal covering, cf.
Theorem 4.4 O

4.3. The covering spaces of the punctured unit disk. Every covering map
of D* is isomorphic to the covering of the exponential function or to the covering
of some power function. More precisely:

Theorem 4.8. Let X be a Riemann surface and f : X — D* a holomorphic
covering map. Then:

(1) If the covering has an infinite number of sheets, then there exists a biholo-
morphism ¢ : X — C_ := {z € C : Re(z) < 0} such that the following
diagram commutes.

X i C_
]:D)*

(2) If the covering has k sheets, then there exists a biholomorphism ¢ : X —
D* such that the following diagram commutes.
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Proof. Note that exp : C_ — D* is the universal covering of D*. By
there is a holomorphic map ¢ : C_ — X with exp = fo. Let G be the associated
subgroup of Deck(C_ — D*).

If G = {id} is trivial, then ¢ : C~ — X is a biholomorphism. This corresponds
to the case that the covering f has infinitely many sheets. The inverse of v is the
desired map ¢.

Suppose that G is non-trivial. It is not hard to see that Deck(C_ — D*) =
{Tn : n € Z}, where 7,, : C_ — C_ is the translation by 2min. It follows that there
exists a positive integer k such that G = {7g, : n € Z}. Let g : C_ — D* be the
covering map defined by g(z) = exp(z/k). Then g(z) = g(z’) if and only if there is
o € G such that o(z) = 2’. Since G is associated with ¢ (i.e., ¥(z) = ¢(2’) if and
only if there is 0 € G such that o(z) = 2’), there is a bijective map ¢ : X — D*
such that g = @ o 1. Since 9 and g are locally biholomorphic, we may conclude
that ¢ is a biholomorphism. Then the diagram in (2) commutes.

The proof is complete. O

Corollary 4.9. Let X be a Riemann surface and let f : X — D be a branched
covering such that f : f~1(D*) — D* is a covering map. Then there is an integer
k > 1 and a biholomorphism ¢ : X — D such that the following diagram commutes.

X—*% 5D

N

Proof. By|[T'heorem 4.8|and|Theorem 3.19] there exists £ > 1 and a biholomorphism
¢ f7Y(D*) — D* such that f = pp o . We claim that f~1(0) consists of only
one point @ € X. Then, by setting p(a) := 0, ¢ extends to a biholomorphism
¢ : X — D such that f = py o ¢, by [Riemann’s theorem on removable singularities|

Suppose that f~1(0) consists of n > 2 points a1, ..., a,. Then there are disjoint
open neighborhoods U; of a; and r > 0 such that f~1(D,.(0)) C Uy U--- U U,.
Set D:(0) := D,(0) \ {0}. Then f~1(D;(0)) is homeomorphic to p, '(D}(0)) =
D*,,.(0), and thus connected. Every a; is an accumulation point of f~!(D;(0)),
and hence also f~1(D,.(0)) is connected, a contradiction. O




CHAPTER 2
Analytic continuation

5. Sheaves

The language of sheaves is very useful to organize functions (and other objects)
which satisfy local properties. A property of a function defined on an open set which
is preserved by restriction to any smaller open set leads to the concept of presheaf.
A presheaf is a sheaf if the defining property is local, i.e., it holds if and only if it
holds on all open subsets.

5.1. Presheaves and sheaves. Let X be a space with topology T (i.e., ¥ is
the system of open sets in X). A presheaf of abelian groups on X is a pair
(Z,p) consisting of a family #F = (F(U))yez of abelian groups and a family
p = (pY)vvexvcu of group homomorphisms p¥ : F(U) — # (V) such that

o pf = idg @) for all U € %,
° p%opg:pgy foral WCV CU.
The homomorphisms pg are called restriction homomorphisms. Often we will
write just f|y for p¥(f) and f € Z(U).
Analogously, one defines presheaves of vector spaces, rings, sets, etc.

A presheaf . on a topological space X is called a sheaf if for every open
U C X and every family of open subsets U; C U, i € I, with U = |J,.,; U; the
following conditions are satisfied:

(1) If f,g € ZF(U) satisty f|ly, = g|u, for all i € I, then f = g.
(2) Let f; € F(Us), i € I, be such that fi|y,nv;, = fjlu,nu, for all i,j € I.
Then there exists f € .Z(U) such that f|y, = f; for all i € I.

i€l

The element f in (2) is unique by (1).

Example 5.1. (1) Let X be a topological space. For each open U C X let €(U)
denote the vector space of continuous functions f : U — C. Then ¥ with the usual
restriction mapping is a sheaf on X.

(2) Let X be a Riemann surface. Let O(U) be the ring of holomorphic functions
on the open subset U C X. Taking the usual restriction mapping, we get the sheaf
O of holomorphic functions on X.

(3) Similarly we obtain the sheaf .# of meromorphic functions on a Riemann
surface X.

(4) Let X be a Riemann surface. Denote by O*(U) the multiplicative group of
all holomorphic functions f : U — C*. With the usual restriction map we obtain a
sheaf O* on X.

(5) Similarly we obtain the sheaf .#*. Here .#*(U) consists of all f € .#(U)
which do not vanish identically on any connected component of U.

(6) Let X be a topological space. For open U C X let C(U) denote the vector
space of locally constant functions f : U — C. With the usual restriction map this
defines the sheaf C on X, whereas the constant functions form only a presheaf.

17
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5.2. Stalks. Let .# be a presheaf of sets on a topological space X and let ¢ € X.
The stalk %, of .% at a is defined as the inductive limit
Fa = lim 7 (U)
Usa
over all open neighborhoods U of a. This means the following. Consider the disjoint

union

|| #w)

U>a
with the following equivalence relation: f € % (U) and g € F# (V) are equivalent,
f ~ g, if there is an open set W with a €¢ W C U NV such that f|y = g|w. Then
F, is the set of equivalence classes,

Fo =l F(U) := ( | y(U))/ ~
U>da U>a
If .Z is a presheaf of abelian groups, then the stalk .%, is also an abelian group in
a natural way (similarly, for presheaves of vector spaces, rings, etc.).

Let U be an open neighborhood of a. Let p, : % (U) — %, denote the map
which assigns to f € Z(U) its equivalence class modulo ~. Then p,(f) =: f, is
called the germ of f at a.

Example 5.2. Consider the sheaf O of holomorphic functions on a region X C C
(a region is a connected domain). The stalk O, at a € X is isomorphic to the
ring C{z — a} of convergent power series in z — a. Analogously, the stalk .Z, is
isomorphic to the ring of all convergent Laurent series with finite principal part

o0

Z ca(z—a), meZ, ¢ eC.

k=m

5.3. The topological space associated with a presheaf. Let .% be a presheaf
on a topological space X. Let

7| = | | 7.

be the disjoint union of all stalks. Let p : |[#| — X be defined by %, > ¢ — z.
For any open U C X and f € Z(U), let

(Uaf) = {pw(f>l‘€U}

Theorem 5.3. The system B of all sets (U, f), where U is open in X and f €
F(U), is a basis for a topology on |F|. With respect to this topology p : | F| — X
is a local homeomorphism.

Proof. Let us check that B is a basis for a topology on |#|. Clearly, every ¢ € |F|
is contained in at least one (U, f). We have to verify that if ¢ € (U, f)N(V, g) then
there exists (W, h) € 9B such that ¢ € (W, h) C (U, f)N(V,g). Let = p(¢). Then
xeUNV and ¢ = p.(f) = pz(g). So there is an open neighborhood W of z in
U NV such that flw = glw =: h. This implies the claim.

To see that p : %] — X is a local homeomorphism, let ¢ € |.Z]| and = = p(y).
There is (U, f) € B with ¢ € (U, f). Then (U, f) is an open neighborhood of ¢
and U is an open neighborhood of x. The restriction p|,s) : (U, f) — U is a
homeomorphism. (]

We say that a presheaf .% on a topological space X satisfies the identity
theorem if the following holds: Let U C X be a connected open set. Let f,g €
Z(U) be such that p,(f) = pa(g) at some a € U. Then f = g.
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Theorem 5.4. Let X be a locally connected Hausdorff space. Let F be a presheaf
on X satisfying the identity theorem. Then || is Hausdorff.

Proof. Let 1 # po € | F|. Set x; = p(pi), ¢ = 1,2. If &1 # xa, then there exist
disjoint neighborhoods Uy, Uy of 1, z2, since X is Hausdorff, and p=1(Uy), p~ 1 (Us)
are disjoint neighborhoods of 1, ¢s.

Suppose that z1 = 29 =: z. Let f; € F(U;) be a representative of the germ
¢i. Let U C Uy NU; be a connected open neighborhood of z. Then (U, f;|v) is
a neighborhood of ¢;. Suppose that ¢ € (U, fi|v) N (U, f2|v) and let y = p(v).

Then ¢ = p,(f1) = py(f2). By assumption, fily = fo|y and thus ¢; = @9, a
contradiction. O

Corollary 5.5. Let X be a Riemann surface and let O (resp. .4 ) be the sheaf
of holomorphic (resp. meromorphic) functions on X. Then |O| (resp. |A#|) is
Hausdorff.

6. Analytic continuation

In this section we study the construction of Riemann surfaces which arise from
the analytic continuation of germs of functions.

6.1. Analytic continuation along curves. Let X be a Riemann surface. Let
v :[0,1] = X be a curve joining a = v(0) and b = y(1). We say that a holomorphic
germ @1 € O results from the analytic continuation along ~ of the germ ¢qg €
O, if the following holds: For every ¢ € [0, 1] there exists ¢; € O such that for
every to € [0,1] there is a neighborhood T' C [0, 1] of ¢y, an open set U C X with
¥(T) C U and a function f € O(U) such that p.(f) = ¢; for all t € T'.

Since [0,1] is compact, this condition is equivalent to the following: There
exist a partition 0 = tg < t; < -+ < ¢, = 1 of [0,1], open sets U; C X with
V([ti-1,t:i]) C Us, and f; € O(U;), for i = 1,...,n, such that pa(f1) = o, po(fn) =
1, and filv, = fix1lv,, i = 1,...,n — 1, where V; is the connected component of
U; NU;41 containing vy(t;).

Proposition 6.1. Let X be a Riemann surface. Let v : [0,1] — X be a curve
joining a = v(0) and b = v(1). A germ @1 € Oy is the analytic continuation of a
germ g € O along v if and only if there is a lifting 4 : [0,1] — |O| of v such that
3(0) = ¢o and ¥(1) = ¢1.

Proof. If ¢1 € Oy is the analytic continuation of a germ ¢y € O, along ~, then
t — p is the required lifting.

Conversely, suppose that there is a lifting 4 : [0,1] — |O| of 4 such that
(0) = o and J(1) = 1. Define ¢; := F(t) € Oy. Let to € [0,1] and let
U, f) be an open neighborhood of #(tp) in |O]. Since 74 is continuous, there is
a neighborhood T of to € [0,1] such that ¥(T) C (U, f). Hence v(T) C U and
e =7(t) = pyy(f) for t € T 0

N

—~

We may infer from the [uniqueness of liftings 3.6| that the analytic continuation
of a function germ is unique (if it exists). The [monodromy theorem 3.9|implies the
following.

Theorem 6.2. Let X be a Riemann surface. Let vo,71 : [0,1] — X be homotopic
curves joining a and b. Let 75, s € [0,1], be a homotopy of o and y1 and let p € O,
be a function germ which has an analytic continuation along all curves vs. Then
the analytic continuations of ¢ along vo and 1 result in the same germ 1 € Oy.
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Proof. Apply [Corollary 3.10] to the local homeomorphism |O| — X; |O| is Haus-
dorff, by [Corollary 5.5 O

Corollary 6.3. Let X be a simply connected Riemann surface. Let p € O, be a
germ at some point a € X which admits an analytic continuation along every curve
starting in a. Then there is a unique holomorphic function f € O(X) such that

pa(f) =¢.

6.2. Riemann surfaces arising from analytic continuation of germs. In
general, if X is not simply connected, by considering all germs that arise by analytic
continuation from a given germ we obtain a multi-valued function. Let us make
this precise.

First we make the following observation. Suppose that X,Y are Riemann
surfaces, Ox, Oy the sheaves of holomorphic functions on them, and p : ¥ — X
is an unbranched holomorphic map. Since p is locally biholomorphic, it induces an
isomorphism p* : Ox () = Oy, for each y € Y. Let

Dy Oy,y — OX,p(y) (6.1)

denote the inverse of p*.

Let X be a Riemann surface, a € X, and ¢ € Ox ,. By an analytic contin-
uation (Y, p, f,b) of ¢ we mean the following data: Y is a Riemann surface and
p:Y — X is an unbranched holomorphic map, b € p~!(a), and f is a holomorphic
function on Y such that p.(ps(f)) = ¢. An analytic continuation (Y,p, f,b) of ¢
is called maximal if it has the following universal property: if (Z,q,g,c) is an-
other analytic continuation of ¢ then there is a fiber-preserving holomorphic map
F:Z —Y such that F(c) =band F*(f) = g.

y Yo x

v F
RS
N

C=—7
g

By the [uniqueness of liftings 3.6] a maximal analytic continuation is unique up to
isomorphism. Indeed, if also (Z,q,g,¢) is a maximal analytic continuation of ¢
then there is a fiber-preserving holomorphic map G : Y — Z such that G(b) = ¢
and G*(g) = f. Then F o G is a fiber-preserving holomorphic map ¥ — Y leaving
b fixed. By the [uniqueness of liftings 3.6] F o G = idy. Similarly, G o F =idx and
so G : Y — Z is biholomorphism.

We will show that there always exists a maximal analytic continuation. We
shall need the following lemma.

Lemma 6.4. Let X be a Riemann surface, a € X, ¢ € Ox,, and (Y,p, f,b) an
analytic continuation of ¢. Let o : [0,1] = Y be a curve from b to y. Then the
germ ¢ = p.(py(f)) € Ox p(y) is an analytic continuation of ¢ along the curve

Y=PpPoo.

Proof. For t € [0,1] set ¢; := p*(pa(t)(f)) € OX,p(a(t)) = OX,'y(t)~ Then @y = ¢
and p; = 1. Let ¢t € [0,1]. Since p: Y — X is a local homeomorphism, there exist
open neighborhoods V C Y of o(tg) and U C X of y(to) such that p|ly : V — U is
a biholomorphism. If ¢ : U — V is the inverse, then g := ¢*(f|v) € O(U). Then
P« (p=(f)) = pp(z)(g) for every z € V. There is a neighborhood T of ¢y in [0, 1] such
that o(T) C V, and so y(T) C U. For each t € T, we have p+)(9) = p«(po)(f)) =
@¢. Thus, 1 is an analytic continuation of ¢ along ~. (]
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Theorem 6.5 (maximal analytic continuation). Let X be a Riemann surface, a €
X, and ¢ € Ox . There exists a mazimal analytic continuation (Y, p, f,b) of ¢.

Proof. Let Y be the connected component of |Ox| containing ¢. Let p: Y — X be
the restriction of the canonical map |Ox| — X. Then p is a local homeomorphism.
By there is a natural complex structure on Y which makes it a
Riemann surface and p : ¥ — X holomorphic. Let f : Y — C be defined by
J(W) == evpy) (), ie., ¥ € Y is a germ at p(y) and f(¢)) is its value. Then f is
holomorphic and p.(py(f)) = ¥ for every ¢ € Y, in particular, for b := ¢. Thus
(Y, p, f,b) is an analytic continuation of .

Let us show maximality. Let (Z, q, g, ¢) be another analytic continuation of .

Let z € Z and ¢(z) = z. By [Lemma 6.4] the germ ¢.(p.(g)) € Ox , arises by
analytic continuation along a curve from a to x, and hence, by
there is precisely one ¢ € Y such that g.(p.(g)) = ¢. Define a mapping F : Z =Y

by setting F'(z) := 1. Then F is a fiber-preserving holomorphic map with F(c) = b
and F*(f) = g. O

Analytic continuation of meromorphic function germs can be handled in a sim-
ilar way. Branch points have been disregarded so far. In the next section branch
points will also be considered in the special case of algebraic functions.

7. Algebraic functions

An algebraic function is a function w = w(z) which satisfies an algebraic
equation
w" 4 ay (2)w" "t - a,(2) =0, (7.1)
where the coefficients a; are given meromorphic functions in z. A typical example
is the square root w = /2 which is one of the first examples of a multi-valued
functions one encounters in complex analysis.

In this section we will construct the Riemann surface of algebraic functions.
It is a branched covering such that the number of sheets equals the degree of the
algebraic equation.

7.1. Elementary symmetric functions. Let X and Y be Riemann surfaces
and let p : Y — X be an n-sheeted unbranched holomorphic covering map. Let
f€.#(Y). Fix € X. Then z has an open neighborhood U such that p~(U) is
a disjoint union of open sets Vi, ...,V and p|y, : V; = U is a biholomorphism for

all j=1,...,n. Set f; := fop|(/j17 j=1,...,n, and consider
n

[[T-f)=T"+aT "+ 4.

j=1
Then the coefficients ¢;, j = 1,...,n, are meromorphic functions on U given by

C]:(_l)jsj(flvafj):(_l)J Z ,fil"'fij7
1§’L1<"'<i]’Sn

where s; is the jth elementary symmetric function in n variables.

If we carry out the same construction on a suitable neighborhood U’ of another
point ' € X, then we obtain the same functions ci,...,c,. It follows that they
piece together to give global meromorphic functions ¢1,...,¢, € #(X). Abusing
notation we call these functions the elementary symmetric functions of f with
respect to the covering p: Y — X.

In the next theorem we will see that the elementary symmetric functions of
f € .#(Y) are also defined if p : Y — X is a branched holomorphic covering.
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Theorem 7.1. Let X and Y be Riemann surfaces and let p : Y — X be an n-
sheeted branched holomorphic covering map. Let A C X be a closed discrete set
containing all critical values of p and set B := p~1(A). Let f be a holomorphic
(resp. meromorphic) function on Y \ B and let c1,...,¢, € O(X \ A) (resp. €
MM (X \ A)) the elementary symmetric functions of f. Then f can be continued
holomorphically (resp. meromorphically) to'Y if and only if all ¢; can be continued
holomorphically (resp. meromorphically) to X.

Proof. Let a € A and p~t(a) = {b1,...,bn}. Let (U, z2) be a relatively compact
coordinate neighborhood of a with 2(a) = 0 and UN A = {a}. Then V := p~1(U)
is a relatively compact neighborhood of p~!(a), since p is proper.

First suppose that f is holomorphic on Y \ B. If f can be continued holo-
morphically to all points b;, then f is bounded on V' \ {b1,...,b,,}. Hence all ¢;
are bounded on U \ {a}, and so all ¢; admit a holomorphic extension to a, by
[Riemann’s theorem on removable singularities 1.15] Conversely, if all ¢; extend
holomorphically to a, then all ¢; are bounded on U \ {a}. Then also f is bounded
on V\{by,...,bn}, since

F@)" + @) @)+ Fealply) =0 forye VA {br,... b}
By [ extends holomorphically to each b;.

Now let f be meromorphic on Y \ B. Assume that f can be continued mero-
morphically to all points b;. The function ¢ := p*z = zop is holomorphic on V and
vanishes on all points b;. Then ¢* f has a holomorphic extension to all b; provided
that the integer k is chosen large enough. The elementary symmetric functions
of ¥ f are precisely z*J c¢j. By the previous paragraph, they admit a holomorphic
extension to a, that is, the ¢; admit a meromorphic extension to a. Conversely,
suppose that all ¢; extend meromorphically to a. Then all P ¢; admit a holomor-
phic extension to a, where k is a large integer. Thus " f extends holomorphically
to all b;, whence f extends meromorphically to all b;. O

Remark 7.2. For later use we remark that the proof does not use the fact that
Y is connected. So in the theorem we may assume that Y is a disjoint union of
finitely many Riemann surfaces.

7.2. Associated field extension. Let X and Y be Riemann surfaces and let
p:Y — X be an n-sheeted branched holomorphic covering map. If f € .#(Y) and
Cly...,Cn € M (X) are the elementary symmetric functions of f, then

fra@e)f 4 (pen) = 0. (7:2)
This is clear by the definition of elementary symmetric functions.

Theorem 7.3. In this situation the monomorphism of fields p* : M (X) — #(Y)
is an algebraic field extension of degree n.

Proof. Set K :=p*#(X) C .#(Y) =: L. By the observation above, each f € L is
algebraic over K and the minimal polynomial of f over K has degree < n.

Let fo € L be such that the degree ng of its minimal polynomial is maximal.
We claim that L = K(fy). For an arbitrary f € L consider the field K(fo, f).
By the primitive element theorem (cf. [8]), there is g € L such that K(fo, f) =
K(g). By the definition of ng, we have dimg K(g) < ng. On the other hand,
dimg K (fo, f) > dimg K(fo) = no. It follows that K(fy) = K(fo,f) and hence
I € K(fo).

If the degree of the minimal polynomial of f over K is m < n, then f can
take at most m different values over every x € X. We will see in [Corollary 12.§
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and [Theorem 26.7, that there exist an f € .#Z(Y) and an z € X with p~!(x)
{v1,--.,yn} such that the values f(y;), j =1,...,n, are all distinct.

o

7.3. Continuation of a covering.

Theorem 7.4. Let X be a Riemann surface, A C X a closed discrete set and
X' := X\ A. Suppose that Y’ is another Riemann surface and p’ : Y' — X' is a
proper unbranched holomorphic covering. Then p' extends to a branched covering
of X, i.e., there is a Riemann surface Y, a proper holomorphic map p : Y — X,
and a fiber-preserving biholomorphism ¢ : Y \ p~1(A) — Y.

Proof. For each a € A choose a coordinate neighborhood (Uy, z,) on X such that
za(a) =0, 2,(Uy) =D and U, NU, =0 if a #b e A. Let Ur = U, \ {a}. Since p’ :
Y’ — X' is proper, (p’)~1(U}) consists of a finite number of connected components
Vi J = 1,...,ne. For each j, the map p'[v~ : V5 — Uy is an unbranched
covering with number of sheets kq;. By there are biholomorphisms
Caj : Va3 — D" such that the following diagram commutes:

Caj

Vi D*
p’i J/pa,-: ¢r¢hai
U Z D*
Choose pairwise distinct “ideal” points ¥4, a € A, j = 1,...,n,, in some set

disjoint of Y, and define
Y=Y U{ysj:a€A j=1,...,n.}.

On Y there is precisely one topology with the following property: if W, i € I, is
a neighborhood basis of a, then {y,;} U (p')~"(W;) NV, i € I, is a neighborhood
basis of y4;, and on Y’ it induces the given topology. It makes Y to a Hausdorff
space. Define p:Y — X by p(y) =p'(y) if y € Y’ and p(y,;) = a. It is easy to see
that p is proper.

In order to make Y into a Riemann surface, we add the following charts to the
charts of the complex structure of Y'. Let V,; := ViU {ya;} and let (yj : Voj —» D
be the extension of (,; : V5 — D* by setting (aj(ya;) := 0. The new charts
Caj : Vaj — D are compatible with the charts of the complex structure of Y’, since
Caj * Va3 — D is biholomorphic with respect to the complex structure of Y. It
follows that p : Y — X is holomorphic.

By construction, Y\ p~(4) = Y’. So we may take p : Y \ p~1(A4) — Y’ to be
the identity map. O

The continuation of a covering, whose existence was proved in is
unique up to isomorphisms, as we shall see next.

Theorem 7.5. Let X,Y,Z be Riemann surfaces andp :Y — X, q: Z — X be
proper holomorphic maps. Let A C X be closed discrete and let X' := X\ A, Y’ :=
p~Y(X"), and Z' = ¢ 1 (X'). Then every fiber-preserving biholomorphism ¢’ :
Y’ — Z' extends to a fiber-preserving biholomorphism ¢ : Y — Z. In particular,
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every ¢’ € Deck(Y' — X') extends to a ¢ € Deck(Y — X).

Proof. Let a € A and let (U, z) be a coordinate neighborhood of a such that z(a) = 0
and z(U) = D. We may assume that U is so small that p and ¢ are unbranched
over U* := U \ {a}. Let Vi,...,V, be the connected components of p~1(U), and
Wi,..., Wy, those of ¢~*(U). Then V;* := V;\p~'(a) are the connected components
of p~1(U*), and W} := Wy, \ ¢~ !(a) are those of ¢~ (U*).

Since the map ¢'[,-1(y+) : p 1 (U*) — ¢ 1(U*) is biholomorphic, we have
m = n and after renumbering we may assume that ¢'(V;) = Wr. By
V; Np~t(a) and W; N g '(a) both consist of precisely one point, say b;
and c;, respectively. Thus, ¢'|,-1(y+) : p~1(U*) — ¢ 1(U*) can be continued to a
bijective map p~'(U) — ¢~ !(U) which takes b; to ¢;. This map is a homeomor-
phism, because p|y;, : V; — U and q|w, : W; — U are proper and hence closed,
by [Lemma 3.17} By [Riemann’s theorem on removable singularities 1.15] it is a
biholomorphism; [Theorem 1.15] applies since both V; and W; are isomorphic to D
by [Corollary 4.9 Applying this construction to all a € A, we obtain the desired
extension ¢ : Y — Z. (]

This theorem allows us to extend the notion of normal covering to branched
holomorphic coverings. Let X and Y be Riemann surfaces and let p : Y — X be
a branched holomorphic covering. Let A C X be the set of critical values of p and
set X’ ;== X\ Aand Y’ := p~}(X’). Then p: Y — X is said to be a normal
covering if the unbranched covering Y’ — X’ is normal.

7.4. The roots of holomorphic polynomials.

Lemma 7.6. Letcy,...,c, be holomorphic functions on Dr(0). Suppose that wy €
C is a simple root of the polynomial T™ +¢1(0)T™" "1 +---4¢o(0). Then there exists
r € (0, R] and a function ¢ holomorphic on D,(0) such that ¢(0) = wy and

"+ " P+ +e, =0 on D.(0).

Proof. Consider
F(z,w) :=w" 4+ c1(2)w" ™t + - +cp(2), for z€ Dg(0), we C.

