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Preface

These are lecture notes for the course Reelle Analysis held in Vienna in Spring
2014 and 2016 (two semester hours). The main sources are [1], [3], [5], [6], [8],

[10], [11], [12], [13], and [14].
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CHAPTER 1
Basic measure theory

1.1. o-algebras and measures

Let X be a set. A collection & C PB(X) of subsets of X is called a o-algebra
if the following are satisfied:

e If Ac S, then A=X\Ac6.
o If {A;}22, is a countable family of sets in &, then |J;=, 4; € S.
e X c6.

It is immediate from this definition that

e 6.
o If {A4;}°, is a countable family of sets in &, then ()2, 4; € 6.
o If A, A, €&, then A, \ A, € 6.

Evidently, for any set X, the collections {§, X} and J3(X) form c-algebras, respec-
tively. Given any family of subsets 2 C *B(X) the intersection of all o-algebras
containing 2 is a o-algebra. It is the smallest o-algebra containing 2 and is called
the o-algebra generated by 2.

Let X be a topological space. The o-algebra B(X) generated by all open
subsets in X is called the o-algebra of Borel sets in X, or Borel o-algebra. The
Borel o-algebra B(R"™) is generated by the open balls in R™. It contains all closed
sets, but not all subsets of R"™.

A (positive) measure p on a o-algebra & is a mapping p: & — [0, 00] with
the following properties:

o u(0)=0
e 1 is o-additive, i.e., if {A;}52, is a countable family of disjoint sets in &,

then - -
/~L< U Ai) = ZN(Ai)-
i=1 i=1

Lemma 1.1. Let u be a measure on a o-algebra &, and let A; € &. Then:
(1) p is finitely additive, i.ce., for finite families of disjoint sets {A; Y™,

M( 6 Ai) = zm:M(Ai),
i=1 i=1

(2) u is monotone, i.e., p(Ar) < p(As) if Ay C As.
(3) If Ay C Ay C - -+, then

Jim p(A;) = u(DlAi).

(4) If Ay 2 Ay D -+ and p(Ay) < oo, then

Jim p(A) = u(ﬁl Ai)-
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PrOOF. (1) follows immediately from the definition of measure.

(2) We have As = A; U (A \ A1) and so pu(Az2) = p(A1) +u(Ax\ A1) > p(Ar).

(3) Setting B; := A; \ Ai—1, @ > 2, and B; := A;, we obtain a sequence of
disjoint sets B; € & so that |J;~, A; = U]_, By, for all m € NU {oo}. Thus

«(U)=(U5) = Zuim)

mlgnwz;u(Bj)
p

dmon(U ) = fim )

Jj=1

(4) We have ;2 A; = A1 \ U2, (A1 \ 4;), and thus, by (3),
M( ﬂ Ai) = u(Ay) —M(

A measure space is a triple (X, &, i) consisting of a set X, a o-algebra &
on X, and a measure p on &. The elements of & are called (u-)measurable
sets. If X’ € &, then we may define the measure subspace (X', &', '), where
G ={A:AcGand ACX'}={ANX': Ac &} and p := ple.

A measure p is called finite if ;1(X) < 0o, and probability measure if ;1(X) =
1. It is called o-finite if there exists a sequence X; € & such that pu(X;) < oo
for all i and X = (J;2; X;; note that the X; can be chosen disjoint by setting
X=X\ U;;ll Xji. We say that p has the finite subset property if for each
A € & with u(A) > 0 there is B € & with B C A and 0 < p(B) < c0. A o-finite
measure has the finite subset property; if A € & with p(A4) > 0 then for some i we
have 0 < p(ANX;) < oo.

(@

(A1\45)) = (A1) = lim p(A1\A) = lim p(4;). O

j=1

Example 1.2.

(1) For any set X we may take the o-algebra 3(X) of all subsets and consider
the counting measure

Al if A is finite
u(ay = Al A finite
oo if A is infinite

(2) If X is a topological space and p is a measure on the Borel o-algebra,
then p is called a Borel measure.
(3) Fix a point € R™. Then the Dirac j-measure §, defined by
1 ifzed
(4) = Xa(o) {0 o

is a measure defined on the Borel o-algebra or even on P(R").

1.2. Monotone class theorem and uniqueness of measures

Let X be a set. A collection 2 C B(X) of subsets of X is called an algebra if
X €2 and, for every A, B € 2, also A° € A and AU B € 2.

A collection M C P(X) of subsets of X is called an monotone class if, for
A; € M, we have:

° IfAlgAgg--~,thenUfilAi€9ﬁ.
° IfAlgAQQ--~,thenﬂz1Ai€9ﬁ.

Clearly, (X)) is a monotone class.
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Theorem 1.3 (Monotone class theorem). Let 2 be an algebra of subsets of X.
Then there exists a smallest monotone class M that contains A, and M is the
o-algebra generated by 2.

PROOF. Let 2 be the intersection of all monotone classes that contain 2. Then
M is a monotone class that contains A, and by definition it is the smallest.

In order to show that 91 is the o-algebra generated by 2, it suffices to prove
that 9 is closed under complements and finite unions. Indeed, assuming this, we
may conclude that, if A; € 9 then B,, := U? 1A € Mand By € By C -+ and
hence (J;o, A; = Un 1 Br € 9. Thus M is a o-algebra. Since any o-algebra is
a monotone class, I is the smallest o-algebra that contains 2, i.e., the o-algebra
generated by 2.

Let us show that 9 is closed under finite unions. Fix A € 91 and consider
CA)={BeM: AUB € M}. Let B; € €(A) so that By C By C ---. Then
(AUB;) C (AUB,) C -+ is a sequence in 9, hence AUJ;2, B; = U2, (AUB;) €
M, and so |J;o; B; € €(A). Similarly, the intersection of a decreasing sequence of
sets in €(A) belongs to €(A). Thus €(A) is a monotone class.

If A e, then A C C(A) C M, since A is an algebra, and thus €(A) = M. If
A € 9 is arbitrary, then 2 C €(A), for if B € A then €(B) = M, by the previous
sentence, and hence AU B € M. Thus €(A) = M for each A € M, that means that
M is closed under finite unions.

In order to prove that 9t is closed under complements, we consider € := {B €
M : B¢ € M}. Since A is an algebra, A C €. If B; € € so that By C By C -+ -, then
B¢ € M and Bf O BS D -+, and hence (U2, B;)" = N2, BY € M. Similarly,
the intersection of a decreasing sequence of sets in € belongs to €. It follows that
¢ = 9. The proof is complete. O

Theorem 1.4 (Uniqueness of measures). Let 2 be an algebra of subsets of X and
let G be the o-algebra generated by A. Let py and po be measures on & that coincide
onA. Suppose that there is a sequence of sets A; € A so that p1(A4;) = pa(4;) < oo,
i>1, and J;oy A; = X. Then py = po on &.

PRrROOF. First we assume that p1(X) < co. Lemma implies that 9 :=
{A€&:pui(A) = p2(A)} is a monotone class;

ul(GAi) = jllrr;oul(Aj) = hm pa(A4;) = ug( Al-) if A; C Ajyq

813

,ul(ﬂA>—hm ul(A)—hm 1o (A ,u2<ﬂA) if A; D Ay,
=1
By Theorem [I.3] we can conclude that 97 = & which gives the assertion.

For the case u1(X) = oo, note that, for each A € 2, AN & is the o-algebra
(on A) generated by AN (exercise!). Thus p1 (AN B) = ua(ANB) for all Be &
if 411 (A) < oo, by the finite case. By assumption, X = [J;=, 4; for sets 4; € A so
that w1 (A;) = p2(A;) < co. Without loss of generality we may assume that the A;
are disjoint. Then, for B € &,

H1(B):#1(UAQB) ZmAﬂB ZM(AiﬁB):/LQ(B)- O

An elementary family € is a collection of subsets of X satisfying

e fee,
o if £/ F € €then ENF € ¢,
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o if £ € & then E° is a finite disjoint union of elements in €&.

Proposition 1.5. The collection 24 of finite disjoint unions of elements in an ele-
mentary family € forms an algebra.

PROOF. Suppose that A, B € € and B® = |J"_, C;, where C; € € are disjoint.
Then A\B = J;"_,(ANC;) € Aand AUB = (A\ B)UB € %, since these unions are
disjoint. By induction, we can conclude that if A;,..., A4, € € then J_; A; € 2.
For, by inductive hypOtheblb we may assume that Aq,..., A,_1 are disjoint, and
then JI", 4; = A, U, (A\A)GQL Thus if A, B € A then AU B € .

Let us show that 2 is stable under complements. Let Aq,..., A4, € € and
A = U;'Zl B;; with B;; € € disjoint for all 4, j. Then

n n o m;
(UAi> =AUBi= U Byn-nBy,
i=1 i=1j=1 1<4; <m;
1<i<n
which belongs to 2. O

1.3. Outer measures and Caratheodory’s construction

An outer measure on a set X is a mapping p : P(X) — [0, o] satisfying:

o 11(0) = 0.
e 1 is monotone, i.e., u(A) < u(B) if A C B.
e s U-subaddltlve i.e., for any countable family {A;}5°, of sets A; C X,

u( U Ai) <> u(A)
i=1 i=1
Theorem 1.6 (Caratheodory). Let y1 be an outer measure on X. Set
G ={FecP(X): p(Ad) =u(ANE)+ pn(A\ E) for every A C X}.

Then G is a o-algebra and (X, S, u|s) is a measure space.

ProOF. Clearly, X € 6. If F € & then E€ € &, since, for every A C X
(AN E) + p(A\ E) = n(A\ E) + p(AN E) = p(A).
Next we claim that, for £, F € &, also EU F € &. Indeed, for every A C X,

WA (BUF)) + p(A\ (BUF))
— W(AN(EUF)NE)+ (AN (BUF))\ B) + u(A\ (EU F))
(ANE) +p((A\ B) N F) + u((A\ E)\ F)
(
(

ANE)+ u(A\E)
A).
(The first and last equality hold, because E € &, the third, because F' € &.) Let
{E;}32, be a sequence of sets in &, and set E := |J;2, E; and E<,, :=J._, E;. By
induction on n, each E<,, € &. Set F, := E<,, \ E<y—1 = E, \ E<;,—1, n > 2, and
Fy = Fy. For any n > 2 and A C X, we have

MANE<n) = p(AN E<p N E<p1) + (AN E<p \ E<p-1)
= ,U/(A N Egn—l) + ,U(A N Fn)a

°w
o
“w
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and, by induction, u(AN E<,) = > i p(AN F;) for each n > 1. This, together
with o-subadditivity, implies

WANE) :M(Am UFZ-) <> WANE)
i=1 i=1
= nl;ngo i w(ANF;) = nl;ngo w(ANEcy,).

i=1
Using monotonicity, we find

uA\ ) = u(A\|J B<) < inf p(A\ B<)) = lim p(A)\ E<y),

since the sequence p1(A\ E<;) is non-increasing and bounded from below by p(A\ E).
Thus,

WANE) + p(A\ E) < lim (4(AN Bxy) + p(A\ B<y) = p(A).

This shows that E € G, since the converse inequality is trivially satisfied by sub-
additivity. So & is a o-algebra.

In order to see that (X, &, u|s) is a measure space, we need to show that p is
o-additive on &. Let {E;}$2, be a sequence of disjoint sets in &, and define F and
E<, as above. Then

1(E<n) = p(E<n N En) + n(E<p \ En) = p(En) + p(E<n-1),
and, by induction, p(E<,) = >, p(E;) for each n > 1. Thus,

W(E) > w(E<y) = Z p(E

for all n, and hence p(E) > >"°, pu(E;), which implies p(E) = Y .2, u(E;), as p is
o-subadditive. g

1.4. Complete measures

Let (X, G, 1) be a measure space. Sets E € & with u(E) = 0 are called p-null
sets. If a statement about points z € X is true except for x in some null set, we say
that it holds p-almost everywhere, or p-a.e. The measure p is called complete
if all subsets of null sets are measurable, i.e., E € &, u(E) =0, and F' C FE implies
Fe6.

Theorem 1.7 (Completion). Let (X, &, u) be a measure space. Define
G ={ECX:3ABeG, ACECRB, u(B\ A) =0},

and set p(E) := p(A) in this situation. Then G is a o-algebra and 1 is a measure
on 6.

The measure space (X,&,u) is complete. The o-algebra & is called the u-
completion of &.

PROOF. Let us check that & is a o-algebra. Clearly, & C &. If E € &, then
A C E C B and hence B¢ C E¢ C A¢ and A°\ B° = A°N B = B\ A has measure
0, that is E¢ € &. Suppose that 4;, B; € & with A; C E; C B; and u(B; \ A;) =0
for all i. Then (J;2, 4; C U2, E; € U;2, B; and

(Uz)(Ua) - U (5, \L:JA )< U (5 4)
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has measure zero. Hence | J;-, F; € G and & is a o-algebra.
Next we show that y is well-defined on &. If A, B, A’, B’ € & satisfy
ACECB, u(B\A)=0, A CECB, pB'\A)=0,
then A\ A’ C E\ A’ C B’\ A’ and hence u(A\ A’) = 0. Therefore u(A) = p(ANA’).
Similarly, we find p(A’) = u(AN A’), and thus p(A) = p(A’).
o-additivity of p on & follows from o-additivity on &; if the sets E; above are
disjoint then so are A;. O



CHAPTER 2
Lebesgue measure on R”

2.1. Construction of the Lebesgue measure
A box I in R" is given by the product of n compact intervals
I =la,b] :=[a1,b1] X [az,b2] X -+ X [an,by],

where a = (a1,...,a,), b= (b1,...,b,), and a; < b;, i = 1,...,n, are real numbers.
The volume |I| of I is defined by

|I| :(bl_al)"'(bn_an)-

A box is called a cube if all its sides have the same length. A union of boxes is
said to be almost disjoint if the interiors of the boxes are disjoint; the interior of
a box [ is denoted by

I =(a,b) := (a1,b1) x (az,b2) X -+ X (an, by).

We denote by dist(Eq, E2) := inf{|z; — 22| : 1 € E1,22 € E»} the distance of
two subsets E7, EF5 C R"™.

Theorem 2.1 (Lebesgue measure). Let A* : B(R™) — [0, 00] be defined by

A (E) :=inf { Z |Q:| - {Q:}32, is a countable cover of E by cubes},

i=1
and set

LR") :={F € PBR"): \*(A) =X (ANE)+ X (A\ E) for every A CR"}.
Then:

(1) A* is an outer measure; the so-called Lebesgue outer measure.
(2) [f diSt(El,Eg) > 0, then )\*(E1 U E2) = )\*(El) + /\*(Eg)
(3) £(R™) is a o-algebra that contains the Borel o-algebra B(R™).

ProoF. (1) Evidently, A*(0) = 0 and A* is monotone. In order to show that
A* is o-subadditive, let E = (J;2, E;. We may assume that each A\*(E;) < oo for
all 4; otherwise there is nothing to prove. For given € > 0 and each j, there exists
a cover E; C |Jp—, Qj,x by cubes so that

oo . €
D 1Qikl S NE) + 55
k=1

Then {Q;1}55%=, is a cover of E by cubes, and hence

oo o0 o0

N(E) <D D 1Rkl <D N (E)) +e

j=1k=1 j=1
which implies the assertion as € was arbitrary.

7
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(2) Choose dist(FE1, E2) > ¢ > 0 and fix € > 0. There exists a cover {Q;}32,
by cubes of E := FE; U FEs so that

DRI < N (E) +e
j=1

We may assume that each @; has diameter less than J, after possibly subdividing
@;. Then each @; can intersect at most one of Ey or Ej, and setting J; := {j :
Qi NE; # 0}, i=1,2, we have Ji N Jp = 0, and E; C U7, Qj, i = 1,2. Thus,

N(Ey) + N (Es) ZIQ;HZIQ;KZIQ;K/\

Jjen JEJ2
which implies (2), as € was arbitrary; the converse mequahty holds by (1).

(3) That £(R™) is a o-algebra follows from Theorem In order to show that
B(R™) C L£(R™) it suffices to prove that £(R™) contains all closed subsets of R™.
Let F C R™ be closed, and let A be any subset of R™. By (1), it is enough to show
that

A(A) >N (ANF)+ N (A\ F),
and so we may assume that \*(A) < co. We set
Ap = {x € A:dist(z, F) > 1},
Ayi={rcA: (i+1)7! <dist(x, F) <i™ '}, i>1.

Then any two sets Ag; and As, with even indices have positive distance; the same
applies to sets As; 1 with odd indices. By (2), for each m € N,

i A" (Azi) = )\*( O AQi) <\ (4),
Z N (Aziq1) = ( U A21+1> <\ (4),

and therefore Y 77 \* (AZ) < o0. Using A\ F =J;2, A; and (1), we find

N(ANF) + A (A\ F) < X\*(AN F) +)\*<6 Ai) + i A (A;)

=0 i=m+1
—a(AnpulJa)+ > A) oy (2)
=0 i=m+1
SNW+ Y XA

i=m-+1

which implies the required inequality, since > -

iema1 A (Ai) = 0 as m — oo. O

Theorems and imply that the restriction of the Lebesgue outer measure
A* to the o-algebra £(R™) is a measure. We call it the Lebesgue measure, and
we denote it by A or by A", when the dimension n is important. The elements of
L(R"™) are called the (Lebesgue) measurable sets in R™.

The Lebesgue measure is complete. Indeed, if E C F and A(F) = 0, then
A*(E) =0, and hence

AN (A) S XN (ANE) + M (A\ E) < X(E) + M (A) = \*(A),

for any A C R™. But a Lebesgue null set need not be a Borel set; see Example
In fact, we shall see in Corollary that the Lebesgue measure is the completion
of the Borel measure \*|g ).
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Example 2.2. One point sets are null sets. Indeed, for x € R",
n
* 1 1 2
0 <N ({a}) < [[lwi = frs+ )l = ()"
i=1

for all £ > 1. It follows that finite sets and countable sets are null sets.

Example 2.3 (The Cantor set). Consider the interval Cy = [0,1] and let C; be
the set obtained by deleting the middle third open interval from [0, 1], i.e., C; =
[0,1/3] U [2/3,1]. Next delete each middle third open interval of each subinterval
in Cy, ie., Co = [0,1/3%] U [2/32,1/3] U [2/3,7/3%] U [8/32,1]. Continuing this
procedure we obtain a sequence Cy 2O C7 D --- of compact sets. The intersection
C :=Np—o Ck is called the Cantor set. The Cantor set is a null set. Each Cj, is
a disjoint union of 2* closed intervals, each of length 37*. Since C' C C}, for all k,
A(C) < (2/3)* for all k, and thus A\(C) = 0.

The Cantor set is uncountable. To see this observe that
o0

C:{xE[O,l]:x:Z%, aje{0,2}}

j=1
and consider the function f: C' — [0,1] defined by

o0 o0

Qs b a;
r= 5r = f(e)=) 3, whereb; = 2. (2.1)

j=1 j=1
The function f is clearly surjective and thus C is uncountable.

Proposition 2.4. We have A([a,b]) = |[a,b]| = (b1—aq1) - (bn—ay). In particular,
degenerate bozes (where a; = b; for at least one i) are null sets.

PRrROOF. Clearly, A([a,b]) > |[a,b]|. Consider a grid in R™ of cubes @ of side
length 1/k. Let €; be the collection of all @ contained in [a,b], and let €5 be
the collection of all @ intersecting [a,b] as well as [a,b]°. Then the number of
cubes in €, is bounded by "~ ! times a constant C' independent of k, and thus

> 0ce, |QI < C/k. Then, as Ugee, @ C [a, ],
Y. lel<lab)l+C/k,

QEC;UC,
for all k, and therefore A([a,b]) < |[a, b]|. O

Lemma 2.5. If E = |J;2, Q; is an almost disjoint union of cubes, then A\(E) =
Zfil |Qz‘

PROOF. Let € > 0. For each Q; choose a cube Qa contained in the interior of
Q; and such that |Q;| < |Q;| + €/2¢. Then the cubes Q; are disjoint, and hence

S1Ril = AE) = A(J @) = D10 = Y 1Qil — e
i=1 i=1 i=1 i=1

The statement follows, as € was arbitrary. O

Lemma 2.6. Fvery open set U C R™ is a countable almost disjoint union of cubes.
ProoF. Consider the collection €y of cubes of side length 1 defined by the
lattice Z™. Set
g :={Q €€ :Q CU} and
Vo :={Q€C:QNU #0and QNU # 0}.
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Let €; be the collection of cubes that we obtain by subdividing each cube in Uq
into 2" cubes of side length 1/2; and set

uliz{QE(’:lngU} and
U :={QeC,:QNU #£0 and QNU* # 0}.

Continue this procedure. Then U = UQ@l Q, where U := (J;=, &4;, is a countable
almost disjoint union of cubes. O

2.2. Radon measures on R"

Let X be a topological space. A measure p on a o-algebra & 2 B(X) is called
outer regular if

w(E) =inf{u(U): ECU,U open}, E€6,
and inner regular if
w(E) =sup{u(K) : K C E, K compact}, F € 6.
If i is both outer and inner regular, it is called regular.

A Radon measure on R” is a Borel measure that is finite on compact sets.
More generally, a Radon measure on a locally compact Hausdorff space X is a
Borel measure that is finite on compact sets, outer regular on Borel sets, and inner
regular on open sets. The next theorem shows that on R™ finiteness on compact
sets implies regularity. By the Riesz representation theorem (e.g. [5]), the Radon
measures on a locally compact Hausdorff space X correspond to the positive linear
functionals on the space C.(X) of continuous functions with compact support.

We denote by B,.(z) := {y € R" : |z —y| < r} the open ball centered at z € R®
of radius r with respect to the Euclidean norm |z| := (27 + --- + x2)/2.

Theorem 2.7. Each Radon measure p on R™ is o-finite and regular. For each
Borel set A and each € > 0 there is an open set U and a closed set ' so that

FCACU, and pwU\F)<e (2.2)

PRrROOF. Evidently, p is o-finite.

Let us prove . First we assume that p is finite. Let 2 be the set of all
Borel sets A that satisfy . We claim that 21 is a o-algebra. If A € 2, then
for given € > 0 there are U and F' satisfying 7 and thus U¢ C A° C F° and
w(F\NU®) = p(U\ F) <e ie, A° € 2. Suppose that A; € A, i > 1, and € > 0.
So there are open U; and closed F; so that F; C A; C U; and u(U; \ F;) < ¢/2¢FL,
Then U := {J;2, U; is open and F :=|J!", F} is closed for finite m. Since p is finite,

(O mar) < u(Urr)=u(08) -w((5) <o
i=m+1 i=1 i=1 i=1

for sufficiently large m, by Lemma Since U\F C (U\U;i2, F))U(U;=, 11 Fi\F),
(o) (o)
wUNF) <Y w0\ F)+p( | F\F)<e
i=1 i=m+1
Thus 2 is a o-algebra.

Every closed set F' C R™ belongs to 2, since the sets Uy := {z : dist(z, F) <
1/k} are open and satisfy y(Uy \ F)) — 0 as k — oo, by Lemmal[L.1] It follows that
2 = B(R") and hence (2.2).

Assume that p is not finite. Let A be a Borel set and let € > 0 be given. Since
v;(E) := u(E N B;(0)) is a finite Radon measure on R™, by the above, there exists
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a closed set C; C (B;(0)\ A) with v;((B;(0)\ A)\ C;) = u((B;(0)\ A)\ C;) < /2.
Then U := J;=,(Bi(0) \ C;) is open,

&

A= BZ(O)QAQ

1 4

(Bz’(o) \ Ci) =

NG S
s

Il
—

K2

and
w(U\ A) < ZM 0)\Cy)\ 4) <

Similarly, there exists a closed set Fi CA =An{z i < |z| < i+ 1} with

u(Ai \ Fy) <e/2,
Fe=|JFc|JA=A4,
i=0 i=0
and
PANF) <> A\ Fy) <e
i=0

It remains to show that F is closed. If x € F and F > x;, — z, then |zx| — |2|
and so z € F; U Fj;, for some j and for all sufficiently large k. Consequently,
x € FjUF; 1 CF,since F; U Fj is closed. Thus (2.2)) is proved.