There is € > 0 such that the polynomial F(0,w) has no other root than wy in the
disk D.(wp). It follows from the continuity of F' that there is r € (0, R] such that F'
has no zero in the set {(z,w) : |z| < r, w € dD(wp)}. By the argument principle,
for fixed z € D,.(0),
1 B F (2,
n(z) == — du(z,w) dw
270 Jop. (wy) F(2,w)

is the number of roots of the polynomial F(z,w) in D.(wg). Then n(z) = 1 for
all z € D,(0), since n(0) = 1 and n depends continuously on z. By the residue
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theorem, the root of F(z,w) in D.(wp) is given by

1 WF (2,
olz) = — ww dw
210 Jop.(wyy  F(z,w)

which is holomorphic in D, (0). O

Corollary 7.7. Let X be a Riemann surface and x € X. For a polynomial P(T) =
T" + ;T Y+ - + ¢, € OL[T] which has n distinct roots wy, ..., w, at x there
exist Y1, ..., ¢n € Oy such that ;(z) =w;, j=1,...,n, and

P(T) = [[( - ¢)).

7.5. The Riemann surface of an algebraic function.

Theorem 7.8. Let X be a Riemann surface and let P(T) = T"+c, T 1+ +c, €
A (X)[T] be a irreducible polynomial of degree n. Then there exist a Riemann sur-
face Y, a branched holomorphic n-sheeted covering p: Y — X and a meromorphic
function F' € #(Y) such that (p*P)(F) = 0. The triple (Y,p, F) is unique in the
sense that, if (Z,q,G) is has the same properties, then there is a fiber-preserving
biholomorphism o : Z — 'Y such that G = o*F.

The triple (Y, p, F) is called the algebraic function defined by the polynomial
P(T). Classically, X is the Riemann sphere C. Then the coefficients of P(T') are
rational functions. In this case Y is compact, since C is compact and p: Y — C is
proper.

Proof. Let A € .#(X) be the discriminant of P(T'). Since P(T) is irreducible,
A is not identically zero. There is a closed discrete set A C X such that in the
complement X’ := X \ A all coefficients ¢; are holomorphic and A is non-vanishing.
Then for all z € X’ the polynomial

Po(T) :=T" + e1(2)T" ' + -+ + ¢o(2) € C[T)
has n distinct roots. Consider the topological space |O| — X associated with the
sheaf O on X. Let
Y={pecO,:2e€ X' Plp)=0}C|O|

and let p’ : Y/ — X’ be the canonical projection. By [Corollary 7.7| for each x € X',
there are a neighborhood U C X’ and holomorphic functions fi,..., f, € O(U)

such that
P(T)=][(T~f) onU.
j=1

Then (p/)~}(U) = U?:1(U7 fi), the (U, f;) are disjoint, and p'|w, s,y : (U, fj) = U
is a homeomorphism. Hence p’ : Y/ — X' is a covering map. The connected
components of Y’ are Riemann surfaces which are covering spaces over X' (by
restricting p’).

Define f: Y — C by f(¢) :== ¢(p'(p)). Then f is holomorphic and

FO)" +a@@f@" 4 e (y) =0 forallyeY’.

By [Theorem 7.4} the covering p’ : Y/ — X' can be continued to a proper holomor-

phic covering p : Y — X, where we identify Y’ with p~!(X’). [Theorem 7.1| (see
Remark 7.2) implies that f can be extended to a meromorphic function F' € .Z(Y)
such that

(p*P)(F) = F" + (p*c))F" ' +--- 4+ (p*c,) = 0.
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Let us prove that Y is connected and hence a Riemann surface. Let Y7,...,Ys be
the connected components of Y (there are finitely many since p is proper). Then
ply; : Y; — X is a proper holomorphic n;-sheeted covering, where ny +---+ny = n.
7, Py(T) € A (X)[T]
of degree n; such that P(T') = Py(T) - - - P,(T), contradicting irreducibility of P(T').

Next we show uniqueness. Let (Z, g, G) be another algebraic function defined
by P(T). Let B C Z be the set of all poles of G and all branch points of ¢ and set
A’ :=q(B). Define X" := X'\ A", Y" = p’l(X”), and Z" := ¢~ 1(X").

We define a fiber- preserving map o’ : Z" — Y" as follows. Let z € Z”,
q(z) =z, and ¢ := ¢, G, (cf. . Then P = 0. Hence ¢ is a point of Y over
x (see the construction of Y’) and consequently peY”. Set 0”(z) = .

It is clear from the definition that ¢’ is continuous and thus holomorphic, since
is fiber-preserving. The map ¢’ is proper, since ply~ : Y” — X" is continuous
and q|z» : Z" — X" is proper. So ¢” is surjective. Since ply~» : Y — X"
and q|z» : Z" — X' have the same number of sheets, ¢ is biholomorphic. The
definition of ¢’ implies that G|z = (6" )*(Fl|y~). Bym o extends to
a fiber-preserving biholomorphic map o : Z — Y such that G = ¢*F. Actually, o
is uniquely determined by the property G = ¢*F. Otherwise, there would exist a
non-trivial deck transformation o : Y — Y such that o*F = F. This is impossible,
since I assumes distinct values on the points of the fiber p~!(z) for all z € X’. O

O_//

Example 7.9. Let aq,...,a, be distinct points in C. Consider
f(z) = (z—a)(z—az) - (z —an)

as a meromorphic function on C. The polynomial P(T) = T? — f is irreducible
over . (C). Tt defines an algebraic function which is denoted by 1/ f(z). Let us
describe the Riemann surface p: Y — C associated by the above construction.

Let A :={ay,...,an,00}, X' :==C\ A, and Y’ := p~}(X’). Then p/: Y’ — X’
is an unbranched 2-sheeted covering. Every germ ¢ € O,, where x € X', satisfying
©? = f can be analytically continued along every curve in X’. Let us analyze the
covering over neighborhoods of points in A.

Let r; > 0 be such that a; is the only point of A lying in the disk D, (a;). On
D, (a;) we have

f(z) = (z — a;)h*(2)
for a holomorphic function h, because f/(z —a;) = [[;;(# — ax) is non-vanishing
in the disk D,,(a;) (which is simply-connected). Let ¢ = a; —|— pe'® with p € (0,7;)
and 6 € R. By 6} there exists ¢ € O¢ such that ¢? = f and

pc(Q) = Vpet h(Q).

If we continue this germ along the closed curve ¢ = a; + pe?, 0 < § < 27, then
we get —pc. It follows that p : p‘l(D;*.j (aj)) — Dy (a;) is a connected 2-sheeted
covering (as in 2)). So the Riemann surface Y has precisely one point
over a;.

Now let us look at the point co. Consider U := {z € C : |z| > r} U {oo},
where 7 > |a | for all j. Then U is a neighborhood of co containing no other
point of A. On U we may write f = z"g for g € O(U) having no zeros in U. We
must distinguish two cases: If n is odd, then there is a meromorphic A on U such
that f(z) = zh(2)2. If n is even, then there is a meromorphic h on U such that
f(2) = h(2)2. In the case that n is odd, we find in the same way as above that,
above U \ {o0}, p is a connected 2-sheeted covering and Y has precisely one point
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over oo. However, if n is even, p over U \ {oo} splits into two 1-sheeted coverings
and Y has two points over oco.

7.6. The field extension associated with an algebraic function. Let XY
be Riemann surfaces and let p : Y — X be a branched holomorphic covering map.
Then Deck(Y — X) (which is defined in analogy to unbranched coverings) has
a representation in the automorphism group of .Z(Y) defined by of := foo™!,
where o € Deck(Y — X) and f € .#(Y). The map

Deck(Y — X) = Aut(#Z(Y)), o= (f—af),

is a group homomorphism. Each such automorphism f — of leaves invariant the
functions in the subfield p*.#Z(X) C .#(Y). Thus it is an element of the Galois
group Aut(Z(Y)/p* M(X)).

Theorem 7.10. Let X be a Riemann surface and P(T) € .#(X)[T] an irreducible
monic polynomial of degree n. Let (Y,p,F) be the algebraic function defined by
P(T). Consider #(X) as a subfield of #(Y) by means of the monomorphism
p*r MX) = HY). Then #(Y) : A (X) is a field extension of degree n and
(YY) 2 H(X)[T)/(P(T)). The map

Deck(Y — X) — Aut(.#(Y)/.# (X)) (7.3)

defined by the remarks above is a group isomorphism. The covering Y — X is
normal if and only if the field extension A (Y) : #(X) is Galois.

Proof. That #(Y) : .#(X) is a field extension of degree n follows from
Since P(F') = 0, there is a homomorphism of fields .Z (X)[T]/(P(T)) —
A (Y), which is an isomorphism since both fields are of degree n over . (X).

The map is injective, since o F # F for each deck transformation o which
is not the identity. Let us show surjectivity. Let oo € Aut(#(Y)/.#(X)). Then
(Y,p,aF) is an algebraic function defined by P(T'). By the uniqueness statement
of there is a deck transformation 7 € Deck(Y — X)) such that aF =
7*F. Then

T'F=For=7"F=aF.

Since .# (Y) is generated by F over .# (X), the automorphism f + 771 f of 4 (Y)
coincides with o.

For the last statement observe that ¥ — X is normal precisely if Deck(Y — X))
contains n elements, and .#(Y) : .#(X) is Galois precisely if Aut(#(Y)/.# (X))
has n elements. O

7.7. Puiseux expansions. As a corollary of we get Puiseux’s theo-
rem.

We denote by C{{z}} the field of Laurent series with finite principal part f(z)
Yoo 2", k € Z, ¢, € C, which converge is some punctured disk D}(0), r =
r(f) > 0. The field C{{z}} is isomorphic to the stalk .#, of the sheaf .#Z of
meromorphic function in C and it is the quotient field of C{z}.

Consider an irreducible polynomial
P(z,w) = w" + a1 (2)w"™ ' 4+ a,(2) € C{z}}[w].

We may consider P(z,w) as an irreducible element of .# (D,-(0))[w] for some r > 0.
Suppose that r > 0 is also chosen such that for each a € D}(0) the polynomial
P(a,w) € Clw] has no multiple roots. Let (Y, p, f) be the algebraic function defined
by P(z,w) € #(D,(0))[w], see Then p : Y — D,.(0) is an n-sheeted
branched covering which is ramified only over 0. By there is an
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isomorphism a : D 47(0) — Y such that p(a(¢)) = ¢" for all ¢ € D +(0). Since
(p*P)(f) = 0 we have

P(C",¢(¢)) =0, where ¢ = foa.
We have proved:

Theorem 7.11 (Puiseux’s theorem). Consider an irreducible polynomial

Pz,w) = w" 4+ ay(2)u" ) + - + an(2) € CY{= R wl.
There exists a Laurent series o(C) = Yoo _i emC™ € C{z}} such that P(¢", 0(€)) =
0 in C{{z}}.

The content of this theorem is often paraphrased by saying that the equation
P(z,w) = 0 can be solved by a Puiseux series
o0
w=p(z) = Z e 2™,
m=k
If the coefficients are holomorphic, i.e., a; € C{z}, then also ¢ is holomorphic,
¢ € C{z}, since in that case the function f is holomorphic on Y.



CHAPTER 3
Calculus of differential forms

8. Differential forms

8.1. Let U C C be a domain. Let &(U) denote the C-algebra of all C*°-functions
f: U — C. We identify C with R? by writing 2 = = + iy. Besides the partial
derivatives d,, 0, we consider the differential operators

9, = %(az —id,), 0= %(am +i0,).

By the Cauchy—Riemann equations, the space O(U) of holomorphic functions on
U is the kernel of 95 : £(U) — &(U).

8.2. Cotangent space. Let X be a Riemann surface. Let Y C X be open. Let
&(Y) be the set of all functions f : Y — C such that for every chart z : U -V C C
on X with U C Y there exists f € & (V') such that f|y = foz (clearly, f is uniquely
determined by f). This defines the sheaf & of smooth functions on X.

Let (U, z), z = x+1iy, be a coordinate neighborhood on X . Then the differential
operators 0y, dy, 0,0z : &(U) = &(U) are defined in the obvious way.

Let a € X. The stalk &, consists of all germs of smooth functions at a. Let
m, = {p € & : p(a) = 0}. A germ ¢ € m, is said to vanish of second order if it
can be represented by a function f which in some coordinate neighborhood (U, 2)
of a satisfies 9, f(a) = 9, f(a) = 0. Let m2 denote the vector subspace of m, of all
germs at a that vanish to second order. The quotient vector space

T:X :=m,/m2
is the cotangent space ot X at a.

Let U be an open neighborhood of a in X, and f € &(U). The differential
dof defined by

dof = (f = f(a)) mod m
is an element of T X.
Lemma 8.1. Let X be a Riemann surface, a € X, and (U, z) a coordinate neighbor-
hood of a. Then (dgx,dyy) as well as (dgz,d,Z) form a basis of TXX. If f € &(U)
then
daf = 8a:f(a) dox + 8yf(a) doy = azf(a) dez + &zf(a) daZ.

Proof. Let ¢ € m,. Taylor series expansion about a yields

¢ =c1(z —x(a)) + ca(y —y(a)) + ¢, where c1,¢ € C, ¢ € mp.
This shows that (d,z,d.y) spans ToX. Now d,z,d,y are linearly independent,
since ¢1 dax + cadyy = 0 implies ¢1(z — x(a)) + c2(y — y(a)) € m2, and applying
Oz, 0y we find ¢; = co = 0.
For f € &£(U), we have
f=F(a) = 0:f(a)(x — x(a)) + 0y f(a)(y — y(a)) + g

where g vanishes to second order at a. This gives the first formula.

29



30 3. CALCULUS OF DIFFERENTIAL FORMS

The proof for (d,z,d,Z) is analogous. O

Let (U, z), (V,w) be two coordinate neighborhoods of a € X. Then

d,w(a) € C*, 0Ozw(a) = d.w(a), Ozw(a)= 0, w(a)=0,

and thus d,w = d,w(a) d,z and d,w = J,w(a) d,z. It follows that the one dimen-
sional subspaces of T X spanned by d,z and d,Zz are independent of the coordinate
chart (U, z) at a. We define

TrAOX = Cdyz, TFOVX :=Cd,z.

Then T:X = T; MY X @ 77 %Y X, The elements of TV X (vesp. T3V X) are
called cotangent vectors of type (1,0) (resp. (0,1)).

8.3. 1-forms. Let Y be an open subset of a Riemann surface X. A differential
form of degree one or simply a 1-form on Y is a map w : Y — | |,y T X such

that w(a) € Ty X foralla € Y. If w(a) € ;0 x (resp. w(a) € T:(O’l)X) for all
a €Y, then w is said to be of type (1,0) (resp. (0,1)).

If (U, z) is a coordinate chart, then every 1-form on U can be written in the
form

w=fdr+gdy=pdz+1dz,
for functions f,g,p,% : U — C. A 1-form w on Y is called smooth if, for each
chart (U, z), we have
w=wdz+1¢Ydz onUNY, wherep,¢pve&UNY).
If, for each chart (U, z),
w=¢@dz onUNY, wherepeOUNY),

then w is called holomorphic.

We denote by &1(Y) the vector space of smooth 1-forms on Y, by &(1:0(Y)
(resp. £V (Y)) the subspace of smooth 1-forms of type (1,0) (resp. (0,1)), and
by O'(Y) the space of holomorphic 1-forms. Together with the natural restriction
maps &', &80, £%1 and O are sheaves of vector spaces on X.

8.4. 2-forms. Let V be a complex vector space. Then /\2 V' is the C-vector space
whose elements are finite sums of elements of the form vy A vy for vy,vs € V', where
(v1 4 v2) Avg =v1 Avs + v A s
(Av1) Avg = A(vy Awg)
v1 NV = —v2 A vy,
for all v1,v9,v3 € V and A € C. If ey, ..., e, is a basis of V, then e; A e;, for i < j,

forms a basis of \* V.

Let (U, z) be a coordinate neighborhood of a. Then d,x A dgy is a basis of the
vector space A>T X, another basis is doz A dgZ = —2i dyz A dgy. So A>T X has
dimension one.

Let Y be an open subset of a Riemann surface X. A 2-form on Y is a map
w:Y = ey A’ T X such that w(a) € A>T X for all a € Y. The 2-form w is
called smooth if, for each chart (U, z), we have

w=pdzANdZ onUNY, wherepec&UNY).
The vector space of smooth 2-forms on Y is denoted by &2(Y).

Note that, if wy,ws € &1(Y), then (w; Awr)(a) := w1 (a) Aw;(a) defines a 2-form
w1 Aws € E2(Y).
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Functions are by definition 0-forms, i.e., &°(Y) := &(Y) and O°(Y) := O(Y).
There are no non-trivial k-forms, for £ > 3, on a Riemann surface, since v Av = 0.

8.5. Exterior differentiation. Let Y be an open subset of a Riemann surface
X. We have a map d : £°(Y) — &Y(Y) defined by df(a) = d,f. Moreover,
0:8%Y) = &YO(Y) and 9 : £°(Y) — £%1(Y) are defined by

df =0f + 0f.
Locally smooth 1-forms can be written as finite sums
w = Z frdgr, for smooth functions fy, g-
We define
dw = dek ANdgg, Ow:= Z@fk Adgg, Ow:= ngk A dgg.

One checks easily that this definition is independent of the representation w =
> fr dgi. Thus we obtain operators d, 9,0 : £1(Y) — &2(Y) satisfying

d=0+0. (8.1)
If f € &(Y) then d?f = d(1-df) = dl Adf =0, similarly for 9,0, i.e.,
P2=0=0 =0. (8.2)
Now and imply B B
98 = 0. (8.3)

In a local chart,
DOf = 0,0:f dz N dz = %(83]"4—85]0) dx A dy.

Furthermore we have the product rules

d(fw) =df Nw+ fdw,

O(fw) =0f Nw + fow,

I(fw) =0f Aw + fow.

A 1-form w € &Y(Y) is called closed if dw = 0 and exact if there is f € &(Y)

such that df = w. Clearly, every exact form is closed, by .
Proposition 8.2. Let Y be an open subset of a Riemann surface. Then:

(1) Every holomorphic 1-form w € OY(Y) is closed.
(2) BEvery closed w € &Y0(Y) is holomorphic.

Proof. Let w € &M9(Y). In a local chart, w = fdz and so dw = df A dz =
—0zfdzAdz. Thus, dw = 0 if and only if dzf = 0. This implies the statement. [

8.6. Pullbacks. Let ¢ : X — Y be a holomorphic map between Riemann surfaces.
For every open U C Y the map ¢ induces a homomorphism

" EU) = @I U), @ (f)=foe
Moreover, we have the pullback of differential forms
" ENU) = ENp7HU)) and 9" EX(U) = (97 1(U))
defined by the local formulas

e (D fidg;) = Y@ (1) (" (),
o (30 fidgy nany) = 30 0% () dle" (9) A d(@" ().
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One checks easily that these definitions are independent of the local representations.
It is clear that the operators d, 9,0 commute with pullbacks,

P d=dp*, ©*'0=0¢", ¢©*0=0p".

8.7. Meromorphic differential forms. Let Y be an open subset of a Riemann
surface X. Let a € Y and let w be a holomorphic 1-form on Y \ {a}. Let (U,z2)
be a coordinate neighborhood of @ with U CY and z(a) = 0. On U \ {a} we have
w= fdzfor f € OU \ {a}). Let

=3 e

be the Laurent series of f at a with respect to the coordinate z. Then:

e ¢ is a removable singularity of w if ¢,, = 0 for all n < 0.

e w has a pole of order k if there exists £ < 0 such that ¢, = 0 for all
n < k and cg # 0.

e w has an essential singularity at a if ¢, # 0 for infinitely many n < 0.

The residue of w at a is by definition res,(w) := c_1.

Lemma 8.3. The residue is independent of the chart (U, z) and hence well-defined.

Proof. Let (U, z) be any chart at a with z(a) = 0. Let ¢ € O(U \ {a}) have the
Laurent series g = Y 2 ¢,2". Then dg = (3.2 nc,z""')dz and hence
resq(dg) = 0. In particular, the residue of dg at a is independent of (U, z).
Let g € O(U) have a zero of first order at a. Then g = zh for some holomorphic
h which does not vanish at a. Thus dg = hdz + zdh and
dy _dz dn
g z h
It follows that res,(dg/g) = resq(dz/z) = 1. In particular, the residue of dg/g at a
is independent of (U, z).
Now let w = fdz with f =57 __¢,2". Setting

n=-—oo
= ¢ = ¢
— n n+1 n n+1
g: j{: n—+ 1Z +_§£: n+ 12
n=-—oo n=0

we have w = dg 4 c_1dz/z. The first part of the proof implies res,(w) = ¢_; which
is independent of the chart. O

A 1-form w on an open subset Y of a Riemann surface X is said to be a
meromorphic differential form on Y if there is an open subset Y/ C Y such
that Y \ Y’ consists only of isolated points, w € O'(Y”), and w has a pole at each
point in Y \ Y. Let .#'(Y) be the set of meromorphic 1-forms on Y. Then .#*
forms a sheaf of vector spaces on X. Meromorphic 1-forms are also called abelian
differentials.

8.8. Integration of 1-forms. Let X be a Riemann surface and w € &'(X). Let
v :[0,1] — X be a piecewise C'-curve. That means v is continuous and there
is a partition 0 = tg < t; < -+ < t, = 1 and charts (Ug,z2r), k = 1,...,n,
such that y([tx_1,tx]) € Uy, and zx o7y : [ty_1,tx] — C are C'. On Uy we have
w = fr dxi + gi dyx for smooth fi, gr. We define

/w = Z/ " () 01 (8) + gk (1 (D) 0 7) (1)) dt.
Y k=1

te—1
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This definition is independent of the choice of partition and charts.

Theorem 8.4. Let X be a Riemann surface, v : [0,1] — X a piecewise C*-curve,
and f € &(X). Then

/ df = F(+(1)) - F(1(0).

Proof. Exercise. O

8.9. Primitives. Let X be a Riemann surface and w € &1(X). A function f €
&(X) is called a primitive of w if df = w. Two primitives differ by an additive
constant.

A 1-form with a primitive must be closed. Locally, a closed 1-form has a
primitive and hence is exact. In fact, if w = f dz + gdy is a closed 1-form on a disk
centered at 0 in C then

F(z,y) ::/O (f(tz, ty)z + g(tx, ty)y) dt

provides a primitive of w. Globally, a primitive of a closed 1-form exists in general
only as a multivalued function:

Theorem 8.5. Let X be a Riemann surface and let w € &'(X) be closed. Then
there is a covering map p : X — X with X connected and a primitive F' € &(X) of
pPrw.

Proof. For open U C X define #(U) := {f € &(U) : df = w}. This defines a sheaf
Z on X which satisfies the identity theorem (indeed, on a connected open set V'

any two elements of .# (V) differ by a constant). By [Theorem 5.4] |.#| is Hausdorff.
We claim that the natural projection p : |#| — X is a covering map. Each a € X

has a connected open neighborhood U and a primitive f € .Z#(U) of w. So

p () =W, f+o)

ceC
where the sets (U, f + ¢) are pairwise disjoint and |, f4e) : (U, f +¢) — U are
homeomorphisms.

If X is a connected component of |.Z|, then p : X > Xisalsoa covering map.
The function F : X — C defined by F(¢) := ¢(p(p)) is a primitive of p*w. d

Corollary 8.6. Let X be a Riemann surface, m : X = X its universal covering,
and let w € &Y(X) be closed. Then there is a primitive F € &(X) of m*w.

Proof. Let p : X — X be the covering provided by |Theorem 8.5 There is a

holomorphic fiber-preserving map 7 : X — X, by the universal property of .
Then 7*F is a primitive of 7*w = 7*(p*w). O

Corollary 8.7. On a simply connected Riemann surface every closed 1-form is
exact.

Theorem 8.8. Let X be a Riemann surface, T : X — X its universal covering,
and let w € &Y(X) be closed. Let F € &(X) be a primitive of m*w. If v:[0,1] — X
is a piecewise C'-curve and 7 is a lifting of -y, then

[ @ =FG) - FGO). (8.4)
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Proof. This follows from and

/ﬂ'*w:/ w:/w. O
k moy v

We may take as a definition of the integral of a closed 1-form along an
arbitrary continuous curve 7 : [0,1] — X. Clearly, this definition is independent
of the choice of the primitive F' of m*w. It is also independent of the lifting of
the curve . Indeed, let 41,72 be two liftings. Since the covering 7 is normal,

by there is a deck transformation o such that 471 = o o 42. Since

moo = m, we have oc*1*w = 7*w. It follows that ¢*F is a primitive of 7*w and
hence ¢*F — F = const. Then

F(1(1)) = F(71(0)) = 0" F(32(1)) — 0" F(52(0)) = F(32(1)) — F(72(0)).

Proposition 8.9. Let X be a Riemann surface and let w € &Y(X) be closed. Let
Y1,7v2 be homotopic curves in X. Then

/w:/m
71 2

Proof. Suppose that ~1, 2 have initial point a and end point b. Let 7 : X — X be
the universal covering and 71, s liftings of 1, v2 with the same initial point. Then

they also have the same endpoint, by Thus implies

the assertion. O

8.10. Integration of 2-forms. Let U C C be a domain. A 2-form w € &2(U) is
of the form

w:fdz/\dy:—%fdz/\df for f € &(U).

If f is integrable on U, we define

/Uw:://Uf(x,y)dxdy-

Let ¢ : V. — U be a biholomorphism. The Cauchy—Riemann equations imply
that the Jacobian determinant of ¢ equals |¢|?>. On the other hand

. 1 1 _
pw=—(fop)dp Ndp = —-(fop)l¢'[?dz Ndz = (f o)l dw A dy.

The transformation formula implies

/w K /V . (8.5)

Let w € &%(X) be a 2-form on a Riemann surface with compact support.
There are finitely many charts ¢y : Uy — Vi, K = 1,...,n, such that the support
of w is contained in the union of the Uy. Let (fx) be a smooth partition of unity
subordinate to (Uy). We define

/XW:;/kaw :é/vkuo,:l)*(fm.

Using the transformation formula, one checks that this definition is independent of
the choice of charts and of the partition of unity.

Let us recall Stokes’ theorem in the plane.
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Theorem 8.10 (Stokes’ theorem). Let A be a compact subset of the plane C with
smooth boundary OA which is oriented so that the outward pointing normal of A
and the tangent vector to OA form a positively oriented basis. For every smooth

1-form defined in a neighborhood of A,

/dw:/ w.
A 9A

Theorem 8.11. Let X be a Riemann surface and let w € &'(X) have compact
support. Then [ dw = 0.

Proof. In the plane this follows immediately from In general one
may use a partition of unity to decompose w into 1-forms each of which with has

compact support in one chart. O

8.11. The residue theorem.

Theorem 8.12 (residue theorem). Let X be a compact Riemann surface,
ai,...,an distinct points in X, and X' := X \{a1,...,an}. For every holomorphic
1-form w € OY(X'),

Z res,, (w) = 0.
k=1

Proof. We may choose coordinate neighborhoods (U, zx) of the aj which are pair-
wise disjoint and such that zx(ar) = 0 and each z;(Uy) is a disk in C. Choose
functions fi with supp fx € Uy such that fk|U;€ =1 for neighborhoods U], C Uy, of
ai. Then g :=1— (f1 +---+ f,) vanishes on each U},. Thus gw defines a smooth

l1-form on X. By
/ d(gw) =0
X

We have dw = 0 on X', since w is holomorphic, by [Proposition 8.2l On U, N X" we

have d(frw) = dw = 0. Thus, we may consider d(fyw) as a smooth 2-form on X
with compact support in Uy, \ {ar}. Hence d(gw) = — >, d(frw) and so

3 / d(frw) = 0,
k=17%
To finish the proof we show
/ d(frw) = / d(frw) = —2mires,y, (w).
X Uy,

Using the coordinate z; we may assume that Uy = ID. Thereare 0 <r < R < 1

such that supp fr € Dg(0) and f|ﬁr(o) = 1. Then, by [Theorem &8.10
d( frw) =/ d(frw) :/ frw —/ frw
Us r<|zx|<R lzk|=R [z |=r

= —/ w = —2mires,, (w), (8.6)
|z |=r

by the residue theorem in the plane. O

Corollary 8.13. Any non-constant meromorphic function f on a compact Rie-
mann surface X has as many zeros as poles (counting multiplicities).

Proof. Apply the residue theorem to w = df/f. O
Compare this with
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9. Periods and summands of automorphy

9.1. Periods. Let X be a Riemann surface and let w € &1(X) be closed. By
we may define the periods of w,

ay ::/w, o€ m(X).

For all 0,7 € m(X),

Qg.r = Qg + Qr,
whence we obtain a homomorphism a : 71 (X) — C of the fundamental group of X
to the additive group C, the so-called period homomorphism associated with w.

Example 9.1. For X = C* we have m(X) = Z, see [Example 4.5 The curve
v :[0,1] — C, y(t) = €™ represents a generator of m;(X). For w = dz/z, the
period homomorphism is Z — C, n — 27in, since f,y w = 27i.

9.2. Summands of automorphy. Let X be a Riemann surface and X its uni-
versal covering. We saw in that Deck(X — X) = m(X). There is
a natural action of Deck(X — X) on the set of functions f : X — C, namely, for
o € Deck(X — X), we set of := foo L.

A function f : X — C is called additively automorphic with constant
summands of automorphy if there exists constants a, € C such that

f—of=a, foralloeDeck(X — X).
The constants a, are called the summands of automorphy of f. We have
oy = f—oTf = (f*O’f)‘l*(O’f*O’Tf) =05 + ar,

whence a : Deck(X — X) — C is a group homomorphism.

9.3. Connection between periods and summands of automorphy.

Theorem 9.2. Let X be a Riemann surface and p : X — X its universal covering.

(1) Let w € &YX) be a closed 1-form and let F € &(X) be a primitive
of p*w. Then F is additively automorphic with constant summands of
automorphy. Its summands of automorphy are precisely the periods of w
(relative to the isomorphism Deck(X — X) = m1(X)).

(2) Let F € &(X) be an additively automorphic function with constant
summands of automorphy. Then there exists a unique closed 1-form
w € &YX) such that dF = p*w.

Proof. (1) Let o € Deck(X — X). Then oF is a primitive of p*w, indeed, d(c F) =
d((c™)*F) = (671)*(dF) = (071)*p*w = p*w because poo~! = p. Since two
primitives differ by a constant, F' — o F =: a, is a constant. Let zg € X and 2y €
p~1(z0). By the proof of the element 6 € m (X, zo) associated with
o can be represented as follows. Choose a curve 7 : [0,1] — X with v(0) = o~ ()
and (1) = zp. Then poy is a closed curve in X and & is its homotopy class. By

/” = F(y(1)) = F(7(0)) = F(20) — F(0 ™" (20)) = a0

(2) Suppose that F' has summands of automorphy a,. Then, for each o €

Deck(X — X),
0" (dF) =do*F = d(F + a,) = dF,
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that is, dF' is invariant under deck transformations. Since p : X > X is locally
biholomorphic, there exists w € &(X) with dF = p*w. Evidently w is closed and
uniquely determined. (|

Example 9.3 (complex tori, IV). Let A = ZA; + Z\3 be a lattice and X = C/A.
The quotient map 7 : C — X is the universal covering and Deck(C — X)) is the
group of translations by vectors A € A. Let z : C — C denote the identity map.
It is additively automorphic with constant summands of automorphy A € A. The
1-form dz is invariant under deck transformations. Thus there is a holomorphic
1-form w € O'(X) such that 7*w = dz and whose periods are the elements of A.

Corollary 9.4. Let X be a Riemann surface. A closed 1-form w € &Y (X) has a
primitive | € &(X) if and only if all periods of w vanish.

Proof. Suppose that all periods of w vanish. There is a primitive F' € & ()Z' ) of
p*w on the universal covering p : X = X , by |Corollary 8.6l By |Theorem 9.2L
F has summands of automorphy 0, which means that F' is invariant under deck
transformations. It follows that there exists f € &(X) with F = p*f. Then f is a
primitive of w, in fact, p*w = dF = d(p* f) = p*df implies w = df.

The other direction is evident, by O

Corollary 9.5. Let X be a compact Riemann surface. Two holomorphic 1-forms
which define the same period homomorphism coincide.

Proof. Let wi and ws be holomorphic 1-forms which define the same period homo-
morphism. Then all periods of w := w; —wq vanish. So there exists f € O(X) such
that w = df. Since X is compact, f must be constant, and so w = df = 0. (]






CHAPTER 4
Cech cohomology

In the language of sheaves local statements are easy to formulate. Often a
problem can be solved locally easily, by finding sections of some sheaf. But one
really is interested in a global solution, i.e., a global section. By the sheaf axioms,
global sections exist if the local sections coincide on the overlap domains. The
cohomology construction turns this condition into an algebraic condition.

The cohomology theory we are using is the so-called Cech cohomology. It
assigns groups to sheaves .# on topological spaces X which are usually denoted by
HY(X,.F); we will simply write H4(X,.%). For us it will be enough to have the
cohomology groups of zeroth and first order, so we will not bother to define them
for ¢ > 2.

10. Cohomology groups

10.1. The first cohomology group H'(4,.7). Let .Z be a sheaf of abelian
groups on a topological space X. Let 4 = (U;);cr be an open cover of X. For
k=0,1,2,... the kth cochain group of .% with respect to il is defined by
CH (L, .F) = II ~Zw,n--nuy.
(40,--yik ) ETFH1

Its elements are called k-cochains. Component-wise addition gives the group struc-
ture. We shall use the coboundary operators

§:COU,.7) = CHY,.#) and §:CYHYU,.F) = C*(U,.F)
defined as follows:

o For (fi)ier € CO(U,.F) let 6((fi)ier) = (9ij)ijer € CH(8L,.F), where
Gij = fj — f1 € gg(UZ n UJ)

e For (fij)ijer € CYW,F) let 6((fij)ijer) = (Gijn)ijrer € C*(8,F),
where gir = fijx — fix + fij € F(U;NU; N U).

The coboundary operators are group homomorphisms. Set
ZNU, F) =ker (6 : CH (U, .7) = C*(U, 7)),
B'(U, F) :=im (6 : C°(L, .F) = C' (LU, .F)).

The elements of Z'(U,.7) are called 1-cocycles. A 1-cochain (fi;)ijer is a 1-
cocycle if and only if it satisfies the cocycle relation

fik:fij‘f'fjk on U; NU; NU for all 7,4,k € 1.
The cocycle relation implies
fii =0 and fij = _fji-

The elements of BL(4,.#) are called 1-coboundaries. Every 1-coboundary is a
1-cocycle. The quotient group

H'(W,.F) = ZYU,.Z)/B* (U, .F)

39
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is the first cohomology group of 4l with coefficients in .%. Its elements are called
cohomology classes. Two cocycles which belong to the same cohomology class
are called cohomologous.

The cohomology group H'(4,.%) depends on the cover 4. Our next goal is to
define cohomology groups that depend only on X and %

10.2. The first cohomology group H'(X,.#). An open cover U = (V;);je, of
X is called finer than i = (U;);er if every Vj is contained is some U;. We write
2 < thin this case. So there is a map 7 : J — I such that V; C U, ;) for each j € J.
Consider the map ty : Z1 (4, .F) — Z1(V,.Z) defined by t55((fi;)) = (gre), where
gre := friyrolviny, for all k, £ € J. Since tLl takes coboundaries to coboundaries,
it descends to a homomorphism t§; : H'(4, %) — H' (U, F).

Lemma 10.1. 3 : H' (8, .F) — H* (U, .%) is independent of T.

Proof. Suppose that 7 : J — I is another map such that V; C U/(;) for all j € J.

Let (fi;) € Z'(4U,.7) and set gre := freyrolvinve and gl := frr ) o) lvinv,. We
have to show that (gr1) and (gy,;) are cohomologous. Since Vi, C Ury N Urr(ry We
may put hy := freyrylvi € F(Vi). Then on Vi, NV,

Gkt — Gt = Freyro) — fryr @ = Frayr) + Fr@r k) — Fr@r ) — Frrioyr o)
= frir k) = fr@yr @) = hie — he
The proof is complete. O

Lemma 10.2. t§ : H' (8, .F) — H* (U, .Z) is injective.

Proof. Let (fij) € Z'(8,.F) be a cocycle such that its image in Z'(U,.Z) is a
coboundary. We must show that (f;;) itself is a coboundary. Suppose fr()r@) =
gx — ge on Vi NV, for g € F(Vi). Then, on U; NV, NV,

9k — 9o = fryre) = frwyi + firey = —fir@e) + firo)

and thus fi-(x) +gr = fire) +g¢. Since F is a sheaf, there exists h; € 7 (U;) such
that h; = fir(k) + g on U; N Vi, Then, on U; NU; NV,

fij = fir(y + Fryg = Jirk) + 96 — Fir (k) — 96 = hi — ;.

Since k is arbitrary and since % is a sheaf, this holds on U; N U;, and hence

(fij) € B'(4,.7). 0

If we have three covers 20 < U < U of X, then t;% o t% = té‘n. So we define the
first cohomology group of X with coefficients in .% by

HY (X, 7):= @Hl(u,y),
b3

where 4 runs through all open covers of X. That means H!(X,.%) is the quotient
with respect to the following equivalence relation on | | H LU, F): two cohomology
classes & € HY(Uy,.7) and & € HY(Uy,.F) are equivalent if there is an open cover
U < 8;, i = 1,2, such that t5! (&) = te2(&2).

Addition in H'(X,.Z) is defined as follows. Let x1,22 € H(X,.#) be rep-
resented by & € H(;,.%), respectively. Let U < 4;, i = 1,2. Then x; + a9 €
H'(X,Z) is defined to be the equivalence class of 3 (£1) + ta2 (&2) € H (U, F).
This definition is independent of the various choices made and makes H! (X, .%) into
an abelian group. If .Z is a sheaf of vector spaces, then H'(8(,.#) and H(X, %)
are vector spaces in a natural way.
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Lemma 10.3. We have H (X, %) = 0 if and only if H* (4, .#) = 0 for every open
cover U of X.

Proof. implies that for each open cover 4 of X the canonical map
H(8, 7)) — HY(X,.Z) is injective. O

10.3. Some cohomology groups on Riemann surfaces.

Theorem 10.4. Let X be a Riemann surface and let & be the sheaf of smooth
functions on X. Then H'(X,&) = 0.

Proof. Let 4 = (U;);er be any open cover of X. We prove that H'(U,.#) = 0.
There is a partition of unity (y;);cr subordinate to 4, since X is second countable.
Let (f;;) € Z* (4, &). The function

@J(Z‘)f”(ﬂf) ifz e UimUj,
0 if z € U; \ (U; N U;),

is in &(U;); we denote this function simply by ; fi;. Define
fi=> _@ifij onU.

jel
This sum contains only finitely many nonzero terms near any point of U;, since the
family (supp ¢;) is locally finite. Thus f; € &(U;). Then,

fe=fe=>_@ilfrj — fo;) = (Z@j)fke = fre

jer jelI
on U, N U,. Thus (f;;) is a coboundary. O

Remark 10.5. The same proof shows that on a Riemann surface the first coho-
mology groups with coefficients in the sheaves &', &40, £%1, and &2 also vanish.

Theorem 10.6. Let X be a simply connected Riemann surface. Then H'(X,C) =
0 and H'(X,Z) = 0. Here C (resp. Z) denotes the sheaf of locally constant function
with values in C (resp. 7).

Proof. Let 4l = (U;);cr be any open cover of X and let ¢;; € Z'(4,C). By
there is a cochain (f;) € C°(4, &) such that ¢;; = f; — f; on U; N Uj.
It follows that df; = df; on U; N U;. So there is a 1-form w € &'(X) such that
w|y, = df;. In particular, w is closed. Since X is simply connected, there exists
f € &(X) such that w = df, by [Corollary 8.7 Set ¢; := f; — f on U;. Then dc; =0
on U;, thus ¢; is locally constant on Uj, i.e., (¢;) € C°(U,C). On U; NU; we have
Cij = fl — fj = ¢; — ¢y, that is (Cij) S Bl(il, (C)

Let (aji) € Z'(4,Z). By the first part, there is a cochain (c;) € C°(4l, C) such
that a;, = ¢;—c, on UjNUy. This implies exp(2mic;) = exp(2micy) on U;NUy, since
exp(2mia i) = 1. Since X is connected, there is b € C* such that b = exp(2wic;)
for all j € I. Choose ¢ € C such that exp(2mic) = b. Set aj := ¢; — c. Then
exp(2mia;) = exp(2mic;) exp(—2mic) = 1 and hence a; is an integer. On U; N Uy
we have aj, = c¢; — ¢, = aj — ay, that is (a;;) € B (8, Z). O

10.4. Leray cover. Sometimes it is possible to compute H'(X,.#) using only a
single cover of X.

Theorem 10.7 (Leray’s theorem). Let . be a sheaf of abelian groups on a topo-
logical space X. Let 4 = (U;)ier be an open cover of X such that H'(U;, F) = 0
for alli € I. Then H' (X, )~ H' (U, F).
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The cover in the theorem is called a Leray cover (of first order) for .%#.

Proof. Tt suffices to show that for each open cover U = (V,)neca with U < 4 the
map ty; : H' (U, F) - H(U,.F) is an isomorphism. By [Lemma 10.2} the map
is injective. Let 7 : A — I be such that V, C U,(,) for all a € A. Let (fap) €
Z1(0,Z). We claim that there exists (F;;) € Z'(4,.%) such that (Fy(a)r(s) —
(fap) is cohomologous to zero with respect to . This will show surjectivity. By
assumption, HY(U; N, .F) = 0, i.e., there exist g;o € Z(U; NV,) such that

fap = gia —gig  on U; N VN V3.
Soon U; NU; NV, N Vg,

Jja = Gia = gjB — 9i-

Since .# is a sheaf, there exist F;; € .Z(U; NU;j) such that

Fij = gjo — gia onU;NU; NV,.
Clearly, (Fij) S Zl(SJ., g) On V,N Vﬁ,

Frayr(8) = fap = (9r(8)a = r(a)a) = (Gr(B)a = 9r(8)8) = 9r(8)8 — Ir(a)a
and the claim follows, by setting ho = gr(a)alv. € F(Va). O

Example 10.8. We claim that H'(C*,Z) = Z. Let { = (U1, Uz) be the open cover
of C* by Uy := C*\ (—00,0) and Uy := C*\ (0, 00). [Theorem 10.6{and [Theorem 10.7|
imply H'(C*,Z) = H'(8,Z). Note that Z'(4,Z) = Z(U, NUy), since every cocycle
(a;j) is completely determined by aq2 (in fact a11 = az2 = 0 and a1 = —ai12). The
intersection Uy N Uy has two connected components, whence Z(Uy NUs) 2 Z X Z.
Moreover, Z(U;) = 7Z, since U; is connected, and so C°(U,Z) = Z x Z. The
coboundary operator 6 : CO(4,Z) — Z'(4,Z) takes the form

Z X 7> (b1,b2) — (b2 —bl,bg —bl) cZ X7
Thus B'(4,7Z) corresponds to the diagonal in Z x Z and hence H'(4,Z) = Z.

10.5. The zeroth cohomology group. Let .# be a sheaf of abelian groups on
a topological space X and let U = (U;);cs be an open cover of X. Define

20U, F) ==ker (0 : CO(U, F) — C' (LU, F)),
B(4,.7) =0,
HY(U, 7)== Z°U, F).

Thus (f;) € C°(4U, F) belongs to Z°(4, F) if and only if filu,nu, = fjlu.nu, for all
i,j € 1. Since .Z is a sheaf, there is an element f € .7 (X) such that f|y, = f; for
all ¢ € I. So there is a natural isomorphism

HO(SL, 7) = 7(X),
and thus the groups H°(4,.%#) are independent of the cover . Hence one defines
HY(X,Z):= Z(X).

10.6. Solution of the inhomogeneous Cauchy—Riemann equation in the
plane. We recall the following consequence of Runge’s approximation theorem
which is a special case of the Dolbeault lemma in several complex variables.
For a proof see e.g. [I4, Theorem 12.2]. A generalization on non-compact Riemann

surfaces will be obtained in

Theorem 10.9. Let X C C be a domain and let f € &(X). Then there exists
u € &(X) such that
Oou = f. (10.1)
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In the case that f has compact support in C, a solution u € &(C) is given by

u(z)—;i//cg(_ozdf/\dg.

Theorem 10.10. Let X C C be a domain. Then H*(X,0) = 0.

Proof. Let 4 = (U;);er be any open cover of X. Let (fi;) € Z'(4,0). By
there is (g;) € C°(4, &) such that fi; = g; — g; on U; N U;. This implies
0z9; = 0zg; on U; N Uj, and so there is h € &(X) with h|y, = 0zg; for all i € I.
By there exists g € &(X) such that dzg = h. Then f; :=g; — g is
holomorphic on U;, hence (f;) € C°(4,0). On U; NU;, fi — fj = 9i — g = fij-
That is (f'ij) S Bl(ﬂ, O) [l

We shall see in[Theorem 26.1|that actually H*(X, Q) = 0 for every non-compact

Riemann surface X.

Theorem 10.11. We have H'(C,0) = 0.

Proof. Let U := C\{co} and Us := @\{0} Then U; = C and Us is biholomorphic
to C. By [Theorem 10.10, H'(U;, ©) = 0. By [Theorem 10.7, H!(C,0) = H'(4, O)

for W = (Uy,Uz). Let (fij) € Z' (4, O). It suffices to find f; € O(U;) such that fi2 =

f1— fa on Uy NUy = C*. Consider the Laurent expansion f12(z) = ZZO:_OO cp2™
on C*. Then fi(z) :=Y .2 cn2" and fao(z) = — Z;ifoo cnz™ are as required. [

11. The exact cohomology sequence
In this section we develop some tools for the computation of cohomology groups.

11.1. Sheaf homomorphisms. Let .# and ¢4 be sheaves of abelian groups on a
topological space X. A sheaf homomorphism « : F — ¢ is a family of group
homomorphisms ay : F(U) — 4(U), U C X open, which is compatible with the
restriction homomorphisms: for all open V,U C X with V' C U the diagam

F(U) =9 (U)

L

F(V) > 9(V)

commutes. If all ay are isomorphisms, then « is called a sheaf isomorphism.
Similarly, for homomorphisms of vector spaces, etc.

Example 11.1. (1) The exterior derivative induces sheaf homomorphisms d :
&0 = &tand d: & — &2

(2) Natural inclusions such as O — &, C — &, etc., are sheaf homomorphisms.

(3) Let X be a Riemann surface. The exponential function defines a sheaf
homomorphism e : O — O* from the sheaf of holomorphic functions to the multi-
plicative sheaf of holomorphic functions with values in C* by ey (f) = exp(2wif)
for open U C X and f € O(U).

Let a: .F — ¢ be a sheaf homomorphism. For open U C X let

ker(a)(U) := ker (o : Z(U) - 4(U)).

Then ker(a) (together with the restriction homomorphisms induced from %) is

again a sheaf. It is called the kernel of «.

Example 11.2. On a Riemann surface
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(1) O =ker (0: &% — &%), by the Cauchy-Riemann equations.
(2) O' =ker (d: &40 — &%), by [Proposition 8.2l
(3) Z =ker (e : O — O*), by [Example 11.1{(3).
In analogy to the kernel of o one may define the image im(«) of « by setting

im(a)(U) :=im (ay : F(U) - 4(U)), for open U C X.

Note that im « is a presheaf but in general not necessarily a sheaf.

Example 11.3. Consider the sheaf homomorphism e : O — O* on X = C*, cf.
3). Let U; = C*\ (—00,0) and Uy = C*\ (0, 00) and f; € O*(U;) with
fi(z) = z, for i = 1,2. Since U; is simply connected, f; € im (e :0U;) — (’)*(Ui)).
Clearly, filv,nv, = f2luinu,- But there is no f € im (e O0(X) — (’)*(X)) such
that f|y, = fi, since z — z has no single valued logarithm on all of X = C*.

11.2. Exact sequences of sheaf homomorphisms. Let o : F — ¢ be a sheaf
homomorphism on a topological space X. For each x € X we obtain an induced
homomorphism of stalks

Oy 1 Fp — Y.
A sequence of sheaf homomorphisms
795w
is called exact if for all x € X the sequence
F. %59, 5 o,
is exact, i.e., ker 8, = im ;. A sequence
I = Fo— o= Tl — Ty,

is exact if Fy, — Fpi1 — Frao isexact forall k =1,...,n—2. An exact sequence
of the form

0> F 59— —0
is called a short exact sequence. A sheaf homomorphism « : . % — ¥ is called a

monomorphism if 0 - .F 5 ¢ is exact, and an epimorphism if Z 3 ¢ — 0 is
exact.

Lemma 11.4. Let « : F — 4 be a sheaf monomorphism on a topological space
X. Then, for each open U C X the map ay : F(U) — 4 (U) is injective.

Proof. Let f € F(U) with ay(f) = 0. Thus a,(f) = 0 for all z € U. Since
Qg @ Fp — 9, is injective for all x, every x € U has a neighborhood V,, C U such
that f|y, = 0. Since .# is a sheaf, we have f = 0. O

The analogue for sheaf epimorphisms is not necessarily true, by
for each z € C* the map e : O, — O is surjective, since every non-vanishing
holomorphic function locally has a logarithm, but e : O(C*) — O*(C*) is not
surjective.

Lemma 11.5. Let 0 — Z % 4 2 2 be an exact sequence of sheaves on a
topological space X. Then for each open U C X the sequence

0= Z(U) S 9U)% #U)

18 exact.
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Proof. By [Lemma 11.4} it remains to prove exactness at 4(U).

To show im(ay) C ker(By) let f € F(U) and g := ay(f). Since F, 3 &, By
F, is exact for all x € X, each x € U has a neighborhood V, C U such that
Bu(g)|v, = 0. Since & is a sheaf, Sy (g) = 0 and the claim is proved.

For ker(By) C im(ay) let g € 4(U) with 5(g) = 0. By assumption, ker(8,;) =
im(ay) for all x € X. So there is an open cover (V;);er of U and f; € .Z(V;) such
that ay(fi) = glv, for all ¢ € I. On any intersection V; N'V; we have a(f; — f;) = 0.
By the exactness at Z#(U), f; = f; on V;NVj for all 4,5 € I. Since F is a sheaf,
there exists f € #(U) with f; = f|y, for all i € I. Then ay(f)|v, = av(flv,) =
ay(fi) = glv, for all i € I. Since ¥ is a sheaf, ay(f) = g. O

Example 11.6. Let X be a Riemann surface. We have the following short exact
sequences on X.

(1) 05O = &2 &1 50, by [Theorem 10.9

2)05C— &S 2 -0, where Z = ker (d: &' — &2) is the sheaf of
closed 1-forms. Here d : & — % is an epimorphism, since locally every
closed form is exact.

(3) 0—>(C—>O—d>(91—>0,by

(4) 0= O &40 % &2 0. implies exactness at &Y. Let
us prove that d : &1 — &? is an epimorphism. In a local chart (U, z), we

have d(f dz) = 0zf dZ A dz. So the assertion follows from [Theorem 10.9
(5)0=7Z— 050" =0.

11.3. Induced homomorphisms of cohomology groups. Let a : % — ¢ be
a homomorphism of sheaves on a topological space X. It induces homomorphisms

2 HY(X, Z#) - H'(X,9), o :HYX,Z)— H (X,9)

as follows. The homomorphism a? is just the map ax : Z(X) — 4(X).

Let us construct the homomorphism a!. Let 4 = (U;);c; be an open cover of
X. The map

ay: CH(W,.7) » CHL YD), (fij) = (alfis))

takes cocycles to cocycles and coboundaries to coboundaries. It thus induces a
homomorphism

ay r HY (U, 7)) — H (U, 9).

The collection of all &y, where i runs over all open covers of X, induces the

homomorphism a?.

11.4. The connecting homomorphism. Let 0 — .7 3 ¢ % # — 0 be a short
exact sequence of sheaves on a topological space X. Let us define a connecting
homomorphism
5§ HY(X, ) — HY(X, F)

in the following way. Let h € H(X, 2#) = 5#(X). Since all the homomorphisms
Be Yy — S, are surjective, we find an open cover 4 = (U;);er of X and a cochain
(gi) € C°(U,9) such that 8(g;) = h|y, for all i € I. Then B(g; —g;) =0 on U;NU;
and so, by [Lemma 11.5] there exists fi; € .7 (U; N U;) such that o(fi;) = g; — gi-
On U; NU,; NU, we have Oé(fij + fjk + sz) = 0 and hence fij + fjk + fri = 0,
by m That is (fi;) € Z'(4,.%). Now let 6*h € H'(X,Z) be the
cohomology class represented by (f;;). This definition is independent of the various
choices made.
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11.5. The exact cohomology sequence.

Theorem 11.7. Let 0 — F 39 % 2 0 be a short exact sequence of sheaves
on a topological space X. Then the induced sequence of cohomology groups

0— > HY(X, 7) > X, %) "~ HO(X, #) -~

L HVX, F) S HY(X,9) L HY(X, )

18 exact.

Proof. Exactness at H(X,.Z) and H°(X,¥) follows from [Lemma 11.5]

(im 8% C ker 6*) Let g € H*(X,¥) = 4(X) and h = 8°(g). In the construction
of §*h one may choose g; := i in f;; = 0 and hence §*h = 0.