Finally, we show that p is regular. Let A be a Borel set, and let € > 0. Outer
regularity is clear if y(A) = oo and follows from if u(A) < oo: there exists an
open set U D A so that pu(A) + e > p(A) + p(U\ A) = p(U). Next we show

w(A) =sup{u(F): F C A, F closed}. (2.3)
It follows from if 1(A) < oo: there is a closed set F' C A so that u(A4) —e <
w(A) — p(A\ F) = p(F). If p(A) = oo, write A = |J:2, A; where A; is as above.
Since p is finite on compact sets, u(A;) < oo, and, again by , there exist closed
F; C A; with p(F;) > p(A;) — 1/2ZJrl By Lemma

(U R) =n( 0 F) = S ue) 2 )1 =

which shows ([2.3)), since Uf:o F; is closed. We finally have
sup{u(K) : K C A, K compact} = sup{u(F): F C A, F closed},

since for any closed F' C R™ the sets K := F'N By(0) are compact and p(F) =

2.3. Properties of the Lebesgue measure

Proposition 2.8. The Lebesque outer measure is Borel regular, i.c., for each
E C R" there exists a Borel set B D E such that \*(E) = A*(B).

PROOF. If A\*(E) = oo take B = R™. Suppose that A*(E) < oco. For each
k > 1 choose a countable collection €, of cubes so that

EC |J@=Br and > |Q<XN(E)+1/k
Qe Qe
Then B := (), B is a Borel set that contains E and satisfies
AN(B) < X(By) < Y |QI < A (E) + 1/k,
Qe
for all k, hence \*(E) = A*(B). O
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Theorem 2.9 (Regularity). The Lebesgue measure A on R™ is o-finite and regular.
Its restriction to B(R™) is a Radon measure.

ProOF. Clearly, X is finite on compact sets and hence a Radon measure when
restricted to B(R™). Thus A is o-finite. By Theorem [2.7]

A(B) =inf{\(U) : BC U,U open} = sup{A(K) : K C B, K compact}
for each Borel set B. If £ C R"™ is arbitrary, then, by Proposition there is a
Borel set B O E with A*(E) = A*(B), and thus
A(E) =X (B) =inf{\U) : BCU,U open} > inf{\(U) : E CU,U open},
which shows that A is outer regular.

To see that A is inner regular let £ C R™ be measurable, and suppose first that
E is contained in a cube Q. Let € > 0. Then A\(Q \ E) < oo and, as X is outer
regular, there exists an open U D @ \ E so that A(U) < MQ \ E) + €. The set
K :=Q\ U C E is compact and satisfies

AE) =AMQ) = AMQ\E) <AQ) —AU) +e < AMQ) = MQNU) + €= AK) +e
If E is not contained in a cube, for each k& > 1, there is a compact K, C EN[—k, k"
so that M(Kj) > AM(EN[—k, k") —1/k. Hence \(K}) — A(E) as k — oo and hence

A is inner regular. O

Corollary 2.10 (Characterization of Lebesgue measurability). A set E C R™ is
Lebesgue measurable if and only if there are an F,-set A and a Gs-set B satisfying
ACECBand A(B\ A) =0.

An F,-set is a countable union of closed sets, and a Gs-set is a countable
intersection of open sets. The corollary implies, in view of Theorem [I.7] that the
Lebesgue o-algebra £(R™) is the completion of the Borel o-algebra B(R™).

PROOF. Assume that E is Lebesgue measurable. Theorem implies that
there exist open sets G; and closed sets F; satisfying F; C E C G; and A\(G;\ F;) <
1/i. The sets F = J;2, F; and G = (=, G, are as required.

Conversely, if there exist such F' and G, then for any A C R™, we have ANF C
ANECANG, A\GCA\ECA\F,

N ((ANG)\ (AN F)) = X'(AN (G\ F)) < (G \ F) =0,
and similarly M*((A\ F) \ (4 \ G)) = 0. This implies \*(AN E) = X*(AN F) and
A (A\ E) = (A\ F), and thus

NANE)+ XN (A\E)=X(ANF)+ X (A\F) =\ (4),
since F' is measurable. (|

Theorem 2.11 (Uniqueness of Lebesgue measure I). The Lebesgue measure \ is
the unique measure on the Borel o-algebra B(R™) satisfying A([a, b]) = |[a, ]|.

PROOF. By Proposition [2.4] A([a, b]) = |[a, b]|. Suppose there is a second mea-
sure p on B(R™) with this property. We claim that A and p coincide on the
collection 2 of all finite disjoint unions of sets of the form F NG, where F is closed
and G is open, and that 2 is an algebra. The statement of the Theorem is then
a consequence of Theorem since the o-algebra generated by 2 is the Borel
o-algebra.

That 2 is an algebra follows from Proposition [L.5] since the collection of sets of
the form F N G, where F' is closed and G is open, is an elementary family, in fact,

(FLNG1) N (FyNGy) = (FL N F)N (G NGy),
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(FNG)=(FNG)U(F°NG)U(F°NG°).
If F is closed and G is open, set Gy := {x € R™ : dist(x, F') < 1/k}. Then Gy, is
open, G, D Giq1, and F = (2, Gy. If u(G) < oo then, by Lemma

oo

u(fjl(Gk N G)) = jlin;o w(G;NG) = jli)ralo MG;NG) = ,\(Ql(g,c N G)>7

since A and p coincide on open sets, by Lemmas [2.5] and Thus u(F N G)
AFNG) if p(G) < oo. If u(G) = oo, then

WE NG (=kk)") = AMF OGN (—k k)")

and letting k — oo we find again u(F NG) = A\(F N G). By o-additivity, p and A
coincide on 2. O

Corollary 2.12. A Borel regular outer measure p on R™ so that all Borel sets
are p-measurable and so that pu([a,b]) = |[a,b]| coincides with the Lebesque outer
measure.

Proor. By Theorem 1 and \* coincide on all Borel sets. Let £ C R"
be arbitrary. As p and A\* are Borel regular, there exist Borel sets By, By 2 F
so that u(B;) = p(E) and A*(B2) = A*(E). Then, as By N By O E, we have
w(E) = u(B1) > p(B1 N By) > p(E), thus u(F) = p(B; N Bg), and analogously
A*(E) = M*(By N By). Therefore u(E) = \*(E). O

Proposition 2.13 (Translation invariance). The Lebesque measure A on R™ is
translation invariant, i.e., if E is measurable and y € R™, then the set E 4+ y :=
{z+1y:x € E} is measurable and \(E + y) = \(E).

PrOOF. The assertion is clearly true in the case that E is a cube. Consequently,
for arbitrary £ C R™ we have \*(E +y) = A\*(E). If E is measurable and A C R"
is arbitrary, then

A(AN(E+y) +A(A\ (E+y))
=AM((A=y)NE)+y) + X (A-y) \ E) +v)
=A((A-y)NE)+ A (A—y)\ E)
=N (A-y)
= A" (4),

and so F + y is measurable. O

For further invariance properties, see Lemma and Theorem [3.33

Theorem 2.14 (Uniqueness of Lebesgue measure II). If u is a translation invari-
ant Radon measure on R™, then there is a constant C > 0 such that u(F) = CA(E)
for all Borel sets E.

PROOF. Set u([0,1)") =: C' < oo. Consider the grid of dyadic cubes of the
form [a1,b1) X -+ X [an, b,) defined by the lattice 27¥Z™. Since these cubes are all
translates of each other,

2" u(Q) = u([0,1)") = CA([0,1)") = C2*"\(Q),

for each such cube ). We may infer that p vanishes on degenerate boxes, and
so (@) = CA(Q) for each closed dyadic cube Q = [a1,b1] X -+ X [an,by]. Then
w(E) = CX(E) for each open set F, by Lemmas and and thus for each
Borel set E, by regularity of p and A, see Theorems and U
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Proposition 2.15 (Approximation by cubes). Let E C R™ be measurable with
A(E) < co. For each e > 0 there exist cubes Q1,. .., Qum such that \(EA L, Q;) <
e, where EAF := (E\F)U(F\FE) = (EUF)\(ENF) is the symmetric difference.

PROOF. Let € > 0 be fixed and let Q; be cubes such that E C |J;2, Q; and
> 1Qil < M(E) + €/2. Since A(E) < oo the infinite sum converges and there
exists m such that 327 . |Qi| < /2. Then,

(EAUQ)_A<E\UQ)+)\( 1
(0 o))

s

Qi\E)

el)

1=m-+1 =1
< Z |Qi|+Z|Qi|_>‘(E)<E' O
i=m+1 =1

2.4. Non-measurable sets

Every set of positive measure in R has non-measurable subsets.

Theorem 2.16 (Existence of non-measurable sets). Let E C R. If every subset of
E is Lebesgue measurable, then \(E) = 0.

PrOOF. On R consider the equivalence relation x ~ y & x —y € Q. The
axiom of choice allows us to choose exactly one element in each equivalence class
and to gather these elements in one set IV; such a set is called a Vitali set.

For ¢ € Q consider the translates N +¢ which are pairwise disjoint; otherwise we
have £ +¢q1 = y+¢2 and thus x —y € Q, but z and y belong to different equivalence
classes, a contradiction. Fix p € Q and set E, := E N (N + p). By assumption,
Ej, is measurable. Let K C Ej, be compact and set L := (J,cqnpo,1 K +¢- Then
ML) < oo, since L is bounded, and, since the sets K + ¢ are disjoint, A(L) =
quQﬁ[O,l] A(K). Thus A\(K) = 0. Since K was arbitrary, we may conclude that

A(Ep) = 0, by regularity of A. Consequently, A(E) = 0, because E = |J,cq Ep- U

In the previous proof the axiom of choice plays an essential role. In fact, Solovay
constructed a model in which all axioms of Zermelo—Frankel set theory, except the
axiom of choice, hold and in which every subset of R is Lebesgue measurable.

There exists a finitely additive translation-invariant set function assigning boxes
their volume that is defined on all subsets of R, respectively R?, but not in higher
dimensions. In fact, any ball in R3 can be decomposed into finitely many disjoint
subsets, which can then be reassembled using only rotations and translations to
form two copies of the original ball; this results is called the Banach—Tarski
paradox.



CHAPTER 3
Integration

3.1. Measurable functions

A set X equipped with a o-algebra & C P(X) is called a measurable space
(X,6). A mapping f : X — Y between measurable spaces (X, &) and (V,%) is
called (&, ¥)-measurable if f~}(F) € & for every E € T.

It is obvious by definition that the composition of measurable mappings is
measurable, more precisely, if f: X — Y is (&,%)-measurable and g : Y — Z is
(%, 4)-measurable then g o f is (&, 4)-measurable.

Lemma 3.1. If T is generated by 2A, then a mapping f : X — Y is (6,%)-
measurable if and only if f~1(E) € & for every E € 2.

PROOF. This follows from the fact that {E£ C Y : f~}(E) € &} is a o-algebra
on Y containing 2, and hence containing ¥. O

If follows that any continuous mapping f : X — Y between topological spaces
X and Y is (B(X), B(Y))-measurable.

If f is a real or complex valued function on a measurable space (X, &) then
we say that f is G-measurable if f is (&,B(R))- or (&,B(C))-measurable. For
instance, f : R" — C is Lebesgue measurable if it is (£(R"), B(C))-measurable,
and it is Borel measurable or also a Borel function if it is (B(R"),B(C))-
measurable.

Note that if f,g : R — R are Lebesgue measurable, then g o f need not be
Lebesgue measurable.

The characteristic function y4 : X — R of a subset A C X

(2) 1 ifzed
X) . —
x4 0 ifxgA

is &-measurable if and only if A is G-measurable.

Proposition 3.2. Let X be a measurable space.

(1) If f1, f2 : X — R are measurable, then f = (f1, f2) : X — R? is measur-
able.

(2) A complex valued function f : X — C is measurable if and only if Re f
and Im f are measurable. In this case |f| is measurable.

3) If f,g: X — C are measurable, then so are f + g and fg.

PROOF. (1) Every open subset U C R? is a countable union of cubes U =
U2, @i, by Lemma.6, Then f~1(U) = =1 (Us2, Q1) = U2, £~ 1(Qy) is measur-
able, since each f~1(Q;) = fl_l(IiJ)ﬂfQ_l(Iw) is measurable, where Q; = I; 1 X I, o
and I; 1, I; o are compact intervals.

(2) follows from (1) and the fact if f : X — C is measurable then the composite
g o f for any continuous mapping g is measurable. This also implies (3). d

15
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The extended real line is the set [—00,00] = R U {#o00} with the topol-
ogy generated by the open sets of R and all intervals [—oo,a) and (a,o0]. Then
B([—o00,0]) = {E C [-o0,00] : ENR € B(R)}. A function f : X — [—o0, 0]
on a measurable space (X, &) is said to be G-measurable if it is (&, B([—o0, x0]))-
measurable.

Proposition 3.3. Let (X, &) be a measurable space. A function f : X — [—o00, 0]
is &-measurable if and only if f~*((a,<]) € & for all a € R.

PROOF. By Lemma it suffices to show that {(a,o0] : a € R} generates
B([—00, 00]). This follows from

[—00,a) = U[—oo,a -1]= U(a — 1, o0
and from (a,b) = [—o00,b) N (a, 0. O

It follows that every upper or lower semicontinuous function is Borel measur-
able. Recall that a function f : X — [—o00,00] on a topological space X is upper
(or lower) semicontinuous if {z : f(x) < a} (or {z : f(z) > a}) is open for all a € R.

Theorem 3.4 (Pointwise limits of measurable functions). Let f,, : X — [—00, o],
n € N, be a sequence of measurable functions on a measurable space (X,S). Then
inf f,, supf,, liminff,, limsup f,

neN neN n—o00 n—o0
are measurable. Thus, the limit of any pointwise convergent sequence of complex
valued measurable functions is measurable.

PROOF. Let g := sup, ey fn. Then g7 ((a,0]) = U, en fn ' ((a,00]) and thus
g is measurable, by Proposition The result for the infimum is analogous (note
that inf,, f,, = —sup,,(—f»)). Since

limsup f,, = inf sup f,, and liminf f,, = sup inf f,,
n—00 neNm>n n—reo neNmZ

the result follows. O

Thus, if f,g : X — [—o00,00] are measurable, then so are the functions
min{f,g} and max{f,g}. In particular, this is true for f* := max{f,0} and
f~ := —min{f,0}, the positive and negative part of f. Note that

f=ft=f and [fl=f"+[".

For a complex valued function f : X — C we have its polar decomposition,

= |f|sgn f, here sgnz:= .
f=1flsenf, w g {0 0

If f is measurable, then so is | f| and sgn f. Indeed, | | : C — R is continuous, and
the preimage sgn=1(U) of an open set U C C is either open or of the form V U {0},
where V' is open, and hence sgn is Borel.

Example 3.5 (The Cantor function). Consider R with the Lebesgue measure .
Let C be the Cantor set from Example The Cantor set is a closed null set,
in particular, C' is Borel. Let f : C' — [0,1] be the function defined in (2.1)). It is
easy to see that z,y € C implies f(x) < f(y) unless = and y are the endpoints of
one of the intervals removed from [0, 1] to obtain C. In the latter case f(z) = k/2°
for some integers k,¢, and f(x) and f(y) are the two expansions in base 2 of
this number. Thus, we can extend f to a function f : [0,1] — [0,1] by setting
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flap) = f(a) = f(b) on each connected component (a,b) of [0,1] \ C. Then f is
still nondecreasing and it is continuous, since its range is all of [0,1]. This is called
the Cantor function.

FIGURE 1. The Cantor function. (Generated with Mathematica and
based on the code provided in [15}, p.173].)

As a by-product we obtain the existence of Lebesgue null sets which are not
Borel as follows. The function g(x) = x+ f(x) is strictly increasing and continuous,
thus a homeomorphism onto its image. The image ¢g(C') has positive measure and so,
by Theorem [2.16} there is a non-measurable subset F' C g(C). If we set E = g~ (F),
then £ C C and hence FE is a null set. But E' is not Borel. Indeed, if E were Borel,
then so were F, since g~ ! is continuous.

3.2. Approximation by simple functions

Let (X, &) be a measurable space. A simple function is a complex valued
measurable function on X with finite image. A simple function is representable in

the form
N
s = Z i XE;»
i=1

where all E; € & and a; € C. In fact, setting E; := {z : s(x) = a;}, where
s(X) = {a1,...,an}, yields such a representation with the additional property
that all a; are distinct and all F; are disjoint; we call this particular representation
canonical.

Simple functions will be for the Lebesgue integral what step functions (where
E; are just boxes in X = R") are for the Riemann integral.

Theorem 3.6 (Approximation by simple functions). Let f : X — [0,00] be mea-
surable. There exist simple functions s; on X such that

(1) 0<s<sp<--- < f

(2) lim; 00 8i(z) = f(z) for every x € X.

PRrOOF. To each integer m > 1 and each ¢ > 0 there corresponds a unique
integer k = k(m,t) that satisfies k/2™ <t < (k4 1)/2™. Define

) = k(m,t)/2m if0<t<m
Gm i) = m ifm<t<oo.

We have
t—2"" < gn(t) <t fO0<t<m.
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Thus limy, 00 gm (t) = t for every t € [0,00], and clearly 0 < g1 < g2 < -+ < ¢
Then s, := g, o f are simple functions with the required properties. O

Corollary 3.7. Let f : X — [—o00,00] or f : X — C be measurable. There exist
simple functions s; on X such that

(1) 0< [sa] < sof < - < |f]
(2) lim;— 00 si(z) = f(x) for every x € X.

PRrOOF. Consider first the case f : X — [—00,00]. By Theorem applied to
fT and f~, there are simple functions 0 < s7 < sj <---< ffand0<s; <s, <
<+ < f7 so that lim;_, sli(:z:) = f*(z) for every x € X. Then s; := sz'-" —s; is as
required. The case f: X — C is an easy consequence. (]

Given a measure p on (X, &), one often wants to ignore p-null sets. In this
respect we have for complete measures:

Proposition 3.8. Assume that p is complete, and that f, g, f; are functions with
values in [—oo,00] or in C.

(1) If f is measurable and f = g p-a.e., then g is measurable.
(2) If fi are measurable and f; — [ p-a.e., then f is measurable.

PrOOF. We may assume that all functions have values in the extended real
line.

(1) Since p is complete, the sets E = {z : f(x) # g(x)} and g~ *((a,00]) N E
are measurable, and thus g=1((a,]) = (f~*((a,c]) N E¢) U (97 ((a,0]) N E) is
measurable.

(2) Let E = {z : fi(x) — f(x)}. Then fixp — fxg and u(E°) = 0. By
Theorem fxE is measurable, and so f~1((a,o0]) = (f~*((a,00]) N E¢) U
((fxe)'((a,]) N E) is measurable. O

If the measure is not complete we still have:

Proposition 3.9. Let (X,6, 1) be a measure space and (X, S, i) its completion.
If f is a G-measurable function on X, then there is a S-measurable function g such
that f = g l-a.e.

ProoF. This is immediate from the definition of the completion @, if f = xg
with £ € & and hence if f is a G-measurable simple function. By Corollary
there is a sequence of G-measurable simple functions s; converging pointwise to f.
For each i, there is a G-measurable function g; so that s; = ¢; except on aset E; € &
with 77(E;) = 0. Choose a set F' € & with (F) =0 and F D |J;2, E;; it exists by
the definition of &. Then ¢ = lim;_,c ¢; Xre is as required, by Theorem 3.4 ]

3.3. Integration on a measure space

Let us fix the arithmetic in [0, c0]. We define
at+oco=o00+a=o00 ifaé€]l0 o0
oo ifa e (0,0]
a-00=00-a=
0 if a = 0.

Then addition and multiplication in [0, co] are commutative, associative, and dis-
tributive. The cancellation laws have to be treated with some care; a +¢c=b+ ¢
implies a = b only if ¢ € [0,00), and ac = bc implies a = b only if ¢ € (0, 00).
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Lemma 3.10. If f,g: X — [0,00] are measurable, then so are f + g and fg.

PRrROOF. By Theorem there exist simple functions 0 < 57 < g0 < -+ < f
and 0 <t; <tp <--- < g such that s;(x) — f(x) and t;(x) — g(x) for all . Then
si(x) + ti(z) = f(x) + g(x) and s;(z)t;(z) — f(z)g(z), and Theorem implies
the statement. ]

Throughout this section let (X, &, i) be a fixed measure space. We will define
the integral in three steps:

e for positive simple functions,
e for positive functions,
e for complex valued functions.

Step 1. Integrating positive simple functions. The (Lebesgue) inte-
gral [ sdp with respect to the measure p of a simple function s : X — [0, 00) with

canonical representation s = Zfil a;Xg, is defined by

N
/sdu = Zaiu(E
i=1

where we use the convention 0- 0o = 0. If £ € &, then syg is a simple function,

and we define N
/ sdu ZZ/SXEdMZZaiM(EiﬂE)-
E i=1

Lemma 3.11. Let s: X — [0,00) be a simple function and let s = Ei\il a;x; be
any representation as a linear combination of characteristic functions. Then

N
/ sdp =Y a;u(E
=1

PROOF. There exists a refinement {F},..., Fas} of Ufil E; such that

N M
Fj € & are disjoint, | JE;=|JF;, and E = (] F;.

i = F;CE;

It suffices to take
{Fl, ce ,FM} = {G1 N---NGyx :G; € {Ei, (EZ)(’}} \ {(El)(’ n---N (EN)(’}

If weset b; := ZFngi a; then s = ij:l
and some may be zero. If b € {b;} is non-zero, set Hy, :=J, = Fj- Clearly, the sets
Hy are pairwise disjoint and satisfy p(Hp) = Zb _p M(Fj). We have s = Y bxm,
where the sum is over the non-zero values in {b }, and then

M
[ s =3 bt = S butry) S Y e Zazu 0

J=1F;CE;

bjXr;- The numbers b; may not be distinct

Lemma 3.12. Let s and t be positive simple functions on X, and E,F,E; € G.
(1) Fora € [0,00) we have [asdp =a [ sdp.
2) [(s+t)dpu= [sdp+ [tdpu.
(3) If s<t, then [sdu < [tdpu.

(4) If ECF, then [psdu < [psdu.

(5) The mappmg E — [, sdp is a measure on &.

(6)

6) If u(E) =0 then [, sdu=0.
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PROOF. (1) is obvious. Let s = Zf\il aixp, and t = Z;Vil

representations. Then F; = Ujjvil(Ei N F;) and F; = UZVZI(EZ N F;) and these
unions are disjoint. Thus, by finite additivity of p,

/sdﬂ+/tduii(aierj)u(Eij) :/(s+t)du,

i=1 j=1

bjxr; be canonical

which shows (2). If s < ¢, then a; < b; whenever E; N F; # (), and hence

N M N M
‘/de::EIE:aﬂmE;mﬁp5;§:§:aﬂ4Eime::/}d%

i=1 j=1 i=1 j=1
that is (3). (4) follows from (3), or from monotonicity of . For (5), if Fy, F,... € &
are disjoint, then

N co N oo
[ st=denEnUE) =3 S auEnE) =3 [ sdu
U5z, Fy i=1 j=1 j=1i=1 j=1"F;

(6) follows from the definition. O

oo

Step 2. Integrating positive functions. The (Lebesgue) integral ffdu
with respect to the measure p of a positive measurable function f : X — [0,00] is
defined by

/fdu = sup{/sdu : s simple and 0 < s < f} € [0, 00].
If £ € G, we define
/ fdu ::/fXEdu:sup{/ sdp : s simple and 0 < s < f}.
For simpleEf this definition coincides Wigl the earlier one, by Lemma (3).
Lemma 3.13. For measurable functions f,g: X — [0,00] we have
/afdu:a/fdu, for a € [0, 00),
and
[tan< [gdu i#5<q
ProOF. This is clear from the definition. (]
Note that this implies [, fdu < [ fduif ECF.