(ker 6* C im 3°) Let h € ker8*. Let (fi;) € Z' (8, .F) be the representative of
d*h, as in Since 6*h = 0, there is a cochain (f;) € C°(4,.#) such
that fij = fj — fl on Uz ﬂUj. Set gi = gi— Oé(fi), where g is as in
Then, on Ul N Uj,

gi — 395 = gi — (fz fj)=g¢—gj+oz(fij):0.

It follows that there is g € HO(X 4) with g; = g|u, for all 4 € I. On U;, we have
B(g) = B(g:) = B(g:) = h (by the exactness of 0 — .F — ¥ — 5 — 0), that is
h € im 3°.

(imd* C kera') This is obvious by the condition a(fi;) = g; — ¢; in the
definition of ¢* in [subsection 11.4

(kera! C imd*) Let £ € kera' be represented by (f;;) € Z'(4,.%#). Since
al(€) = 0, there exists (g;) € CO(81,%) such that a(fi;) = g; — g; on U; NU;. Then

= B(a(fi;)) = B(g;) — B(g:) on U; N Uj. Therefore, there exists h € J#(X) such

that hly, = B(g;) for all i € I. By [subsection 11.4} §*h = &.

(ima! C ker g1) By the sequence .Z(U; NU;) = 4(U; N U;) LA
€ (U; NUj) is exact, which implies the assertion.

(ker ' C ima') Let n € ker 8! be represented by (g;;) € Z'(4,%). Since
BY(€) = 0, there exists (h;) € C°(4, #) such that 5(g;;) = h; — h; on U; NU;. For
each x € X choose 7(z) € I such that x € U,(,). Since 3, : 4, — J, is surjective,
we find an open neighborhood V,, C U (,) of T and 9z € 9(Vy) such that B(g,) =
hr@lv,. Let U = (V;)zex be the family of all such neighborhoods V, and set
Gy = Gr(2)r( y)|V v, Then (goy) € Z'(V,¥) also represents the cohomology class
0. Let ¢y 1= §zy — gy + 9. Then the cocycle (¢4,) is cohomologous to (§,) and
B(tzy) = 0. So there is fr, € F(V,NV,) such that a(fzy) = Yay, bym
This defines a cocycle (f,,) € Z! (QT,?), since o : F(V,NV,NV,) = 4 (V,NV,NV,)

is injective by [Lemma 11.4] Then the cohomology class £ € H*(X,.Z) of (fuy)

satisfies al(&) = n. O

Remark 11.8. On a paracompact space X a short exact sequence of sheaves gives
a long exact sequence in cohomology which extends indefinitely past the H' level.

Corollary 11.9. Let0 - F 5 % P # 50 be a short exact sequence of sheaves
on a topological space X. If HY(X,94) =0, then H' (X, ) = #(X)/pY(X).

Proof. By we have the exact sequence

9x) 5 #x) % HY(X, Z) > 0. O
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Remark 11.10. It is sometimes important to have an explicit description of the
isomorphism ® : H'(X,.7) = #(X)/B8%(X). By we can assume
that .# = ker 8 and o : F — ¥ is the inclusion. Let £ € H*(X,.%) be represented
by (fi;) € Z* (U, F) C Z1(U,9). Since H'(U,¥) = 0, there exists (¢;) € CO(L,¥)
with fi; = g; — g on U; N U;. Then §(g;) = B(g:) on U; NUj, since B(fi;) = 0.
Thus, there exists h € S (X) such that h|y, = B(g;) for all i € I. Then ®(¢) is
the coset of h modulo $¥(X). That this map ® is the isomorphism H!(X,.%) =
H(X)/BY(X) induced by the long exact sequence in [Theorem 11.7| follows from
the part (kera! C imd*) in the proof of [Theorem 11.7]

11.6. Dolbeault’s theorem.

Theorem 11.11 (Dolbeault’s theorem). Let X be a Riemann surface. We have
the isomorphisms

H'(X,0) = %1 (X)/06(X), H'(X,0") = 6%(X)/d6M(X)

Proof. By [Theorem 10.4] and [Remark 10.5, H'(X,&) = HY(X,&%%) = 0. So
the statement follows from |Corollary 11.9| applied to [Example 11.6(1) and
ple 11.6[(4). O

Note that [Theorem 10.10]is a special case of this result.

11.7. The deRham cohomology groups. Let X be a Riemann surface. Con-
sider the first deRham cohomology group

ker (d : £1(X) — g?(X))

Rh'(X) := -
im (d: £9(X) > 51(X))

of closed smooth 1-form modulo exact 1-forms. Note that Rh'(X) = 0 if and only
if every closed 1-form w € &'(X) has a primitive. In particular, Rh'(X) = 0 if X
is simply connected; cf.

Theorem 11.12 (deRham’s theorem). Let X be a Riemann surface. Then
H'(X,C) = Rh(X).

Proof. Apply [Corollary 11.9| to [Example 11.6{(2); cf. [Theorem 10.4 O

Remark 11.13. More general versions of Dolbeault’s and deRham’s theorems are
valid on manifolds of arbitrary dimension.

11.8. Cohomology of locally constant sheaves. Let GG be a group and consider
the locally constant sheaf G of locally constant functions X — G. It is evident that
all cohomological constructions for this sheaf depend only on the topology of X. A
fundamental result in algebraic topology states that the Cech cohomology groups
for locally constant sheaves coincide with the simplicial cohomology groups for any
triangulable space.

We state the following results without proofs.

Theorem 11.14. Let X be a contractible Riemann surface and G an abelian group.
Then H°(X,G) = G and H"(X,G) =0 for alln > 1.

For compact Riemann surfaces X there is a connection to the genus of X which
will be introduced in the next chapter.
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Theorem 11.15. Let X be a compact Riemann surface of genus g and G an abelian
group. Then H°(X,G) = G, HY(X,G) =2 G%», H*(X,G) 2 G, and H*(X,G) =0
for alln > 3.

For HY(X,G) & G*9 with G = C see also |[Corollary 18.9



CHAPTER 5
Compact Riemann surfaces

12. A finiteness result

In this section we will see that, for any compact Riemann surface X, the coho-
mology group H' (X, ©) is a finite dimensional complex vector space. Its dimension
is called the genus of X.

12.1. A finiteness result. We will use a functional-analytic result due to L.
Schwartz. The presentation follows [6, Appendix BJ.

Recall that a linear map ¢ : E — F between Fréchet spaces is called compact
if there is a neighborhood U of zero in E such that ¢(U) is relatively compact in
F. Any compact linear map ¢ is continuous.

Lemma 12.1. Let E, F' be Banach spaces and let ¢, : E — F be linear continuous
maps, where @ is surjective and v is compact. Then (¢ + ¥)(E) is closed.

Proof. We will work with the adjoints ¢*,¢* : F* — E*. By Schauder’s theorem
[12] 15.3], a continuous linear map ¢ : E — F is compact if and only if ¢* : F* —
E* is compact. By the closed range theorem [12] 9.4], a continuous linear map
¢ : E — F has closed range if and only if ¢* : F* — E* has closed range. Thus ¢*
is injective and has closed range and ¥* is compact. And it suffices to show that
(™ + ¥*)(F*) is closed.

The kernel of ¢* + ¢* is finite dimensional. Indeed, let x, be a bounded
sequence with (¢* + ¢*)(x,) = 0. Since ¥* is compact, there is a subsequence
Zn, such that ¢*(z,,) = ¢*(—z,,) converges. It follows that z,, must converge,
because ¢* is injective and has closed range. So the kernel of p* + ¥* is locally
compact and hence finite dimensional.

We may assume that ¢* 4+ 1* is injective, since the kernel of ¢* + ¢* is finite
dimensional and hence complemented.

Let x, € F* be such that (¢* + ¢¥*)(x,) — z. We can assume that z,, is
bounded. For, if x,, is not bounded, then setting y, := ||x,| "'z, implies (p* +
¥*)(yn) — 0. There is a subsequence y,, such that ¢*(y,,) converges. Then
©*(Yn,) = (" + ¥*)(yn,) — ¥*(yn, ) converges. By the open mapping theorem,
Yn, converges, say, to y. But then |y|| = lim|y,,.|| = 1 and (¢* + ¥*)(y) =
lim(o* 4+ 9*)(yn, ) = 0, contradicting injectivity.

Since x, is bounded, there exists a subsequence x,, such that ¢*(z,,) con-
verges. Then, as before, ¢*(x,,) converges and there exists x € E* such that
T, — x. Clearly, (¢* +9*)(z) = z. O

Lemma 12.2. Let E = proj, oy En and F' = proj, ey Fn be Fréchet spaces and
p: E — F a continuous linear map which induces continuous maps @, : B, — F,
such that @, (Ey,) is closed. Then ¢(E) is closed in F.

Proof. Let || - ||, denote the norm of E,, as well as F,,; we may assume that || - ||, <
I - llns1 by replacing || - ||l by sup{|| - |l1,---,| - [|n}. Since ¢, : E, — F, has

49
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closed range, there is, by the open mapping theorem, a constant C,, such that for
all y € o, (Fy,) there exists x € E,, with y = @, (x) and ||z||, < Cp ||y|ln. We may

assume that C,, < C,+1. Let y be in the closure of p(F). Without loss of generality
we assume that ||y|l1 > 0. We claim that there is a sequence (x) in F such that

||$n”n—1 <274 2*n+1’ ||90(331 4+t xn) _ yHn < 07212771.

Then z = Y72 2 € E and y = ¢(x).

Let us construct z,. Choose z; such that ||¢(z1) — y[1 < C;'27'. Suppose
that x1,...,2,—1 have already be found. Then p(zq + -+ x,_1) — y lies in the
closure of ¢(E). So there exists x], € E with

lo(al) + @1+ +ap1) —ylln <Cp 27",
whence
(@) ln-1 < Cy 127" + Ct 27
Thus there exists x! € E,_; such that ¢,_1(2)) = p,—1(z]) and
2 lln-1 < Crt [lo(@y)ln1 <27+ 27"

It suffices to choose z,, sufficiently close to /.. ]

Theorem 12.3 (L. Schwartz). Let E, F be Fréchet spaces and let p,1) : E — F be
linear continuous maps, where ¢ is surjective and ¥ is compact. Then (¢ + ) (E)
is closed and F/(p + ) (E) is finite dimensional.

Proof. We have E' = proj,,cy By, and F' = proj,, ¢y Fy, where E,, F,, are Banach

spaces defined by the norms || - ||,. We may assume that || - ||; is chosen so that
Y({z € E: |jz|l1 < 1}) is relatively compact in F'. Since ¢ : E — F' is continuous
and open, by the open mapping theorem, for each || - ||, on F' there is || - ||, on E

and a constant K, such that
le@)ln < Kn ll2llm,, =€E,
and for all z € E there exists y € E with ¢(z) = ¢(y) such that
[9llm,, < Kn llo(@)]n-

Thus ¢ induces a continuous open, hence surjective map ¢, : E,,, — F,. We
may assume that m,, is chosen such that ¢ induces a continuous compact map
Yt By, — Fp. The sequence of seminorms || - ||, defines the topology of E, i.e.,
E = proj,en Em., -

By [Lemma 12.1] and [Lemma 12.2) (¢ + ¢)(E) is closed in F. Thus G :=
F/(¢ + ¥)(F) is a Fréchet space. We claim that G is locally compact and thus
finite dimensional. Let m : F' — G be the canonical projection. Let V = n({y €
F :lyllh < €}). If w(yx) is a sequence in V, then we can write yr = o(xg),
where z, € E and (z1) is bounded. Then (¢(—xy)) has a convergent subsequence,
since 1 is compact. We have y;, = ¢(zx) = (¢ + ¥)(zg) + ¥(—2x), and hence
m(yr) = m(¥(—x)) has a convergent subsequence. The proof is complete. O

12.2. The genus.

Theorem 12.4. Let X be a Riemann surface. Let Y € X be an open relatively
compact subset. Then H'(Y, Q) is finite dimensional.

Proof. There is an open set Y/ with Y € Y’ € X and there exist finitely many
open sets V; € U;, i = 1,...,7, in X such that J,_, V; =Y, U,_, U; = Y, and
each U; is biholomorphic to an open subset of C. By [Theorem 10.10} both 4l = (U;)
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and U = (V;) are Leray covers of Y’ and Y, respectively. By [Theorem 10.7] the
restriction map H!(U, O) — H (0, 0) is an isomorphism. It follows that the map
0 :C%W,0) @ 21U, 0) = ZH(,0)
((93) (fi5)) = 6((9:)) + (fi
is surjective; let us denote the map Z'(8, O) — Z'(0,0), (fi;) = (fijlvinv;) by B-
The spaces Z1 (4, 0), Z*(0,0), and C°(T, O) can be made into Fréchet spaces
in the following way. The space O(U;NU;) with the topology of uniform convergence
on compact sets is a Fréchet space. Hence so is C* (8, O) = [[, ; O(U; N U;) with
the product topology. Then Z!(4,O) is a closed subspace of C'(4, ©), thus also
a Fréchet space. Similarly, for Z1(2,0), and C°(0,0). With respect to these
topologies, the maps & : C°(U,0) — Z'(V,0) and B : Z*(U,0) — Z1 (T, 0) are
continuous. By Montel’s theorem, 3 is even compact. Thus, also the map
Y COV,0)® 21U, 0) = Z1(3,0)
((9i), (fi3)) = B((fi5))
is compact. By [lTheorem 12.3] the map
0 —1:C%WV,0) e 21U, 0) = Z1(V, 0)
((91), (fi5)) = 6((g:))

as a difference of a surjective and a compact map between Fréchet spaces has an
image with finite codimension. But im(¢ —1) = BY(0,0). And hence H(Y,0) =

H' (5, 0) (by [Theorem 10.7) is finite dimensional. O

The proof of this theorem actually shows the following corollary which we state
for later reference.

vinv;)

Corollary 12.5. Let X be a Riemann surface. Let Y1 € Yo C X be open subsets.
Then the restriction homomorphism H' (Y2, O) — H(Y1,0) has a finite dimen-
sional image.

Proof. We may assume that in the notation of the above proof |J;_, Vi =: Y,
Ui_, U; =: Y’ are such that Y1 CY € Y’ C Y. The proof of the theorem implies
that the restriction map H'(Y’,O) — H!(Y, O) has finite dimensional image. This
entails the assertion since the restriction map H' (Y2, O) — H'(Y7,0) factors as
HY\(Y3,0) - HY(Y',0) - HY(Y,0) — H'(Y1,0). O

Corollary 12.6. Let X be a compact Riemann surface. Then dim H(X,0) < cc.
Proof. Choose X =Y in the previous theorem. O

Let X be a compact Riemann surface. The number
g :=dim H'(X,0)

is called the genus of X. The genus of the Riemann sphere is zero, by
orem 10.11l We shall see below, in that the genus is a purely

topological invariant.

12.3. Existence of meromorphic functions.

Theorem 12.7. Let X be a Riemann surface. Let Y € X be a relatively compact
open subset and let a € Y. Then there exists a meromorphic function f € #(Y)
which has a pole at a and is holomorphic on 'Y \ {a}.
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Proof. By |Corollary 12.5| the image of H!(X,0) — H!(Y, Q) is finite dimensional,

say, its dimension is k. Let (U, z) be a coordinate chart at a with z(a) = 0. Let
Us := X\ {a}. Then 4 = (Uy, Us) is an open cover of X. On U; NU; = Uy \ {a} the
functions 277, j = 1,..., k+1, are holomorphic and (trivially) represent cocycles in
ZY(4, O). Their restrictions to Y belong to Z!(UNY, 0) and are linearly dependent
modulo coboundaries. So there exist ¢q,...,cxr1 € C, not all zero, and a cochain
(f1, f2) € C°(UNY,O) such that

k+1 )
ZCjZ_]:fg—fl onU;NU;NY.
j=1

Hence, there is a meromorphic function f € .#(Y), which coincides with f; +

Zfill cjz7 on Uy NY and equals fo on U2 NY =Y \ {a}. O
Corollary 12.8. Let X be a compact Riemann surface. Let ay,...,a, be distinct

points in X and let ¢1,...,c, be complex numbers. Then there exists [ € M (X)
such that f(a;) =¢; fori=1,...,n.

Proof. For every pair i # j there exists f;; € #(X) with a pole at a; but

holomorphic at a;, by Choose a constant A;; € C* such that
fijlar) # fij(aj) — Nij for every k =1,...,n. Then the meromorphic function
i = fij — fij(ay)
T fig = fiag) + Ny

is holomorphic at the points ay, k = 1,...,n, and satisfies g;;(a;) = 1 and g;;(a;) =
0. Then
n
f = Z Cihi with hz = Hng
i=1 j#i
is as required. O

12.4. Consequences for non-compact Riemann surfaces. We deduce some
consequences for non-compact Riemann surfaces which shall be needed in the proof
of the |Runge approximation theorem 25.10]

Corollary 12.9. Let Y be a relatively compact open subset of a non-compact Rie-
mann surface X. There exists a holomorphic function f :' Y — C which is not
constant an any connected component of Y.

Proof. Let Y7 be an open subset of X with Y € Y1 € X. Fixa € Y1 \'Y (note
that Y7 \ Y is non-empty, since X is non-compact and connected). The statement

follows from applied to Y7 and a. O

Theorem 12.10. Let X be a non-compact Riemann surface. Let Y € Y C X be
open subsets. Then im (Hl(Y’7 0) — H(Y, (9)) =0.

Proof. By |Corollary 12.5 the vector space L := im (HI(Y’,(’)) — H(Y, (’))) is
finite dimensional. Let &1,...,&, € HY(Y’,O) be cohomology classes whose restric-

tions to Y span L. By [Corollary 12.9 there is a holomorphic function f € O(Y”)

which is not constant an any connected component of Y’. There exist constants
cij € C such that

n
f& = Zcijgj onY fori=1,...,n. (12.1)
Jj=1
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Now F := det(fd;; — cij):,; is a holomorphic function on Y’ which is not identically
zero on any connected component of Y’. Moreover, by ((12.1)),

F&ly =0 fori=1,...,n. (12.2)

An arbitrary cohomology class ¢ € H'(Y’,0) can be represented by a cocycle
(fi;) € ZY(U,0), where 4l = (U;) is an open cover of Y’ such that each zero of F
is contained in at most one U;. Then F|y,~y, is holomorphic and non-vanishing in
U;NUjifi # j. So there exists (g;;) € Z' (4, O) such that f;; = Fg;;. Let £ €
H'(Y’,0) be the cohomology class of (g;;). Then ¢ = F&. By (122), ¢|y =0. O

Corollary 12.11. Let X be a non-compact Riemann surface. Let Y €Y' C X be
open subsets. Then for every w € EVY(Y) there exists a function f € &(Y) such
that 0f = wly.

Proof. The problem has a solution locally, by So there exist an
open cover i = (U;) of Y’ and functions f; € &(U;) such that 0f; = w|y,. The
differences f; — f; define a cocycle in Z'(U, O). By this cocyle is
cohomologous to zero on Y. Thus there exist g; € O(U; NY) such that

fi—fi=gi—g; onUnNnU;NY.

It follows that there is a function f € &(Y') such that fly,ny = fi — ¢; for all 4,
and, consequently, 3f = wly. O

13. The Riemann—Roch theorem

The Riemann—Roch theorem is central in the theory of compact Riemann sur-
faces. It tells us how many linearly independent meromorphic functions with pre-
scribed zeros and poles there are on a compact Riemann surface, relating the com-
plex analysis with the genus of the Riemann surface.

13.1. Divisors. Let X be a Riemann surface. A divisor on X isamap D : X —
Z such that for each compact subset K C X the set of x € K with D(z) # 0 is
finite. The set Div(X) of all divisors on X forms an abelian group with respect to
addition. There is a natural partial ordering on Div(X): for Dy, Dy € Div(X) we
set D1 < Dy if Dy(z) < Do(z) for all z € X.

For any meromorphic function f € #(X)\ {0} the map = — ord,(f) is a
divisor on X. It is called the divisor of f and will be denoted by (f).

We say that f is a multiple of the divisor D if (f) > D. Note that f is
holomorphic if and only if (f) > 0.

The divisor (w) of a meromorphic 1-form w € .#Z'(X) \ {0} is the map = —
ord; (w); here ord, (w) = ord,(f) where w = fdz in a local chart (U, z) at x.

For f,g € #(X)\ {0} and w € .Z*(X)\ {0} we have

(f9) =) +(9), A/f)=—=(f), (fo)=()+(w).

A divisor D € Div(X) is a principal divisor if there exists f € .#Z(X) \ {0} such
that D = (f). Two divisors D1, Do are said to be equivalent if their difference
D; — D, is principal.

A divisor D € Div(X) is a canonical divisor if there exists w € .Z1(X)\ {0}
such that D = (w). Note that any two canonical divisors are equivalent. Indeed,
for any two wy,wy € A1(X) \ {0} there exists f € #(X) \ {0} with w; = fws,
whence (w1) = (f) + (w2).
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13.2. The degree of a divisor. Let X be a compact Riemann surface. Then the
degree, i.e., the map
deg : Div(X) = Z, degD =Y _ D(x),
reX

is well-defined. It is a group homomorphism. For every principal divisor (f) we
have deg (f) = 0, since there are as many zeros as poles on a compact Riemann
surface. It follows that equivalent divisors have the same degree.

13.3. The sheaf Zp. Let D be a divisor on a Riemann surface X. For any open
U C X let
LpU):={feA#U):ord,(f) > —D(z) for all z € U}

be the set of multiples of the divisor —D. Then .%p (together with the natural
restriction maps) forms a sheaf on X. Note that 2y = O. For equivalent divisors
D1, Dy € Div(X), the sheaves Zp, and ¥p, are isomorphic. In fact, if D1 — Dy =
(g9), then Zp, > f — gf € £p, is a sheafl isomorphism.

Lemma 13.1. Let X be a compact Riemann surface and D € Div(X) a divisor
with deg D < 0. Then H°(X,.%p) = 0.

Proof. If there exists f € HY(X,.%p) = £p(X) such that f # 0, then (f) > —D
and thus deg (f) > —deg D > 0, a contradiction, by [subsection 13.2 O

13.4. The skyscraper sheaf. Fix a point P of a Riemann surface X. The
skyscraper sheaf Cp on X is defined by

if P
(CP(U):{(C i e,

0 ifPEU,
with the obvious restriction maps.
Lemma 13.2. We have H°(X,Cp) = C and H'(X,Cp) = 0.

Proof. Clearly, H*(X,Cp) = Cp(X) =C. Let £ € H(X,Cp) be represented by a
cocycle in Z1(4,Cp). The cover il has a refinement U such that P is contained in
just one V' € 0. It follows that Z'(U,Cp) = 0 and so & = 0. O

Lemma 13.3. Let D1 < Dy be divisors on a compact Riemann surface X. Then
the inclusion map Lp, — ZLp, induces an epimorphism

HY X, %p,) — H' (X, %p,) — 0.

Proof. Let D € Div(X) and P € X. We denote by P the divisor which equals 1
at the point P and zero otherwise. Then D < D’ := D + P and we have a natural
inclusion map .£p — Zp.

Let us define a sheaf homomorphism 8 : Zp, — Cp as follows. Let (V,z) be
a local coordinate neighborhood of P such that z(P) = 0. Let U C X be open.
IfPgU,set By =0. If P e U and f € Zp/(U), then f has a Laurent series
expansion about P with respect to z,

o

f= Z cnz", where k = D(P).

n=—k—1
Define By (f) := c_p—1 € C = Cp(U). Clearly, 8 is a sheaf epimorphism and

0> %p = ZLp LA Cp — 0 is a short exact sequence. By |Theorem 11.7| and

we have the exact sequence
0— H'X, %p) = H' (X, %p) —» C— H' (X, %p) — H'(X, %p/) — 0. (13.1)
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This implies the lemma for D1 = D and Dy = D' = D + P.

In general, Dy = D+ Py + P, + --- + P,,, where P; € X. The lemma follows
by induction. O

13.5. The Riemann—Roch theorem.

Theorem 13.4 (Riemann-Roch theorem). Let D be a divisor on a compact Rie-
mann surface X of genus g. Then H°(X, %p) and HY(X,%p) are finite dimen-
stonal vector spaces and

dim H°(X, %p) — dim H (X, %p) =1 — g + deg D.

Proof. The theorem holds for D = 0. In fact, H*(X,0) = O(X) only consists of
constant functions, whence dim H°(X,.%p) = 1. By the definition of g, the result
follows.

We will use the notation of the proof of[Lemma 13.3] Let D € Div(X), P € X,
and D’ = D + P. Suppose that the result holds for one of the divisors D, D’. We
will prove that it also holds for the other. Since any divisor on X is of the form
P+ -+ P, — Pyt1— - — P,, the theorem will follow by induction.

Consider the exact sequence (13.1). Let V := im (H(X,%p) — C) and
W :=C/V. Then dimV + dim W =1 = deg D’ — deg D and the sequences

0— HYX,%p) = H' (X, Zp) =V =0
and
0—W — HY(X,%p) —» H (X, Zp) — 0

are exact. It follows that all vector spaces are finite dimensional (since this holds
for either D or D’ by assumption),

dim H*(X, Zp/) = dim H*(X, %p) + dim V,
dim HY(X, %p) = dim H*(X, Zp/) + dim W,
and hence
dim H°(X, Zp/) — dim HY (X, Zp/) — deg D’
=dim H°(X, %p) — H (X, %p) — deg D.

The claim and thus the theorem follows. O

Typically, one is interested in the quantity dim H°(X,.%p), i.e., the mazimal
number of linearly independent meromorphic functions on X which are multiples
of —D. The correction term

i(D) :=dim H (X, %p)
is called the index of speciality of the divisor D. Thus
dim H°(X, %p) =1 — g +deg D +i(D).
Clearly, ¢(D) > 0 and hence we always have Riemann’s inequality
dim H*(X, %p) > 1 — g+ deg D.

By [Emma T
i(D)=g—1—degD if degD < 0.
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13.6. Consequences for the existence of meromorphic functions.

Theorem 13.5. Let X be a compact Riemann surface of genus g and let a € X.
There exists a non-constant meromorphic function f on X which has a pole of order
< g+1 at a and is holomorphic on X \ {a}.

Proof. Let D € Div(X) be defined by D(a) = g + 1 and D(z) = 0 if z # a. By
Theorem 13.4) dim H°(X,.%p) > 1 —g+deg D = 2. So there exists a non-constant

function f € H(X,.%p). It is clear that f has the required properties. O

Corollary 13.6. Let X be a Riemann surface of genus g. There exists a branched
holomorphic covering map f: X — C with at most g+ 1 sheets.

Proof. The function from the previous theorem is the required covering map in

view of [Theorem 3.19| (in fact, oo is assumed with multiplicity < g + 1). O
A strengthened statement will be proved in

Corollary 13.7. Every Riemann surface with genus zero is isomorphic to the Rie-
mann sphere.

Proof. A one-sheeted holomorphic covering map is a biholomorphism. O

14. Serre duality

In this section we will prove the Serre duality theorem which states that there
is an isomorphism H!(X, %p)* = H(X, £1 ). Thus,

dim HY(X, %p) = dim H*(X, £ )

is the maximal number of linearly independent 1-forms on X which are multiples
of the divisor D. As a special case (for D = 0) we get that the genus

g =dim H'(X,0) = dim H°(X, 0")

is the maximal number of linearly independent holomorphic 1-forms on X.

14.1. Mittag—Lefller distributions and their residues. Let X be a Riemann
surface. Let .#! be the sheaf of meromorphic 1-forms on X. Let & = (U;);e; be
an open cover of X. A cochain p = (w;) € CO(U,.#1) is called a Mittag—Leffler
distribution if 6u € Z(8, O'), i.e., the differences w; — w; are holomorphic on
U; NU;. We denote by [du] € H' (4, O') the cohomology class of du.

Let p = (w;) be a Mittag—LefHler distribution. Its residue at a point a € X is
defined as follows. Choose ¢ € I such that a € U; and set

resq () = resq (w;).

This is well-defined, since if a € U; N U; then res,(w;) = res,(w;) because w; — w;
is holomorphic.
Let X be a compact Riemann surface. Then we define

res(p) 1= Z resg ().

acX

Note that res,(u) is non-zero only for finitely many a € X.
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14.2. A formula for the residue. Let X be a compact Riemann surface. By
[Dolbeault’s theorem 11.11}

HY(X,0") = &*(X)/dsM0 (X). (14.1)
Let £ € HY(X,0') and let w € &%(X) be a representative of £ with respect to the
above isomorphism. We define the linear form res : H*(X,0') — C by
1

res(§) := 3 Xw. (14.2)

Since [y do = 0 for each o € &*(X), by[Theorem 8.11] the definition is independent

of the choice of the representative w.

Theorem 14.1. Let X be a compact Riemann surface. Let p be a Mittag—Leffler
distribution. Then

res(p) = res([0u]).

Proof. For the computation of res([0u]) we have to know the isomorphism
explicitly (cf. [Remark 11.10). We have dp = (wj — w;) € Z1 (8, OY) C Z1 (4, &1Y).
Since HY(X,&MY) = 0 (see [Remark 10.5), there is a cochain (o;) € C°(4, &)
such that

Wj —w; =05 —0; onUiﬁUj.
By [Proposition 8.2] d(w; — w;) = 0 and hence do; = do; on U; N U;. So there
exists 7 € &*(X) such that 7|y, = do; for all i € I. This 2-form represents the
cohomology class [du] (cf. Remark 11.10), and thus

res([ou]) = QLM/XT

Let ai,...,a, € X be the poles of p and set X’ := X \ {a1,...,a,}. Then
0, —w; = 0; —w; on X' NU; NUj, and hence there exists o € &10(X’) with
olxnu, = 0; —w; for all ¢ € I. Tt follows that 7 = do on X'.

For each ay there exists i(k) such that a € Us(). Choose a coordinate chart
(Vk, z1) such that Vi, C Uy and 2zx(ax) = 0. We may assume that the Vj are
pairwise disjoint and that each zj(V}) is a disk in C. Choose a function fi € &(X)
with support contained in Vj, and equal to 1 on an open neighborhood V) C Vj, of
ag. Set g =1—(fi+---+ fu). Then go can be considered as an element in &1°(X)

(by setting it 0 on the points ay). By [Theorem 8.11

/X d(go) = 0.

On V) \ {ax} we have d(fro) = do = do,() — dw;) = dojy. Thus d(fro) extends
smoothly to aj and can be considered as an element of &%(X), since it vanishes
outside the support of f. Since 7 = d(go) + >, d(fro), we obtain

n n
T= d(fro) = / d(froiky — frwicr))-
fir= 2 f e =32 | o~ s
By m fv (fxoi(k)) = 0. As in the computation 7

/ d(frwi(ry) = —2miresq, (Wigk))-
Vi

It follows that

res([ou]) = —/ T= Zresak = res(u). O

21
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14.3. The sheaf of meromorphic 1-forms which are multiples of —D. Let
X be a compact Riemann surface. Let D € Div(X) be a divisor. We denote by
£} the sheaf of meromorphic 1-forms which are multiples of —D, i.e., for any open
UCX,

LHU) ={w e .#*(U) : ord,(w) > —D(z) for all z € U}
In particular, £} = O!.

Fix a non-trivial meromorphic 1-form w € .Z*(X) and let K be its divisor.
For any D € Div(X) we obtain a sheaf isomorphism

Lpik =L, e fuw (14.3)

Then, by the [Riemann—Roch theorem 13.4]

dim H*(X, Z}) = dim H*(X, Zp . k)
=dim H (X, Zpyx) +1— g +deg(D + K)
>degD+1—g+degk,
where g is the genus of X. So there is an integer kg such that
dim H(X, Z}) > deg D + ko (14.4)

for all D € Div(X).

14.4. A dual pairing. Let X be a compact Riemann surface. Let D € Div(X)
be a divisor. The product

Ly xLp =0 (w,f) = fuw,
induces a map
HO(X, %)) x HY(X, %p) — H'(X,0").
Composition with the map res : H'(X, O') — C (from (14.2)) yields a bilinear map
HY(X, Z'p) x HY(X, Zp) = C, (w,§) := res(wé).
This induces a linear map
ip HY(X, 2 ) — HY(X, Zp)*, tp(Ww)(€) = res(wf),

where H'(X,.%p)* is the dual space of H'(X,.#p). The Serre duality theorem
holds that ¢p is an isomorphism, i.e., {-,-) is a dual pairing.

Lemma 14.2. The map tp is injective.

Proof. We have to show that for every non-zero w € H°(X, #',) there exists
¢ € HY(X, %p) such that (w,&) # 0. We may choose a point a € X such that
D(a) = 0 and a coordinate neighborhood (Up, z) of a with z(a) = 0 and D|y, = 0.
On Uy we have w = f dz for f € O(Up). By shrinking Uy if necessary we may assume
that f does not vanish in Uy \ {a}. Let Uy := X \ {a} and Y = (Up, U1). Let n =
((zf)~1,0) € COU, ). Then wn = (27 1dz,0) € CO(U,.#') is a Mittag-LefHer
distribution with res(wn) = 1. We have dn € Z1 (4, #p). For the cohomology class

€ :=[on] € HY(U, &p) of dn, we have wé = [§(wn)] and hence, by

(w, &) = res(wf) = res([d(wn)]) = res(wn) = 1. O
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14.5. Working up to the Serre duality theorem. Before we can prove sur-
jectivity of tp we need some preparation.

Let X be a compact Riemann surface. Let D’ < D be two divisors on X. The
inclusion 0 — #p, — #p induces an epimorphism H(X, %p/) — H (X, %p) —
0, by [Lemma 13.3] This in turn induces a monomorphism 0 — H(X,.%p)* —
HY(X, %p/)* which we denote by ig,. We obtain the commutative diagram

.D
00— HY(X, %p)* —2> H'(X, Lp/)*

OHHO(Xag—lD) HHO(ng—lD')

Lemma 14.3. Let A € HY(X, ¥p)* and w € HY(X, L ) satisfy iB,(\) =
tp(w). Then w lies in HY(X, £ ) and X = 1p(w).

Proof. Suppose that w ¢ H°(X, £1 ). So thereis a € X with ord,(w) < D(a). Let
(Uo, 2) be a coordinate chart at a with z(a) = 0. On Uy, w = fdz for f € .#(Uy).
Shrinking Uy if necessary we can assume that D|y,\fay = D'|ug\{a} = 0 and f
has no zeros and poles in Up \ {a}. Let Uy := X \ {a} and U := (Up,U;). Let
n=((zf)"%0) € CO(, ). Since ord,(w) < D(a), we have n € C°(8, £p). Thus
on € Z*(W,0) = ZY (U, Zp) = Z* (U, Zpr), because Uy N Uy = Uy \ {a}. The
cohomology class of dn in H (U, .£p) is € = 0. Let &’ denote the cohomology class
of on in H* (U, Zp). By assumption,
(w, &) =t/ (W)() = ip (N(E) = AE) = 0.
Since wn = (271 dz,0), we also have
(w, ') = res(wn) =1,

a contradiction. Thus w € HO(X,%';). We have A = (p(w), since i, (\) =
tpr(w) = iB,(1p(w)) and 8, is a monomorphism. O

Let X be a compact Riemann surface. Let D, B € Div(X) be two divisors. Let
1 € HY(X, ¥p) = £5(X). We have the sheaf morphism

ZLp-p—=ZLp, [oYf (14.5)

which induces a linear map H*(X,.%p_p) — H'(X,.%p) and hence a linear map
(also denoted by )

v HY (X, %p)" — HY(X, %p_B)*.

Then, by definition, (\)(€) = A(¥€) for X € HY (X, %p)* and &£ € HY(X, %p_B).
The following diagram, where the arrow in the bottom row is defined by multipli-
cation by v, commutes.

HY(X, Zp)* —2> H\(X, Zp_p)* (14.6)
. vp-5
HO(X, 21 ) — HO(X, 225 )
Indeed, if w € HO(X, %! ,) and € € HY(X, %p_p), then

Yup(W)(§) = tp(w)(¥E) = (w,1€) = (Yw,§) = tp—p(YPw)(E).

Lemma 14.4. If ¢ € HY(X, ¥p) = £5(X) is not the zero function, then the top
row in the diagram is injective.
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Proof. Let A be the divisor of ). Then A > —B. The map (14.5) factors through
Lpia, e, Lo — Lpra — Lp, where Lpira — £p (induced by multiplica-

tion with 1)) is an isomorphism. By [Lemma 13.3) HY(X, %p_p) — HY(X, %Lp14)
is an epimorphism. Thus also H'(X,.%p_p) — H'(X,.%p) is an epimorphism.
This implies the statement. O

14.6. The Serre duality theorem.

Theorem 14.5 (Serre duality theorem). Let X be a compact Riemann surface, and
D € Div(X). Then the map vp : H(X, £ ) — HY(X, %p)* is an isomorphism.

Proof. Tt remains to prove surjectivity of tp; cf. [Lemma 14.2] Let A\ € H*(X, %p)*
and A # 0. Fix P € Div(X) with degP = 1. Set D,, := D —nP, for n € N.
Consider the linear subspace A := {y\ € HY(X, %p,)* : v € H(X, %,p)}. Then
A is isomorphic to H°(X,.%,p); indeed, if A = 0 and 1 # 0 then A = 0, by
a contradiction. So, by the [Riemann—Roch theorem 13.4}
dimA>1—-g+n.
By (14.4), the linear subspace imitp, € H*(X,.%p,)* satisfies (we already know
that ¢p, is injective, by [Lemma 14.2)
dimimp, = dim H*(X, 2!, ) >n —deg D + ko

for some integer ko. If n > degD then degD,, < 0 and H°(X,.%p,) = 0, by
In that case the [Riemann—Roch theorem 13.4] implies

dimH (X, %p ) =g—1—degD,, =n+g—1—degD.
Thus, by choosing n sufficiently large we achieve

dim A + dimim¢p, > dim H* (X, %p, )*.

It follows that the linear subspaces A and im:p, of H'(X,.%p, )* have non-trivial
intersection. So there exists a non-trivial ¢ € H°(X,.%,p) and w € H*(X,.Z}, )
such that YA = ¢p_ (w). Let A be the divisor of ¢ and set D' = D,, — A. Then
1/ € HY(X, %4) and (since the diagram commutes)

1 1 1
i) = Ew)‘) =3P (W) =tp (gw)
By [Lemma 14.3] (1/¢)w lies in HO(X, 21 ) and A = tp((1/4)w). 0

14.7. Consequences. A first consequence of is
dim HY(X, %p) = dim H*(X, £ }),
in particular, for D = 0,
g =dim H'(X,0) = dim H*(X,0') = dim O*(X). (14.7)

So the genus of a compact Riemann surface X is equal to the mazximal number of
linearly independent holomorphic 1-forms on X.

The [Riemann-—Roch theorem 13.4] takes the form
dim H*(X, Z_p) —dim H*(X, Z}) =1 — g — deg D,

which means: the mazimal number of linearly independent meromorphic functions
which are multiples of a divisor D minus the mazimal number of linearly inde-
pendent meromorphic 1-forms which are multiples of a divisor —D is equal to
1—g—degD.

Corollary 14.6. Let X be a compact Riemann surface, and let D € Div(X). Then
HY(X, % p)~ HY(X, Z})*.
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Proof. Let w be a non-trivial meromorphic 1-form on X and K = (w) its divisor.
As in (14.3) we have sheaf isomorphisms Zpix = Z) and L p = L', . So
the statement follows from [[heorem 14.9) O

Corollary 14.7. Let X be a compact Riemann surface.  The map res
HY(X,0Y) — C is an isomorphism.

Proof. For D = 0, [Corollary 14.6| gives dim H!(X,0') = dim H°(X,0) =

1.
Clearly, res is not identically zero. O

Corollary 14.8. Let X be a compact Riemann surface of genus g. Let w € .4#*(X)
be non-trivial. Then deg (w) = 2g — 2.

Proof. Let K = (w) be the divisor of w. We have a sheaf isomorphism .Z = O1,
by (14.3). By the |Riemann—Roch theorem 13.4
1 —g+degK = dim H(X, %x) — dim H*(X, Zx)
=dim H(X,0") — dim H'(X,0")
=9 - 17

where the last identity follows from (14.7)) and [Corollary 14.7 O

Corollary 14.9 (complex tori, V). For any lattice A C C the complex torus C/A
has genus 1.

Proof. The 1-form dz on C induces a 1-form w on C/A having no zeros or poles;

cf. |[Example 9.3l Thus 0 = deg (w) = 2¢g — 2, by [Corollary 14.8 d

15. The Riemann—Hurwitz formula

The Riemann-Hurwitz formula allows one the calculate the genus of a holo-
morphic covering from the genus of the base space, the number of sheets, and the
branching order.

15.1. The branching order. Let f : X — Y be a non-constant holomorphic
map between two compact Riemann surfaces. Let m,(f) be the multiplicity with

which f takes the value f(z) at x; cf. Then

be(f) = ma(f) =1
is called the branching order of f at z, and

b(f) =Y ba(f)

zeX

is called the total branching order of f. Since X is compact, b, (f) is zero but
for a finite number of points x € X.
15.2. The Riemann—Hurwitz formula.

Theorem 15.1. Let f : X — Y be an n-sheeted holomorphic covering map between
compact Riemann surfaces with total branching order b. If g is the genus of X and
g’ 1is the genus of Y, then

b
g:§+n(g’—1)+1.
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Proof. Let w be a non-trivial meromorphic 1-form on Y. Then, by
deg (w) = 2¢" — 2 and deg (f*w) = 29 — 2.

Let x € X and y = f(x). There is a coordinate neighborhood (U, z) of « with
z(z) = 0 and a coordinate neighborhood (V,w) of y with w(y) = 0 such that in

these coordinates f takes the form w = 2*, where k = m,(f); see

Take w = 9(w) dw on V. Then on U,
frw =) d(z*) = k2F (%) dz.
This implies that ord,(f*w) = k — 14 kordy(w) = by(f) + ma(f) ord,(w), hence
Z ord, (f*w) = Z by (f) + nordy(w),
zef~1(y) zef~1(y)
and therefore

deg(f*w)zz Z ord, (f*w)

yeY zef~1(y)
= Z Z bI(f)JrnZordy(w):b+ndeg(w).
yeY zef~1(y) yeX
Hence 2g — 2 =b+n(29' — 2). O

15.3. Coverings of the Riemann sphere. For an n-sheeted holomorphic cov-
ering m : X — C of the Riemann sphere we obtain

b
g= 3~ n+ 1.
In particular, for a double covering of @, b is the number of branch points and
b
=-—1 15.1
9=7 (15.1)

A compact Riemann surface of genus > 1 which admits a double covering of C is
called hyperelliptic.

Example 15.2. Let P(z) = (z —a1) -+ - (2 — ax) be a polynomial of degree k with
distinct roots a;. Let p: X — C be the Riemann surface of /P(z). Then X is
branched over oo precisely if k is odd; cf. The total branching order
bis k or k+ 1, depending on whether k is even or odd. By (15.1]), we have

k—1
g:L 2 J
An explicit basis wy, . ..,w, for O'(X) is given by
27 ldz .
wj = W7 ij=1...,9,

where z denotes the function p : X — C. Using local coordinates (cf.|Theorem 4.8|)
one shows that the w; are holomorphic on all of X.

16. A vanishing theorem

A further consequence of the [Serre duality theorem 14.5is the following van-
ishing theorem for H*(X,.%p). It will lead to an embedding theorem for compact
Riemann surfaces into projective space in the next section.

Theorem 16.1. Let X be a compact Riemann surface of genus g. Let D € Div(X)
be such that deg D > 2g — 2. Then H'(X,%p) = 0.
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Proof. Let w be a non-trivial meromorphic 1-form on X and K = (w) its divisor.
Then deg K = 2g — 2, by |Corollary 14.8] By (14.3), we have a sheaf isomorphism
£ _pykx = £, and thus, using the [Serre duality theorem 14.5] H'(X, %p)* =
HY(X, £') =2 HY(X, % pi+k). We have deg(—D + K) < 0, since deg D > 2g — 2,
and thus H(X, % p. k) = 0, by [Lemma 13.1} O

Corollary 16.2. Let X be a compact Riemann surface. Then HY (X, #) = 0.

Proof. Let ¢ € HY(X,.#) be represented by (fi;) € Z'(U,.#). Passing to a
refinement of i if necessary, we may assume that the total number of poles of all
the f;; is finite. Thus we may find a divisor D with deg D > 2g — 2 such that

() € Z(8 Zp). By [heorem 16.) € € B (84, Zp) C B(4, ). 0

Let X be a Riemann surface and D € Div(X). The sheaf .Zp is called globally
generated if for each € X there exists f € HY(X,.%p) = Zp(X) such that
ZLpa=0.f, ie., every ¢ € Lp . can be written ¢ = 1 f for some ¢ € O,. Note
that the condition Zp , = O, f is equivalent to ord,(f) = —D(z).

Corollary 16.3. Let X be a compact Riemann surface of genus g. Let D € Div(X)
be such that deg D > 2g. Then £p is globally generated.
Proof. Let x € X and let D’ be the divisor defined by

D(y if y # x,

Dy)—1 ify==x.
Then degD > degD’ > 29 — 2. So HY(X,%p) = HY(X,Zp)) = 0, by
frem 16.1} The [Riemann—Roch theorem 13.4]implies

dim H°(X, %p) > dim H*(X, Zp/).

Thus there is an element f € H°(X,.%p) \ H*(X, %p/); in particular, it satisfies
ord,(f) = —D(x). O

17. Embedding of compact Riemann surfaces into projective space

We will now see that every compact Riemann surface can be embedded into
some projective space PV .

17.1. Projective space. The N-dimensional projective space is the quotient
space PV = (CN*1\ {0})/ ~ with respect to the equivalence relation
zvw & FIAeC iz =)w.

The equivalence class of (zo, . .., zy) € CVT1\{0} is denoted by (2 : - - : zny) € PV.
With the quotient topology PV is a compact Hausdorff space (indeed, PV is the
image of the unit sphere in CN¥*+1!). The sets

U={(z0::2y) €EPY .2, #0}, fori=0,...,N
form an open cover of PY. The homeomorphisms ¢; : U; — CV defined by
wi(zo: - 2n) = (@,...,@,@,...,Z—N>

induce a complex structure on PV which makes it a N-dimensional complex mani-
fold.

Let X be a compact Riemann surface and let F': X — PV be continuous. It
is then clear what it means that F' is holomorphic, an immersion, an embedding;:
Indeed, W; := F~1(U;) is open in X and we may consider

Fi:(Fi1,~--;FiN) :gOlOFWZ—>(CN
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The map F' is holomorphic if and only if all Fj;, 0 <7 < N, 1 < j < N, are
holomorphic. And F' is an immersion if and only if F' is holomorphic and for each
x € X there exists some F;; such that x € W; and dF;;(z) # 0. An embedding is
an injective immersion.

Example 17.1. Let X be a compact Riemann surface. Let fy,..., fy € #(X) be
non-trivial meromorphic functions on X. Fix € X and let (U, z) be a coordinate
neighborhood of = with z(x) = 0. If k := min; ord,(f;), then we have f; = z¥g; for
all i on U, where the g; are holomorphic and for some i we have g;(x) # 0. Define

F(z) == (go(z) : -+ : gn(2)).
This defines a map F : X — PV which we shall denote by F = (fo : -+ : fn).

Clearly, the definition is independent of the local coordinate chosen. The map F' is
holomorphic, since if g;(z) # 0, then near 2 we have

proF= (0, 01 g o)

.y 5 gee ey

9 9 9 gi
17.2. Embedding theorem.
Theorem 17.2. Let X be a compact Riemann surface of genus g. Let D be a

divisor with deg D > 2g + 1. Let fo,..., fn be a basis of H*(X, %p). Then the
map F = (fo:-: fn): X — PN is an embedding.

Proof. First we show that F is injective. Let x1, zo be distinct points in X. Let D’
be the divisor defined by

D'(2) = {D(z) if @ # @3,
D(z)—-1 ifz=xs.

Then deg D > deg D’ > 2g, whence the sheaves .Zpr and .Zp are globally generated,
by [Corollary 16.3] Thus there exists f € H°(X,.%p/) such that
OI‘dI1 (f) = —D/(Z‘l) = —D(.Z‘l). (171)
On the other hand,
ordg, (f) > —D(z2) + 1. (17.2)
Clearly, also f € H*(X,.%p) and hence f = > \; f; for some \; € C. For j = 1,2,
let (Uj, z;) be a coordinate neighborhood of x; such that z;(x;) = 0. Since Zp is

globally generated,
kj := minordg, (f;) = —D(x;). (17.3)

Factor f; = zfjgji and f = zfjgj near ;. Then F(x;) = (gjo(x;) : -+ : gjn(z;))
and

95(x5) = Y Nigyi()-
We have ¢1(z1) # 0 and g2(z2) = 0, by (17.1), (17.2)), and (17.3]), and consequently

Next we prove that F is an immersion. Let 2o € X. Let D’ be the divisor
defined by

D'(2) = {D(z) if © # xg,
D(z)—-1 ifz=xg.

As above we may conclude that £Zp: is globally generated and thus there exists
f € HY(X, %p) such that

ord,, (f) = =D(zo) + 1. (17.4)
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As before f = > A f; for some \; € C. Let (U, z) be a coordinate neighborhood
of xo such that z(xg) = 0. Then for k := min;ord,,(f;) = —D(x¢) we have
fi = 2¥g; and f = zFg, and some g;(x¢) # 0. Without loss of generality assume
that go(zo) # 0. In a neighborhood of z,

Fy:=ppo F = (ﬂ7,g—N)
90 90

Then, as f = Zi\[:o ;i f; implies g = 27];\;0 AiGi,

N N
> NiFoi = Z/\i& =L
i=1 - 9o 9

and therefore
N
>\ dFy = d(i).
i=1 g0

We have d(g/go)(xzo) # 0, since go(zg) # 0 and since g vanishes of first order
at xo thanks to (17.4). It follows that dFy;(zo) # O for some ¢, and so F' is an
immersion. 0

Remark 17.3. Actually, every compact Riemann surface admits an embedding
into P3.

18. Harmonic differential forms

In this section we introduce and study harmonic 1-forms on a compact Riemann
surface X. We will see that every smooth closed 1-form on X can be uniquely writ-
ten as the sum of a harmonic and an exact 1-form. So the first deRham cohomology
group of X is isomorphic to the vector space of harmonic 1-forms on X. This will
imply that the genus is a topological invariant.

18.1. The x-operator and harmonic 1-forms. Let X be a Riemann surface.
Let w € &1(X). Locally, w = > f; dg; for smooth function f;, g;, and we may con-
sider the complex conjugate w = Z?j dg;. This defines the complex conjugate
w € &Y(X) of w. The real part of w is defined by Re(w) = (w+w)/2. We say that
w is real if w = Re(w). We have Re(f7 w) = fﬁ/ Re(w), because fvw = fv w.

If w € O}(X) is holomorphic, then @ is called antiholomorphic. The vector
space of all antiholomorphic 1-forms on X is denoted by o' (X).

Let w € &1(X). There is a unique decomposition
w=uw +wy, wherew € &Y(X), wy € &YX,

Defining

W = Z(wl - wg)
we obtain an R-linear automorphism * : &1(X) — &1(X) with x&19(X) = £%1(X)
and *&%1(X) = &10(X).

Lemma 18.1. We have the following properties.
(1) **w = —w and ¥w = *w for all w € &(X).
(2) d* (w1 +we) = i0w; — 10wy for all wy € EYY(X), wy € E9H(X).
(3) x0f =i0 f, x0f = —i0f, and dxdf = 2i00 f for all f € &(X).

Proof. (1) is obvious. For (2), dx (w1 + w2) = (0 + 0)(i(w) — W) = i0w; — i0ws.
By (2), dxdf = dx(df +0f) = i00 f —i00f = 2i00 f. The rest follows easily from
the definition. O
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Proposition 18.2. Let w € &1(X). The following conditions are equivalent.
(1) dw=dxw =0.
(2) Ow = 0w =0.

(3) w=w; +ws, where w; € OY(X) and ws € 51(X),

(4) w is locally the exterior derivative of a harmonic function.

Proof. The equivalence of the first three items follows from

(1) = (4) Since dw = 0, locally w = df for some smooth function f. Since
0 = d*xw = dxdf = 2i00 f, f is harmonic.

(4) = (1) Assume that w = df and f is harmonic, then dw = ddf = 0 and
dxw = dxdf = 2i00 f = 0. O

A 1-form w € &}(X) on a Riemann surface X which satisfies the equivalent
conditions in the proposition is called harmonic. We denote the vector space of
all harmonic 1-forms on X by &L (X). By [Proposition 18.2]

har

Ehe(X) = O1(X) 2 O (X). (18.1)
If X is a compact Riemann surface of genus g, then
dim &, (X) = 2g, (18.2)

by ([T,

Theorem 18.3. Let o € &, (X) be a real harmonic 1-form. There exists a unique

w € OY(X) such that 0 = Re(w).