Theorem 3.14 (Monotone convergence theorem or Beppo Levi’s theorem). Let f;
be measurable functions on X satisfying

MHo<fqi<fo<--<o0
(2) lim;o0 fi(x) = f(x) for allx € X.

Then f is measurable, and
lim /fidM:/fdM-
71— 00

PROOF. By Theorem [34] f is measurable. Since f; < fiqq < f for all i, we

have [ fidp < [ fix1dp < [ fdp, by Lemma|3.13] and hence lim;_, [ f; dp exists
(possibly equal to co) and satisfies

lim [ fidp < / fdp.
71— 00
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Let s be a simple function satisfying 0 < s < f, and let a € (0,1). Set

E;:={z: fi(zx) > as(x)}.
Then E; € 6, By CE, C -+, X =J;2, E;, and, by Lemma [3.13]

/fiduz/ fiduza/ sdp.
Ei Ei

Since E — [, sdu is a measure, by Lemma lim; oo [ sdp = [ sdu, by
Lemma and so

lim [ fidu> a/sdu,
1— 00

and, as this holds for every a < 1, it remains true for a = 1. Taking the supremum
over all simple functions s satisfying 0 < s < f, we get

lim [ fidp > / fdu.

71— 00
The proof is complete. O
Corollary 3.15. Let f; : X — [0,00] be measurable functions, and f =3 .2, fi.

Then .
/fdu—;/fidw

PRroOOF. First we prove the statement for the sum of two functions f and g. By
Theorem there exist simple functions 0 < s1 < g9 < --- < fand 0 <ty <ty <
- < g with s;(z) = f(z) and t;(z) — g(x) for all . Then s; + ¢; is an increasing
sequence of simple functions that converges pointwise to f + g, and Theorem
together with Lemma [3.12] imply

/(f+g)d,u: lim /(si+ti)d/¢: lim /sid,qu_lim /tidu:/fd/iJr/gdp.
1—00 71— 00 71— 00

By induction, we obtain [ 1, fdu = >, [ fidp for finite n, and applying
Theorem to F,, := > ., f;, implies the result for infinite sums. (]

Corollary 3.16. Let f : X — [O o] be measurable. Then v(E) = [, fdu is a
measure on &. If g: X — [0,00] is measurable, then

/gdv—/gfdu

PROOF. Let E; € G be pairwise disjoint. By Corollary

E) /iXEifdui/XEifdﬂiV(Ei)a
1=1 i=1 =1

so v is a measure on &. By definition, [gdv = [ gf du holds for g = xg, E € &,
and hence for each positive simple function,

N N N N
/ZaiXEi dv = Za’i/XEi dv = Za’i/XEifd:u = /ZaiXEifdu'
i=1 i=1 i=1 i=1

The general case follows from Theorem [3.6|and the monotone convergence theorem

BI4 O

Corollary 3.17 (Fatou’s lemma). For measurable functions f; : X — [0, 00],

/hm inf f; dp < hm 1nf/fi dp.

1—00
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PROOF. Set g; := inf;>; f;. Then g; < gj41 and g; < f; for all ¢ > j. Thus,
Jgjdp < inf;>; [ fidp. Since lim;_, g; = liminf; , f;, the monotone conver-
gence theorem [3.14] implies that

/li_minf fidpy = lim /gj dp < lim inf/fi dp. (]
i—00 Jj—oo i—00

Proposition 3.18. For a measurable function f : X — [0,00], [ fdu =0 if and
only if f =0 p-a.e.

ProOF. This is clearly true if f is a simple function; if f = Zi\;1 a;XE, is the
canonical representation then a; > 0, and [ fdu = 0 if and only if for each i either
a; = 0 or u(F;) = 0. In general, if f = 0 p-a.e. and s is a simple function with
0 <s < f, then s = 0 p-a.e. and thus [ fdu = sup,<; [ sdu = 0. Conversely,
if f # 0 p-a.e., then there is an integer k > 1 so that u({z : f(z) > 1/k}) > 0,
since {z : f(x) > 0} = Upe {= : f(z) > 1/k}. But then f > k™ 'X (0 (2514} and
therefore [ fdu > k= 'u({z: f(z) > 1/k}) > 0. O
Corollary 3.19. Let f;, f : X — [0,00] be measurable functions so that f;(x)
f(z) for p-a.e. x € X, then lim; . [ fidu= [ fdu.

PROOF. There is a measurable set E with u(E°) = 0 and such that f;(z) &
f(x) for each x € E. Then f — fxg = 0 a.e. and f; — fixg = 0 a.e. and by the
monotone convergence theorem [3.14] and Proposition [3.18]

i [ fodp = i [ goxodn= [ pedn= [ 1 0
11— 00 71— 00
Step 3. Integrating complex valued functions. We define

LY (p) = {f : X — C measurable :/|f|du < oo}.

If f is measurable, then so is |f|, by Proposition any hence the integral is
defined. The members of L!(u) are called (Lebesgue) integrable functions with
respect to the measure pu.

For f € LY(u), f = u+iv, and E € &, we define the (Lebesgue) integral
over E with respect to the measure u by

/Efdu::(/Ewdu—/Eu*dﬂ)+z‘([Ev+du—/Ev*du).

The measurability of f guarantees the measurability of u®, v*, which are all positive
functions. So all integrals on the right-hand side exist. As u® < |u| < |f| and
vt < Jo] < |f] all four integrals are finite, and thus [}, fdu € C.

If f: X — [—00,00] is measurable, we define

/Efdu::/Ef*du—/Ef’du

provided that at least one integral on the right-hand side is finite; then [ pfdue
[—o0, 0]

Proposition 3.20. Let f,g € L*(u). Then
(1) Linearity. If a,b € C, then af +bg € L*(u) and

/(af—i—bg)du:a/fdu—kb/gd,u.
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(2) Monotony. If f < g, then

[tan< [gin
(3) Triangle inequality.

| [ an|< [171dn

(4) o-additivity. If E; € & are disjoint, then

/. Efdu=§;/&fdu~

i=1"1
Proor. (1) By Proposition af + bg is measurable, and, by the properties
of the integral for positive functions,

/|af 4 bgldp < /Iallfl + [bllg] dyx = la] / \Fldu+ o / 9] dys < .

Hence af + bg € L'(u). Next we show

/f+gdu:/fdu+/gdu- (3.1)

To this end we may assume without loss of generality that f and g are real valued.
Setting h = f + g we have

W —hm=ft—f+gt -9
or equivalently

Rt 4+ f~+g =fT+gt+h
and thus

/h+du+/f_du+/g_du:/f+du+/g+d,u+/h_du.

Each of these integrals is finite, so (3.1)) follows. Let us show

/afdu:a/fdu. (3.2)

If @ > 0 this follows easily from Lemmal[3.13] For a = —1 we have, writing f = u+iv,
[=tan=([artau= [ de) i [0t dn- [0 da)
= (/ufd,u—/zﬁd,u) —|—i(/vfd,u—/v+d,u>
- [ ran

/ifd,uz/(iu—v)duzi/udu—/vdu
:i(/udu+i/vdu):i/fdu.

Combining these cases with (3.1]) implies (3.2), and (1) follows.
(2) By assumption fT — f~ < gT — g, or equivalently f* + g~ < gt + f,
thus [(f*+¢7)du < [(97 + f7)du, and (1) implies the assertion.

for a =1,
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(3) Since [ fdu € C, there exists a € C, |a| = 1, so that a [ fdu = | [ fdul.
Then

| [ran=a [ rau= [aran= [Re@pan< [lasian= [ 1f1dn

(4) follows from the definition and from Corollary O
Proposition 3.21. Let f,g € L'(n). Then [, fdu = [, gdp for all E € & if and
only if f =g p-a.e.

PRrROOF. By Proposition f =g p-ae. if and only if [|f —g|du = 0. If
[ 1f —gldp =0, then for any E € &,

‘/Efdﬂ_/Egdﬂ‘S/E|f—9|du§/|f—g|du:0,

whence [, fdp = [, gdu. Conversely, if u = Re(f —g) and v = Im(f — g)
and f # g p-a.e., then at least one of u*, u~, v*, v~ must be nonzero on a

set of positive measure. If F = {x : u™(z) > 0} has positive measure, then
Re(fy fdp— [pgdu) = [putdp > 0, since u~ = 0 on E. The other cases work
analogously. O

This proposition implies that regarding integration it makes no difference if we
modify functions on null sets.

Theorem 3.22 (Dominated convergence theorem). Let f; : X — C be measurable
functions such that f; — f p-a.e. If there is a function g € L*(u) such that |fi| < g
p-a.e. for all i, then f € L*(n) and

‘lim/\fi—f|du:0 and /fdu:,lim/fidu-
i—00 100

ProOOF. The function f is measurable (maybe after redefinition on a null set),
by Theorem Since |f| < g p-a.e., f € L' (u). Since |f; — f| < 2g p-a.e., hence
29 — |fi — f| = 0 p-a.e., Fatou’s lemma implies

/2gdu < hminf/(?g —|fi = f1) dp
1—>00

= [2gdn+imint (= [17 fln)

— [ 29du—timsup [ 1f; - 11w

1—> 00

As [2gdp is finite, we may conclude limsup; .. [|fi — f|dp < 0 and thus
lim; o [ |fi — f|dp = 0. Finally,

| [ ran= i [ g =t | [ fodu] < tim [17 = fldn=o0
11— 00 11— 00 11— 00
shows that [ fdu =lim;, [ f; dp. O

Corollary 3.23. If fi is a sequence in L'(u) such that Y o, [|fildu < oo, then
Yooy fi converges p-a.e. to a function in L*(p), and [ Y02, fidp= >, [ fidp.

Proor. Corollary implies [ Y02 |fildpw = >0, [1fildp < oo, and so
g:=> 2, |fil € L*(p). Then > 2, |fi(z)| is finite for p-a.e. z, and for these z the
series > ., fi(x) converges. The dominated convergence theorem applied to

O

the partial sums gives [ >, fidu =Y o, [ fidp.
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3.4. Fubini’s theorem

Let (X,6) and (Y,%) be two measurable spaces. On the cartesian product
X xY we consider the g-algebra & ® ¥ generated by all measurable rectangles,
that is by the set € :={Ex F: E € &,F € T}. Since

(Ax B)N(Ex F)=(ANE) x (BNF) and (A x B)® = (X x B) U (A° x B),

¢ is an elementary family.

Foraset E C X XY we denote by E, = {y : (z,y) € E} and EY = {z : (z,y) €
E} its respective sections.

Lemma 3.24. If Ec E®% then E, € T and EY € G for eachx € X andy €Y.
We say that every set in & ® ¥ has the section property.

PrROOF. Weset R:={E € 6®%: E, € T for all z € X} and show that R is
a o-algebra containing all measurable rectangles. This implies the statement; the
proof for EY is analogous.

If E = A x B is a measurable rectangle, then E, = Bif x € A and E, = () if
x € A% so E € R. That R is a o-algebra follows from the identities (E°), = (Ey)°
and (U2, Ei)e = Uio (Ei)s- O

With a function f on X x Y we associate functions f,, on Y given by f.(y) :=
f(z,y) and functions f¥ on X given by f¥(x) := f(z,y).

Lemma 3.25. Let f be a & ® T-measurable function on X x Y. Then f, is T-
measurable for all x € X, and fY is &-measurable for ally € Y.

Proor. This follows from Lemma since (f.)"Y(E) = (f~Y(F)), and
(f9)HE) = (F7H(E))". U

Theorem 3.26 (Product measure). Let (X, S, u) and (Y, T, v) be o-finite measure
spaces. If E € R T, then the functions x — v(E,) and y — pu(EY) are measurable
on X and Y, respectively, and

(o)) = [ v(Edute) = [ u(e) vty (3.3)

Y
is a o-finite measure on & @ €. It is called the product of the measures j and v.

PrOOF. First assume that p and v are finite. Let PR be the collection of all
E € 6 ® % for which z — v(E,) and y — p(EY) are measurable and holds.
If E = A x B is a measurable rectangle, then v(F,) = v(B)xa(z) and pu(EY) =
w(A)xp(y) are obviously measurable, and

[ ) dute) =y (B) = [ (e vty

Y
hence E € R. Since the measurable rectangles form an elementary family, the
collection of finite disjoint unions of measurable rectangles forms an algebra, by
Proposition [[.5] By the monotone class theorem we may conclude R =6 Q<
if we show that R is a monotone class.

Let By C B> C .-+, E; € R, and set E = |J;2, E;. Then fi(z) := v((Ei)s)
and g¢;(y) = p((F;)Y) are measurable functions satisfying f; < fit1, ¢ < git1,

fi(®) = v(E,;), and g;(y) — p(EY) for all z and y, by Lemmal[L.1] By the monotone
convergence theorem

/ V(E,) du(z) = lim / V((E2).) dulz)
X X
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— lim [ u((E))du(y) = /Y H(EY) du(y),

11— 00 Y

thus E € R. If By D Ey O ---, E; € R, then we may conclude in a similar way that
Ni2, E; € R, using the dominated convergence theorem So R is a monotone
class.

If 4 and v are o-finite, we can write X XY as an increasing union of measurable
rectangles X; x Y; with p(X;) < oo and v(Y;) < co. For E € 6 ® ¥, we may apply
the preceding argument to each E'N (X; x Y;),

[ @B Yy dut) = [ (B0 duta)

Xi
= [ nE X dvte) =[x (BT 0 X )
and conclude (3.3]) from the monotone convergence theorem
Let us prove that (u®v)(E) := [ v(E,) du(z) is a o-finite measure on & ® .
o-additivity follows from Corollary If E; € G®T are disjoint, then (F;), € T
are disjoint, so, for E = ;o E;,

oo

and thus

(4 ® v)(E) = /X V(E,) du(z) = /X S (B i) = 3 (@ 1) (),
=1 —

Clearly, the measure u®v is o-finite; indeed (u®v)(X; xY;) = u(X;)v(Y;) < oco. O

Theorem 3.27 (Fubini’s theorem). Let (X, &, ) and (Y,%,v) be o-finite measure
spaces, and let f be an (& ® T)-measurable function on X x Y.

(1) If 0 < f < o0, then the functions
v: X —[0,00], / fedv,

1Y = (0,00, P(y) = /Xfydu

are measurable, and

d = du = dv. 3.4
/Xxyf(u®V) /Xsou /wi (34)
(2) If f is complex valued and

/go dp < oo, where ©* (x /|f|wd1/

then f € L*(p®v).

(3) If f € LY (u®v), then f, € L*(v) for p-a.e. x € X, fY € LY (u) for
v-a.e. y €Y, the a.e. defined functions ¢ and 1 are in L*(u) and L' (v),
respectively, and holds.

The identity (3.4) may be written in the form

[ rawen) //fcvydv())du( = [ ([ s dut)) vt

The left most integral is called a double integral, the other two are called iterated
integrals. The assertion in (1) is often referred to as Tonelli’s theorem.
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PROOF. (1) The definitions of ¢ and 1) are meaningful by Lemma Theo-
rem implies (1) in the case that f = yg for £ € 6 ® T, and thus (1) holds for
all positive simple functions s. In the general case, there exists a sequence of simple
functions 0 < s1 < s9 < -+ such that s;(z,y) — f(z,y) for all (z,y) € X x Y, by
Theorem Then, if

pi(z) == /Y(si)x dv, (3.5)

/X%dMZ/XXYsid(uQ@V). (3.6)

The monotone convergence theorem applied to (3.5)), implies that ¢;(z) —
o(z) for all z € X. Clearly, p; < @;11. Thus we may again apply the monotone

convergence theorem to both sides of , and we obtain the first equality in .
The other half of follows similarly.

(2) follows by applying (1) to | f].

(3) Tt is no restriction to assume that f € L'(u ® v) is real valued. Then (1)
applies to f* and f7; set p*(z) := fY(fi)m dv. As f* < |f| we may conclude
that p* € L'(u). Thanks to f, = (f). — (f 7). we have f, € L*(v) for every z
satisfying ¢F (z) < oo. Since ¢* € L'(u), this happens for p-a.e. x; at any such
we have p(z) = ¢ (z) — ¢~ (x). Thus ¢ € L' (n). Now holds for f* and o
in place of f and ¢. Subtracting the respective equalities yield the first equality of
(3.4). The other half follows analogously. O

we have

The following example shows that the theorem is not true if one of the measure
spaces is not o-finite.

Example 3.28. If X =Y = [0, 1], p the Lebesgue measure, v the counting mea-
sure, and f(z,y) =1 for x =y and f(z,y) = 0 otherwise, then

/fzydu )=0 and /Yf(x,y)dV(y):

for all z,y € [0,1] so that

/X (/Y fl@9) dvly)) du(e) = 170 = /Y ( /X f(@.y) du(a) ) dvy).

The function f = xg,—yy is (£([0,1]) ® B([0, 1]))-measurable, since {z = y} =
Mty @ where Qu = ([, 31 < [, 5D U+ W (I R [558 2D

The product measure p ® v rarely is complete, even if u and v are complete. If
A € & is non-empty with u(A) =0and B CY sothat B¢ ¥, then AxBC AxY
and (L@ V)(AxY)=0,but Ax B¢ & ®F, by Lemma This applies in
particular to the Lebesgue measure: A' @ A' # A2. However the following is true.

Theorem 3.29. A" is the completion of ™ @ A", for m,n > 1.

PRrOOF. First we show that
%(Rer”) C &(R™)® L(R") C £(Rm+").

The first inclusion follows from the fact that each cube in R™*" belongs to £(R™)®
£(R™) and B(R™*") is the o-algebra generated by the cubes in R™*"; see Lemma
Suppose that £ € £(R™) and F € £(R"). Then E x R" and R™ x F belong
to (R™*"), by Corollary [2.10] and thus E x F = (E x R") N (R™ x F) belongs to
L(R™*™), which implies the second inclusion.

Both A™*™ and A™® A" coincide on boxes and hence on B(R™*"), by Theorem
If A e £R™)® £(R"), then A € £(R™™) and so there exist By, By €
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B(R™") such that By 2 A O By and A™*"(B; \ By) = 0, by Corollary
Consequently,

(A" @ A")(A\ Bz) < (A" @ A")(By \ Bz) = \""(B1 \ B2) =0,

and thus (A™ @ A")(A) = (A™ @ A")(Bz) = N 1T™(By) = A+ (A). So \™*™ and
A" @ A" coincide on £(R™) @ £(R™) which implies the statement. O

Theorem 3.30 (Fubini’s theorem for complete measures). Let (X,6,u) and
(Y, %,v) be complete o-finite measure spaces, and let S @ T be the completion of
G ®T with respect to u@v. Let f be an & & T-measurable function on X XY . Then
all conclusions of Theorem [3.27 hold, except that the T-measurability of f, can be
asserted only for p-a.e. x € X so that o(x) is only defined p-a.e., and similarly for

fY and .

ProoF. By Proposition f=g+h, where h =0 p @ v-a.e. and gis (6RF)-
measurable. We claim that for py-a.e. x € X we have h(z,y) = 0 for v-a.e. y €Y
and h, is T-measurable for p-a.e. x € X. Similarly, for hY.

Indeed, A := {(x,y) € X XY : h(z,y) # 0} is a p® v-null set. So there
exists B € 6 ® ¥ such that A C B and (up ® v)(B) = 0. By Theorem
Jx v(Bs)du(z) = (p ® v)(B) = 0. By Proposition w(E) = 0, where E :=
{re X :v(B;)>0}. If x ¢ E, then v(B,) =0 and, as (Y,%,v) is complete, each
subset of A,(C B,) belongs to ¥. If y & A,, then h,(y) = 0. It follows that, for
every © € E, h, is T-measurable and h,(y) = 0 v-a.e. The claim is proved.

Apply Theorem [3.27] to g. By the claim, f, = g, v-a.e. for p-a.e. z and f¥ = g¥
p-a.e. for v-a.e. y. Thus the two iterated integrals and the double integral of f are
the same as those of g. O

3.5. Transformation of measures and integrals

Let (X,6) and (Y,%) be measurable spaces and let f : X — Y be (&,%)-
measurable. Given a measure p on (X, &) we may define the push-forward f.u
on (Y,%) by

f(E) == p(f7H(E)), Ee%.

It is easy to check that f,u is a measure.

Proposition 3.31. Let g : Y — C be T-measurable. Then go f € L'(u) if and

only if g € L' (fup), and
/Ygd(f*u) = /XgOfdu~

ProoF. For £ € T and g = xg the formula follows from xgo f = x-1(g). So
it holds for simple functions and hence for positive functions, by Theorem and
the monotone convergence theorem m In particular, the equality holds for |g|
instead of g, and so go f € L'(p) if and only if g € L'(f.u). That it is also valid
for complex valued g follows immediately. O

In the following we focus on the Lebesgue measure .

Lemma 3.32. Let A : R"™ — R" be linear invertible, and let E be measurable.
Then A(E) is measurable and \(A(E)) = |det A| A(E). In particular, X is invariant
under orthogonal transformations.

PROOF. It suffices to prove the statement for Borel sets E. Then null sets are
invariant under A and A~', and hence so are Lebesgue measurable sets.



3.5. TRANSFORMATION OF MEASURES AND INTEGRALS 29

If £ is a Borel set then so is A(E), since x4(g) = XE © A~! and since Yz and
A~ and hence g o A™! are Borel mappings.

We shall use translation invariance, see Proposition|2.13] and dilation invariance
of A on Borel sets, i.e., if a € R\{0} and E € B(R) then aFE = {az : x € E} € B(R)
and A\ (aE) = |a|\'(E). The collection of intervals in R is invariant under dilations,
and hence so is B(R). Then p,(E) := A (aE)/|a| defines a Borel measure that
coincides with A\! on boxes, and thus on all Borel sets, by Theorem [2.11]

Suppose that A, and thus also A1, is upper triangular with all diagonal entries
equal to 1. Then,

NAE) = [ xa(@rde = [ xua™ @) da

n

= / / XEe(®1 + fi(z>2), 12 + fo(2>3),. .., Tn) dry drsy
Rn=1 JR

:/ /XE(xl,a:Q+f2(x23),...,zn)dz1dx22,
Rrr-1 JR

using Fubini’s theorem and translation invariance of A\'. Repeating this pro-
cedure for the other variables, we find

NAE) = [ xw(e)dz = NB).

Similarly, the assertion holds for lower triangular matrices with all diagonal entries
equal to 1. If A = diag(aq,...,a,) is diagonal, then Fubini’s theorem and
dilation invariance of A\' analogously imply

AA(E)) = [a1 -+ - an|M(E).

An arbitrary square matrix A admits a decomposition A = LDU, where L (U)
is an lower (upper) triangular matrix with all diagonal entries equal 1 and D is
diagonal. Thus the result follows. O

Theorem 3.33 (Transformation formula). Let U,V C R™ be open and let f €
CY(U,V) be bijective. If g is a measurable function on V, then go f is measurable
onU. If g >0 orge LY(V), then

/ o(f (@) J5 ()| dw = / o(y) dy,
U 14

where Jp = det(0f/0x) is the Jacobi determinant of f. In particular, for measur-
able E C U, f(F) is measurable, and

A(f(E)) = /E 1y ()] do.

PROOF. It is sufficient to consider Borel measurable functions and sets. Since
f and f~! are continuous, there are no measurability problems in this case. If g is
Lebesgue measurable and B is a Borel set in C, then g~*(B) = EU N, where E is
Borel and N is a null set. Moreover, f~!(E) is Borel and f~1(N) is a null set (by
the result for Borel sets), and thus (go f)~!(B) is Lebesgue measurable, i.e., go f
is Lebesgue measurable.