Proof. We may write 0 = wy + ws for wy,ws € OY(X). Since o is real, wy + Wy =
0 =0 =W +ws, and so w; = wy. Then ¢ = Re(2wy).

If 0 = Re(w) = Re(w') for w,w’ € OY(X), then 7 := w — ' € O(X) and
Re(7) = 0. Locally, there is a holomorphic function f such that 7 = df. Thus, f
has constant real part and hence is constant itself. Therefore, 7 = 0. 0

18.2. A scalar product on &'(X). Let X be a compact Riemann surface. For
w1, W € gl(X) let

(w1, ws) ::/ w1 A *wsy.
X

This defines a (sesquilinear) scalar product on &1(X). Let us check that (-,-) is
positive definite. In a local chart w € & 1(X) has the form w = fdz + gdz, thus
xw = i(f dz — gdz) and

wAww = i(|f[* +1g*) dz A dz = 2(1f1* + |g|*) dz A dy
Consequently, (w,w) > 0 and (w,w) = 0 if and only if w = 0.
Thus (£1(X), (-,-)) is a unitary space, which however is not complete.

Lemma 18.4. Let X be a compact Riemann surface.

(1) 0&(X), 0&(X), OY(X), and o' (X) are pairwise orthogonal subspaces of
EHX).
(2) d&(X) and *d&(X) are orthogonal subspaces of &1 (X) and

dE(X) @ +d&(X) = dE(X) © DE(X). (18.3)

Proof. (1) Since &3°(X) and &%1(X) are clearly orthogonal also & (X) L & (X),
9E(X) L OY(X), and 9&(X) L O (X).
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Let us prove 9&(X) L O(X). Let f € &(X) and w € O}(X Bym
and Proposton 83

WA*Of =iwAO f =iwAdf = —id(fw)
and by [TTeorem ST
/w/\*@f:—i/ d(fw) = 0.
X X

For & (X) J_@I(X), use WA *0f = —iw A0 f = —iw Adf = id(fw).
(2) Let f,9 € £(X). Then, by
df A x(xdg) = —df Ndg = —d(f dg).

Again by [Theorem 8.11] (df,*dg) = 0. For the identity (18.3) observe that, by
[Cemma 18.1]

df ++dg = Of + Of +*(0g + 0g) = O(f — ig) + O(f + ig). O

Corollary 18.5. Let X be a compact Riemann surface. FEvery exact harmonic
1-form on X wanishes. Every harmonic function on X is constant.

Proof. By , d&(X) is orthogonal to & (X) = O0Y(X) @ o' (X). O

Corollary 18.6. Let X be a compact Riemann surface.

(1) Leto € & (X). If f7 o = 0 for every closed curve v in X, then o = 0.
(2) Letw € OYX). If Re f,yw = 0 for every closed curve v in X, then w = 0.

Proof. implies that both ¢ and Rew are exact. Then the assertions
follow from [Theorem 18.3] and [Corollary 18.5] O

18.3. The Hodge—deRham theorem.

Theorem 18.7. Let X be a compact Riemann surface. We have orthogonal de-
compositions

£91(X) = 96(X) @ O (X) (18.4)
e ENX) =#dE(X) ® dE(X) & S (X). (18.5)
Horeover ker (d: &1(X) = (X)) = dE(X) @ Ear(X) (18.6)
" HY(X,C) = Rh*(X) = &L, (X) (18.7)

Proof. By [Dolbeault’s theorem 11.11} dim (£%!(X)/0& (X)) = dim H'(X,0) = g

and, by (14.7), dim@l(X) =dim O*(X) =g. So follows from
Applying complex conjugation to yields £M0(X) = 9&6(X) @ OL(X).
Together with this gives .
For (18.6), let 2'(X) := ker (d : £'(X) — &%*(X)). The inclusion d&'(X) &
&L (X) C Z(X) is clear. For the other inclusion it suffices, by (I8.5)), to show
Z (X)L %xd&(X). To this end let w € Z(X) and f € &(X). Then w A x(xdf) =

—w Adf =d(fw) and hence {(w, *df) = fX (fw) =0, by [Theorem 8.11

Finally, (18.7) follows from [deRham’s theorem 11.12]and (I8.6). O

Corollary 18.8. Let X be a compact Riemann surface.
(1) Let 0 € &%Y(X). Then Of = o has a solution f € &(X) if and only if
o 10 (X).
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(2) A 1-form o € &Y(X) is exact if and only if fX o ANw =0 for every closed
w e &HX).

Proof. (1) follows from (|18.4]).

(2) The condition is equivalent to (w, o) = 0 for every closed w € &1(X). By
D) an .6)), this means that xo € * , or equlvalently, o € .
(T35) and (18.6), thi h d&(X ivalentl d&(X). O

18.4. The genus is a topological invariant.

Corollary 18.9. The genus of a compact Riemann surface X is a topological in-
variant.

Proof. The sheaf C of locally constant complex valued functions on X depends only
on the topology of X. Hence the first Betti number b;(X) := dim H!(X,C) is a

topological invariant. By (18.7) and (18.2)), b1 (X) = 2g. O

Remark 18.10. Every Riemann surface is a connected orientable two-dimensional
smooth manifold; orientability follows from the fact that a holomorphic map be-
tween two subsets of the complex plane is orientation preserving.

There is a topological classification of connected orientable compact
two-dimensional manifolds which depends only on the first Betti number
bi(X) = dim H}(X,C) (see e.g. [10]): every such surface X with by (X) = 2g
is homeomorphic to a sphere with g handles. The number of handles is called the
topological genus of the surface.

The dimension of H*(X, ©O) is sometimes referred to as the arithmetic genus;
this is the definition we introduced infsubsection 12.2] As a consequence of the[Serre]
[duality theorem 14.5(we found that the dimension of H!(X, O) equals the dimension
of O'(X). The latter is a priori an analytic invariant which depends very much
on the complex structure, whence dim O!'(X) is often called the analytic genus
of X. All three genera, the topological, the arithmetic, and the analytic genus, of a
compact Riemann surface are equal. In higher dimension this result generalizes to
the so-called Hirzebruch-Riemann—-Roch theorem.

Note that for every genus g > 1 there are Riemann surfaces which are homeo-
morphic but not biholomorphic; see e.g. [1] for a characterization of the holomorphic
equivalence classes of Riemann surfaces of given genus.

19. Functions and forms with prescribed principal parts

Mittag—Leffler’s theorem asserts that in the complex plane there always exists
a meromorphic function with suitably prescribed principal parts. This is not al-
ways true on compact Riemann surfaces. In this section we explore necessary and
sufficient conditions for a solution of the Mittag—Leffler problem based on the
|duality theorem 14.5]

19.1. Mittag—Lefller distributions of meromorphic functions. In analogy
to we define to Mittag—Leffler distributions of functions (instead
of 1-forms): Let X be a Riemann surface. Let Y = (U;);er be an open cover of
X. A cochain u = (f;) € C°U, .#) is called a Mittag—Leffler distribution if
Su € Z1(4,0), i.e., the differences f; — f; are holomorphic on U; NU;. Then f; and
f; have the same principal parts on the intersection of their domains. We denote
by [6u] € H(U, O) the cohomology class of du.

By a solution of p we mean a meromorphic function f € .#(X) which has
the same principal parts as p, i.e., fly, — fi € O(U;) for all i € I. Two solutions
f1, fo of u differ by an additive constant, since f; — f5 is holomorphic on X.
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Proposition 19.1. A Mittag—Leffler distribution p has a solution if and only if
[6u] =0 in HY (U, O).

Proof. Suppose that f € .#(X) is a solution of 4 = (f;). Then g; := f;—f € O(U;),
and on U;NU;, we have f; — fi = g;—gi. Sodu = (fj—f;) € BY (U, 0), i.e., [6u] = 0.

Conversely, assume that du = (f; — fi) € BY(U,0). Then there exists (g;) €
CO(4h, 0) with f;— f; = gj—gi on U;NU;. So thereis f € .#(X) with fly, = fi—gi,
i.e., f is a solution of u. U

Let X be a compact Riemann surface. Then H'(X,.#) = 0, by [Corollary 16.2

So for any ¢ € H'(X,O) there exists a Mittag-Leffler distribution u € CO(U, .#)
with € = [dpu], for a suitable cover 4. It follows that on every compact Riemann

surface of genus g > 1 there are Mittag—Leffler problems which have no solution.
On the other hand, H!(C, O) = 0, by |Theorem 10.11} and thus every Mittag-Leffler
problem has a solution.

19.2. Criterion for solvability. If u € C°(U,.#) is a Mittag—Leffler distribution
of meromorphic functions and w € O!(X) is any holomorphic 1-form on X, then the
product wp € CO(U, .#1) is a Mittag-Leffler distribution of meromorphic 1-forms.

By |subsection 14.1} the residue res(wpy) is defined.

Theorem 19.2. Let X be a compact Riemann surface. Let u € CO(L, . #) be a
Mittag—Leffler distribution of meromorphic functions. Then u has a solution if and
only if res(wp) = 0 for every w € OY(X).

Proof. [du] € H' (8, O) vanishes if and only if A\([§u]) = 0 for every A € H' (4, O)*.
By the [Serre duality theorem 14.5] this is the case if and only if (w, [6u]) = 0 for
every w € O(X). By|Theorem 14.1} (w, [6u]) = res(w[du]) = res(wp). The theorem
follows from [Proposition 19.1] U

Clearly, res(wpu) = 0 for every w € O'(X) if and only if res(wgp) = 0 on a basis
wi, ... ,wy of OY(X).

Example 19.3 (complex tori, VI). Let A = Z\; + ZX2 be a lattice. Let P =
{t1A1 + taAa : t1,t2 € [0,1)}. Suppose that at the points a4, ...,a, € P, principal
parts
-1
Z Cj,k(ziaj)ka j:]-a""na
k=—r;

are prescribed. Then there exists an elliptic function with respect to A and having
poles with the prescribed principal parts at the points ay, ..., a, if and only if

n
E Cj—1= 0.
j=1

Indeed, the principal parts give rise to a Mittag—Leffler distribution x on C/A. The
1-form w in C/A induced by dz on C (cf. [Example 9.3) is a basis of O*(C/A). So
the statement follows from

19.3. Weierstrass points. We shall use the criterion in to find

conditions for the existence of functions on a compact Riemann surface which are
holomorphic but at one point and have a pole of order < ¢ at that point. For

instance, by an elliptic function cannot have precisely one pole of
order 1 in any period parallelogram.
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Let X be a compact Riemann surface with genus g and let p € X. Suppose
that wy,...,w, is a basis of O'(X). Let (U, z) be a coordinate neighborhood of p
with z(p) = 0. Then we may expand wy about p:

o0
wk:Zakajdz, k=1,...,9.

We look for a function f which has a principal part at p of the form
h = Z . where at least one c; # 0.

Thus f is a solution of the Mittag-Leffler distribution u = (h,0) € C°(U,.#),
where = (U, X \ {p}). Now

res(wgpt) = resp(wiph) = E ag;Cj.

By the solution f exists if and only if the system of linear equations
resy(wih) =0, k=1,..., g, has a non-trivial solution co, ..., cy—1. This is the case
if and only if

det(akj) =0. (19.1)
We will express this condition in terms of the Wronskian determinant. Let

fi,-.., fq be holomorphic functions in a domain U C C. The Wronskian deter-
minant is defined by

fi for Sy
fi o0
W(f1,...,fq) :=det : : .
(9—1) (9-1) . (9—1)
1 2 9
If fi1,..., fy are linearly independent over C, then W(f1,..., fy) Z 0 (Exercise!).
Let X be a compact Riemann surface of genus g > 1 and let w,,...,wy be a

basis of O'(X). In a coordinate chart (U, z) we may write wy = fi dz. We define

Wo(wi,...,wg) :==W(f1,..., fq)
with derivatives taken with respect to z.

Lemma 19.4. Let (U, z) and (V,w) be two coordinate charts on X. On UNV we
have
dw) 9(y+1)

We(wr,...,wg) = (dz

Wi(w, ..., wg).

Proof. On U NV, we may write wy, = frdz = g dw. Then f; = gr(dw/dz) and,
by induction on m,

am dw\mHdmg, o~
fk_(ﬂ) 9k ij gk

dzm — \dz dw™

where ¢,,,; are holomorphic functions on U NV independent of k. Hence
dm 9—1g dw\m+1dm g—lg

e () = () )
dz™ / m=0,k=1 dz dw™ / m=0,k=1

which implies the lemma. O




19. FUNCTIONS AND FORMS WITH PRESCRIBED PRINCIPAL PARTS 71

Observe furthermore that if @i,...,&, is another basis of OY(X), then
(W1, ..., wy) = C(@n,...,w0y) for a matrix C' with det(C) # 0, and hence

W (wi,...,wg) = det(C) W, (@1, ...,0).

We say that a point p € X is a Weierstrass point if for a basis wi,...,w,
of O'(X) and a coordinate neighborhood (U, 2) of p, the Wronskian determinant
W, (w1, ..., wy) vanishes at p. The order of this zero is called the weight of the
Weierstrass point. By definition, a Riemann surface of genus 0 does not have any
Weierstrass points. This definition is meaningful by the lemma and the observation
above.

Coming back to the arguments at the beginning of this section, it is clear that
(119.1)) is equivalent to
W (w,...,wg)(p) =0.

So we have proved the following theorem.

Theorem 19.5. Let X be a compact Riemann surface with genus g and let p € X.
There exists a non-constant meromorphic function f € .4 (X) which has a pole of
order < g at p and is holomorphic on X \ {p} if and only if p is a Weierstrass
point.

We can even say how many Weierstrass points there are.

Theorem 19.6. Let X be a compact Riemann surface with genus g. The number
of Weierstrass points, counted according to their weights, is (g — 1)g(g + 1).

Proof. Let (U;, z;) be a cover of X by coordinate charts. On U; N Uj, the function
ij := dzj/dz; is holomorphic and non-vanishing. Fix a basis w1, ...,w, of O'(X)
and let

W, = Wzi(wh - ,(J.)g) € O(UZ)

By we have
g9(g+1)
Wizq/}ij 2 W; onU;NUj.

Let us set D(z) := ord,(W;) for x € U;. This defines a divisor D on X such that
deg D is the number of Weierstrass points, counted according to their weights.

Let D; be the divisor of w;. By deg D1 = 2g — 2. If we write
w1 = fridz; on U, then Dy(x) = ord,(f1;) for all x € U;. Since f1; = v;;f1; on
Ui N Uj, we find

_ g(g;rl) g9(g+1)

fli Wl:flj 2 WJ on UlﬂUJ

g+1)

_g(
Thus there exists a meromorphic function f € #(X) with f|y, = f;; 2 W,;. The
divisor of f satisfies (f) = D — le. Since deg(f) = 0 (cf. [subsection 13.2)),
we obtain

9(g+1)

The proof is complete. O

Corollary 19.7. Every compact Riemann surface X for genus g > 2 admits a
holomorphic covering map f: X — C having at most g sheets. In particular, every
compact Riemann surface of genus 2 is hyperelliptic.

Proof. By [Theorem 19.6] there exists a non-constant meromorphic function f €
A (X) with a single pole of order < g. Then f is the required covering map; it

assumes oo with multiplicity < g (cf. [Theorem 3.19)). U



72 5. COMPACT RIEMANN SURFACES

Actually, any compact Riemann surface of genus g > 2 admits a covering of C
with at most (g + 3)/2 sheets; see [11].

19.4. Differential forms with prescribed principal parts. Let X be a Rie-
mann surface, Y = (U;);er an open cover of X, and p = (w;) € CO(U,.#") a
Mittag—Leffler distribution of meromorphic 1-forms on X. A solution of y is a
meromorphic 1-form w € .#*(X) which has the same principal parts as p, i.e.,
wly, —w; € OU;) for all i € I.

Similarly as [Proposition 19.1| one proves:

Proposition 19.8. A Mittag-Leffler distribution u € CO(U, .#') has a solution if
and only if [u] = 0 in H' (U, O).

Theorem 19.9. Let X be a compact Riemann surface. A Mittag—Leffler distribu-
tion p € CO(U, A#1) on X has a solution if and only if res(u) = 0.

Proof. By res(u) = res([dp]) and, by [Corollary 14.7] the map res :
H(4,0') — C is an isomorphism. Thus, res(u) = 0 if and only if [§u] = 0. O

Let X be a compact Riemann surface. [I'heorem 19.9|implies:

(1) For every p € X and every n > 2 there exists a meromorphic 1-form on
X which has a pole of order n at p and is otherwise holomorphic. It is
called an elementary differential of second kind.

(2) For any two points p1,ps € X there exists a meromorphic 1-form on
X which has poles of first order at p; and py with residues 1 and —1,
respectively, and is otherwise holomorphic. It is called an elementary
differential of third kind.

1-forms that are everywhere holomorphic are called elementary differential of
first kind.

20. Abel’s theorem

In the complex plane the Weierstrass theorem guarantees the existence of a
meromorphic function with prescribed zeros and poles. We already know that on a
compact Riemann surface the total order of the zeros must equal the total order of
the poles. For Riemann surfaces with genus g > 1 this condition is not sufficient.
In Abel’s theorem we shall find necessary and sufficient conditions for the existence
of such functions. To prescribe zeros and poles with their orders is to prescribe the
divisor of the function. So, in other words, we will give necessary and sufficient
conditions for a divisor to be principal.

20.1. Meromorphic functions with prescribed divisors. Let X be a compact
Riemann surface and D € Div(X). We say that f € .#Z(X) is a solution of the
divisor D if (f) = D. A necessary condition for this is that deg D = 0.

Let Xp := {# € X : D(z) > 0}. A weak solution of D is a function
f € &(Xp) such that for each a € X there is a coordinate neighborhood (U, z)
with z(a) = 0 and a function ¢ € &(U) with 1(a) # 0 such that

f=z2 onUnXp, wherek= D(a). (20.1)

Then a weak solution f of D is a solution of D if and only if f € O(Xp). If f,g
are two weak solutions of D, then there exists a non-vanishing function ¢ € &(X)
such that f = ¢g.

If f; is a weak solution of D;, where ¢ = 1,2, then fi f5 is a weak solution of
D1+ D5 and f1/ f5 is a weak solution of Dy — Dy. It may happen that, for instance,
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D;(a) + Da(a) > 0 but Di(a) < 0 or Dy(a) < 0. Then formally f; f is not defined
at a, but it extends by continuity.

Suppose that f is a weak solution of D. The logarithmic derivative df/f is
a smooth 1-form on the complement of the support supp D := {z € X : D(z) # 0}
of the divisor D. For a € supp D and k = D(a), (20.1]) implies

= — k=4, (20.2)

where di) /1 is smooth in a neighborhood of a. For each 1-form o € &!(X) with
compact support the integral

a

f
exists; this can be easily checked in polar coordinates. Note that the 1-form of/f
is smooth on all of X, since (20.1]) implies 9f/f = 0v /.

Lemma 20.1. Let X be a Riemann surface and let D be a divisor on X with
supp D = {a1,...,an}. Let f be a weak solution of D. Then for every g € &(X)
with compact support, we have

1
% — /\ d = Z D a/j
Proof. The exist disjoint coordinate neighborhoods (U, z;) of the points a; with
zj(aj) = 0 such that on U;

f= zkjwj for non-vanishing ¢; € &(U;) and k; := D(a;).

We may assume that z;(U;) =D C C for all j.

Let 0 < r; < rg < 1. Choose functions ¢; € &(X) with supp cpj - {|zj| < rg}
and s0j|{\ZJ\ST1} =1 Setg; =99, j=1,...,n,and go :=g— (g1 + - + gn).
Then gg has compact support in Y = X \ {al, ..., an}. Thus, by [Theorem 8.11] m

/—Adgo /Yd(g()%):o.

/—/\d _Z/ + Ndg; = Zk/ dﬁ/\d],

using (20.2) and again [Theorem 8.11} By [Stokes’ theorem 8.10]

It follows that

d d
/ i A dg; = —lim d(gj ZJ)
U; % 0 Je<|zyl<r %
. de . .
= lelﬁ)l - gjz—j = 2mig;(a;) = 2mig(a;).
J
The proof is complete. O

20.2. Homology. A 1-chain on a Riemann surface X is a formal finite linear
combination of curves ; : [0,1] — X with integer coefficients,

k

¥ = an’yj, n; € 7.
j=1
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The integral along v of a closed 1-form w € &1(X) is defined by

/CUZ: nj/w
Y Vi

Let C1(X) denote the set of all 1-chains which is an abelian group in a natural way.
We define the following boundary operator

9 : Cy(X) — Div(X).

If v:[0,1] — X is a closed curve, set 9y = 0. If 4 is a curve which is not closed,
let 9y be the divisor which is 1 at (1), —1 at (0), and 0 everywhere else. For an

k
=1

J

arbitrary 1-chain v = Z?Zl njy; set 0y = 2521 n;0v;. Then
deg(0y) =0 for all v € C1(X).

On a compact Riemann surface X, for any divisor D with deg D = 0 there
exists a 1-chain v such that 0y = D. Indeed, any divisor D with zero degree can
be written as D = Dy + - - - + Dy, where each D; is 1 at some point b;, —1 at some
point a;, and 0 everywhere else. Then it suffices to choose curves v; from a; to b;
and take vy =1 + -+ + V-

The kernel Z;(X) := ker(d : C1(X) — Div(X)) is called the group of 1-cycles.
Two cycles v1,v2 € Z1(X) are said to be homologous if

/w:/ w for all closed w € &*(X).
71 T2

This defines an equivalence relation on Z; (X). The set of equivalence classes, called
homology classes, is an additive group H;(X), the first homology group of X.

Since closed homotopic curves are also homologous (cf. , there
is a group homomorphism 7 (X) — H;(X). This map is surjective, but not in
general injective, since m1(X) is not always abelian.

20.3. Existence of weak solutions of 0.

Lemma 20.2. Let X be a Riemann surface, v : [0,1] — X a curve, and U a
relatively compact open neighborhood of ¥([0,1]). Then there exists a weak solution
[ of the divisor Oy with f|x\u = 1 such that

1 df

w=— ~ Aw  for all closed w € &(X).
[y 2mi Jx f (X)

Proof. The integral on the right-hand side exists, since df/f =0 on X \ U.

Let us first assume that (U, z) is a coordinate chart in X with z(U) = D
and v([0,1]) € U. Let a = ¥(0) and b = 7(1). There exists r < 1 such that
v([0,1]) € {|z| < r}. The function z + log(2=2) has a well-defined branch in
{r <z| < 1}; see e.g. [14, Lemma 15.1]. Choose ¥ € &(U) such that 1|, j<,y =1
and ¢|¢|.j>r} = 0, where r < R < 1. Define fo € &(U \ {a}) by

= if [z <7,
folz) := exp (w(z) log j:Z) ifr<|z| <1

Then fp equals 1 on {R < |z| < 1} and hence can be extended to a function
€ &(X \{a}) by setting f|x\y = 1. By construction, f is a weak solution of d.
Let w € &1(X) be closed. Then w has a primitive on U. So there exists g € &(X)

with compact support such that dg = w on {|z| < R}. By [Lemma 20.1

L[4, ! ﬁAdgzg(b)—g(aF/w
y

- W= -—
21 [ x 2mi [
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In general there exists a partition 0 = tg < t; < --- < t, = 1 and coordinate
charts (Uj, zj), j = 1,...,n, such that ; := ’Y‘[tjfl,tj] lies in U; C U and z;(U;) =
D for all j. By the special case there exist weak solutions f; of Jv; such that
fj‘X\Uj =1 and

/ w:% %/\w for all closed w € &'(X).
Vi X Ji

Then f := f1--- fp is as desired. O

20.4. Abel’s theorem.

Theorem 20.3 (Abel’s theorem). Let D be a divisor on a compact Riemann sur-
face X with deg D = 0. Then D has a solution if and only if there exists a 1-chain
v € C1(X) with 9y = D such that

/w =0 forallwe OY(X). (20.3)
.

It is clearly enough to check (20.3) on a basis of O'(X). If ¥ € C1(X) is an
arbitrary 1-chain with 9% = D then (20.3) can be formulated as follows: there
exists a cycle @ € Z1(X) (namely oo = 4 — ) such that

/wi:/wi for a basis wi, . . .,w, of O'(X). (20.4)
¥ «

Proof. Let v € C1(X) with 0y = D such that (20.3) holds. By [Lemma 20.2] there

is a weak solution f of D such that

1 d
/w:—, —f/\w for all closed w € &'(X).
5 2mi Jx
By (20.3), for every w € O'(X),

1 1 d
Oz/w:—, g/\w:—, 8—f/\w.
v 27T'L b'e 27'("6 X

Note that 0f/f € &%'(X), as explained before [Lemma 20.1} By |Corollary 18.8]
there exists g € &(X) such that g = f/f. Then F := e~ 9f is a weak solution of
D and

OF = —e 9f0g+e 90f = 0.
This implies that F' € O(Xp) and hence it is a meromorphic solution of D.

Now let f € .#(X) be a solution of D. We may assume that D # 0. The func-
tion f defines an n-sheeted branched covering f : X — C for some positive integer
n. Let ay,...,a, € X be the branch points and set Y := C\ {f(a1), ..., f(ar)}.
Each y € Y has an open neighborhood V such that f~1(V) is a disjoint union
of open sets Uy, ...,U, and all the maps f|y, : U; — V are biholomorphic with
inverse p; == f |Ejl Given a holomorphic 1-form w € O'(X) consider the 1-form

prw -+ ppw

on V. If we repeat the same construction on an open neighborhood of an other
point in Y, then on the intersection we obtain the same 1-form. We thus obtain a
holomorphic 1-from tr(w) on all of C, similarly as in Since 01(@) =0
(see (14.7)), we have tr(w) = 0.