We use the norm |z| = maxi<i<p |z;| for £ € R™ and the matrix norm
[ A]l = maxi<i<n 325, |Aijl; then [Az|o < [|A]l|2]oo. Let @ = {2 : |z — aloc < h}
be a cube contained in U. By the mean value theorem, f(z) — f(a) = f'(2)(x — a)
for some z on the segment between = and a, and hence, for z € @Q,

[f(x) = fla)lee < sup [f'(2)] |2 = aloe < sup [[f'(2)[ P
z€Q z€Q
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So f(Q) is contained in a cube of side length sup,(, ||f'(2)|| times the side length
of O, thus

@) < (s £ AQ)
If A:R™ — R" is linear invertible, we find, by Lemma [3.32
MF(Q)) = | det AINAT'f(Q)) < | det Al(jgg 1AL ()])"MQ).
Since f’ is uniformly continuous on @, for each € > 0 there exists § > 0 so that for
x,y € Q with |z — yle < 0,

1F @@ =11 @) () = f@) @) +1d <1 +e
By decomposing @ into subcubes @Q1,...,Qn with side length < § and centers

r1,...,TN, We may conclude
N
AJ(Q) < SAU@)
1;1
< S5l (sup [ 1)) A
=1 N
< (140" (@) AQ0)-
i=1

Note that Zivzl |Jr(x:)|xq, is a simple function which tends uniformly on @ to
x +— |Jf(z)| as 6 — 0, by continuity of x — Js(x). Letting § and e approach 0
implies

AMf(Q)) < /Q | T (z)] da.

We shall show that this estimate holds with @ replaced by any Borel set in
U. If Q C U is open, then Q = |J;=, Q; is a almost disjoint union of cubes Q;, by
Lemma and thus

AF@) <A@ <Y /Q ()| d = /Q ()] da.
=1 =1 i

If E C U is a Borel set of finite measure, then by outer regularity, Theorem
there exists a sequence U D Q; 2 Q;41 2 F of open sets 2; of finite measure so that
ANj=; 2\ E) = 0. By Lemmal 1.1 and the dominated convergence theorem

1—> 00

B < A(£( ﬁm)) < lim A(f(©) < lim /Q [Ty ()] dx = /E [T ()] da
i=1

Since ) is o-finite, the estimate holds for all Borel sets E.
We may infer that

| sway< [ o],
() U

first for positive simple g and, by Theorem [3.6] and the monotone convergence
theorem .3'14L for positive measurable g. Applying this to f~! and (g o f)|Jy|
instead of f and g, we get

/ (g0 1)(@)|J5(@)| dx < / G T (F @) 11 (@) dae = / o(y) dy.
U fF(U) F(U)

So the assertion is shown for g > 0, and the case g € L*(V) follows easily. The
second statement is the special case, where g = X (). (]
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Let S"~! = {x € R": |x| = 1} denote the unit sphere in R™. The mapping
@ :R™"\ {0} — (0,00) x S" 2 (|z|,2/|z|)

defines a diffeomorphism with inverse (r,y) — ry; we call (r,y) = ¢(z) the polar
coordinates of z. Let p be the measure on (0,00) defined by p(E) = [, "' dr.

Theorem 3.34 (Polar coordinates). There is a unique Borel measure o on S™~*
such that o\ = p® o. If f is Borel measurable on R™ and f > 0 or f € L*()),
then

. f(z)dx = /(0700) /Sni1 flry)r"=tdo(y) dr.

PRrROOF. By Proposition [3.31|and Fubini’s theorem [3.27] it suffices to show that
there is a unique Borel measure o on S™~! such that ¢\ = p ® 0. For Borel sets
E in S"~! we define

o(B) == nAe~((0,1] x B)),
which is a Borel measure on S™"~!, since the mapping E — ¢~ 1((0,1] x E) maps
Borel sets to Borel sets and commutes with unions, intersections, and complements.
For a > 0, we have by Lemma [3.32]

@:A((0,a] x E) = A7 ((0,a] x E)) = a"Ae™'((0,1] x E))

= =o(B) = p((0.a))o(E) = (p© 0)((0,a] x E).

As an immediate consequence, . A = p ® o holds on sets of the form (a,b] x E.
For N € N and a fixed Borel set E C S™~1, the collection An, g of finite disjoint
unions of sets of the form (a,b] X E, where b < N, forms an algebra on (0, N] x E,
by Proposition [L.5] that generates the o-algebra Sy g = {A x E: A € B((0, N])}.
By Theorem YxA = p ® o holds on Gy g, and since all Borel rectangles in
(0,00) x S~ are disjoint countable unions of sets in Uy ey pem(sn-1) OB, We
have ¢, A = p ® o on all Borel set, again by Theorem [T.4] O

The formula of the previous theorem can be extended to Lebesgue measurable
functions by considering the completion of o. If f(x) = g(|z|) it gives

. f(z)dx =o(S™~ )/(0700) g(r)yr™ = dr. (3.7)

Example 3.35 (Integral of a Gaussian function). We have

n/2
/ e=all® dp = (z) , a>0.
n a

If we denote the integral on the left by I, then I, = (I;)" by Fubini’s theorem

B2 By (0.

™ 2| ™

I, = 27r/ re= " dr = —Lemar
(0,00)

a 0 a

Thus I; = (7/a)*/? and I, = (7/a)™/?.
Example 3.36 (Volume and surface area of the unit ball). If B" := {z € R" :
|z| < 1} denotes the closed unit ball in R™, then
27‘(‘"/2 71_n/2
snh) = d AMB") = ———-
Ay R A A vy oy

By Example (3.7, and Theorem [3.33]

/% = / e~ 1o gy = U(Snfl)/ rn=le= gp
" (O’OO)
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_ U(Snfl)

2

n—1
/ 21t gy = TS ) pi ).
(0,00) 2

and by the definition of o,

O_(S'nfl) 7.rn/2 B 7.rn/2

ABY) = = = T2 - T2+ 1)

3.6. Integrals depending on parameters

We study continuity and differentiability of functions of the form

F(y) = /X fy) du(z), yeY.

Theorem 3.37 (Continuity of integrals depending on parameters). Let (X, S, u)
be a measure space, let Y be a metric space, and let f : X xY — C be a function.
Assume that:

(1) For each fized y € Y the function X 3 x — f(x,y) is measurable.

(2) For each fized x € X the function Y 3y — f(x,y) is continuous at yo.

(3) There is a positive function g € L'(u) so that |f(z,y)| < g(z) for all
(x,y) e X xY.

Then the function F :' Y — C given by

Flo) = [ faa)du(o). v,
is well-defined and continuous at yq.

PROOF. The function F is well-defined by (1) and (3). Let yx € Y by a
sequence converging to yg, and consider the sequence of functions fr : X — C
given by

fi(@) == f(z,y).
By (2), fr(x) = f(x,yo) for every x € X, and, by (3), |fx] < g for all k. The
dominated convergence theorem [3.22] implies

lim Fly) = lim /X fudp = /X £z, y0) dyu(x) = Flyo). 0

k—o0

Theorem 3.38 (Differentiability of integrals depending on parameters). Let
(X,6,u) be a measure space, let Y be open in R™, and let f : X xY — C be
a function. Assume that:

(1) For each fized x € X the function Y >y — f(x,y) is CL.
(2) For each fized y € Y the function X > x — f(z,y) is in L'(u), and

X>zx— a%if(m,y), i1=1,...,n, is measurable.
(3) There is a positive function g € L' (i) so that |8iyf(a:,y)| < g(x) for all
(x,y) e X xY.

Then the function F :' Y — C given by
Flo) = [ faa)duto). v,
is well-defined and C* with

0 0
5P W) = [ G re) duo).
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PROOF. The function F is well-defined by (2). Let yo € Y and let the open
ball B,(yo) be contained in Y. Let hy € R\ {0} with hy — 0 and such that
Yk = Yo + hre; € B.(yo), where e; is the ith standard unit vector in R™. Set

(Pk(z) — f(xayk)h;f(xay()) )

Then each ¢y, is in L(u), and, for all z € X,

. 0
kgﬂgo pr(r) = @f(x’yO)'

By (3) and the mean value theorem, || < g. The dominated convergence theorem
3.22 implies that z — %f(x, Yo) is in L' (1) and we have

) 0
lim Yrdu = / P f(xa Yo) dpu(x).
x OYi

k—oo | x

Since

/kadu—* /fwyk du(z /fwyo dp( )) Flor )hkF(yO),

we see that %F(yo) exists and equals [ aT,,- f(x,y0) du(x). The continuity of a%iF
follows from Theorem [3.37]

Theorem 3.39 (Holomorphy of integrals depending on parameters). Let (X, S, u)
be a measure space, let Y be open in C, and let f : X XY — C be a function. Assume
that:

(1) For each fized x € X the function Y >y — f(x,y) is holomorphic.

(2) For each fized y € Y the function X 3 x — f(x,y) is measurable.

(3) There is a positive function g € L'(u) so that |f(z,y)| < g(z) for all
(x,y) e X xY.

Then the function F :' Y — C given by

:/fmwwm»yex
X

is well-defined and holomorphic with
— [ 219 dute).
b'e

PROOF. The function F is well-defined by (2) and (3). Let yo € Y and let
B, (yo0) be contained in Y. For all y € B,.(yo) and all € X, we have

1 flx, 2)
9f(y) = 2mi /83 (wo) (2 —¥)? e

and thus, if we write y = y; + iy2 and use (3), for all y € B, /5(y0) and all z € X
f2)| _ dg(e)

2€dB,(yo) |2 —yl? = r

By Theorem [3.38] F is C! in B, /5(yo) and satisfies the Cauchy-Riemann equations
/

|a’lhf(xay)| S r

00 P) +0,,F (1) = [ 9y 1(0.9) + 10y, F,) du(a) =0,

The proof is complete. O
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3.7. Relation to the Riemann integral

Let [a,b] be a compact interval and let f : [a,b] — R be bounded. For each
partition P of [a,b], i.e., a finite sequence P = (¢;)7, with a = tp < t; < -+ <
t, = b, define

Upf::Z sup  f(t) (¢ — ti1),

i—1 ti—1<t<t;
n

Lefi=3%_ inf_ f)(t—tia),

and set
b

I,(f) = infUpf, L,(f):=supLpf,

P
where P varies over all partitions of [a,b]. If TZ(f) = I%(f) then their common
value is the Riemann integral fab f(x)dz, and f is called Riemann integrable.

Theorem 3.40. Let f : [a,b] — R be bounded. Then:

(1) If f is Riemann integrable, then f is Lebesque measurable and thus inte-
grable (since bounded), and f; f(x)dz = f[a 5 f A
(2) f is Riemann integrable if and only if

A({t € [a,b] : f is discontinuous at t}) = 0.
The second result is Lebesgue’s criterion for Riemann integrability.

PRrROOF. (1) Without loss of generality assume that f > 0. For each partition
P of [a,b] set
n

G - U t ; 15
) ; ti—1 Sltogti f( ) X(tl—htz]

n

gp ‘= Zt171ig£§t1 f(t) X(ti_l,ti]7

such that Upf = [GpdX and Lpf = [gpdA. If f is Riemann integrable, there
exists a sequence of partitions Py whose mesh size (that is max;(t; —t;—1)) tends to

0, such that Py C Py41, and so that Up, f and Lp, f converge to f; f(z)dz. Then
Gp. 2 Gp,, > f > 3P,y 2 9P, and G = limg 0 Gp,, g := limg o0 gp, satisfy
g < f < G. By the dominated convergence theorem [3.22

/gd)\/abf(a:)dx/Gd)\,

and thus [(G — g)d\ = 0. By Proposition G = g = f ae. Since G is
measurable, by Proposition so is f, by Proposition (as A is complete), and

we have ,
/ f(x)dac:/Gd)\: fdA.
a la,b]

(2) Assume that f is Riemann integrable. By the first part of the proof, the
set -
E:={t€la,bl:g(t)#G{Ht)}U U Py
k=1
has measure zero. We will show that the set of discontinuities of f lies in E. Fix
to € [a,b] \ E and € > 0. Then g(t9) = G(to) and hence Gp, (to) — gp, (to) < € for
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k sufficiently large. Since to € Pi, Gp, and gp, are constant near ¢to. Thus there is
d > 0 so that for |t —to| <6,

f(t) = f(to) < Gp.(t) — gp.(to) = Gp.(to) — gp,(to) < e,

and similarly f(t) — f(to) > e. This implies that f is continuous at to.

Conversely, let f be continuous except on a set E of measure zero. By The-
orem given € > 0 we may find open intervals I; so that £ C Ufil I; and
Yoicy | < €/(4M), where M = sup,c(, ; f(t). If f is continuous at ¢, then there is
an open interval J; 3 ¢ such that | f(s) — f(r)| < €/2(b—a) for s, € J,N]a,b]. The
open cover {I;} U{J; : t € [a,b] \ E} of [a,b] has a finite subcover; let P = (¢;)I",
be the partition of [a, b] given by the endpoints (inside [a, b]) of the intervals in this
subcover. Let L = {¢: (ty—1,t¢) C I; for some i}. Then

n

Upf—Lpf=Y, sup (f(t)=f(s)(t: —ti1)

i=1 ti—1<s,t<t;
€

<NToM(t; —t; — (t —ti
_Z ( 1)+Z2(b—a)( 1)

ielL iZL
<2ML+;(b—a)—e
=7 4M  2(b—a) -

This implies that f is Riemann integrable. U

The proper Riemann integral is thus subsumed in the Lebesgue integral. The
latter allows for integration of a wider class of functions. For instance, xgn[o,1) is dis-
continuous everywhere and hence not Riemann integrable. It is however Lebesgue
integrable with [ xgno,1) dX = 0.

For improper Riemann integrals the situation is different. The functions f =
Sy %X(hkﬂ] or g(x) = sin(x)/x have improper Riemann integrals over [1, o)
(to see this for g use partial integration and the majorant criterion), but they are
not Lebesgue integrable. A Lebesgue integrable function on [a, 00) that is Riemann
integrable on [a,b], for each b > a, has absolutely convergent improper Riemann
integral and

b
/ fdx= blim f(z)dx. (3.8)
la,00) —X Ja

Indeed, for each b > a, f;|f(x)|d:v = f[a o 1A < f[a sy |f1dX and hence

limp_y 00 f: |f(z)| dx exists. Moreover, choose a sequence by oo and set fi :=
fXa,p,)- Then the dominated convergence theorem implies (3.8).

3.8. Hausdorff measure

In this section we consider the d-dimensional Hausdorff measure in R™. It allows
for a definition of d-dimensional area in an intrinsic way, i.e., without reference to
parameterizations. Moreover, it makes sense in any metric space and even for
non-integer d.

For d > 0 let us set
/2

YT D@2+ 1)
where ['(t) := [°s'"'e™* ds is the Gamma function. If d > 1 is an integer, then
wq is the d-dimensional Lebesgue measure of the unit ball in R?; see Example m
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Let E C R"™ be any subset. The d-dimensional Hausdorff measure of F is
given by

HUE) = lim HY(E), (3.9)
where for 0 < € < o0,

HYUE) = % inf { Y (diam(E;))? : diam(E;) < ¢, E C UE}

K2 2
for countable covers {F;}; of E and with the convention diam(@)) = 0. Note that
the limit in exits (finite or infinite), since € — H4(E) is decreasing, and that
HO is the counting measure. It is possible to restrict the E; in the definition to
closed (or open) and convex sets such that E; N E # (), but further restrictions
produce other outer measures, e.g., using only balls yields the so-called spherical
Hausdorff measure.

The definition of Hausdorff measure extends to any metric space. It depends on
the metric but not on the ambient space, i.e., H% (E) = HL(E) whenever E C X
and the metric space X is isometrically embedded in the metric space Y.

Proposition 3.41. Letd > 0, n € N.

(1) H? is an outer measure on R™ and a measure on B(R™).
(2) For each E CR", z € R", and a > 0,

HUE 4 2) = HYE), HY(aE) = a"HYE).

(3) H¥=0ifd > n.

(4) Ifd > d >0, then HY(E) > 0 implies H* (E) = cc.

(5) If f : R™ — R™ is a Lipschitz function with Lipschitz constant Lip(f),
then

HU(f(E)) < Lip(f)* H*(E).

PROOF. (1) Let us show that H¢ is o-subadditive; monotony is obvious. It
is easy to see that each H? is o-subadditive. Thus H? is o-subadditive, since
the supremum of o-subadditive set functions is o-subadditive. So H? is an outer
measure on R”.

Suppose that § = dist(E1, F2) > 0 and € < §. Then any set of diameter < €
intersecting F; U Fy is intersecting only one of the sets Fy, Ey. Hence, He(E; U
Ey) > HYE,) + HE(E,). Since HY is o-subadditive, we obtain H4(E; U Ey) =
HEI(E,) + HA(Ey), and letting € — 0, HY(Ey U Ey) = HY(E;) + HY(E2). The
proof of Theorem 3) shows that all closed sets, and hence all Borel sets, are
H?measurable.

(2) This follows from diam(E+2)? = diam(FE)? and diam(aE)? = a? diam(E).

(3) Let d > n. Any cube @ of side length 1 can be covered by k" closed cubes
of side length 1/k. Thus, H4(Q) < waq(v/n/2)4k"~? for € > \/n/k. Letting k — oo
implies H4(Q) = 0. The assertion now follows from translation invariance and
o-subadditivity.

(4) We have (diam(E;)/e)? < (diam(FE;)/e)? if diam(E;) < e. Thus for 0 <
€ < o0,

which implies the statement.
(5) follows from diam(f(FE)) < Lip(f) diam(E). O
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Note that H? is not o-finite if d < n.
The Hausdorff dimension of a subset £ C R" is defined by

dimy E := inf{d > 0: HY(E) = 0}.
Then, by Proposition [3.41
Hd(E) _J>® %fd< d%mHE,
0 if d > dimy F.

Finite sets have Hausdorff dimension 0. But there also exist compact uncountable
sets with Hausdorff dimension O.

Example 3.42 (Hausdorff dimension of the Cantor set). Let C' = (,—, Cj be the
Cantor set; see Example Recall that C}, is a disjoint union of 2* closed intervals
with length 37*. Thus

k

This bound remains bounded as k — oo provided that 2/3¢ < 1. So for the choice
log 2

d= 3.10

log 3 ( )

we have H%(C) = limj—,00 H3_,(C) < 00 and hence dimy C < d.

To conclude that the Hausdorff dimension of the Cantor set C'is d = log 2/ log 3,
we need to show that H4(C) > 0. To this end we prove that > diam(Z;)" > 1/4
whenever {I;} is a cover of C' by open intervals. Since C' is compact, we may assume
that Iy, ..., I, cover C. As the interior of C is empty, we may also assume that the
endpoints of each I; lie outside of C' (making the I; slightly larger if necessary).
Let 6 > 0 be the distance between C and the set of all endpoints of intervals I;,
and choose a positive integer k such that 37% < §. Then each connected component
Ch,i of Cy is contained in some I;.

We assert that, for each open interval I and each fixed ¢,

> diam(Cp;)? < 4 diam(I)". (3.11)
Cy,iCI

This will imply the strived for inequality,

2k
4Zdiam(lj)d > Z Z diam(C;m)d > Zdiam(C;w»)d =1,
J =1

J Ck,iClj i

since diam(Cy;)? = 3% = 27% by ([B.10). Let us show (3.11I). If m denotes
the least integer for which I contains some C,, ;, then m < £. There are at most 4
connected components Cy, 5., - - ., Cpn g, of Cpy which intersect I; otherwise m would
not be minimal. Thus,

P 14
> diam(Cri)t <> diam(Cyi)* =) diam(Ch,;,)* < 4 diam (7).
q=1C,

CpCI 0,iCCm,iq g=1
: d _ ol—ma—td _ ol—mo—L _ J; d
because ZCe,ing,iq diam(Cy;)* = 2737 = 207m27% = diam(Clp, 4, )"

Theorem 3.43 (Isodiametric inequality). For every Lebesgque measurable set E C
R"™,
diam(E)\
&()) . (3.12)

A(B) < wn< 5
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ProOOF. For v € 8" ! let m, be the hyperplane perpendicular to v, and for
w € m, set
E,w={tcR:w+tveE}.
Consider the symmetriced set
Sy(E) ={w+tv:wem, 2t < Al(Emw)}.

By Fubini’s theorem we may conclude that the mapping 7, > w +— A (E, )
is £(R"~!)-measurable where m, = R"~!, and hence S, (F) is Lebesgue measurable
and A\"(S,(E)) = A"(F). We have diam(S,(F)) < diam(E) thanks to the easy
inequality A\'(1) + A(J) < 2sup{|t —s|:t € I, s € J} for I,J € B(R). If E is
symmetric with respect to a direction orthogonal to v, then so is S, (F).

Define iteratively Fy := E and E; := S,,(E;_1), where e1,...,e, denote the
standard unit vectors in R™. Then E,, is Lebesgue measurable, satisfies A"(E,,) =
A"(Ep), diam(E,) < diam(F), and is invariant under the mapping 2 — —z. Hence
E, is contained in the closed ball with radius diam(FE)/2, and

diam(FE) ) n
— )

NU(E) < NY(Ep) = N*(B,) < wn( O

This argument is called Steiner symmetrization.

Theorem 3.44. For every Borel set E C R™ and every € € (0, 00|,
AN(E)=H!E)=H"(E).

PROOF. Let us prove \"(E) < H(E). Let (E;); be a cover of E by closed sets
with diam(E;) < e. Then, by the isodiametric inequality (3.12]),

A(E) < Z A(E;) < % 3 (diam(E;))".

K]
We may conclude A\"(E) < HI'(E), since the cover (E;); was arbitrary.

Note that H™ is finite on bounded sets; use the argument in the proof of
Proposition [3.41)3). Hence H™ is a translation invariant Radon measure on R™.
By Theorem there is a constant C' > 0 such that A"(E) = CH"(E) for all
Borel sets £ C R™.

It remains to show that C' = 1. If B is the unit ball in R"™, then
N'(B) < HX(B) <H"(B) = C~ ' \"(B),
whence C' < 1. On the other hand, for all ¢,
I (B) < \"(B) = CH"(B)

and thus C' > 1. In order to see the inequality H{(B) < A"(B) note that it is
possible to find a collection of disjoint closed balls By, Ba, ... with diam(B;) < €
such that (2, B; € B and A"(B \ U2, B;) = 0; this is a consequence of the
Besicovitch—Vitali covering theorem, cf. [3]. Then

n = o) Wn - . 5] n __ - n/(m _\n b ) _\n
H ( UlBi> < Z;(dlam(Bi)) = Z;A (B)) = A (UlBi) — \"(B).
We may conclude that H?(B) < A\*(B), since a A"-null set is also a H-null set.
In fact, for every cube @ C R"™, we have w,(diam(Q)/2)" = w,(v/n/2)"\"*(Q) and
thus
Wn . . .
HI(E) < o inf { Z(dmm(@i))" : Q; cubes, diam(Q;) <e, EC UQZ}

K2

:wn(%)n)\”(E). 0



CHAPTER 4
LP-spaces

Let (X, S, 1) be a measure space.

4.1. Definition of LP-spaces

For 1 < p < oo, we set
LP(u) :={f : X — C: f is measurable and |f|’ € L*(u)}.
We shall also use the notation LP(X) if there is no ambiguity. Note that
[f + 9" < 2P max([f], |g])? = 2" max(| f[", |g]") < 2"([f" + 9]")
which implies that LP(u) is a vector space. For f € L?(X) we define

1/p
170 i= ([ 17 am) "
For p = 0o, we set

L>(u) :={f: X = C: f is measurable and
IM eR:|f(z)| < M for p-a.e. x € X}.

For f € L*°(X) we define the essential supremum
| flloo :==1inf{M : |f(x)] < M for y-a.e. z € X}.

We shall see below that || f|,, 1 < p < oo, defines a norm on (equivalence classes of
functions in) LP(u); it is called the LP-norm; we will also use || || zr(u) or || [[zr(x)-

If A is a nonempty set, we denote by [P(A) the space LP(u), where p is the
counting measure on (A, B(A)).

By Proposition @ for a measurable function f, ||f||, = 0 if and only if
f =0 p-ae. So| |, is not a norm on LP(u) as defined above. For this reason
we redefine LP(u): The equivalence relation f ~ g :<= f = g p-a.e. partitions
LP(u) into equivalence classes. The LP-norm is constant on every equivalence class.
Henceforth we use the symbol LP(u) for the vector space of equivalence classes of
measurable functions whose LP-norm is finite.

For the sake of simplicity, we will nevertheless speak of LP-functions. However,
one should keep in mind that it makes no sense to ask for the value of an LP-function
at some particular point.

4.2. Inequalities
Recall that a real valued function ¢ defined on an open interval (a,b) is called
convex if, for z,y € (a,b),
e((1=t)z +ty) < (1 -t)p(x) +te(y), 0<t<1,
and strictly convex if the inequality is strict. Setting z = (1 — ¢)x + ty we obtain

p(2) —o@) _ely) —elr) oW —el) (4.1)
zZ—x - y—x N y—=z , . .

39
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with strict inequalities if ¢ is strictly convex. The inequalities in (4.1]) imply that
the one-sided derivatives ¢y (x) of ¢ exist in R at every x € (a,b); indeed, the
difference quotients d(z,y) := % satisfy 6(z,y) > 5( ,z) for x < z < y and

are bounded from below by ¢(w, z) for some w < x, thus ¢/, (z) = lim,_, ,+ 6(z,y).
As a consequence ¢ is continuous.

Theorem 4.1 (Jensen’s inequality). Let (X, S, u) be a measure space with p(X) =
1. If f € L'(u) is real valued and f(X) C (a,b) (a = —00 and b= oo are allowed),
and if ¢ : (a,b) = R is convez, then

@(/fdu) §/<p0fdu.

PROOF. Since u(X) =1, we have a < z := [ fdu < b. By ([¢.1),

o = sup PR = 2®) - 0(y) —0(z)
<z Z—T Yy—z

for all y € (z,b),

and therefore
o(w) > o(z) + a(w—z), for all w € (a,b).

In particular, o(f(x)) > ¢(2) + a(f(x) — z) for all z € X. Since ¢ is continuous,
o f is measurable, and integrating the last inequality yields

/gpofdu>g0 Jroz/fd,ufz /fd,u O
A pair of positive real numbers p and ¢ are called conjugate exponents if
1 1
S+ =1;
P q

we regard also 1 and oo to be conjugate.

Theorem 4.2 (Holder’s inequality). Let p and g be conjugate exponents, 1 < p <
0. Let f € LP(u) and g € LI(u). Then fg € L' (u), and

1fgll < W fllpllglle-

If p = g = 2 this is also called Schwarz inequality.

PROOF. For p = 1 this follows easily from the definition of the integral. Let us
assume that 1 < p < oo. Set A:={z € X :|g(z)| > 0} and v(E) := [, |g|?du, for
E € &. Since g € L9(u), we have v(A) = v(X) = [|g][] < oo. By Corollary
v := v/v(A) is a probability measure on A. By Jensen’s inequality [4.1] n and since
(1-¢g)p=—q,

q
seapots = [ oy o = | [t =eon]
S/(|f||g|1*q)7”d7:/ f|pg|qu|?§) dy
o [ = o1

and hence || fg[1 < || f]l,»(A )1*1/” = Iflxllgllq- u
Corollary 4.3. If f; € LPi(p) and >\, 1/p; = 1/p for p,p; € [1,00], then

Hﬁfz §ﬁ||fi p
i=1 P =1
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PROOF. If p = oo then p; = oo for all ¢ and the inequality is obvious. So
assume that p < oco. If p; = oo for some i, the result can be reduced to that
case that all p; < co. So let us make this assumption. If n = 2, we have, as

1=1/(p1/p) +1/(p2/p);
[isnrans ([1ara)™ ([15ra)" < 150051,

In the general case, define ¢ by 1/¢g = 31" , 1/p;, and use induction:

HHf" ILA] <TI0l 0
=1 i=2 4 21

Proposition 4.4. Let p and q be conjugate exponents, 1 < p < co. If p = co we
assume that p has the finite subset property. Then for every f € LP(u),

I fllp = Sup /\fgldu— Sup (/fgdu‘
geL(u)
Hgl\q<1 lglla<1

< [ f1llps

PROOF. The identities are clear if f = 0. So let us assume that ||f|, > 0. By
Holder’s inequality for each g € L9(p) with ||g||q <1,

| [ foau] < [ 155ldu < 51,

hence sup | [ fgdu| < sup [ |fgldu < || f]lp.
It remains to prove that | f|, < sup| [ fgdu|. Consider first the case that
€ [1,00). Set h(z) := |f(z)[P72f(x) if f(z) # 0 and h(x) := 0 if f(z) = 0, then
fh=|f]P. If p > 1, then |h|? = |f|P and hence g := | f|l,”/?h satisfies ||g|l; = 1
and [ fgdp = |fllp- If p=1, then [[hlloc =1 and [ fhdu=|f]:.

If p = o0, choose 0 < m < ||f|lec and set A, := {z € X : |f(z)] > m}. Then
1(Ay) > 0. Since p has the finite subset property, there exists B, C A,, with
0 < p(Bym) < 00. The function ¢ := Xy f(x)/=0} + X{|f(z)|>03.f|f| " is measurable
and satisfies || =1 and f = ¢|f|. Thus g, := xB,,/(¢u(By)) satisfies ||gm|1 =1
and [ fgm, du = mem |f|dp > m, and thus

sup{| [ fodu| g € L1 gl < 1} = m

Letting m — || f]|co finishes the proof. O

Theorem 4.5 (Minkowski’s integral inequality). Let (X, &, u) and (Y,%,v) be o-
finite measure spaces, let f : X xY — [0,00] be (& @ T)-measurable, and let
1<p<oo. Then

| [ sCoawl,, < [ 1ol i

PROOF It follows from Fubini’s theorem that the function h(x) :=
Jy f(z,y)dv(y), x € X, is measurable. Furthermore, by Proposition

H/Yf( ) du(y)HW) = 1kl

—sup { [ Ihgldu g € L2Gu). gllog < 1}

= sup { /X /Y f(x,y)lg(@)| dv(y) du(z) : g € LU (1), |9l pa() < 1}
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=sw{ [ [ sl dnte dvt) s € L0, ol < 1)
< [ sw{ [ 1@ lo@duta) g € 100, Nl < 1} o)

= [ 1l o) s

Corollary 4.6 (Minkowski’s inequality). Let 1 < p < co. For f1, fa € LP(u),
11+ Fallp < Ll + 1 f2llp-

It follows that || ||, is a norm on LP(u).

PROOF. As [|fi+ fo|Pdp < [ ||f1] + | f2]|P du, we may assume without loss of
generality that fi, fo are nonnegative. Then Minkowski’s inequality follows from
Minkowski’s integral inequality if we let Y be the two point set {1,2} with the
counting measure.

Note that in this case the use of Fubini’s theorem in the proof of Theorem
[45] reduces to lincarity of the integral, and hence it is not necessary to assume
o-finiteness: if f(x,1) = f1(z) and f(z,2) = f2(x), then

//fxylg )/ dv(y) dyu()

— / £(@)g@)] + fo)lg(@)] du(z)

/f1 Vg ()| dp(s /f2 Vg ()| du(z)
- // /X F(a 9)lg(@)] du() du(y). O

In general LP(u) € L9(u) for all p # ¢; consider z=%, a > 0, on (0, 00) with the
Lebesgue measure. However, we have the following results; see also Section on
interpolation of LP-spaces.

Proposition 4.7 (Inclusion relations). If 1 < p < g < r < oo, then
LP(p) VL™ () © LU (p) © LP(p) + L7 (),

and
t 1—-1¢
-+ .

p r

PROOF. Let us first prove L?(pu) C LP(u)+ L™ (p). For f € L(u) set B = {x :
|f(z)| > 1} and decompose f = fxg + fxge. This shows the asserted inclusion,

since |[fxplP = |fIPxe < |f|%E, thus fxp € LP(p), and |fxpe[" = [f["xpe <
|fl9% ge, thus fxpe € L"(p); for r = oo we clearly have || fxge| oo < 1.

Ifllg < WFIBIFIET"S where

Q| =

Now we turn to the other inclusion. Consider first the case r < co. By assump-
tion, p/(tq) and r/((1 — t)q) are conjugate, and so by Holder’s inequality

/ 17 dp = / 1191000 a4y < |||f|tq||p/<tq>|||f|<1*t>q||r/<<1,t>q>
tq/ (1—
= ([1sran)™"([irran)" " < pgsie-oe

If r = 0o, then t = p/q and
/ 19 dp = / PP dpe < IFISP A
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which implies the assertion. ]
Corollary 4.8. If A is any set and 1 < p < q¢ < oo, then IP(A) C1%(A) and
I £llq < If1p-

PRrROOF. Obviously, || fllec < ||f]lp- For ¢ < oo, setting » = co and t = p/q in
Proposition [£.7] implies

e < WA/ < WA/ AN A1/ = 11f - U
Proposition 4.9. If u(X) < 0o and 1 < p < q < oo, then LI(u) C LP(u) and

1£1lp < (X2~ fllg.

ProOOF. By Hélders inequality for 1/r4+1/r" =1,

, 1/r
s < TP = 0 ([ 15 dn)

and thus
1£llp < 1(X)YP7 (1 £l
Setting r = ¢/p gives the assertion. O

4.3. Completeness

Let 1 < p < co. The normed space (LP(u), || ||p) comes with a natural notion
of convergence. A sequence (f;) in LP(u) is called (strongly) convergent if there
exists an element f € LP(u) such that || f; — f||, — 0 as ¢ — co. A sequence (f;) in
LP(pu) is a Cauchy sequence if for all € > 0 there is k € N so that ||f; — f;|l, <e
if 4,5 > k. Recall that a normed space is complete if each Cauchy sequence is
convergent.

Theorem 4.10 (Riesz—Fischer). Let 1 < p < co. The space LP(u) is complete and
hence a Banach space.

PROOF. Let 1 < p < co. Let (f;) be a Cauchy sequence in LP(u). Choose i
such that || f;, — f;]l, < 1/2 for j > i1, choose iz > iy such that || f;, — f;ll, < 1/2% for
j > i, etc. In this way we obtain a subsequence (f;, ) such that || fi, — fi,,, |, < 1/2"
for all £ > 1. Let us define

Fi=fil + Y firsn — Firl-
k=1

Then F is an element of LP(u), by the monotone convergence theorem [3.14} since,
for all m > 1,

17130 s = il | < Wil + 1
k=1

In particular, F(z) is finite for p-a.e. x, and for such z the series f;, (z) +
Y orey firea (@) — fip () is absolutely convergent, and thus the sequence of partial
sums

fil (l‘) + Z fik+1 (l‘) - flk (l‘) = fim+1 (.Z’)
k=1

converges to some number f(z). Since |f;, (z)] < F(x) and F € LP(u), the
dominated convergence theorem implies that f € LP(u), and in turn that
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| fi, = fllp = 0 as k — oo, since | f;, — f| — 0 and |f;, — f|? < (2F)P p-a.e. That
Ilfi — fll, = 0 as i — oo follows from

I1fi = fllp < W fi = fiullp + 1fi = fllp-

Let (f;) be a Cauchy sequence in L (p). The sets E; = {x : |fi(2)| > || filloo}
and Ejp = {z : |f;(x) — fu(z)] > ||f; — fxlloo} and thus also their union E for
all 7,7,k € N have measure zero. On E° the sequence f; converges uniformly to
a bounded function f. Extending f by 0 on E we obtain a measurable bounded
function satisfying || f;i — fllcoc — 0. (In more details: clearly, f; converges pointwise
to a function f on E°. To see uniform convergence, let, for given € > 0, k be such
that sup,cp. | fi(x) — fj(x)| < €/2 for 4,5 > k, and for x € E° choose i, > k such
that /() fi, (2)] < €2, Then | f(z)— f3(@)| < |f(2)~ i, (@)|+1fi. (2)— f5(@)| < e
for j > k, independently of z. In particular, |f(z)| < |f(z) — fru(2)] + |fr(z)] <
€+ sup,epe |fr(z)| for all z € E€ ie., f is bounded.) O

Corollary 4.11. Let1 < p < co. Any Cauchy sequence in LP (i) has a subsequence
that converges pointwise i-a.e.

PROOF. This was shown in the proof of Theorem [{.10} see also Proposition
4.24] and Theorem [4.25) g

Corollary 4.12. L?(u) is a Hilbert space with inner product {f,g) = fX fgdpu.

PRrOOF. (f,g) is well-defined by Holder’s inequality and it is easy to see
that it defines an inner product on L2(y). Since || f|l2 = (f, f)'/2, the completeness
follows from Theorem [4.10) g

4.4. Convolution and approximation by smooth functions

We will see in this section that LP-functions on open subsets of R™ can be
approximated by mnicer functions if 1 < p < oco. We start with the following
proposition.

Proposition 4.13. Let S denote the class of all simple functions s on X satisfying
w{z:s(x) #0}) <oo. If 1 <p < oo, then S is dense in LP ().

ProoF. Clearly, S C LP(u). Let f € LP(u), f > 0. By Theorem there
exist simple functions 0 < s1 < s < .-+ < f so that s;(x) — f(z) for p-ae. z.
Thanks to s; < f we have p({x : s;(z) # 0}) < 00, i.e., s; € S. Since | f — ;[P < fP,
the dominated convergence theorem implies that ||f — s;||, = 0. The general
complex case follows immediately. O

For the rest of the section let X be an open subset of R™ equipped with the
Lebesgue measure \; we shall write LP(X) instead of LP()) and [ f dx instead of

[y fdX

Theorem 4.14 (Approximation by continuous functions). For 1 < p < oo, the
class C.(X) of continuous functions with compact support in X is dense in LP(X).

PROOF. By Proposition [{.13] it suffices to show that, for each measurable
E C X with M(E) < oo, xg is the LP-limit of a sequence of functions in C.(X).
Since A is regular, see Theorem for given € > 0 there exist an open set U and a
compact set K such that K CE CU C X, M(E) < A(K)+e¢, and A(U) < AM(E) +e.
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Let L be a compact neighborhood of K contained in U. If f is a continuous function
on R so that 0 < f <1 and f[y<oy =1 and f|{s>1/2y =0, then

dist(xz, L¢
o) = 1(1- o)
is a continuous function with support in L and 1 on K. So xx < ¢g < xy and hence
XK —XE <9~ XESXU~XE
which implies
(9—xe)" <xv—xp and (9-x8)" <XB— XK
Therefore, using (a + b)? < (2max(a,b))? < 2P(a? + bP) for a,b > 0,

/ 19— xal? dz = / (9 — x8)* + (g — xz) )P de
X X

<o / (g — X&) + (g — X)) do
X
< optle

This finishes the proof, since € was arbitrary. O

Note that C.(X) is not dense in L>®°(X). If f is a bounded and continuous
function on X then

[ flloc = sup | f(2)]. (4.2)
reX

Clearly, || flloo < sup,ex |f(z)|. Conversely, for any e > 0 there exists a nonempty
open subset U C X such that |f(y)| > sup,ex |f(z)| — € for all y € U. So the
supremum of |f(z)| on the complement of any null set is > sup,cx |f(z)] — ¢,
since this complement has nonempty intersection with U. As e > 0 was arbitrary
we obtain . Consequently, any limit of functions in C.(X) with respect to
|| oo must be continuous, but there are elements in L>°(X) with no continuous
representative.

Let f and g be complex valued functions on R"™. We formally define their
convolution f x g by

(fxg)(z) = . flxz—y)g(y) dy.

One has to be careful to make sure that the definition makes sense. The integral is
well-defined for all € R™, if we require that f € LP(R™) and g € L?(R"™) for p,q
conjugate exponents, by Holder’s inequality But actually more is true:

Theorem 4.15 (Young’s inequality). Let 1 < p,q,r < co be such that 1/p+1/q =
1/r+ 1. If f € LP(R™) and g € LY(R™), then fxg € L"(R™) and

1S gllr < £ lIpllgllq- (4.3)

PROOF. We may assume without loss of generality that f and g are Borel
functions, since there exist Borel functions which coincide with f and g a.e., by
Proposition Then the mapping (x,y) — f(z —y)g(y) is also a Borel function,
since (x,y) — = —y and (z,y) — y are Borel.

The case r = oo follows easily from Holder’s inequality
I(f % 9)(2)] S/ @ =y)g)ldy < || fllpllgllq,

R

where we used translation invariance of the integral.



46 4. LY-SPACES

So assume 7 < 0o. Set h(z) = (f * g)(x) = [pn [( )g(y) dy; we shall see in
the course of the proof that h(z) is deﬁned and finite for a.e. T.

Set s = p(1 —1/q) and let ¢’ be the conjugate exponent of ¢q. By Holder’s
inequality [£.2]

)l < [ 15 =natlay= [ 17 =01 =)l low)l dy

< ([ =0 omgrran) ([ 1’ an)™

where we used translation invariance of the integral. Since s¢’ = p, we have

)t < ([ 1=l ay) 1115

Note that 1/p+1/q = 1/r + 1 implies that r > ¢; in fact, » = pq/(p + ¢ — pq) and
p > p+q—pq. Sot:=1r/q > 1and we can apply Minkowski’s integral inequality

s s 1—
A1 < Mgl I A1l 152 = gl £l 2, 1 £l

and hence
1l < gl A5 11
which is (4.3), since (1 — s)r = p. O

In particular, the convolution of f,g € L'(R") is a function f * g € L'(R™)
satisfying
If = glle < 1 fllullglls
and, for f € L'(R") and g € LP(R"), f x g € LP(R™) with
1+ gllp < [l llglp- (4.4)

Assuming that all integrals in question exist, the convolution is commutative,

f*g = gx* f, by Theorem associative, (f * g) * h = f % (g * h), by Fubini’s
theorem and satisfies

supp(f * g) C supp f + supp g; (4.5)

indeed, if « & supp f + supp g then for all y € suppg we have x — y & supp f, and
hence f(z —y)g(y) = 0 for all y.

We denote by LIOC(R") the set of locally integrable functions, i.e., measurable
functions f : R" — C such that [, |f(z)|dz < oo for all bounded measurable
subsets K C R™, and C*(R"™) is the class of k times continuously differentiable
functions on R™ with compact support.

Lemma 4.16. If p € C¥(R") and f € LL (R"), then ¢ x f € C¥(R"), and
O (px f) =(0%) * [,

ProOF. Clearly, ¢ * f is well-defined. The lemma then follows from Theo-
rem [3.38 (]

For a function f on R™ and y € R™ we consider the translation
Tyf(z) = f(x—y), zeR™ (4.6)
Note that |7y f[lp = || fllp, for 1 < p < oco.

Lemma 4.17. For 1 < p < oo, translation is continuous in the LP-norm, i.e., if
f e LP(R") and z € R™, then limy_,o ||Ty+-f — 1. f||, = 0.
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ProoF. It suffices to assume that z = 0, since Ty, = T, T.. If g € C.(R"),
then the support of T},g is contained in a fixed compact set K for all |y| < 1, and
thus

/R T, 9(2) — g(@)|P do < [ Tyg — g2 A(K) =0, asy -0,

since ¢ is uniformly continuous. If f € LP(R™) and ¢ > 0, then there exists g €
C.(R™) with ||g — f|l, < €¢/3, by Theorem and so

1Ty f = fllp < 1Ty f = Tyglly + 1 Tyg — gllp + lg = fllp <€,
for y sufficiently small. O

For any function ¢ on R™ and € > 0 we set
we(z) = e "p(x/e), xe€R™ (4.7

If p € L'(R™), then [5, ¢c(x)dx is independent of €, by Theorem and, for
every r > 0 we have lim._,o f|z\>r ©ve(x) dz = 0, indeed

/|w>r pelw) do = /|$|>T e "p(a/e)dr = /|:v>’r/e o(x) de.

Proposition 4.18. Let ¢ € L'(R™) with [, ¢(x)dx = a, and let 1 < p < oo. If
feLP, then ||f *x pe —af|l, = 0 as e — 0.

ProOOF. By Theorem [3.33

fpula) — af(z) = / (F(& =) — F(@))pely) dy

n

= [ Glo—e) - el dz
— [ (@at@) - e

and by Minkowski’s integral inequality

I e =afly = [ 1Teef =l lo(2)] =

Now ||Tc.f — fllp = 0 as e = 0, by Lemma and as ||Te.f — fllp < 2]/ f|lp, the
assertion follows from the dominated convergence theorem [3.22 (]

If fRn pdx = 1 we say that the family {¢¢}o<c<1 is an approximate identity.
A mollifier is a nonnegative function ¢ € C°(R") satisfying ||¢|1 = 1.

Example 4.19. Consider the function

1
exp =g |x] < 1
z) = .
() {O o

Then ¢ = ([ ¢ dx)~'4¢ is a mollifier.

Theorem 4.20 (Approximation by smooth functions). For 1 < p < oo, C(X)
is dense in LP(X).

PROOF. Let f € LP(X) and let 6 > 0. We may assume that f € LP(R") by
setting f =0 on X¢. By Theorem there exists g € C.(R™) so that

1f = gllp < 6/2.
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Let ¢ be a mollifier and let ¢, be defined by (4.7). By Lemma and (4.5)),
ge = e x g € CX(R™). By Proposition 4.18 |lge — g, < §/2 for sufficiently small
€. Thus,

19e = fllp < llge = gllp +1lg — fllp < 6

which implies the assertion. O

Lemma 4.21 (Smooth Urysohn lemma). If K CR"™ is compact and U is an open
set containing K, then there exists f € C°(R™) such that 0 < f <1, flx =1, and
supp f CU.

PROOF. Let § := dist(K,U°), V := {z : dist(z, K) < §/3}, and let ¢ be a
mollifier with supp ¢ C Bj/3(0). Then f := xv * ¢ is as required. O

Finally, we will show that, for 1 < p < oo, LP(X) is separable, i.e., it contains
a countable dense subset.

Lemma 4.22. If1 < p < oo, then the set of step functions is dense in LP(R™).

PROOF. By Proposition [1.13] simple functions s so that A({z : s(z) # 0}) < oo
are dense in LP(R™). Such s are finite linear combinations of characteristic functions
of sets E with A(E) < oco. So it suffices to show that for given € > 0 there exists
a step function f so that ||xg — f|l, < €. By Proposition there exist almost
disjoint cubes Q1,...,Qy, such that A(EA U], Q;) < ¢, and thus f = Y7 xq,
satisfies

/|XE—f\pd)\§)\<EAUQi)<e. 0
i=1
Theorem 4.23 (Separability). For 1 < p < oo, LP(R") is separable.

Proor. Let f € LP(R™) and let ¢ > 0. By Lemma there is a step
function s satisfying || f — s||, < €¢/2. We may conclude that there is a step function
t satisfying || f—t||, < e and such that the real and imaginary parts of the coefficients
and the coordinates of the boxes appearing in the canonical form of ¢ are all rational
numbers. So the set of step functions with rational real and imaginary parts of the

coeflicients and rational coordinates of the boxes appearing in its canonical form is
dense in LP(R™). O

4.5. Modes of convergence

Let (X, &, 1) be a measure space. A sequence f; of measurable complex valued
functions on X is said to be Cauchy in measure if

Ve>0 p({z:[fi(z) = fi(z)| 2 €}) =0 asi,j— oo,
and we say that f; converges in measure to f if
Ve>0 u({z:|filz)— flx)] >€}) >0 asi— .
Proposition 4.24. If f; — f in L'(u), then f; — f in measure.

The converse is not true.

ProOOF. If E; . := {z : |fi(x) — f(x)] > €}, then

Jifi=fldu= [ 5=z )

€

goes to 0 as 1 — oo. ]
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Theorem 4.25. If f; is Cauchy in measure, then there is a measurable function f
such that f; — f in measure, and there is a subsequence of f; that converges to f
w-a.e. If also f; — g in measure, then f = g p-a.e.

Proor. The sequence f; has a subsequence h; satisfying

p{z () = by (@) > 1/27}) < 1/27.

Set Ej :={x : |hj(z) — hjy1(x)| > 1/27} and F), = U;’;k Ej. Then p(Fy) < 2'=*
If x & Fy, then for all i > j > k,

It follows that h; is pointwise Cauchy on (F)¢. For F = (;_, Fk, we have u(F) =
0, and we define f(x) := lim;_,o hj(x) for ¢ F and f(x) := 0 for z € F. Then f is
measurable and h; — f p-a.e. For x € Fj, and j > k, we have |h;(z)— f(z)] < 2177,
by , and hence h; — f in measure, since p(Fy) — 0 as k — oo. It follows that
fi = f in measure, since

{z:1fi(2) = (@) = e} S{z: [fi(z) = hj(@)] = /2y U{z : |hy(2) — f(a)] = €/2}.