Let o be a curve in C from oo to 0 which lies in Y except possibly the endpoints.
The preimage under f of o consists of n curves v1, ..., y, which join poles of f with
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zeros of f. Thus v =~ + - 4 vy, satisfies 9y = D and

/Vw/[rtr(w)o

for all w € O}(X). O

Example 20.4 (complex tori, VII). Let A = ZA; + ZXs be a lattice and let P =
{t1 A1 +t2Ag : t1,t2 € [0,1)}. Suppose zeros aq,...,a, € P and poles by,...,b, € P
are prescribed, where each zero and each pole appears as often as its multiplicity
demands. We claim that there exists a A-elliptic function with zeros a1, ..., a, and
poles by, ..., by, if and only if
n

Z(ak — bk) e A.

k=1
For, let D be the divisor on C/A determined by the prescribed zeros and poles.
Choose curves oy from by to ai in C. Then, if 7 : C — C/A is the canonical
projection,

y:=mooy1+---+mMOoOo,

is a 1-chain in C/A satisfying 9y = D. Let w be the holomorphic 1-form on C/A

The statement follows from [Abel’s theorem 20.3l

21. The Jacobi inversion problem

In Abel’s theorem we found necessary and sufficient conditions for a divisor
to be principal. In this section we will study the quotient group of divisors with
degree zero modulo the subgroup of principal divisors. We shall see that this group
is isomorphic to a g-dimensional torus, where g is the genus of the underlying
Riemann surface.

21.1. n-dimensional lattices. Let V be an n-dimensional vector space over R.
An additive subgroup A C V is called a lattice if there exist n linearly independent
vectors A1,..., A\, € V such that A = Z\| + ---Z\,,.

Proposition 21.1. An additive subgroup A CV of a vector space V is a lattice if
and only if:

(1) A is discrete.
(2) A is contained in no proper subspace of V.

Proof. The necessity is clear. So let A C V satisfy (1) and (2). We will show

that there exist n = dim V' linearly independent vectors Aq,..., A, such that A =

ZA + ---ZM\,. We use induction on n. The statement for n = 0 is trivial. Let

n > 0. By (2) there exist n linearly independent vectors x1,...,z, € A. Consider

Vi :=span(z1,...,2,-1) and Ay := ANV;. By the induction hypothesis, there exist

n—1 linearly independent vectors 41, ..., Yn—1 € A1 such that Ay = Zy1+- -+ Zyp—1-
Every € A can be written uniquely as

z=c1(@)yr + - Cn1(@)Yn—1 + c(x)zpn, c¢j(x),c(z) €R.

Consider the compact parallelotope P = {t1y1 + - - - tn—1Yn—1 + txn : £, € [0,1]}.
By (1), AN P is finite. Then there exists a vector y, € (AN P)\ V4 such that
¢(yn) = min{e(z) : x € (AN P)\ V1}. Clearly, 0 < c(y,) < 1.
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Let us show that A = Ay 4 Zy,,. Let x € A. Then there exist k; € Z such that

n n—1
= — Z kjy; = Z tiy; + ta,,
Jj=1 Jj=1

where 0 < ¢; < 1,for j=1,...,n—1,and 0 <t < ¢(y,). But 2’ € AN P and
hence t = 0. Consequently, 2’ € Ay, whence all ¢; are integers and thus zero. So
2’ = 0 and the assertion follows. O

21.2. Period lattices. Let X be a compact Riemann surface of genus g > 1 and
let wi,...,w, be a basis of O'(X). The period lattice of X relative to the basis

wi,...,wy is the subgroup of C9 defined by (cf. [subsection 20.2))
Per(ws,...,wy) ::{(/wl,...,/wg) GCg:aem(X)}
:{(/wl,...7/wg> G(CgZO[EHl(X)}.

To see that Per(wi,...,wy) is a lattice we need the following lemma.

Lemma 21.2. Let X be a compact Riemann surface of genus g. There exist g
distinct points ay,...,a, € X with the following property: if w € O'(X) vanishes
at all a; then w = 0.

Proof. For any a € X consider the set H, := {w € OY(X) : w(a) = 0}. Each H,
either coincides with O'(X) or has codimension one. Since ),y Ha = {0} and
dim O'(X) = g, there exist g points ay,...,ay € X such that H,, N---NH,, = {0}.
The lemma follows. O

Proposition 21.3. Per(w,...,w,) is a lattice in CI = R?9.

Proof. Let ay,...,ay € X be the points provided by Choose simply
connected coordinate neighborhoods (Uj, z;) of a; with zj(a;) = 0 for all j =

1,..., 9. With respect to these coordinates
Wi = Pij de on Uj.

By [Lemma 21.2| the matrix A := (¢;;(a;))1<s j<g has rank g.

We define a map F': Uy x --- x Uy — C9 as follows:

F(z) = (Fi(z),...,Fy(xz)) where F;(z):= Z /IJ w;. (21.1)

j=174;

Here the integral f;j w; is along any curve in U; from a; to z; (U; is simply con-
nected!). Then F is complex differentiable with respect to x1,. ..,z and has Jaco-
bian matrix Jp(x) = (dF;(z)/dz;) = (pij(z;)). So Jr(ai,...,ay) = Ais invertible.
It follows that W := F'(Uy x - - - x Uy) is a neighborhood of F'(ai,...,as) =0 € C9.

We claim that ANW = {0}, where A := Per(wy,...,wy), which implies that A
is a discrete subgroup of CY. Suppose that there exists a point except 0 in AN W.
Then there exists € Uy x --- X Uy, * # a, such that F(z) € A. Renumbering
if necessary, we may assume that z; # a; for 1 < j < k and z; = a; for j > k,
where 1 < k < g. By |Abel’s theorem 20.3| and ([20.4)), there exists a meromorphic
function f on X with a pole of first order at a;, 1 < j <k, a zero of first order at
xzj, 1 < j <k, and is holomorphic otherwise (since F'(z) € A). Let ¢;/z; be the
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principal part of f at a;; then ¢; # 0 for 1 < j < k. By the [residue theorem 8.12]

k
0 =res(fw;) = chgoij(aj) fori=1,...,g9,
j=1

which contradicts the fact that A = (¢;;(a;)) has rank g. The claim is proved.

To finish the proof we show that A is not contained in any proper real linear
subspace of C9. Otherwise, there would be a real non-trivial linear form on C9
vanishing on A. Since every real linear form is the real part of a complex linear
form, there is a non-zero vector (c1,...,¢q) € C9 such that

g
Re (ch / wj) =0 forall e m(X).
=1 Ja
This would imply ciwy + -+ + ¢qwg = 0, by a contradiction. O

Corollary 21.4. Let X be a compact Riemann surface of genus g > 1. Then
Hy(X)=72%.

Proof. By [Proposition 21.3| there exist 2g closed curves a,. .., as, in X such that

the vectors
Aj:(/ wl,...,/ wg), j=1,...,2,
[e 21 «

J J
are linearly independent over R and

Per(wl,...,wg) = Z)\l =+ +Z>\29.

It follows that the homology classes of the ¢; in Hq(X) are linearly independent
over Z and generate Hy(X). The statement follows. O

21.3. The Jacobi variety and the Picard group. Let X be a compact Rie-
mann surface of genus g and let wy, . ..,w, be a basis of O'(X). Then
Jac(X) = CY/Per(wy, ..., wy)

is called the Jacobi variety of X. It is an abelian group and has the structure
of a g-dimensional complex torus. The definition depends on the basis wy,...,wq,
but a different basis yields an isomorphic Jac(X).

Let Divo(X) C Div(X) be the subgroup of divisors of degree 0 and Div,(X) C
Divg(X) the subgroup of principal divisors. The quotient

Pic(X) := Div(X)/ Div,(X)
is the Picard group of X. We shall be primarily interested in the subgroup
Pico(X) := Divo(X)/ Divy(X).
Since Div(X)/Divo(X) = Z, we have an exact sequence
0 — Pico(X) — Pic(X) - Z — 0.

Next we define a map ® : Divy(X) — Jac(X) as follows. Let D € Divy(X) and
let v € C1(X) be a chain with 9y = D. Then the vector

(/le,...,/wwg) e Y

is determined uniquely by D up to equivalence modulo Per(wi, ... ,wy). By defini-
tion, ®(D) is its equivalence class. Note that ® is a group homomorphism.

[Abel’s theorem 20.3| states that ker ® = Div,(X), whence we get an injective
map

J : Picg(X) — Jac(X).
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The Jacobi inversion problem asks if this map is also surjective.

Theorem 21.5. The map j : Pico(X) — Jac(X) is an isomorphism for every
compact Riemann surface X.

Proof. Let p € Jac(X) be represented by £ € C9. If N € N is large enough, then
N~1¢ lies in the image of the map F from (in fact, we saw that the image
of F is a neighborhood of 0 in C9). So there exist points a;,z; € X and curves v;
from a; to x; such that, for v =y +--- + 74,

(fon [ = e

Thus, for the divisor D = 07,

1
®(D) = Nf mod Per(wy,...,wy).

If 0 is the element of Pico(X) represented by the divisor ND, then j(0) =p. O

21.4. A sharper version. Let X be a compact Riemann surface of genus g and
let ai,...,aq € X be arbitrarily chosen points. We define a map v : X9 — Picy(X)
as follows. Let D,, for x € X, be the divisor defined by D,(x) =1 and D,(y) =0
if y # . For (21,...,24) € X9 set

U(@1,...,29) =Y (Dy, = Da;) mod Div,(X).

Let J:=jo: X9 — Jac(X). Then

g Zj g xj
J(xl,...,;z:g):(Z/ wl,...,Z/ wg> mod Per(ws,...,wy).
j=17%j j=1"4j

Theorem 21.6. The map J : X9 — Jac(X) is surjective.

Proof. By [Theorem 21.5 it suffices to prove that 1 : X9 — Picg(X) is surjective.

This means that every divisor D € Divy(X) is equivalent modulo Div,(X) to a
divisor of the form > 7_, (D, — Dq,) for (z1,...,2,) € X.

Let D' := D + Dy, +---+ D,,. Then degD’ = g. By the
theorem 13.4] dim H(X,.%p/) > 1, and hence there exists a non-trivial meromor-
phic function f on X with D” := (f) + D’ > 0. Since deg D" = g, there exist

points 1,...,z4 € X with D" = D, +---+ D,,. Then

Z(Dmi —D,,)=D"-D +D=(f)+D

=1
as desired. O

Remark 21.7. It is obvious that J(x1,...,2,) is invariant under permutations of
Z1,...,Z4. Thus J induces a map S9X — Jac(X), where S9X is the g-fold sym-
metric product of X. It carries the structure of a compact complex g-dimensional
manifold and it turns out that the map S9X — Jac(X) is holomorphic. It is not
bijective, but it is bimeromorphic, i.e., it induces an isomorphism between the fields
of meromorphic functions of Jac(X) and S9X; see [5].
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21.5. Riemann surfaces of genus one.

Theorem 21.8. The map J : X — Jac(X) is an isomorphism for every compact
Riemann surface of genus one.

Proof. Let w € O'(X) be non-trivial. Let a € X. For all z € X, we have

I(x) = / “w mod Per(w).

Clearly, J is holomorphic and surjective (by [Theorem 21.6|or [Corollary 1.10f). Sup-
pose that there exists y # x such that J(y) = J(z). Then there exists a 1-cycle

a € Zy(X) with
Yy x
/ w:/ w+/w.

By [Abel’s theorem 20.3] this would imply the existence of a meromorphic function
f on X having a single pole of order one. In that case X would be isomorphic to
C, a contradiction. O

Corollary 21.9. The Riemann surfaces of genus one are precisely the complex tori

C/A.

Proof. [Theorem 21.8| and [Corollary 14.9] O




CHAPTER 6
Non-compact Riemann surfaces

The function theory on non-compact Riemann surfaces has many similarities
with the one on regions of the complex plane. We shall see that there are analogues
of Runge’s theorem, the Mittag—Leffler theorem, Weierstrass’ theorem, and the
Riemann mapping theorem.

22. The Dirichlet problem

In this section we consider the solution of the Dirichlet problem on Riemann
surfaces. We assume familiarity with the Dirichlet problem in the complex plane
and its solution by Perron’s method. The extension to Riemann surfaces requires
very little additional effort. For this reason we will most of the time just state the
results; full details may be found in [4].

22.1. Harmonic functions and the Dirichlet problem. Let Y be an open
subset of a Riemann surface X. Then u € &(Y) is harmonic if 90u = 0. With
respect to a local coordinate z = x + iy this holds if and only if

Au = (9% + 8§)u =40,0zu = 0.

Every real-valued harmonic function v on a simply connected, connected open
subset Y of X is the real part of a holomorphic function f € O(Y). Indeed, by

Theorem 18.3] du = Re(dg) for some g € O(Y') and so u = Re(g) + const.

This allows to deduce the maximum principle for harmonic functions from the
maximum principle for holomorphic functions: if a harmonic function u : ¥ — R
attains its maximum at a point of the connected open set Y C X, then u is constant.

The Dirichlet problem on a Riemann surface X is the following. Let Y be
an open subset of X and f : Y — R a continuous function. Find a continuous
function u : Y — R which is harmonic on Y and satisfies u|sy = f. Suppose that Y’
is compact and Y # (. The maximum principle implies that, if a solution exists,
then it is unique.

22.2. Harmonic functions on domains in C. For the disk Dr(0) C C the
Dirichlet problem is solved by the Poisson integral:

Theorem 22.1. Let f : 9Dg(0) — R be continuous. Then the function defined by

1 R% — |22
= ——dt Dgr(0 22.1
w)= 5 [ o an frsepao), 2)

and u(z) := f(z), for = € dDg(0), is continuous on Dg(0) and harmonic in Dg(0).

2m
f(Re™)

Let us state some further results; proofs may be found e.g. in [14].

Proposition 22.2 (mean value property). Letwu : U — R be harmonic on a domain
U CC, and let D,(a) CU. Then
1 2m ]
u(a) = —/ u(a + re't)dt.
2m J,

81
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Conversely, we have the following

Theorem 22.3. Let U C C be a domain, and let f : U — R be continuous with
the following property: for each a € U there is 4 > 0 such that D, (a) C U and
for every 0 < r < ry

1 2 .
u(a) = — / u(a + re™) dt.
0

27
Then f is harmonic.

Corollary 22.4. If u, : U — R is a sequence of harmonic functions which con-
verges uniformly on compact set to uw: U — R, then u is harmonic.

Theorem 22.5 (Harnack’s principle). Let uy < us < --- be harmonic functions
on a region U C C. Then either u, — oo uniformly on compact sets or there is a
harmonic function uw on U and u, — u uniformly on compact sets.

22.3. Solution of the Dirichlet problem. Let X be a Riemann surface. Har-
monicity of a function remains invariant under biholomorphic maps. Thus the
Dirichlet problem can be solved on all domains D C X which are relatively com-
pact and contained in a chart (U, z) so that z(D) C C is a disk.

Let Y C X be an open subset. We denote by Reg(Y") the set of all subdomains
D & Y such that the Dirichlet problem can be solved on D for all continuous
boundary values f : 0D — R.

For u € C(Y,R) and D € Reg(Y) let Ppu be the continuous function on ¥
which coincides with u on Y \ D and solves the Dirichlet problem on D for the
boundary values u|gp. Note that a function v € C(Y,R) is harmonic if and only if
Ppu = wu for all D € Reg(Y). A function v € C(Y,R) is said to be subharmonic
if Ppu > w for all D € Reg(Y).

A point & € 9Y is called regular or a peak point if there is an open neigh-
borhood U of z in X and a function 3 € C(Y NU,R) such that:

(1) Blynu is subharmonic.
(2) B(x) =0and B(y) <0 forally e (Y NU)\ {z}.

Then S is called a peaking function. If all boundary points of Y are peak points,
then we say that Y has regular boundary. For later reference we observe:

Lemma 22.6. If x € Y is a peak point of Y and Y7 is an open subset of Y with
x € JYy, then x is a peak point of Yi. In particular, if Y has reqular boundary,
then so does every connected component of Y.

Proof. This is clear by the definition of peak point. O

Theorem 22.7 (solution of the Dirichlet problem). Let Y be an open subset of a
Riemann surface X such that all boundary points of Y are peak points. Then for
every continuous bounded function f : Y — R the Dirichlet problem on'Y has a
solution.

Let us give a simple geometric condition which implies that a boundary point
is a peak point. Since being a peak point is a local condition invariant under
biholomorphic maps, we can formulate this condition for Y C C. See also [14],
Theorem 29.9].

Theorem 22.8. Let Y C C be a domain. A point a € 9Y is a peak point if there
is a disk D such that a € 0D and DNY = 0.
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Proof. Let D = D,.(c) and let b = (a + ¢)/2.
B(z) :=log g —log|z — b

defines a peaking function at a. O

23. Radé’s theorem

We prove Radé’s theorem that every Riemann surface has a countable topology.
(Note that this is trivial for compact Riemann surfaces.)

Lemma 23.1. Let X,Y be topological spaces and let f : X — Y be continuous,
open, and surjective. If X has a countable topology, then so doesY .

Proof. Let 4l be a countable basis for the topology on X. We claim that the
countable family U := {f(U) : U € 4} of open sets in Y is a basis for the topology
on Y. Let W be an open subset of Y and y € W. We must show that there exists
V € U such that y € V. C W. There is # € X with f(z) = y and f~1(W) is
an open neighborhood of x. So there exists U € i with x € U C f~1(W). Then
V= f(U) satisfies y € V. C W. O

Lemma 23.2 (Poincaré—Volterra). Let X be a connected manifold, Y a Hausdorff
space with countable topology, and let f : X — Y be a continuous discrete map.
Then X has a countable topology.

Proof. Let U be a countable basis for the topology of Y. Let 4 be the collection of
all open subsets U of X with the following properties:

(1) U has a countable topology.
(2) U is the connected component of a set f~1(V) with V € 0.

Then {1 is a basis for the topology of X. For, let D be open in X with z € D. We
must show that there is U € i with x € U C D. Since f is discrete, we find a
relatively compact open neighborhood W C D of x such that OW N f=1(f(x)) = 0.
Then f(OW) is compact, hence closed, and does not contain f(x). So there exists
V €U with f(z) € Vand V N f(OW) = (). Let U be the connected component of
f71(V) which contains x. Since U does not meet W, we have U C W. Then U
has a countable topology. Thus, U € i, and the claim is proved.

In order to see that 4l is countable, we first check that for every Uy € 4 there
are at most countably many U € U with UyNU # (). For each V' € U the connected
components of f~1(V) are disjoint. Since Uy has countable topology, Uy can only
meet countably many of these components. So the assertion follows from the fact
that also U is countable.

Let us now show that 4 is countable. Fix Uy € 4. For all n € N let L, be
the collection of all U € U such that there exist Uy,...,U, € U with U,, = U and
Upg_1NUg # @ forall k=1,...,n. Since X is connected, { = UneNLln. Each 4,
is countable which can be seen by induction using the observation of the previous
paragraph. O

Theorem 23.3 (Radé’s theorem). Every Riemann surface has a countable topol-
0gy.

Proof. Let U be a coordinate neighborhood in X. Let Ky and K; be two disjoint
compact disks in U. Set Y := X \ (Ko U K;). By|Theorem 22.7| and [Theorem 22.8|
there exists a continuous function u : ¥ — R which is harmonic on Y and is 0 on
0Ky and 1 on 0K;. Then w := Ju is a non-trivial holomorphic 1-form on Y. Let
f be a holomorphic primitive of p*w on the universal covering p : Y — Y which
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exists by [Corollary 8.61 The map f : Y - C (being non-constant) satisfies the
assumption of |[Lemma 23.2| (cf. |Lemma 3.1I). Thus Y has countable topology, and,
by [Lemma 23.1] so does Y. Then also the topology of X =Y UU is countable. [

24. Weyl’s lemma

In this section we assume some familiarity with basic distribution theory.

Lemma 24.1 (Weyl’s lemma). Let U C C be a domain. Let u be a distribution on
U with Au=0. Then u is a smooth function.

This means the following: if the distribution u € 2’(U) satisfies u(Ap) = 0 for
all ¢ € 2(U), then there exists a function h € &(U) with Ah =0 and

u(f) = /Uf(z)h(z) dxdy for all f € 2(U).

Recall that Z(U) denotes the space of smooth functions with compact support in
U.

Proof. Let € > 0 and U, := {2 € U : D.(z) C U}. Let p be a rotation invariant
smooth function with support in D and [ pdxdy = 1, and set pc(z) = e ?p(e™'2).
Then, for z € U, the functions ¢ — p.(¢ — z) has support in U. Consider

B(z) = u(pe(( — 2)).
Then it is not hard to see (cf. [4, Lemma 24.5]) that h € &(U.). We will prove that
for each smooth function f with support in U, we have

u(f):/U f(2)h(z) dxdy. (24.1)

Since € > 0 was arbitrary, this will imply the statement.

For z € U, consider p. * f(¢) = [ pe(¢ — 2)f(z) dzdy. The function p, * f has
support in U. We have (cf. [4, Lemma 24.6])

ulpes ) =u( /U pe(C — ) (=) drdy) = /U h(=) £ () dudy. (24.2)

By [Theorem 10.9} there is a function 1 € &(C) with Ay = f. Note that v
is harmonic on V := C \ supp(f). We claim that p. ¢ = ¢ on V. := {z € V :
D.(z) C V}. Indeed, by the mean value property

1 27

P(2) Y(z+ret)dt, forr <e,

and hence

pexh(z) = /<I< POV (= + ¢) dédn

€ 2m )
= / / pe(r)h(z + re')r dt dr
0 Jo

=21 (2) /0E pe(r)rdr = (z2).
Then ¢ := 1 — pe * ¥ has compact support in U and
Ap=At —pex Ap = f — pe x f.
Since Au = 0, we have u(Ayp) = 0, whence
u(f) = u(pe = [+ Ap) = u(pe * f).
Together with this implies and hence the assertion. U
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Corollary 24.2. Let u be a distribution on a domain U C C satisfying Ozu = 0.
Then u € O(U).

Proof. This follows from [Weyl’s lemma 24.1| thanks to A = 40,05. O

25. The Runge approximation theorem

This section is devoted to a version of the Runge approximation theorem on
Riemann surfaces due to Behnke and Stein [2]. We present Malgrange’s proof [9]
which is based on Weyl’s lemma.

25.1. Exhaustion by Runge regions. Let X be a Riemann surface. For any
subset Y C X we denote by Y the union of Y with all relatively compact connected
components of X \' Y. We say that an open subset Y of X is Runge if Y = }7, ie.,
none of the connected components of X \ Y is compact. By a Runge region we
mean a connected open Runge set.

Clearly, Y depends on the ambient Riemann surface X which will always be
clear from the context.

Lemma 25.1. Let X be a Riemann surface. We have:

(1) Y=Y foral Y C X.

(2) Y1 C Yz C X implies Yy C Y.

(3) If Y C X is closed, then Y is closed.

(4) If Y C X is compact, then Y is compact.

Proof. (1) and (2) are checked easily. Let Cj}, j € J, be the connected components
of X \Y. Since X \ 'Y is open and X is a manifold, all C; are open. Then

X\Y = U{Cj : Cj is not relatively compact}

is open. This shows (3).

(4) Suppose Y # (). Let U be a relatively compact neighborhood of Y. We
claim that every C; intersects U. Otherwise, if C; C X\U then C; C X\U C X\Y
which implies C; = 6]-. That means that C; is open and closed, in contradiction
to connectedness of X.

Since QU is compact and is covered by the disjoint open C;, only finitely many
C; meet OU. Consider the collection of relatively compact C; and let Cj,,...,C;,
those among them which meet QU (all others are contained in U by the claim).
Then Y CU U Cj, U---UC;,, is relatively compact, and thus compact, by (3). O

Proposition 25.2 (compact exhaustion). Let X be a non-compact Riemann sur-
face. There exists a sequence Kj, j € N, of compact subsets of X such that

(1) K; = K; for all j,
(2) K1 Qooint K; forall j > 1,
3) X = U, K.

Proof. There is a sequence of compact subsets K) C K{ C --- which cover X,
since X has countable topology by [Radé’s theorem 23.31 Set Ky := K{. Suppose
that K, ..., K, satisfying (1) and (2) have already been constructed. Choose a

compact set L with K/, UK,, C int L. Set K41 := L. Tn this way we obtain a
sequence K, j € N, with the desired properties. ]
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Lemma 25.3. Let K1, Ky be compact subsets of a Riemann surface X satisfying
Ky, Cint Ko and Ko = Ky. Then there exists an open Runge set Y with reqular
boundary such that K1 CY C K.

Proof. For every € 0K5 there is a coordinate neighborhood U of z which does not
meet K, and an open disk D 3 2 with D C U. We may cover K by finitely many
such disks, D1, ..., D,,. Then Y := K5\ (D1U---UD,,) isopen and K; CY C Ks.
The connected components C;, j € J, of X \ K are not relatively compact. Every
D; meets at least one C;. It follows that no connected component of X \ Y is
relatively compact (since each D; is connected), i.e., Y is Runge. All the boundary

points of Y are peak points, by O

Lemma 25.4. LetY be a Runge open subset of a Riemann surface X. Then every
connected component of Y is Runge.

Proof. Let Y;, i € I, be the connected components of Y. All the Y; are open, since
Y is open and X is a manifold. Let Ay, k € K, be the connected components of
A:=X\Y. Then the Ay are closed, but not compact, since Y is Runge.

We have Y; N A # () for all i € I. For, otherwise Y; C Y, and hence Y; = Y;,
contradicting the fact that X is connected.

Let C be a connected component of X \ Y;. Then C N A # (. For, otherwise

CNY; # 0 for some j # i, and thus Y; C C, since C is closed and Y; is connected.
But then C N A # (), by the previous paragraph.
Now C meets at least one Aj, and thus A, C C. It follows that C cannot be

compact. Since C was arbitrary, Y; is Runge. O

Theorem 25.5 (exhaustion by Runge regions). Let X be a non-compact Riemann
surface. Then there is a sequence Yo € Y1 € --- of relatively compact Runge regions
with reqular boundary such that X = UjeN Y;.

Proof. We will show that for every compact set K C X there is a Runge region Y
with regular boundary such that K C Y € X. This implies the theorem.

We can find a connected compact set K; and a compact set Ko such that
K C K; C intKy. By there is a Runge open set Y; with regular
boundary such that K; C Y; C K. The connected component Y of Y; which
contains K7 is Runge, by and has regular boundary, by

This proves the claim and the theorem. O

25.2. The Fréchet space of smooth functions and continuous linear func-
tionals. Let X be a Riemann surface and let Y C X be an open subset. Choose
a countable family of compact sets K; C Y, j € J, such that each K is contained
in some coordinate chart (U}, z;) and the union of the interiors of the K; is Y. We
endow &(Y) with the topology generated by the following family of seminorms:

pia(f) = su}? 07 f(z)], j€J, ac N2,
TEK;

where 3;‘ = 5‘?; 3;;2 is the differential operator with respect to z; = x; + iy;; this
topology is independent of the choice of the K; and (Uj, 2;). It makes &(Y') into
a Fréchet space. On O(Y) C £(Y) it induces the topology of uniform convergence
on compact sets.