If f; — g in measure, then

{z:[f(x) —g(@)| = e} S{z: [f(x) = filo)] = /2 U{x: |fi(z) — g(x)[ = €/2}

implies f = g p-a.e. (]

Convergence a.e. does not imply convergence in measure. However, this impli-
cation holds on a finite measure space, actually more is true:

Theorem 4.26 (Egorov’s theorem). Let pu(X) < oo and let f1, fa,... and f be
measurable complex valued functions on X such that f; — f u-a.e. Then for every
€ > 0 there is a set E C X such that p(E) < € and f; — f uniformly on E°.

PRrROOF. Without loss of generality assume that f;(x) — f(x) for every z € X.
For k,¢ € N define

Eyo = U{x [fi(z) = f(x)] = 1/}

i>k

Clearly, Ey ¢ 2 Eji1,0 and (3= Eke = 0, thus limy,_, o p(Ej ¢) = 0, by Lemma
So, given € > 0, we find a subsequence k; such that u(Ey, ) < €/2°. For E =
U2 Bk, 0, we have pu(E) < €, and |fi(z) — f(z)| < 1/€if i > kg and « & E. It
follows that f; — f uniformly on E°. O

Let us call the type of convergence in the conclusion of Egorov’s theorem al-
most uniform convergence. The following diagram summarizes different modes
of convergence f; — f of a sequence of measurable complex valued functions on a
measure space (X, 6, u).
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uniform convergence

pointwise convergence

fi = f prae., |fi| < g€ LY (1) === p-a.e. convergence

L' — convergence

convergence in measure <—————= almost uniform convergence

p-a.e. convergence for a subsequence w(X) < oo, p-a.e. convergence

Theorem 4.27 (Lusin’s theorem). Let f be a Lebesgue measurable complex valued
function defined on a Lebesgue measurable set E C R™ with \(E) < co. Then for
every € > 0 there exists a compact set K C E such that A(E\ K) < € and such that
flx is continuous.

PROOF. Assume without loss of generality that f is real valued and defined
on R™ by setting f = 0 in E°. For each positive integer i, let {B;;}52; be a
collection of disjoint Borel sets so that R = |J;Z, B;; and diam B;; < 1/i. Set
E;; == EnN f~Y(B;j). By regularity of A\, Theorem [2.9] there are compact sets
K” C E;j satisfying A\(E;; \KZ]) < 6/2”9 Since E = UJ 1 Eij,

j=1 j=1
By Lemma L limy o0 A (E\Uf:1 Kij) = ME\U;jZ, Kij), and so there are integers
k; such that )\(E\szl Ki;) < €/2'. The sets L; := Ule K;; are compact. Choose
bij S Bij and define gi : L, — R be setting g1,|K” = blj, the sets K,‘,J,. .. 7K1',k7-,
are compact and disjoint, so their mutual distance is positive, and g; is continuous.
As diam B;; < 1/i, we have |f(z) — g;(z)| < 1/i for all + € L;. Then the set
K := (2, L; is compact, we have

o0
ME\K) < Z (E\ L;)
and g; — f uniformly on K. It follows that f|x is continuous. O
This does not mean that f is continuous at every = € K; consider e.g. xgn[o,1]-

4.6. The distribution function

Let f : X — C be a measurable function on a measure space (X,&, ). The
distribution function ds of f is defined by

ds(a) == p({z € X : [f(@)] > a}), a>0.
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It follows from the definition that dy is decreasing. Let us set Ey, = {z € X :
|[f(@)] > a}.

Lemma 4.28. Let (X, S, p) be a measure space and let f,g : X — C be measurable
functions. Then for all a, 8 > 0:

(1) If\fl < |g| p-a-e., then dy < dy.

(2) dey(a) = dy(a/lc]) for every c € C\{0}.

(3) df+g(a+6) < dyp(o) + dg(B).

(4) dyg(af) < dg(e) + dg(B).

PrOOF. (1) If | f] < |g| p-a.e., then df(a) = pu(Eyo) < p(Ega) = dg(a).

(2) We have ch,a = Ef,a/\c|~

(3) & (4) If |f(z) + g(z))| > a+ B then |f(x)] > « or |g(z)| > B. Similarly if
[f(@)g(x))] > af. O

The distribution function d; does not provide information about the behavior
of f near any given point. However, the LP-norm (p < oo) of f can be computed if
we only know d.

Proposition 4.29. Let (X, S, 1) be a o-finite measure space. If f is a measurable
function on X and 0 < p < oo, then

Jiran=p [ oo do. (4.9)

PROOF. By Fubini’s theorem [3.27]

p/o a? tdy(a)da =p / aP~ /XEfadudoz
|f(33)|
// o~ dadp
— [ 1f@P du u
X

Remark 4.30. This result holds without the assumption of o-finiteness; cf. [5]
6.24].

Let (X, &, 1) be a measure space, and let 1 < p < oco. The weak Lebesgue
space LP*(u) is defined as the set of all measurable functions f such that

£llp.co := inf {c >0:ds(N) < (C/a)? for all o > o} (4.10)

= sup ads ()P < oo.
a>0

By definition L% (u) := L (u). As usual two functions in LP*°(u) are considered
equal if they are equal u-a.e.
By Lemma [£.28] we obtain that
[ef1lp,00 = lell Fllp,00;

for each ¢ € C\ {0}, and

1+ llp.oc < 2([fllp,00 + [19llp,00)-

Moreover, || f|lp,co = 0 implies that f = 0 p-a.e. That means that L (u) is a
quasinormed space. One can show that it is complete.
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Proposition 4.31 (Chebyshev’s inequality). Let 1 < p < co. If f € LP(u) then
f e LP>=(u) and
[fllp.o0 < [f1lp- (411)

PROOF. We have for all o > 0,

1z = / PP du > /E P> aPu(Ey ) = aPdy (o). 0
fia

The inclusion LP(u) C LP*°(u) is strict. For example, the function f(z) =
|z|~/? is in LP*°(R) but not in LP(R) (with the Lebesgue measure).

Proposition 4.32. Let (X, S, u) be a finite measure space. If 1 < g < p < oo then
L% () € L () and

1/
1l < (G22) BV o, £ € L7(0). (4.12)

ProoOF. Let f € LP*(u). Then dy(a) < min{u(X),a P[f[|}) .}, by (4.10).
Thus, for A := 1u(X)~"?|| f||.0, using Proposition
o0
Iflg=a [ arids(a)da
0

A [e%s)
<q / a® (X da + g /A At P £, do
0
— A p(X) + —L— AP || f|IE
pP—q

_ q _
= u(X) TP fIIE o + —— (X)) TP FIIE o
p—q
p _
= ———pu(X)' 7|13 oo O
pP—q
Proposition 4.33. If1 <p < qg<r < oo, then
LP2 () VL7 () © L8 (1)
and

_ 1 ¢t 1-1
1 Fllg.o0 < NN collfllnse, — where PR e

PROOF. Since tq/p+ (1 —t)g/r =1, for all a > 0,
alds(a) = (ad_f(Oé)1/p)tq(adf(a)1/r)(l_t)q < ||f||;({oo‘|f”£7l(;t)q. 0



CHAPTER 5
Absolute continuity of measures

5.1. Complex measures

Let (X,6) be a measurable space. A complex measure is a mapping v :

& — C satisfying

o0 o0

1/( U El) = Z v(E

= i=1
if E; € G are pairwise disjoint. Note that setting E; = 0 for all 7 yields v(0)) = 0.
A positive measure is a complex measure only if it is finite. The above series is
independent of the order of its terms, i.e., it converges unconditionally and hence
absolutely.

Complex measures arise naturally. For instance, let u be a positive measure on
X and let f € L*(u). Then v(E) = fE fdp is a complex measure; cf. the proof of
Corollary and use the dominated convergence theorem [3.22

For a complex measure v one defines its total variation by

[V|(E) := sup { Z\ tE= U E,,E; €6 dlSJOlnt}

i=1
By definition we have
W(E)| < v[(E)
and, if v is a positive measure, then |v|(E) = v(E).

Theorem 5.1. The total variation |v| of a complex measure v is a finite positive
measure.

The total variation |v| is the smallest positive measure that dominates v, i.e., if
 is a positive measure such that [v(F)| < u(F) for all E € &, then |[v|(E) < u(E)
for all E € &. The fact that |v| is finite implies that every complex measure is
bounded: |v(E)| < |v|(E) < [v|(X).

PROOF. Let E; € & be disjoint and E = [J;2, E;. In order to see that |v] is a
positive measure we need to show

v|(E Z VI|(E (5.1)

If |v|(E;) = oo for some i, then clearly |v|(E) = oo; so let us assume that |v|(E;) <
oo for all 4. Let € > 0. For each 4, there are disjoint E;; € & so that E; = Ujoil By

and |v|(E )<Z] L [v(Eij)| + €/2°. Then

S W) < 30 B+ e < 0l(B) e

i,j=1

since E = U” 1 Eij is a disjoint union. This implies >~ [V|(E;) < |v|(E).

53
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Conversely, if F; € & are disjoint and £ = U;’;l F;, then

S wE =D | Y wEnE)
j=1 i=
<> D WENE)

and taking the supremum over all such partitions {F;} we may conclude that
IV[(E) <Y o2, [V|(E;). Thus, we proved and |v| is a positive measure.

It remains to show that |v|(X) < co. Since |v|(E) < |Rev|(E) + |Imv|(E),
we may assume that v is real valued. That |v|(X) < oo will follow from the claim
that, if F € & and |v|(E) = oo, then F = AU B with disjoint A, B € & and

[v(A)|>1 and |v|(B) = .

Indeed, this assertion can be applied recursively (starting with E = X)) to obtain
disjoint sets Aq, Ag, ... € & with |v(A;)| > 1 for all 4. This leads to a contradiction,
since v(Jsoq A;) = Y iy v(A;), but this series cannot converge.
Let us prove the claim. Suppose that |v|(E) = co. Then there exist disjoint
sets E; € G with E = J;2, E; so that
Y W(E) =2+ u(E)
i=1
Set B, := Uu(Ei)>O E; and E_ = UV(E,;)<0 E;. Then the previous inequality
becomes
W(EL)| + |v(EZ)| > 2+ |[v(EL)| — [v(EZ)]|
and thus |[v(Ey)| > 1. Since E = EL U E_ and so |v|(E) = [V[(E+) + [v|(E-),

[V|(E4) = 0o or |v|(E-) = oo (or both). O

A real measure v : G — R (often called a signed measure) can be decom-

posed into positive and negative variations,
v|tv
—v~  where v*ti= id .
2

By Theorem vE are finite positive measures. This is known as the Jordan
decomposition. If v = 11 — 15 is any other decomposition into positive measures,
then 1, > v+ and vy > v~ ; see the remarks after Theorem

V:l/+

If v is a real measure and f is |v|-integrable, then the integral of f with respect

to v is defined by
/de:Z/fdl/+—/de_.

This definition can evidently be extended to any complex measure v by applying
it to the real and imaginary part of v.

One can show that the set of all complex measures on a measurable space X
equipped with the norm ||v| = |v|(X) forms a Banach space.
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5.2. Absolute continuity and decomposition of measures

Let (X, &) be a measurable space, and let u be a positive measure on &. In
the following we assume that v, v, vo, etc., are further either positive or complex
measures on G.

We say that v is absolutely continuous with respect to p, and write v < p,
if, for each E € &, p(E) = 0 implies v(E) = 0. For instance, the measure v(E) =
fE fdu, where f € L'(u), satisfies v < u; we shall see below that every measure
absolutely continuous with respect to p is of this form.

Two measures v; and v on & are called mutually singular, and we write
11 L vy, if they are supported on disjoint sets, i.e., there exist disjoint F1, Ey € &
such that v;(E) = 0if ENE; =0, i« = 1,2. For instance, the Lebesgue measure
and the Dirac measure on R™ are mutually singular.

Lemma 5.2.
(1) Ifvi < p,i=1,2, then vy + vo < .
(2) If vy Lo, i =1,2, then vy + v L .
(3) If rn < pand vy L p, then vy L vs.
(4) Ifv<pandv L p, thenv =0.
(5) If v < p, then |v| < p.

PRrOOF. (1) is obvious.

(2) There exist Ey, E2, E € & such that E; N E = () and v; is supported on
FE;,©=1,2, and u is supported on E. Then vy 4 v» is supported on E; U F5 and
(El UEQ)HEZQ

(3) There exists Ey € & so that v, is supported on FEo and p(FE3) = 0. Since
vy < p, v1(E2) = 0 and hence v; has support in ES.

(4) By (3), v L v and hence v = 0.

(5) Suppose that u(E) = 0 and let E = |J;=, E; for disjoint E; € &. Then
p(E;) = 0for alli. Since v < p we have v(E;) = 0 for all ¢, and thus ), [v(E;)| = 0.
This implies |v|(E) = 0. O
Theorem 5.3 (Lebesgue-Radon—Nikodym theorem). Let u and v be positive finite
measures on a measurable space (X, &). Then we have

(1) There is a unique pair of positive measures v, and vs on & such that
V=Vs+ Vs, V<<, Vsl pu, v, L uvs.
(2) There is a unique f € L*(u) such that

Va(E) = Lfd/i, E e 6.

The decomposition v = v, + v, is called the Lebesgue decomposition of v
with respect to p. Part (2) is known as the Radon—Nikodym theorem. The
function f in (2) is called the Radon—Nikodym derivative of v, with respect to p;
one writes dv, = fdu or f = dv,/dp.

PROOF. To see uniqueness in (1) let v/, and v be another pair satisfying (1).
Then v, —v), = V., —vs, Vg — V), < p, and v, —v, L p, and thus v, —v), = v, —vs = 0,
by Lemma 5.2} Uniqueness in (2) follows from Proposition

Set ¢ = v + p. Then ¢ is a positive finite measure on &, and we have

/de<p=/xde+/deu
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which is obvious for characteristic functions of sets in &, hence for simple functions,
and thus also for arbitrary measurable functions. If f € L?(), then

\/Xf ar|< /X |fldv < /X [Flde < (O fllz2p),

by Holder’s inequality We may infer that f — [ v Jdv is a bounded linear
functional on L?(¢). By Corollary and Theorem there exists g € L?(y)

such that, for all f € L?(yp),
/ fdv= / fgde.
X X
In particular, for all £ € &,
v(E) = / Xegde = / gdep.
X E

It follows that g(x) > 0 for ¢-a.e. x, and since

W(E) = p(E) — v(E) = /E (1— g)dp,

we also have g(z) < 1 for p-a.e. . Without loss of generality we may assume that
0 < g(z) <1 for all z. We obtain, for f € L?(p),

Ja-ara=[ ar- [ podv=[ tado~ [ soav= [ soan 2

Set A:={z:0<g(z) <1} and B :={z : g(x) = 1}, and define
vo(E) =v(ANE), v(E)=v(BNE), Ec6.
Taking f = xp in (5.2) we find 0 = [,(1 — g)dv = [, gdp = p(B), and hence

vs L p. Since g is bounded and ¢ is finite, f = (1 + g+ g% + -+ + ¢")xE € L%(p),
for E € 6, and inserting f in (5.2)) gives

/(1 ’““)du—/g(1+g+92+-~+g’“)du.
E E

For z € B, 1 — g**1(2) = 0, and for = € A, g**1(x) \, 0 as k — oo, and therefore
the left side converges to v,(FE), by the monotone convergence theorem The
integrand of the right side converges monotonically to a positive measurable func-
tion h, and, by the monotone convergence theorem we find that, for £ € &,

Va(E):/Ehdu.

For E = X we see that h € L'(u), since v,(X) < co. So we have proved (2). In
particular, v, < p which completes the proof of (1). O

Corollary 5.4 (Lebesgue-Radon—Nikodym theorem). We have the following ez-
tensions:

(1) Theorem remains true if (1 is a positive o-finite measure and v is a
complex measure (where v, and vy now are complex measures).

(2) If u and v are positive o-finite measures, then Theorem still holds with
the restriction that the function f is no longer in L' (u).

PRrROOF. If p1 is o-finite, then | J;° | X; = X for disjoint X; € & with u(X;) < occ.
(1) Suppose first that v is positive with v(X) < oco. Then we may apply
Theorem to each X;. The Lebesgue decompositions of the restrictions of v
to X; add up to a Lebesgue decomposition of v. We obtain L!-functions f; on
X; with respect to the restriction of u to X;. Then f := Y7, fixx, satisfies
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vo(F) = fE fdup and is L'(p), since v(X) < oo. If v is complex valued, we apply
this to positive and negative variations of the real and imaginary part of v.

(2) This follows in the same way as (1); we can assume that also v(X;) < oco.
The function f satisfies fX fdp < oo for each 1. (]

The result fails if we go beyond o-finiteness. For example, on X = R consider
the o-algebra £(R) of Lebesgue measurable sets and let p be the counting measure
and v = A the Lebesgue measure on £(R). Then v < p, but there is no function
f satisfying dv = fdu. If there were such f, then f(zg) > 0 for some zy € R and

0 < f(zo) = [rpyy [ i =v({zo}) = 0.

Proposition 5.5 (Characterization of absolute continuity). Let u and v be mea-
sures on a measurable space (X, &), p positive and v complex. Then the following
are equivalent:

(1) v < p.
(2) For each € > 0 there is a 6 > 0 so that [V(E)| < € for all E € & with
w(E) < 6.

PRrROOF. Clearly, (2) implies (1). Assume that (2) does not hold. Then there is
€ > 0 and there are E; € & so that u(E;) < 27¢ and |v(E;)| > €. Let us set F :=
Uire, Ei and F = (N, Fi. Then p(Fy) < 2%+ and p(F) = limy_ 00 u(Fg) = 0,
by Lemma [I.1] Similarly, |v|(F) = limy_ o |v|(F)) > € > 0. Thus we do not have
lv| < p, and hence (1) does not hold, by Lemma [5.2} O

Theorem 5.6 (Polar decomposition). Let v be a complex measure on a measurable
space (X, &). Then there exists a measurable function f on X satisfying |f(z)| =1
for all x € X, and such that

dv = fdv|.

PrOOF. The Radon-Nikodym theorem [5.3] implies that there is a function
f € LY (|v]) so that dv = fd|v|. Let us show that |f(z)| =1 for all x € X.

Set E, :={x: |f(z)| < a} and let E, = |J;=, E,; be a partition of E,. Then

SoEal =Y | [ ] <3 alvl(Ea) = al(E).
i=1 i=1 7 Pai i=1

and hence |v|(E,) < a|v|(E,). This implies that |v|(E,) = 0if a < 1, and therefore
lf] > 1 |v]-a.e.
On the other hand, whenever |v|(E) > 0,

e [/l = i <

We will show that this implies that |f| < 1 |v|-a.e. Take an open disk B,(c)
in the complement of the closed unit disk B;(0) in C. It suffices to show that
E := f~1(B,(c)) is a |v|-null set, since Bl(O)L is a countable union of such disks.

If |v|(E) > 0 then

\| i /fd\VI \M )/E<f—c>d|u|\gr,

a contradiction.
By redefining f on the set {z : |f(x)| # 1}, the statement follows. O
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Theorem 5.7 (Hahn decomposition). Let v be a signed measure on a measurable
space (X, 6). Then there exist disjoint sets P, N € & such that X = PUN and

vi(E)=v(PNE) and v (E)=-v(NNE), Ec6.

PROOF. By Theorem[5.6] dv = f d|v| for a measurable function f with | f| = 1.
Since v is real valued, so is f; this is true a.e. and everywhere after redefining f.
Thus f(X) = {£1}. Set P:={z: f(x) =1} and N := {x : f(x) = —1}. Note that

1+f(x):{f(a:) x €P

2 0 zeN’

and since vt = (|v| +v)/2, we have for FE € G,

VH(E) = %/E(1+f)d|y| :/PﬂEfd|u|:u(PmE).

That v~ (E) = —v(N N E) follows from v = vt — v~ and from v(E) = v(PNE) +
v(NNE). O

As a corollary we obtain that the Jordan decomposition is minimal in the
following sense: if v = vy — vy for positive measures vy and v then v; > v+ and
vy > v, In fact, as v < vy we have vT(E) =v(PNE) <v(PNE)<u(E).



CHAPTER 6
Differentiation and integration

6.1. The Lebesgue differentiation theorem

Recall that L] (R™) is the set of measurable functions f : R — C such that

Sy |f(z)| dx < oo for all bounded measurable subsets K C R™.
For f € L. _(R"), z € R", and r > 0 we consider the average A, f(z) of f

loc

over the open ball B,.(z),

1
A(Br()) /Br(m) fy)dy = ][Br(z) f(y)dy.

We shall use the notation f, fdex = AN(E)~" [, f de whenever E is bounded and
measurable, A(E) > 0, and f € L (R").

loc

Arf(x) =

Lemma 6.1. The mapping (0,00) X R* > (r,z) — A, f(z) € C is continuous.

PRrROOF. The functions x g, (») converge pointwise to XB., () O1 the set R™\{x :
|z — 20| = 7o} as (r,z) tends to (ro,zo). Thus, XB,(z) = XB,,(z,) A-a.e. on R"
Moreover, |xB, (z)] < XB,, 41(x0) if 7 < 10+1/2 and [z—2x0| < 1/2. By the dominated
convergence theorem [3.22] we have

/ ) dy — f() dy,
B (x) By (20)

and since A(By(z)) = A(B1(0))r™ — AB1(0)rfy = A(By,(zg)), the statement
follows. O

For f € L] .(R™) we may define the Hardy—Littlewood maximal function
M by

M (x) = sup A, f|(z) = sup f 1F()]dy.
r>0 B, (z)

r>0

Then M f is measurable, since (M f)~"((a,0)) = U,>0(Ar|f]) " ((a,0)) is open,
by Lemma [6.1}

Lemma 6.2. Let C be a collection of open balls in R™, and U = |JC. If ¢ < A(U),
then there are finitely many disjoint B1, ..., By € C so that Z?:l A(Bj) >3 "c.

Proor. By Theorem there is a compact set K C U with A\(K) > ¢. The
set K is covered by finitely many balls A,..., Ay € C. Let B be one of the balls
A; with maximal radius. Let By be a ball of maximal radius among the balls A;
disjoint from B;. Let Bs be a ball of maximal radius among the balls A; disjoint
from By and Bs, etc., until the collection of A; is exhausted. If A; & {By,...,Bx}
then A; N B;j # () for some j, and if j is the smallest integer with that property,
then the radius of A; is at most that of B;. Consequently, A; C Bj, where B
is the open ball concentric with B; whose radius is three times that of B;. Then

59
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BT, ..., B} cover K and so
k
c < ME) <Y A(B;)=3">_ A(By). 0
j=1

Theorem 6.3 (M is weak type (1,1)). For each f € L*(R™) and each a > 0, we
have

Mo Mf@) > ap < 5 [ 5],

n

where C' is a constant depending only on n.

PROOF. Set E, := {x : Mf(z) > a} and let * € E,. Then there exists
ry > 0 so that A, |f|(x) > a. The collection of balls {B, (z)}zcr, covers E,,
and by Lemma given ¢ < A(E,) there exist z1,...,zr € E, so that the balls
Bj =By, (x;) are disjoint and E?Zl A(Bj) > 3~ "c. Thus,

<8 Y AB) <> }:/ f@lde <> [ (5@ de.
j=1 j=17DBj

Rn

Letting ¢ — A(E,) yields the result. O

A sublinear mapping T (i.e. |T(f + g)| < |Tf| + |Tg| and |T(cf)| = ¢|Tf| for
¢ > 0) is called weak type (p,q) for 1 <p <ooand 1 < g < oo if T maps LP(u)
into L% (u) and | T fllq.00 < C| fllp for all f € LP(u).