In a similar way we obtain the Fréchet space &%1(Y).
Lemma 25.6. Every continuous linear u : &(Y) — C has compact support, i.e.,

there is a compact K CY such thatu(f) =0 for all f € &(Y) with supp(f) C Y\ K.
Every continuous linear u : &%1(Y) — C has compact support.
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Proof. By continuity, there is a neighborhood U of 0 in &(Y") such that |u(f)| <1
for f € U. Thus there exist € > 0, ji,...,jm € J and aq, ..., a,, € N? such that

Ujhal(e) n---nN Ujmaam (6) cvu,

where Uj o(e) == {f € &) : pja(f) < €}. Set K := K;, U---UKj, , where K;
is the compact set in the definition of pjo. Let f € &(Y) have supp(f) C YV \ K.
Then, for all ¢t > 0,

Pjron (tf) == pjmam(tf) =0
whence tf € U and so |u(f)| < 1/t. This is possible only if u(f) = 0. The proof
for £91(Y) is similar. O

Lemma 25.7. LetY be an open subset of a Riemann surface X. Letu : £%1(X) —
C be a continuous linear map such that u(dg) = 0 for every g € &(X) with
supp(g) € Y. Then there exists a holomorphic 1-form o € O*(X) such that

u(w) = / oAw, foralwe &N(X) with supp(w) €Y.
v

Proof. Let (U, z) be a chart on X contained in Y. We identify U with z(U) C C.
For ¢ € 2(U) we denote by ¢ the 1-form in &%!(X) which equals ¢ dz on U and
zero on X \ U. Then uy : 2(U) — C with uy(¢) := u(p) is a distribution on
U such that dzuy = 0 (indeed, uy(0z9) = u(dg) = 0 for all g € 2(U)). So, by
there is a holomorphic h € O(U) such that

/ h(z)p(z)dzNdz for all ¢ € 2(U).
Hence for oy := hdz € O'(U) we obtain
u(w) = / oy Aw, for all w € &%1(U) with supp(w) € U.
U

We may repeat this construction for another chart U’ and obtain oyr € OY(U").
Then

/UU/\w:/ oy Aw  for all w € &YH(X) with supp(w) € UNT,
U ’

whence oy = o on UNU’. So there exists a holomorphic 1-form o € O(Y') such

that
u(w):/ oAw,
Y

for all w € &%1(X) which are compactly supported in a chart lying in Y. Using
a partition of unity we may write an arbitrary w € &%!(X) with supp(w) € Y in
the form w = wy + - - - + w,, where each w; satisfies the above. Then the statement
follows from linearity. O

25.3. The Runge approximation theorem. We will use the following conse-
quence of the Hahn-Banach theorem.

Lemma 25.8. Let G be a locally convex space and let E C F C G be linear
subspaces. If every continuous linear functional ¢ : G — C which vanishes on E
also vanishes on F', then E is dense in F.

Proof. If E is not dense in F, then there exists 2o € F'\ E. Consider E @ Cx and
the continuous linear functional ¢y : E @ Cxg — C defined by £o(z + Azg) = A. By
the Hahn-Banach theorem, ¢y extends to a continuous linear functional £ : G — C
which vanishes on F but not on F. O
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Proposition 25.9. Let X be a non-compact Riemann surface. Let Y € X be a
relatively compact open Runge subset. Then, for every open Y’ withY €Y' € X,
the image of the restriction map O(Y') — O(Y) is dense.

Proof. Let p : £(Y') — &(Y) denote the restriction map. In order to show that
p(O(Y")) is dense in O(Y) it suffices, by [Lemma 25.8, to prove the following: If

v: &(Y) — Cis a continuous linear functional with v|,o 1y = 0, then v|oyy = 0.

Let such v be fixed. Recall that, by [Corollary 12.11} for each w € &%1(X) there
is f € &(Y”) such that df = w|y-. This induces a linear map u : £%(X) — C by
setting u(w) := v(f[y). In fact, this definition does not depend on the choice of f:
if also dg = wly-, then f — g € O(Y’) and hence v((f — g)|y) = 0.

We claim that u is continuous. To this end consider

Vi {(w, /) € E91(X) x E(Y') : Bf = wly'}

which is a closed linear subspace of &%91(X) x £(Y") and hence a Fréchet space,
since 9 : &£(Y’) — &%Y(Y”) is continuous. The projection pr; : V — &%1(X) is
surjective and thus open, by the open mapping theorem (e.g. [I2]). So continuity
of u follows from the following commutative diagram.

POPry

&(Y)

PHl \LU
N X)— " . C

By [Lemma 25.6, v : £(Y) — C and u : £&%*(X) — C have compact support,

i.e., there exist compact sets K CY and L C X such that
v(f)=0 forall fe &) with supp(f) CY \ K, (25.1)
u(w) =0 for all w € &(X) with supp(w) C X \ L. (25.2)

If g € £(X) satisfies supp(g) € X \ K, then u(dg) = v(gly) = 0. By
there exits a holomorphic 1-form o € O*(X \ K) such that

u(w) = / ocAw forall we &% (X) with supp(w) € X \ K.
X\K

By (25.2), o|x\(kxur) = 0. Any connected component of X \IA(, not being relatively
compact, must meet X \ (K U L). Thus U\X\f{ = 0, by the identity theorem, and
consequently

uw(w) =0 for all w € &' (X) with supp(w) € X \ K. (25.3)

To finish the proof let f € O(Y). We will show that v(f) = 0. Since Y is
Runge, K C Y, by Thus there is a function g € &(X) with f =g in
a neighborhood of K and supp(g) € Y. Then v(f) = v(gly) = u(dg), by (25.1).
Since ¢ is holomorphic in a neighborhood of K, we have supp(dg) € X \ K. Thus

v(f) = u(dg) =0, by (25.3). 0

Theorem 25.10 (Runge approximation theorem). Let X be a non-compact Rie-
mann surface. Let Y be an open subset such that X \'Y has no compact connected
component. Then every holomorphic function on'Y can be approximated uniformly
on compact subsets of Y by holomorphic functions on X.

Proof. We may assume that Y is relatively compact in X. Let f € O(Y'), a compact
set K C Y, and € > 0 be given. There exists an exhaustion Y7 € Y5--- of X by
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Runge regions, by where Yy := Y € Y;. |Proposition 25.9| provides
iteratively a sequence of functions f,, € O(Y,,) such that |f; — f|x < 27 te and

|fon = fo-ily, , <27, n>2.

For every k € N, the sequence (f,),>r converges uniformly on Y;. Thus there
exists F' € O(X) such that, on Yy, F is the limit of (f,),>k. By construction,
|F — f|K < €. O

25.4. Solution of the inhomogeneous Cauchy—Riemann equation.

Corollary 25.11. Let X be a non-compact Riemann surface. Then for every w €
E%Y(X) there exists a function f € &(X) with 0f = w.

Proof. By [Corollary 12.11} for each relatively compact open ¥ @ X there is g €
&(Y) such that dg = w|y. Let Yy € Y1 € Y2--- be an exhaustion of X by

Runge regions, which exists by We claim that there exist functions
fn € éJ(Yn) such that 5fn = w|Yn and |fn+1 - fn|Yn—1 < 27"

Choose any fy € &(Yp) such that dfy = wly,. Suppose that suitable fo,..., fn
have been constructed. There exists g € &(Y,,41) such that dg = wly,,,. Then
g — fn is holomorphic on Y,,. By the |Runge approximation theorem 25.10] there
exists h € O(Y,,41) such that

(g — fu) = hly, , <27™

Setting fn41 := g — h we have Of,41 = 0g = wly,,, and |frne1 = falv,_, <2
The claim is proved.

We define

—n

fi=ta+ Y (fex1—fr) onY,.
k>n
The series converges uniformly on Y,,_; to a holomorphic function F,,. Thus f is
smooth on Y,,_; for every n and hence f € &(X). Moreover,

Of =0f, =w onY,
for all n. Thus 0f = w on X. (]

26. The Mittag—Leffler and Weierstrass theorem

We come back to the problem of constructing meromorphic functions with
prescribed principal parts, respectively, prescribed zeros and poles of given orders.
In the complex plane this is the content of the Mittag—Leffler and the Weierstrass
theorem. The analogues of these theorems hold on non-compact Riemann surfaces
without any restriction (in contrast to compact Riemann surfaces). They were first
proved by Florack [3] building on the methods of [2]. The respective analogues in
several complex variables are the first and second Cousin problems.

26.1. The Mittag—Leffler theorem.

Theorem 26.1. For any non-compact Riemann surface X we have H*(X,0) = 0.

Proof. By [Dolbeault’s theorem 11.11, H'(X,0) = £%1(X)/0&(X). So |Corol-
implies the statement. O

Remark 26.2. We remark that this result is a special case of Theorem B of
Cartan—Serre which holds on all Stein manifolds; cf. [7].

Corollary 26.3 (Mittag—Leffler theorem). On a non-compact Riemann surface
every Mittag—Leffler distribution has a solution.
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Proof. Let 4l = (U;)ier be an open cover of X. Recall that a cochain u = (f;) €
CO(8h, ) is a Mittag-Leffler distribution if the differences f; — f; are holomorphic
on U; NUj, ie., f; and f; have the same principal parts. A solution of y is a
meromorphic function f € .#(X) which has the same principal parts as p, i.e.,
flu, — fi € O(U;) for all i € I. By [Proposition 19.1] x4 has a solution if and only if
the cocycle f;; := f; — fi € O(U; N Uj) is a coboundary. By this is
always the case. O

26.2. The Weierstrass theorem. Let D € Div(X) be a divisor on the Riemann
surface X. We are looking for a meromorphic function f such that (f) = D,
i.e., a solution of D. We start with the existence of weak solutions (as defined in

subsection 20.1))

Lemma 26.4. Every divisor D on a non-compact Riemann surface X has a weak
solution.

Proof. Let K1, K, ... be an exhaustion of X compact sets with the properties given
in [Proposition 25.2}

We claim that the following holds. If ag € X \ K; and Ay € Div(X) is 1 at
ag and zero otherwise, then Ay has a weak solution ¢ satisfying p|k;, = 1. Since

K; = IA(J», the point ag lies in a connected component U of X \ K; which is not
relatively compact. We may conclude that there is a point a1 € U \ K41 and a
curve o in U from a; to ag. There is a weak solution ¢g of the divisor dvyy with
wolr; =1, by We may repeat this construction and obtain a sequence
of points a € X \ Kj 1k, k € N, curves v, in X \ K, from ag41 to ai, and weak
solutions of the divisors dy; with ¢y K;.x» = 1. Let Ay be the divisor which is 1
at ay and zero otherwise. Then 0y, = A — Agy1 and the product gy - - - @, is a
weak solution of the divisor Ag — A,,+1. The infinite product H;io Yk converges,
since on every compact subset of X there are only finitely many factors that are
not identically 1, and it is the desired weak solution. The claim is proved.

Let D € Div(X). For j € N set

D(.’}j) — D(Z‘) ifIEKj+1\Kj,
0 ifr ¢ Kjy1 \ Kj,

where Ky := (). Then D = Z;io D;. Each Dj; is non-zero only at finitely many
points. By the claim, there is a weak solution ¢; of D; with ¢;[x, = 1. So
¢ :=[[;= ¢; is a weak solution of D. O

Theorem 26.5 (Weierstrass theorem). Every divisor D on a non-compact Rie-
mann surface X has a solution.

Proof. The problem has a solution locally. Thus there is an open cover 4 = (U;);er
of X and meromorphic functions f; € .#*(U;) such that (f;) = D on U;,. We
may assume that all U; are simply connected. We have f;/f; € O*(U; N Uj) for all
i,j € I, since, on U;NUj, f; and f; have the same zeros and poles. By [Lemma 26.4]
D has a weak solution ¢. On U; we have ¢ = ¢, f;, where ¢; € &(U;) has no zeros.
Since Uj; is simply connected, there is a function ; € &(U;) such that ¢; = e¥:. So
on U; NU; we have
6111]'*% = ﬂ € O*(UZ n Uj),

J
and thus ¢ij = ¢j —; € O(Usz]) Clearly, (’(/)”) S Zl(ﬂ, 0) Since Hl(X, O) =
0, by [Theorem 26.1} there exist g; € O(U;) with

Vij=vj —i=g; —g9i onU;NUj.
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This implies e% f; = e% f; on U; NU;. Hence there is a meromorphic function f on
X with f =e% f; on U; for all i. Clearly, (f) = D. d

Corollary 26.6. Let X be a non-compact Riemann surface. There exists a holo-
morphic 1-form w € OY(X) which vanishes nowhere.

Proof. Let g be a non-constant meromorphic function on X and let f € .#*(X) be
a function with divisor —(dg) which exists by the [Weierstrass theorem 26.5 Then
w = fdg is the desired 1-form. O

26.3. Non-compact Riemann surfaces are Stein. Let X be a Riemann sur-
face. That X is Stein means the following:

(1) The holomorphic functions separate points, i.e., for any two points x,y €
X, x # y, there exists f € O(X) with f(z) # f(y).

(2) If (zn)nen is a sequence in X having no accumulation points, then there
exists f € O(X) with limsup,,_, . |f(zn)| = cc.

That every non-compact Riemann surface is Stein follows from the next result.
Clearly, compact Riemann surfaces are not Stein.

Theorem 26.7. Let X be a non-compact Riemann surface. Let (a,,) be a sequence
of distinct points of X with no accumulation points. Given arbitrary complex num-
bers ¢, € C, there is a holomorphic function f € O(X) such that f(an) = cp for
alln € N.

Proof. By the [Weierstrass theorem 26.5] there is a function h € O(X) which van-
ishes of order 1 at every a,, and has no other zeros. For ¢ € Nset U; := X\Uk#{ak}
and consider the open cover Y = (U;);eny of X. Then U; NU; = X \ {ax : k € N}
if i # j. So 1/h is holomorphic on U; N U;. It follows that g; := ¢;/h € A (U;)
forms a Mittag—Leffler distribution (g;) € C°(4, .#) on X. By the
it has a solution g € .#(X). Define f = gh. Then on U; we have

f=gh=gih+(g—gi)h=ci+(g—gih
Since g — g; is holomorphic on U; and h(a;) = 0, we may conclude that f is
holomorphic on X and f(a;) = ¢; for all ¢ € N. O

27. The uniformization theorem

In this section we prove the uniformization theorem: any simply connected
Riemann surface is isomorphic to one of the following three normal forms, the
Riemann sphere ((A:, the complex plane C, or the unit disk D. Evidently, this is a
generalization of the Riemann mapping theorem in the plane.

27.1. The holomorphic deRham group. Let X be a Riemann surface. In
analogy to the first deRham group (cf. [subsection 11.7))
ki cENX X
R ()  Ker(d 610 - £2(X)
im(d : £9(X) = &1(X))
of smooth closed 1-forms modulo exact ones, we also consider the holomorphic
deRham group

Ly . ONX)
Rhy(X) := d0(X)’
recall that every holomorphic 1-form is closed, by

If X is simply connected, then Rhé (X) =0, by |Corollary 8.7 We will prove
the uniformization theorem under the condition Rhg,(X) = 0, which a posteriori
will turn out to be equivalent to X being simply connected.
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Lemma 27.1. Let X be a Riemann surface with Rhy,(X) = 0. Then:

(1) Every non-vanishing f € O(X) has a logarithm and a square root, i.e.,
there exist g,h € O(X) with €9 = f and h? = f.

(2) Every real valued harmonic function on X is the real part of a holomorphic
function on X.

Proof. (1) Since Rhy(X) = 0, there exists g € O(X) such that dg = df/f. By
adding a constant to g, we may assume that for some a € X we have e9(®) = f(a).
Then

d(fe 9)=e9df — fe 9dg = 0.
So fe=9 =1 and hence e9 = f. Taking h = e9/? gives h? = f.
(2) Let u : X — R be harmonic. By [Theorem 18.3] there is w € O'(X) with
du = Re(w). Since Rhy(X) = 0, there is g € O(X) such that du = Re(w) =
Re(dg) = (dg + dg)/2. Then u = Re(g) + const. O

27.2. Towards the uniformization theorem.

Theorem 27.2. Let X be a non-compact Riemann surface. LetY € X be relatively
compact open, connected, with Rh}g(Y) =0, and with regular boundary. Then'Y is
biholomorphic to D.

Proof. Fix a € Y. By the[Weierstrass theorem 26.5| there is a holomorphic function
g on X which has a zero of first order at a and is non-zero on X \ {a}. Since the
Dirichlet problem has a solution on Y, there is a function v : ¥ — R which is
continuous on Y, by harmonic on Y, and such that

u(y) =loglg(y)| fory € oY
By [Lemma 27.1} u = Re(h) for some h € O(Y). Set f := e~"g. We will show that
f:Y — D is a biholomorphism.
We begin by proving that f(Y) CD. Fory € Y\ {a},

If ()] = e~ RehWg(y)| = e~ W) logloW)l

Thus |f| extends to a continuous function |f|:Y — R which is equal to 1 on 9Y.
By the maximum principle, |f(y)] <1 forally € Y.

We claim that f : Y — D is proper. It suffices to show that f~!(D,(0)) is
compact in Y for all r < 1. But f~1(D,(0)) = {y €Y :|f(y)| < r} and hence it is
a closed subset of the compact set Y. So f~1(D,(0)) is compact.

Since f : Y — D is proper, each value is attained equally often, by
The value 0 is attained exactly once. It follows that f : ¥ — D is
bijective and thus biholomorphic. O

Lemma 27.3. Let Y be proper subregion of Dg(0), for R € (0,00], such that
0 € Y and Rhy,(Y) = 0. Then there exists r € (0, R) and a holomorphic map
f:Y — D, (0) with f(0) =0 and f'(0) = 1.

Proof. Suppose that R < co. Without loss of generality we may assume that R = 1.
Choose a € D\ Y and consider

zZ—a

#al2) = 1—az’

Then 0 is not contained in ¢,(Y) and thus there exists g € O(Y) with g2 = ¢,

on Y, by |[Lemma 27.1,. We have g(Y') € D. Then h := @) 0og:Y — D satisfies
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h(0) = 0 and (as g(0)? = —a)

/ o / 7 410:1(0) _ 1 1- ‘a|2 _ 1+ |g(0)|2
It follows that |A'(0)] > 1. Thus, f := h/h’(0) is a holomorphic map f : Y — D,.(0),
where 7 := 1/|h/(0)|, satisfying f(0) =0 and f'(0) =1

The case R = oo is similar. O

Lemma 27.4. Let X be a non-compact Riemann surface with Rhy(X) = 0. If
Y C X is a Runge region, then also Rhi,(Y) = 0.

Proof. Let w € O'(Y). By [Corollary 26.6] there is wy € O'(X) which has no zeros.
So w = fwg for some f € O(Y). By the[Runge approximation theorem 25.10} there
is a sequence f, € O(X) which converges to f uniformly on compact subsets of
Y. Consequently, f,y fawo — f,yw for every closed curve v in Y. The condition

Rh}g(X ) = 0 implies that the holomorphic 1-forms f,wy are exact on X, whence
f,y fnwo = 0. Thus, f,y w = 0. So w has a primitive, by [Corollary 9.4 O

27.3. The uniformization theorem. We recall that the Cauchy integral formula
implies that a holomorphic map f : D,(0) — D,(0) satisfies |f'(0)] < /7.

Theorem 27.5 (uniformization theorem). Let X be a Riemann surface with

Rhé(X) = 0. Then X is isomorphic to the Riemann sphere ((Aj, the complex plane
C, or the unit disk D.

Proof. Suppose that X is compact. Then dO(X) = 0, since every holomorphic
function on X is constant, by [Corollary 1.12l The condition Rho X) = 0 implies
that O1(X) = 0, i.e., X has genus 0, cf. (14.7). We saw in [Corollary 13.7| that X

must be isomorphic to C.

Now let X be non-compact. There is an exhaustion Yy € Y; € Y5 € --- of X by

Runge regions with regular boundary, by [Proposition 25.2l We have Rh}g(Yn) =0
for all n, by [Cemma 27.4f By [Theorem 27.2, every Y,, is isomorphic to D. Fix

a € Yy and a coordinate neighborhood (U, z) of a. For each n, there is r,, > 0 and
a biholomorphism f, : Y,, = D, (0) with f,(a) =0 and (df,/dz)(a) = 1.
We claim that 7, < 7,41 for all n. In fact, the map h = f, 10 f,;': D, (0) —
D, ., (0) satisfies h(0) = 0 and h/(0) = 1, and, by the remark before the theorem,
= K (0) < rpy1/rn. Let R := lim, ooy € (0,00]. We will prove that X is
mapped biholomorphically onto Dg(0) which completes the proof.

Next we claim that there is a subsequence (fy,) of (f,) such that for every m
the sequence (fn, |v,, )k>m converges uniformly on compact subsets of Y;,,. Consider

gn(2) = %fn(fo‘l(roz)% n>0.

Then each g, : D — C is an injective holomorphic function with g,(0) = 0 and
g5,(0) =1, i.e., (gn) is a sequence of schlicht functions. Since the set of schlicht func-
tions is compact in O(D) (see e.g. [14, Exercise 38]), there is a subsequence (fn,, )
of (f,) which converges uniformly on compact subsets of Yy (for, z = f5 ' (roz) is
a biholomorphism from D to Yy). By the same reasoning, there is a subsequence
(fni) of (fno,) which converges uniformly on compact subsets of Y;. Repeating
this process we obtain for each m € N a subsequence (f,,,,) of the previous se-
quences which converges uniformly on compact subsets of Y;,. Then the sequence
fne = fn., has the required properties.
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The limit f of the subsequence (f,,) is a holomorphic function on X which
coincides on every Y,,, with the limit of (fy,|v,,)k>m. Then f: X — C is injective
and satisfies f(a) =0 and (df /dz)(a) = 1.

To finish the proof we show that f maps X biholomorphically onto Dg(0).
Clearly, f(X) C Dg(0), so it is enough to prove that f: X — Dg(0) is surjective.
If not, then, by [Lemma 27.3] there is r € (0, R) and a holomorphic map g : f(X) —
D,.(0) with g(0) = 0 and ¢’(0) = 1 (we have Rh{, (f(X)) = 0 since f: X — f(X) is
a biholomorphism). Choose n such that r, > r. Then h:=go fo f, ' : D, (0) —
D,(0) satisfies h(0) = 0 and A'(0) = 1, which contradicts r < r,, by the remark
before the theorem. The proof is complete. O

Corollary 27.6. Let X be a Riemann surface with Rh(X) = 0. Then X is simply
connected.

Proof. This follows from the |unif0rmization theorem 27.5L since @, C, and D are
simply connected. O

27.4. Classification of Riemann surfaces. Let G be a group which acts on a
Riemann surface X. We say that G acts discretely if every orbit Gz := {gz : g €
G}, x € X, is a discrete subset of X. We say that G acts without fixed points
if for all g € G\ {id} and all z € X, we have gz # .

Lemma 27.7. Let G be a group of automorphisms of C which acts discretely and
without fixed points. Then one of the following cases occurs.

(1) G = {id}.

(2) G={z— z+na:n €Z}, wherea € C*.

(3) G={z+— z+na+mb:n,m € Z}, where a,b € C* are linearly indepen-
dent over R.

Proof. Recall that Aut(C) = {z— az+b:a € C*, be C}. Ifa # 1, then z > az+b
has a fixed point. Thus G consists only of translations z — z +b. Let I' := GO
be the orbit of 0. Then I' is a discrete additive subgroup of C which consists of all
translations z — z + b, where b € I'. Let V' be the smallest real linear subspace of
C which contains I'. Depending on whether the (real) dimension of V' is 0,1, or 2
the case (1), (2), or (3) occurs; this follows from [Proposition 21.1] O

Let X be a Riemann surface and let X be its universal covering. By the
|uniformization theorem 27.5|7 X is isomorphic to C, C, or D. Depending on which
case occurs one says that X is elliptic, parabolic, or hyperbolic.

Let G = Deck(X — X) 2 m;(X) be the group of deck transformations of the
universal covering of X. The elements of G are automorphisms of X. The group G
acts on X discretely and without fixed points.

Indeed, since p : X — X is a normal covering, by [Theorem 4.4{ for all x € X
we have Gz = p~!(p(x)) which is discrete. If g € G has a fixed point gx = x, then
g = id, by the Juniqueness of liftings 3.6| (cf. subsection 4.2)).

The Riemann surface X may be thought of as the orbit space X /G. In partic-
ular, a hyperbolic Riemann surface is a quotient of the unit disk I (respectively,
upper half-plane H) modulo a group of automorphisms of D (respectively, H) acting
discretely and without fixed points.

Theorem 27.8 (classification). We have:

(1) The Riemann sphere C is elliptic.
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(2) The complex plane C, the punctured plane C*, and the complex tori C/A
are parabolic.
(3) Ewvery other Riemann surface is hyperbolic.

Proof. (1) and (2) are clear. To prove (3) we show that every Riemann surface X
which is not hyperbolic is isomorphic to a Riemann surface listed in (1) and (2).

Suppose that X is isomorphic to C. Recall that the automorphism group of C

is the group of Mdbius transformations z +— (Zis, a,b,c,d € C with ad — bc # 0.

Thus every automorphism of C has a fixed point. Thus X itself is isomorphic to C.

Now suppose that X is isomorphic to C. By [Lemma 27.7, we may conclude

that X is isomorphic to C if G is trivial, to a complex torus if G is a lattice, and
to C* if G = {z+— z+na:n € Z}, for some a € C*. In the last case the universal
covering is isomorphic to C — C*, z — exp(2miz/a). O

Corollary 27.9. A compact Riemann surface is elliptic, parabolic, or hyperbolic
depending on whether its genus is zero, one, or greater than one. O

We remark that compact Riemann surfaces of genus one are often called elliptic
curves. This should not be confused with the notion of elliptic Riemann surface.

As a nice corollary we present the little Picard theorem.

Corollary 27.10 (little Picard theorem). A non-constant holomorphic function
f:C — C attains every value ¢ € C with at most one exception.

Proof. Suppose that f does not attain a # b € C. The Riemann surface X =
C\ {a, b} is hyperbolic, by [Theorem 27.8] Then f : C — X admits a holomorphic

lifting f : C — X. Since X is isomorphic to D, Liouville’s theorem implies that f,
and hence f, is constant, a contradiction. [l
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