Theorem [6.3] means that the Hardy-Littlewood maximal operator M satisfies
IMflli,00 <C|fll1 for f € L*(R™), so it is weak type (1, 1); see also Corollary

Proposition 6.4. If f € LL _(R") then lim, o A.f(x) = f(x) for \-a.e. z € R™,

loc
ie.,

lim (fly) = fx)dy=0  for A-a.e. x € R™ (6.1)
r—0 B, (z)

PROOF. It suffices to show that, for each N € N, we have lim,_,¢ 4, f () = f(x)
for M-a.e. © € By(0). As, for x € By(0) and r < 1, the values of A, f(x) depend
only on the values of f(y) for y € By41(0), we may replace f by xp,,,(0)f and
hence assume that f € L'(R").

Let € > 0. By Theorem there is a continuous function g with ||f—g||1 <e.
By continuity of g, for each z € R",

|Arg(x) —g(z)| < ]i » lg(y) — g(z)|dy < Esguz )Ig(y) —g(x)[ =0

as r — 0. Now

[Arf(z) = f(2)] < Arlf = gl(2) + |Arg(z) = g(2)| + [9(z) = f(=)],

and taking limsup,_,o = lim._.o supg.,.. on both sides we find
limsup A f(z) — f(2)] < M(f = 9)(w) + lg(x) — f(=)].
r—
This implies that
E, = {x :limsup |A, f(z) — f(x)| > a}
r—0
satisfies

Eo CH{w: M(f —g)(x) >a/2} U{z: |g(z) - f(2)| > a/2}.
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It follows from Theorem [6.3] and Chebyshev’s inequality that
C+1 2(C+1
AEED [ 1fw) — gtayar < 2EH D

2(
AME,) <
(E) < .
As e > 0 was arbitrary, A(E,) = 0.
Since lim,_,0 A, f(z) = f(x) if and only if limsup, 4 |4, f(z) — f(z)] = 0, we
have lim, o A, f(x) = f(z) if # & Jy—; E1/x. This implies the assertion. O

a

We will show in the next theorem that (6.1) remains true if we replace the
integrand by its absolute value. A Lebesgue point of a function f € L] (R") is
a point x € R" so that

i [7(y) — f@)|dy = 0.
=0/ B ()

Let Ly denote the set of all Lebesgue points of f.
Theorem 6.5. If f € Ll (R™) then A\((Lf)¢) = 0.

PROOF. Let ¢ € C. Applying (6.1) to z — |f(x) — ¢| shows that

lim [f(y) = cldy = [f(z) — |
r— B,,.(I)

except on a null set E.. Let D be a countable dense subset of C. Then E = cep Ee
is a null set. Assume z ¢ E. For each ¢ > 0 there is ¢ € D so that |f(x) — ¢| < €,
and thus

lim sup f 1£(4) — ()| dy < lim sup ][ ) —cldy+e=|f(z)—c|+e< 2
Br(m) BT(I)

r—0 r—0

Since e was arbitrary, the proof is complete. O

We shall now establish Theorem for families of sets more general than
{B,(z)},. A family of Borel sets {E,},¢ is said to shrink nicely to z if

e E. C B.(x) for all r > 0,
e there is a > 0 so that A(E,) > aA(B,(x)) for all » > 0.

The sets E, need not contain .

Theorem 6.6 (Lebesgue differentiation theorem). Let f € L _(R™). Then, for

loc

each x € Ly and each family {E,},>o that shrinks nicely to x,

lim  [f() - f(@)|dy=0 and nm][E fy) dy = f(x).

r—0 E r—0

PROOF. Since {E,},~¢ shrinks nicely to z,
1 1
Sty o W 1wl < s [ 15w - sy =0

as r — 0, by Theorem [6.5] The second equality may be written in the form

lim  (f(y) — f(x))dy =0

r—0 E,
and thus is a consequence of the first. O

Corollary 6.7 (Antiderivatives). If f € L'(R) and F(z) = [*_ f(t)dt, z € R,
then F'(x) = f(x) on every Lebesgue point of f.
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ProOF. For E, = [z,z + 1), Theorem- 6.6| shows that, for x € Ly,
F - F 1 m“
r—0 r r—07r z r—>0

so the right derivative of F' at x exists and equals f (x) Slmllarly for the left
derivative. O

6.2. Derivatives of measures

The Radon—Nikodym theorem provides an abstract notion of derivative of a
complex measure with respect to a positive measure. On the measurable space
(R™,B(R™)) we can define a pointwise derivative of a complex measure with respect
to Lebesgue measure which coincides A-a.e. with the Radon—Nikodym derivative.

Theorem 6.8. Let p be a complex Borel measure on R™ with Lebesque decompo-
sition du = dv + fd\. Then for A-a.e. © € R™,

(B

for every family {E,},>o that shrinks nicely to x.

Proor. By the Radon-Nikodym theorem f € LY(R™). So, by Theorem
it suffices to show that, for M-a.e. z € R",

u(E)

M
for every family {E,},~o that shrinks nicely to 2. We may assume without loss of
generality that v is positive and E, = B,(z), thanks to

v|(Er) _ |[vI(Br(z))
35| < 35 < e
Let A be a Borel set such that v(A) = A(A°) = 0, and set

=0

_ 1 v(Br(z)) _ 1
F = {Jc €A: llriljélpm > %}

To complete the proof it is enough to show that A(Fj) = 0 for all k.

Since v is finite (because p is finite), v is regular, by Theorem Hence, for
given € > 0 there is an open set U D A so that v(U) < e. By definition of Fj, if
x € Fy then there is a ball B, := B, (z) C U such that v(B,) > k= *A\(B,). Set
V= U,ep, Bx and choose ¢ < A(V). By Lemma there exist z1,...,z; so that
By, ..., By, are disjoint and

c< 3" Z MB,,) < 3%2 ) < 3"kv(V) < 3"kv(U) < 3"ke.

Letting ¢ — A(V)) we may conclude that \(Fy) = 0. O
For a complex Borel measure p on R™ we call
- p(Br(z))
D = lim ——==
D)) = limy X5, ()
the derivative of p at € R", provided that the limit exists. Theorem [6.8] tells

us that the derivative of a complex Borel measure exists |Leb-a.e. and equals the

Radon—Nikodym derivative of the absolutely continuous part of u with respect to
A
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6.3. The fundamental theorem of calculus

A function f : [a,b] — C, a,b € R, is said to be absolutely continuous on
[a,b], we write f € AC([a,b]), if for each € > 0 there is a § > 0 so that for any
n € N and any disjoint collection of subintervals (a;,b;) C [a, b]

S (bi—a)<s = Z|f flai)| < e (6.2)
i=1
Obviously, f € AC([a,b]) is uniformly continuous on [a,b]. Note that AC([a,b])
forms a vector space.

Lemma 6.9. Let I = [a,b] and let f € L1(I). Then

F(x /f zel,

is absolutely continuous on I.

PrROOF. Let p be the measure on I defined by dy = fdA. Since p < A and
hence |p| < A by Lemma for each € > 0 there is a § > 0 so that |u|(F) < € if
AE) < 4, by Proposition It follows that F is absolutely continuous on I, as
F(y) — F(z) = p((z,y)) fora <z <y < b. O

Proposition 6.10. For a continuous nondecreasing function f : I = [a,b] = R
the following are equivalent:

(1) feAC).
(2) f maps sets of measure zero to sets of measure zero.
(3) f is differentiable a.e. on I, f' € L*(I), and

= /mf’(t)dt, zel

Property (2) is called the Lusin (N)-property.

PROOF. (1) = (2) Let E C I be measurable and A\(E) = 0. Without loss of
generality assume that E C (a,b). Let € > 0. Then there is 6 > 0 such that (6.2)
holds. There exists an open set V with E CV C I and A\(V) < §, by Theorem
Let (a;,b;) denote the connected components of V. Then A(V) = >"(b; —a;) < 4
and thus Y (f(b;) — f(a;)) < €, by (6.2), where we first consider partial sums and
then proceed to the limit. Since f(E) C [f(a:), f(b;)] and the latter is a Borel set
of measure bounded by €, we we may conclude that A\(f(E)) = 0 (as A is complete).

(2) = (3) We define

gx) =z + f(z), zel.
Then ¢ has the Lusin (N)-property, since, if f maps an interval J of length ¢ to
an interval of length ¢, then g(J) is an interval of length ¢ + ¢/. We claim that
g maps measurable sets £ C I to measurable sets. Indeed, by Corollary
E = EyU E; where A(Ep) =0 and FE; is a F,-set. In particular, E; is a countable
union of compact sets and, as ¢ is continuous, so is g(Fj). Since g has the Lusin
(N)-property, A(g(Eo)) = 0 and we may conclude that g(E) = g(Ey) U g(E1) is
measurable.
We define
w(E) = Xg(E)), FE CI measurable.

Then p is a positive bounded measure on the Lebesgue measurable sets £ C I,
since g is injective and so o-additivity of A transfers to u. Moreover, p < A, since g
has the Lusin (N)-property. By the Radon—Nikodym theorem there exists h €
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L(I) such that du = h d\. Consequently, for E = [a, x] we find g(E) = [g(a), g(z)]
and

o) = 9(a) = Ao(E)) = () = [ nar= [ ") d,
which gives

f(x)—f(a):/ (h(t) — V) dt, zel.

a

By Corollary f'=h—1ae., and (3) is shown.
(3) = (1) follows from Lemma O

To any function f : I = [a,b] — C we associate the total variation function
n
Ty(z) == sup{Z|f(xi) —flric1)neNja=xg < -+ <y zx}, zel.
i=1

In general 0 < Ty(z) < Ty(y) < oo if © < y. We say that f is of bounded
variation, and write f € BV (I), if T;(b) < oo; V2(f) = Ty(b) is called the total
variation of f.

Proposition 6.11. An absolutely continuous function f : I = [a,b] — R has
bounded variation. The functions Ty, Ty + f, and Ty — f are nondecreasing and
absolutely continuous on I.

PRrROOF. For € =1 there is a § > 0 such that (6.2)) holds. Set n := [2(b—a)/d|
and divide [a, b] into n intervals [z;_1, x;] of equal length (b—a)/n. Since (b—a)/n <
4, (6.2) implies that V’* (f) <1 and therefore

V() =Y Vi (f) <n < oo,
=1

whence f has bounded variation on I.
fa=zy< - <xzp=2<y<bthen

n

Ty(y) = 1f(y) = f@)] + D If (@) = flwioa)]

and hence Ty (y) > |f(y) — f(z)| + Ty(x) and, in particular,
Ti(y) = f(y) = f(x) + Ty(x) and  Ty(y) > f(z) = f(y) + T ().

Thus T%, T + f, and Ty — f are nondecreasing.
It remains to show that T} is absolutely continuous on I. For a <z <y < b,
T¢(y) — Ty(x) = sup{z |f(z:)) — flzic)|:neNz =20 < -+ <z, = y}
i=1
(6.3)
For € > 0 there is a § > 0 such that (6.2)) holds. Let (a;, b;) be disjoint subintervals
of I so that Z;‘Vﬂ(bj —aj) < 6. Applying (6.3) to each (aj,b;), we get

N

D (Ty(b;) = Ty(ay) < e,

Jj=1

by (6.2). Thus T is absolutely continuous on I. d
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Example 6.12 (Cantor function). The Cantor function f from Exampleis not
absolutely continuous. In fact, f(C) = [0,1] and so the Lubin (N)- property fails.

f is differentiable a.e., f/ =0 on [0,1]\ C, but 1 = f(1) — f(0) # fo t)dt = 0.
However, f has bounded variation with Vil (f) = 1.

Theorem 6.13 (Fundamental theorem of calculus). For a function f : I = [a,b] —
C the following are equivalent:

(1) fe AC( )

(2) f(x) = f(a)+ [T g(t)dt for some g € L*(I).

(3) f is dzﬁerentzable a.e. inl, f' € LYI), and f(x) = f(a)+ [ f/(t)dt
PROOF. (2) = (1) is Lemma[6.9 and (3) = (2) is trivial.

(1) = (3) Without loss of generality assume that f is real valued. Write

2 2

By Proposition [6.11} the functions fi := (Ty £ f)/2 are nondecreasing and ab-
solutely continuous, and by Proposition [6.10] u f+ satisfy (3). It follows that

f=r—f satlsﬁes (3). O
Corollary 6.14 (Integration by parts). If f,g € AC([a,b]) then fg € AC([a,b]),

and , ,
/ F(2)g(x) dz = F()g(b) — f(a)g(a) - / f(2)g () da

PROOF. Let € > 0. Then there is § > 0 so that for any finite disjoint collection
of subintervals (a;,b;) C [a,b] with 7", (b; — a;) < § we have

Z|f fla;)] <e and Zlg gla;)| < e

Let C' := max{||f|lco, ||g]lcc }- Then

|f(b:)g(bi) — f(ai)g(a:)| < |f(:)|lg(b:) — glai)| + [g(a)||f(b:) — f(ai)l
and thus

> 1£(0:)g(b:) — flan)g(as)] < 2Ce.
i=1
Hence fg € AC([a,b]). By Theorem

b
F()g®) — Fa)gla) = / (fo) (@) da

and, as f, g, and fg are differentiable a.e., the desired formula follows from the
product rule. O

6.4. Rademacher’s theorem

Let A C R™. Recall that a mapping f : A — R™ is said to be Lipschitz if

x,y;éeA |(E _y‘
T#Y

We say that f is locally Lipschitz if the restriction f|x to every compact subset
K C A is Lipschitz.



66 6. DIFFERENTIATION AND INTEGRATION

Theorem 6.15 (Lipschitz extensions). Let A C R™ and let f : A — R™ be
Lipschitz.  Then there exists a Lipschitz extension f : R™ — R™ of f with
Lip(f) < vim Lip(f).

PrOOF. If m =1 we may define
f(z) := inf Li —al).
f(z) = inf (f(a) +Lip(f)|z — al)
Indeed, if € A then for all a € A,

f(z) < f(z) < f(a) + Lip(f)[z — al
and thus f(z) = f(x). For z,y € R",
f(@) < inf (f(a) +Lip(f)(|ly — al + |z = y]) = F(y) + Lin(f) |z - yl,

and symmetrically f(y) < f(z) + Lip(f)|z — y|.
Iff=(f1, . fm): A= R™ then f:= (fi,..., fm) is as required, since
(@) = F)P =) Ifile) = fiy)]* < mLip(f)*[e — y|*. O

=1

Actually, by Kirszbraun’s theorem there is an extension f with Lip( f) =
Lip(f); cf. [4].
We shall now prove Rademacher’s theorem that a Lipschitz function f :
R™ — R™ is differentiable a.e. That is at a.e. x € R" there exists a linear mapping
T :R™ — R™ such that
1)~ J(@) =T~ y)|

=0.
y— |z —yl

If such a linear mapping exists, it is obviously unique. We denote it by df (z) and
call it the derivative of f at x.

Theorem 6.16 (Rademacher). Let f : R™ — R™ be locally Lipschitz. Then f is
differentiable a.e.

PrOOF. We may assume without loss of generality that m = 1 and that f is
Lipschitz, by Theorem [6.15] since differentiability is a local property.

For v € R™ with |v| = 1, we consider the directional derivative of f at z,

0o 510) = gy L0V )

provided this limit exists. We claim that d, f(z) exists for a.e. z € R™.

We work with the Dini derivatives d, f(z) and d, f(x). Since f is continuous,

flx+tv) — f(x) flx+tv) — f(x)

d, f(z) := limsup = lim sup
t—0 t k=00 0<|t|<1/k 13
teQ

is Borel measurable, by Theorem the same holds for

[z +tv) - f(z)
p .

d, f(z) := lim inf
Consequently, the set
E, :={z € R" : d,f(z) fails to exist} = {z € R" : d, f(z) < d, f(x)}

is a Borel set; note that d, f(z),d,f(z) € R since f is Lipschitz. For fixed z,v €
R™ with |v| = 1 then function R 5 ¢ — f(z + tv) is Lipschitz, hence absolutely
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continuous, and thus differentiable at a.e. ¢ € R, by Theorem So HY(E,NL) =
0 for each line L whose direction is v. By Fubini’s theorem [3.27} E, is a null set.

If we take the standard unit vectors in R™ for v, we may conclude that the
gradient

Vi(x) = (01f(x),...,0nf(x))

exists for a.e. x € R".
We next claim that d, f(x) = Vf(x) - v for a.e. x € R™. Let ¢ € C°(R™). We

have
[ (Rt )y gy [ (B,

t
As |W\ < Lip(f), the dominated convergence theorem yields

| ds@eydr == [ el ds

=— | [f@)Ve() vdx
RTL
==Y [ f(@)dp(x)vide
i=1 /R"
= Z - i f (x)p(x)v; dx

= /n p()Vf(x) vdx,

where we used Fubini’s theorem the absolute continuity of f on lines, and
Corollary Since the equality holds for every ¢ € C2°(R"™), we have d, f(z) =
Vf(z)-v for a.e. x € R™; cf. Proposition

Choose a countable dense subset {v1,va,...} of S"71. Set
Ey:={x €R":d,, f(z) and Vf(x) exist and satisfy d,, f(x) = Vf(x) - v}
and E :=(\y—; Ex. Then A\(E€) = 0.

Let us show that f is differentiable at every z € E. Fix x € E. For v € S*~!
and ¢t € R\ {0} consider

Q(x’ ,U’ t) =
Then, for w € S*71,

Q(z,v,t) — Q(z, w,t)| <

[z +tv) = f(z)
t

—Vf(z)-wv.

|f (z + tv) — fa + tw)]

+ V(@) (v—w)|

lt]
< Lip(f)|v — w[ + [V f(z)[lv — w]
< (Va+ D) Lip(f)lv — wl. (6.4)
Fix € > 0 and choose an integer N sufficiently large such that if v € S"~! then
€
v = < - 6.5
vl U D L) (0

for some k € {1,...,N}. Since Q(z,vg,t) — 0 as t — 0, there exists § > 0 such
that
|Q(z,vg, )| <e/2 for0<|t|<d, k=1,...,N. (6.6)

By (6.4), (6.5)), and (6.6, for each v € S™~! there exists k € {1,..., N} such that
|Q($,U,t>| < |Q(.’L‘,’Uk,t)| + |Q(.’L‘,U,t) - Q("L"Uk’t)l <€
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if 0 < |[t| < &; the same § works for all v € S"~!. Let y € R", y # x. Then
y=x+tv with v = (y —2)/|y — x| and ¢t = |z — y|, and therefore

() - f<x>|y— Vi](x) W= e, 222w — yl) = 0

as y — x. So f is differentiable at x with df (x) = V f(x). O




CHAPTER 7
The dual of LP

7.1. The dual of L?

Let (X, &, 1) be a measure space, and let 1 < p < co. A linear functional
on LP(u) is a linear mapping ¢ : LP(u) — C. A linear functional ¢ on LP(u) is
continuous if

[fe = fllp = 0 implies  £(fix) — £(f),
or equivalently,

DI < Clifllps | e L7 (),

for some constant C' > 0, i.e., £ is bounded. This equivalence holds on any normed
space; see Lemma To see it directly, assume that fi € LP(u) so that

i )
) =T, —

Then g == f/ || filly € L7 () satisfies gy, < 1 and

— 0,

‘ gk
10(gi)| llp

()| =1

The dual of LP(u) is the set of all continuous linear functionals on LP(u); it is
denoted by LP(u)*. The space LP(u)* is a vector space and carries a natural norm,
the operator norm,

11l == sup{[(f)] = | fllp < 1} = mf{C: [6(f)] < C[|flp for all f € L (n)}.

Let ¢ be the conjugate exponent of p. Holder’s inequality [£.2] implies that a
function g € L9(p) defines a continuous linear functional ¢, on LP(p) via

)= [ afau (7.1)

We shall see that every continuous linear functional on LP(u) has the form (7.1)), if
1 < p < oo and if p = 1 provided that p is o-finite. We will use the following result
(compare with Proposition [4.4)).

whereas

Proposition 7.1. Let 1 < p,q < 0o be conjugate exponents. Suppose that g : X —
C is measurable and such that

o fge LY(u) for all f € S := {simple f: p({z: f(x) #0}) < oo},
o the quantity My(g) :=sup{| [ fgdu|: f € S,||f|l, = 1} is finite,
o {z:g(x) # 0} is o-finite.

Then g € L(p) and My(g) = ||gllq-

PRrOOF. We claim that a bounded measurable function f with ||f||, = 1 that
vanishes outside a set F' of finite measure satisfies | [ fgdu| < M,(g). By Corollary
there are simple functions s; converging pointwise to f and satisfying |s;| < |f].
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Since |s;| < ||flleoxF and xrg € L'(1), we have | [ fgdu| = lim; o | [ sigdp| <
M,(g), by the dominated convergence theorem

Suppose that ¢ < co. By assumption, E = {z : g(z) # 0} = ;= E; where
E; C E;y1 and p(F;) < oco. By Corollary there are simple functions s; converg-
ing pointwise to g and satisfying |s;| < |g|. If we set g; := s;Xg,, then g; converge
pointwise to g, satisfy |g;| < |g|, and g; vanishes outside of E;. Define

_ Jlgllglgi(@)e g(@)|"tg(x)  g(x) #0
fi(z) = :
0 g(x) =0
Then || fi||, = 1 and by Fatou’s lemma [3.17]

lglly < limint [lg;]l, = lim inf / \figil ds
11— 00 1—> 00

< liminf/\fig\du=liminf/figdu < My(9),
71— 00 71— 00

by the first paragraph. Thus, M,(g) = ||g||; by Holder’s inequality

Assume that ¢ = co. For € > 0 set A := {z: |g(z)| > Mx(g) +€}. If n(A) >0
there is a subset B C A with 0 < u(B) < oo, since {z : g(z) # 0} is o-finite.
Set f(z) := u(B) ‘xs(z)g(x)/|g(x)| if g(x) # 0 and f(x) := 0 otherwise. Then
[flli =1and [ fgdu = pu(B)~' [5lgldp > M (g) + € which contradicts the first
paragraph. Thus [|g]|cc = Moo(9g)- O

Theorem 7.2 (Dual of LP). Let 1 < p,q < oo be conjugate exponents. For 1 <
p < 00, the mapping LI(u) € g — €y, € LP(n)*, where

is an isometric isomorphism. The same is true for p = 1 provided that p is o-finite.
For p = oo it is isometric but not surjective. So in all cases

€61l = llgllq- (7.2)

Proor. Holder’s inequality implies that ¢, € LP(u)* if g € L9(p). That
1441l = |lgllq follows from Proposition

Let us show surjectivity for 1 < p < co. Let £ € LP(u)*. Assume first that
#(X) < co. Then, for each E € &, xg € LP(u), and

v(E) =l(xg), FE€6,

defines a complex measure. Indeed, if E; € & are pairwise disjoint, then

k 00
3 x-S
i=1 i=1

by the dominated convergence theorem [3.:22] and hence, by continuity of ¢,

— 0,
p

V(@El) :E(i)@;i) = i_c:é(XEL) = iy(El)

If W(E) =0, then xg = 0 in LP(u), and thus v(E) = 0, i.e., v < p. By the
Radon-Nikodym theorem there exists g € L'(u1) so that

K(XE)=V(E)=/gdu=/ xegdp, EE€G6.
E X

We may conclude that ¢(f) = [ fgdu holds for each simple function f and that
| [ fgdu| < 1€]lIIfll,- Thus, g € L9(u), by Proposition Since ¢ and {4 are
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continuous linear functionals on L?(u) that coincide on the set of simple functions,
Proposition implies that ¢(f) = ¢,(f) for all functions f € LP(u).

If p1 is o-finite, there are sets X; C X;41 so that X = [J;2, X; and p(X;) < oc.
We may identify LP(X;) with the subspace of LP(X) of functions that vanish on
X¢. Then ¢ € LP(X;)* and so, by the preceding argument, there exists g; € LI(X;)
with [|gillq = [[€lzr (x|l < |4l and so that £(f) = £,,(f) for all f € LP(X;). We
have g; = g; p-a.e. on X; if ¢ < j. So we may define g on X by setting g|x, = g
By the monotone convergence theorem lglly = lmi—oo l|gillg < 14|, thus
g € L (). And g satisfies ¢(f) = £,(f) for all f € LP(p), since fxx, — f in LP(u)
and therefore

) = Jim €fxx) = Jim €, (Fx) = Jim [ afdu=t,09).

Finally, suppose that y is arbitrary and that p > 1 (consequently ¢ < o). By
the previous paragraph, for each o-finite subset £ C X there is a unique gg € L(E)
with £(f) = £y, (f) for all f € LP(E) and ||gg|lq < ||4]]. If F is o-finite and F' D E,
then gp = gp p-a.e. on E and hence ||¢]| > ||gr|lq > ll9E]4. Then
M :=sup {||gg|l, : o-finite E C X} < ||¢].

Let Ej be a sequence of o-finite subsets in X such that ||gg, |, — M, and set
F :=J{Z, Ex. Then F is o-finite and ||gp|lq = M. If G D F is o-finite, then

/\gF\qdu+/lgc\qudu:/Igcl"duéMq:/Igqudu,

whence go\p = 0 and go = gr p-a.e. In particular, if f € LP(u) then the set

G :=FU{z: f(z) # 0} is o-finite (as {z : f(z) # 0} = U, {z : |f(z)] > 1/i}),
and thus ¢(f) = [ fgcdp = [ fgr dp. So we may take g = gp. O

Corollary 7.3. If 1 < p < co then LP(u) is reflexive.

PROOF. Let ¢ be the conjugate exponent. By Theorem we have an iso-
metric isomorphism LP(p)* = L9(p). So if h € LP(p)** = L9(p)* then there exists
g € LP(u) such that

h(f) = /X of dp, f € IP(u)* = Li(u).

Consequently, h coincides with the evaluation mapping ev, : f +— f(g), hence
ev: LP(u) — LP(u)** is surjective, i.e., LP(u) is reflexive. O

The dual space of L% () is much larger than L' (1), see the following example;
its description will not be given here.

Example 7.4. Consider the interval [0,1] with the Lebesgue measure A\. The
mapping evg : f — f(0) is a bounded linear functional on the subspace C([0,1])
of L*([0,1]). By the Hahn—Banach theorem there exists £ € L>([0,1])* such
that £(f) = f(0) for all f € C([0,1]). Let fr € C(]0,1]) be given by fir(x) :=
max{1l — kxz,0}. Then ¢(fx) = fx(0) = 1 for all k and fi(z) — 0 for all z > 0.
So for any g € L([0,1]) we have f[O,l} frgdX — 0, by the dominated convergence

theorem Thus ¢ cannot be of the form ¢, for any L'-function g.

7.2. Weak convergence

Let (X, 6, 1) be a measure space, and let 1 < p < co. A sequence of functions
fr € LP(u) is said to converge weakly to f € LP(u), and we write f, — f, if

L fr) = L(f) forall £e LP(u)".
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Obviously, strong convergence implies weak convergence.

Proposition 7.5. If f € LP(u) and ¢(f) =0 for all £ € LP(u)*, then f =0 (where
we assume that p is o-finite in the case p = o).

Consequently, weak limits in LP(u) are unique.

PROOF. This follows from ((7.2)), in fact, if ¢ is conjugate to p, then

Il = 1erl = sw | [ soau] = sw (9] =0,

llglla <1

and thus f = 0. O

The following is a particular case of the Banach—Alaoglu theorem.

Theorem 7.6. If 1 < p < oo then a bounded sequence in LP(u) has a weakly
convergent subsequence.

PRrROOF. This follows from a fundamental result of functional analysis which
states that a Banach space is reflexive if and only if its closed unit ball is weakly
sequentially compact, cf. [2].

We will give a direct proof in the case that X is an open subset of R™ and . = A
is the Lebesgue measure. Let f; be a bounded sequence in LP(X). By extending
each f; by 0 outside X we may assume that f; € L?(R™). By Theorem we may
identify LP(R™)* with LI(R™), where ¢ is conjugate to p. By Theorem there
is a dense sequence of functions g; € LY(R"™).

Consider the sequence of numbers C;; := [ figi dz which is bounded, by
Holder’s inequality By passing to a subsequence denoted by f! we may assume
that C;; — C;. Repeating this argument with f}, we can pass to a further subse-
quence f? so that [ f2g>dz — C5, and inductively we obtain a countable family
of subsequences such that for the kth subsequence (and all further subsequences)
fffgk dx — Cj as ¢ — oo. Then the sequence defined by F; := f; satisfies
[ Fjgidx — Cj as j — oo for all k.

If g € LY(R™) and € > 0, then ||g — gx|lq < € for some k. Thus

| [ Fgdo [ Fgds| < [1Bllg - gulde+ [ 1Fo - glds
+)/Fjgkdx—/Figkdx)

< 2esup [|Fj|l, + ¢,
J

for sufficiently large i and j. Hence the limit lim;,o [ Fjgdx exists. Setting
lg) = lim —oo [ Fjgdz we obtain a bounded linear functional on LY(R™). By
Theorem [7.2] there exists f € LP(R") such that £(g) = [ fgdx for all g € LY(R™).
The proof is complete. O

7.3. Interpolation theorems

We have seen in Proposition 4.7 that LP(u) N L™ () € L9(u) € LP(p) + L7 ()
provided that 1 < p < ¢ < r < oo, and the first inclusion is bounded. Now
we investigate the question whether a linear operator which is bounded on LP(u)
and L"(p) is also bounded on L9(p). We need a preliminary lemma from complex
analysis.
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Lemma 7.7 (Three lines lemma). Let S := {z € C : 0 < Rez < 1} and let
f 8 = C be bounded continuous and holomorphic in the interior of the strip S. If
|f(2)] < My for Rez =0 and |f(2)| < My for Rez = 1, then |f(2)| < My~ "M} for
Rez=tand 0 <t < 1.

PROOF. For € > 0 define f.(2) := f(z)M{ "M, *exp(ez(z — 1)). Then f.
satisfies the assumptions with My and M; replaced by 1. Moreover, |f.(z)| — 0 as
|Im z| — oo (uniformly for 0 < Rez < 1). So |fe(z)| <1 for z on the boundary of
a rectangle {z : 0 < Rez < 1, |Imz| < A}. The maximum principle implies that
|fe(2)] < 1for z € S. Thus, for Rez =t,

F ()M~ My = lim [ fe(2)] <1,
and the lemma is proved. O

We are ready to prove the Riesz—Thorin interpolation theorem which
shows that the answer to the above question is yes.

Theorem 7.8 (Riesz—Thorin). Let (X, &, u) and (Y, %,v) be measure spaces and
let po,p1,90,q1 € [1,00]. If g0 = @1 = 0o we also assume that v is o-finite. Let
Pt, G, 0 < t <1, be defined by

1 1-t¢ t 1 1-1¢ t

Dt Do ]9717 qt do a
If T : LPo(u) + LP* (u) — L% (v) + LT (v) is a linear mapping such that
1T fllgo < Mol fllpy,  for all f € L™ (u),
”Tleh < M1||pr17 fO’I“ all f € L™ (M)v
then for all 0 <t <1,
ITfllq, < Mo~ Millfllp., ~ for all f € LP* (). (7.3)

PROOF. If pg = p1 = p, then by Proposition [£.7]
ITfllq < NTfllgg NTFING, < Mo~ M| fllp
for all f € LP(u), and we are done. So we may assume that py # pi1, and thus
pr < 00, forall 0 <t < 1.

Let Sx be the class of simple functions s on X with u({z : s(z) # 0}) < oo,
and Sy the class of simple functions s on Y with v({x : s(x) # 0}) < co. We shall
show that holds for all f € Sx. Since Sy is dense in LP(u), by Proposition
we may conclude that T'|g, has a unique extension T to LP* (1) satisfying the
same estimate there. It remains to prove that 7' = T on LP*(u). For f € LP*(p)
choose a sequence f,, € Sx with |f,| < |f| and f, — f pointwise; cf. Corollary [3.7]
Set E = {z : |f(zx)] > 1}, g = xef, and g, = xgfn- I po < p1 (which we
may assume without loss of generality), then g € LPo(u) and f — g € LP(u) (cf.
Proposition [4.7) and, by the dominated convergence theorem | fr. = fllpe — O,
19— gllps = 0. and [|(fa —ga) — (f — 9)llp, — 0. It follows that [Tgn — Tgllg, — 0
and ||T(frn,—gn) —T(f —9)llq; — 0. By passing the a subsequence we get T'g,, — T'g
v-a.e. and T(fp, — gn) = T(f — g) v-a.e., by Corollary and may conclude that

Tf, — Tf v-a.e. By Fatou’s lemma [3.17]
1T fllg, < lminf [T fnllq, < hminfMOlitMltan”pt = MolithHf”pt

and (|7.3]) is proved.
Let us show that (7.3) holds for all f € Sx. By Proposition

171 lo, = s {| [ (v g€ sy laly =1},
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where ¢; is the conjugate exponent to ¢;; the set {y : Tf(y) # 0} is o-finite either
since Tf € L% (v) N L% (v) or, if gqg = ¢1 = oo, by assumption. We may assume
that f # 0 and that || f||,, = 1, by rescaling. Thus in order to show that holds
for all f € Sx it suffices to prove the following claim.

Claim: If f € Sx, || f|lp, =1, then
| [@noa] <=t forg e s lolly =1

Let f = z;” 1ajxe, and g = Y bpxp, be canonical representations, and

write a; = |a;|e’?7 and by, = |bx|e?¥*. Define
11—z =z 1-2z =z
+—, 7(2)= +—

m(z) = , ,
Po b1 do q
so that 7(t) = 1/p; and 7(¢t) = 1/¢; for 0 < ¢t < 1. Fix t and set

m
LGP
= Z ‘a]‘ m(t) e ]XEj;
j=1

note that 7(¢) > 0. If 7(¢) < 1 set

z € C,

n
1—7r(2) .
g = Y [k =0 € x g,
k=1
otherwise, if 7(t) = 1, set g, = g for all z. Assume that 7(¢t) < 1 (the case 7(¢) =1
follows similarly). Consider the entire function

0(:)i= [ (Pfgedr =303 5 e [ (T i
J=1k=1
which is bounded on the strip {z € C: 0 < Rez < 1}. By the three lines lemma
the claim follows if we show that |®(z)| < My for Rez = 0 and |®(2)| < M,
for Rez = 1. By Holder’s inequality for s € R,

@ (is)| < T fisllgollgisllay < Moll fisllpo llgis gy -
Since 7(is) := 1/po +is(1/p1 —1/po) and 1 — 7(is) = (1 —1/q0) +is(1/q1 — 1/q0),

Re(m(is)) (s)) Re(m(is)) Pt
|fw\—Z|aJ| T xp, = |f|T® = |f|,

I
Re(1—7(is)) ki3
’1

(1 T(is))
Igzs\—ZIb\ T xp, =gl 0 = |f|%,

and hence || fis||b° = ||f|b: = 1 and HgiSHZZ = Hgng = 1. Thus, |®(z)| < M, for
Rez = 0. A similar computation shows |®(z)] < M; for Rez = 1. The proof is
complete. O

The second fundamental interpolation result is the Marcinkiewicz interpola-
tion theorem. Let T be a mapping from some vector space F of measurable func-
tions on (X, &, i) to the space of measurable functions on (Y, ¥, v). Then T is called
sublinear if for all f,g € Fand ¢ > 0, |T(cf)| = c|Tf| and |T(f+g)| < |Tf|+|Tg|.

Theorem 7.9 (Marcinkiewicz). Let (X, S, u) and (Y,%,v) be measure spaces and

let Po,P1,90,91 € [1700] Satisfy Po S qdo, P1 S qi1, and q0 7é qi- Let Pt qe, 0<t< 17
be defined by

1 1—1¢ t 1 1-—t t
— = +—, —= + —. (7.4)
Y4 Po P1 qt q0 q1
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If T is a sublinear mapping on LPo (i) + LP* () to the space of measurable functions
on'Y such that

1T fllgo.00 < Mollfllpo, — for all f € LP (),
ITfllgr.00 < Millfllpy,  for all f € L' (),

then for all 0 <t <1,
1T fllqe < Mellfllp., — for all f € LP*(w), (7.6)

where My depends only on M;, p;,q;,t, fori=0,1.

(7.5)

In other words, if the sublinear mapping T is weak type (po,qo) and (p1,q1)
then T is strong type (pi,qr), Le., T maps L () to L9 () and [T ]q, < C|[fl,n
holds for all f € LPt(u).

In the proof we make use of the following simple lemma.

Lemma 7.10. Let f be measurable and let A > 0. For Eq4 = {x € X : |f(z)| > A}
set ha = fxme + A(sgn f)xe, and ga = f —ha. Then dgy,(a) = dg(o+ A) and
dn,(o) =ds(a) ifa < A and dp, (a) =0 if a > A.

ProOOF. Note that g4 = (sgn f)(|f| — A)xe, and thus |ga(z)| > « if and only
if |f(z)| > a + A. This implies dy, (o) = df(o + A). The second statement is
obvious. O

PROOF OF THEOREM [L.9l Assume that py = p; = p (and hence p # oo) and

(say) go < ¢1 < 0. Then implies
M, 0 u )
de(B) < (OEpr)q R de(ﬂ) < (%fHZ’)q

and, by Proposition (and Remark [4.30), with A = || f||, and ¢ = ¢,

ITHl2 = g / B9 Yy s (8) dB
A fe's)
—q /0 B9 drp(B) dB + q /A B9y (8) dB

A o0
<M Ifly [ et as +aupsly [ gt as

q q
= Moy ey
q—4qo q —q

which implies the statement. If ¢; = oo then |[|T'f||cc < Mi||f||, and thus dry(5) =
0if 8 > M| fllp- So it suffices to repeat the computation with A = M| f||,-

Let us now consider the case pg < p; and gy < oo and g1 < oco. Let p = py,
g =g and f € LP(u). Then, with the notation of Lemma
/|gA\po dp = po/o " d, , () da = po/o o ds(a+ A) da

= po/ (a — A)po*ldf(a) da < po/ apO*ldf(a) da,
A A
) A
[halPt du = py aP 7y (o) da = py a7t (o) da,
A f
0 0
by Proposition (and Remark [4.30). Moreover,

/ Tflidy =g /0 87 1drs(B) dB = 21g /O B9 dr5(25) dP.
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Since T is sublinear,

de (2/8) < dTgA (ﬁ) + dThA (6)
for all 8, A > 0, by Lemma[4.28] Let us apply this for A = 8", where

.o Polao—a) _ pilar—aq)

~qolpo—p)  alpr—p)
by (7.4]). By assumption (7.5),

BquTgA (6) < (HTQAqu,OO)

< (Mollgallp,)®
Bdrn, (B) < ([Thallg e0)™ <

(Mil[hallp,)™,
and thus

ITfl < 294 / BT (drrg, (8) + drn. () dB

0

< 214 / BT (Mol g llpo/B)™ + (My[[hallpr /8)) dB

> o0 q0/p
<2t [ gt ([am ey da) " as
O ™

] 8" /
+ 2qu{11pl{1/P1/0 ,6(1_(11_1(/ Oépl_ldf(a) da)(h P1 a5

0

1 o0 oo . .
ey qi/pi
=Yzt [ ([ eitasyda) " as,
i=0 0 0

where

#i(0,8) = xila BaP~dy () pla o m o,

X0 = X{(a,8):a>B7}> X1 ‘= X{(a,8):<B"}*

Since ¢;/p; > 1, Minkowski’s integral inequality gives

> o 4i/pi o0 o0 . Pi/ai i /ps
/ (/ wila, B) da) dp < (/ (/ @i(a’ﬁ)qm/pz dﬁ) da) .
0 0 0 0
If ¢1 > qo, then ¢ — go > 0 and r > 0, and o > 3" if and only if «!/” > 3, whence

/OO (/00 o(ar, B)%/P dﬁ)pO/QO -
0 0 ) -
/O (/0 o dﬁ)m/qo@p‘)_ldf(a) da

= (q _ qo)—Po/QO /Oo apo—1+p0(q—QO)/(fI07“)df(a) dov
0

(oo}
=(q —qo)"’O/‘ZD/O aP7tds(a) da

= |q — qo| 7/ Cp~ | f|IE.

If ¢1 < qo, then ¢ — go < 0 and 7 < 0, and « > 37 if and only if o'/" < 8, whence

/00" (/OOO po(a, B)10/Po dﬁ)po/qo -

oo oo /
:/ </ ﬁqiqkldﬁ)po arldy(a) do
0 al/r

= (qo — q)*po/qo /OO O/7071+po(qﬂzo)/(t;(or)agf(O[) do
0
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= (qo — q)—po/qo /0 ap_ldf(a) da

= lq — aol 7P/ p~ | f5-
Similarly,

> o p1/q1
/ (/ (pl(a’ﬁ)(h/}?l dﬂ) da < |q— q1|_p1/Q1p_1Hf||g.
0 0

So for all f € LP(u) with || f]l, =1,

1 )
leh pi/p qi/Pi\ 1/q
75, < 2qe (30 MEBLTEN Ty

=0 lg — ail

Since T is sublinear, in particular, |T'(cf)| = ¢|Tf| if ¢ > 0, follows.

In the remaining cases gy = oo or g1 = oo we indicate how to modify the
arguments.

If p1 = ¢1 = oo (hence py < qo < 0), use A = §/M;. Then ||[Thals <
Mi||halloo < B and thus drp,, (8) = 0.

If po < p1 < oo and qo < g1 = o0, use A = (8/B)" with B = My (p1 | f[|5/p)*/*
and 7 = p1/(p1 — p).

Similarly, if po < p1 < o0 and ¢1 < go = o0, use A = (/B)" with B chosen
such that drg, (8) = 0. O

Let us apply the Marcinkiewicz interpolation theorem [7.9] to the Hardy—
Littlewood maximal operator M defined by

M f(z) = sup ]i Wl € L)

r>0
Corollary 7.11. There is a constant C > 0 such that, for 1 < p < oo,
p n
IMfllp < Cﬁllf\\p, f e LP(R). (7.7)

ProoF. Clearly, |Mflloo < ||fllec for f € L*(R"™), and by Theorem
IMflli.00 <C|fll1 for f € LY(R™). Obviously, M is sublinear. Then follows
from the Marcinkiewicz interpolation theorem the constant Cp/(p — 1) results
from an inspection of the proof of Theorem [7.9] O






CHAPTER 8
The Fourier transform

8.1. The Fourier transform on L!

For a function f € L*(R") the Fourier transform fis defined by
f© = fle? " de, EeR", (8.1)
Rn

where £ -z := flxl + -+ + & xy; we shall also write Ff = f It follows from
Theorem |3.37| that f is continuous on R™. Moreover, as

Fol< [ 1r@)de=flh.

fis bounded and satisfies

[flloo < 1£11- (8:2)
Note that we have equality in (8.2)) if f > 0:

0l = [ fia)dz =l = 1Pl

Next we collect elementary properties of the Fourier transform. For y,n € R™
we consider the translation operator T, f(z) := f(z —y), € R", cf. (4.6)), and the
modulation operator,

M, f(z) =™ f(z), x€R" (8.3)
We have the commutation relations
T,M, = e ™Y\, T,.

Recall that Cy(R™) denotes the space of all continuous functions f : R® — C so
that |f(z)| — 0 as |x| — oco. Note that Cy(R™) is the closure of C.(R™) with respect
t0 || ||oo. Indeed, if f; € C.(R™) converge uniformly to f € C(R"), then for each
€ > 0 there is ¢ € N such that ||f; — f]lec < €, and hence |f(z)| < € if = & supp f;,
ie., f € Cy(R™). Conversely, for f € Co(R™) and each positive integer consider the
compact set K; := {x : |f(z)| > 1/i}. Choose g; € C.(R™) so that 0 < g; < 1 and
= fg; € Co(R™) satisfies || fi — flloo = 1f(9i — D)oo < 1/i.
Lemma 8.1. Let f,g € L*(R"), y,n € R", and a > 0. Then:
(1) (Ty f)A*M—yJ? anAd (Mnf)A:Tn]?' ~ N
(2) (fax)) (&) =a™"f(a™'€) and (f(—x)) (€) = F(=€).
(3) (fx9) =fg. R
(4) If x v x®f(z) is in LY(R™) for all |a| < k, then f € C*(R™) and
0°f = ((~2mix)” f(x)) "
(5) If f € C*(R™), 0%f € LY (R") for all || < k, and 0“f € Co(R™) for all
o] <k —1, then

o~

(0% f) (&) = (2mi&)* f(£).

79
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6) [ fgdz = [ fda.
PRrROOF. (1) We have
(T,) (€)= | flx—ye ™% dx= | f(a)e 2™ dy = 72780 f(¢)
R™ R™
and

(M f) (&) = | fla)e > &= dy = f(& —n) = T, f(£).

R

(2) Both assertions follow from

(Faa)) (© = [ Flar)e < dr=Ja|= [ fa)e™ ' de = o]~ Fla™'6),

R'n,
where either ¢ > 0 or a = —1.
(3) By Young’s inequality f*g € LY(R™) and so, by Fubini’s theorem

B-27
% _ —27ri£-xd d
(f*g) / R"f z—y)g(y)e y d

= / | J@—y)e T O g(y)e T dedy
=7 [ st ay = F95(0).
(4) By Theorem [3.38]
0fi€) = [ (~2mia) fla)e 7 do = ((~2mia)* ) (©).

(5) By partial integration, cf. Corollary

~

©°f) (€)= [ 8 f(x)e ™" de = 2mi&)* [ f(a)e > " du = (2mi)* f(£).

Rn RVZ
(6) Both integrals equal [ [ f(z)g(&)e™2™""¢ dx d€, by Fubini’s theorem
The proof is complete. Il

Let S(R™) denote the Schwartz space of rapidly decreasing functions:
SR™) :={f € C®R") : | fllk,a < oo forall ke Nya € N'},

where
[l := Seu]lg(“r |z])*[0° f ()]

Lemma 8.2. We have:
(1) If f € S(R™) then 0%f € LP(R™) for all« € N” and all 1 < p < 0.
(2) Let f € C®(R™). Then f € S(R™) if and only if 270 f(x) is bounded for
all o, B if and only if 0%(z® f(x)) is bounded for all o, 3.
(3) S(R™) is a Fréchet space with the topology defined by the seminorms || ||k,q-

Proor. (1) If f € S(R™) then [0“f(z)] < C(k)(1 + |z|)~* for all k, and
(1+ |z[)=% € LP(R") if k > n/p, cf. (3.7).

(2) Clearly, |2°| < (1+|z[)* if | 8] < k. On the other hand, >;" | |2;|* is strictly
positive on the unit sphere |z| = 1, thus it has a positive minimum m there. We
may conclude that > ;" |;|¥ > m|z|¥, by homogeneity of both sides. Then

(1 +J2)* < 2" max{1, [2[*} < 2(1 + [2[")
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n
< ok (1 +m Tty \xi\k> <2m Y e,
=1

|BI<k
The first equivalence follows. The second equivalence is an easy consequence of the
Leibniz formula.

(3) We must show completeness. Let f,, be a Cauchy sequence in S(R"), i.e.,
for all k, e, || fm — fellk,a — 0 as m,¢ — oco. Then for each «, the sequence 9% f,,
converges uniformly to a continuous function f®. Denoting e; the standard unit
vectors in R™, we have

fm(z +tej) — fn( /8fm z + se;) ds

and letting m — oo we obtain

O + te;) — fO(x) = /f%( + se;) ds,

and hence f% = 9;f° By induction, we find that f* = 9°f° for all «, thus
= f% € C®R").

Let us show that f € S(R™). Since f,, (being Cauchy) is bounded in S(R"),
we have || fi|la,x < Ca. for all m, thus

10 fn ()] < Cai(1 + )™

for all x and all m. Letting m — oo implies [0% f(z)| < Cox(1 + |z|)~* for all 2,
1.e., ||f||a,lc < Ca,k~

Finally, we check that f,, converges to f in S(R™). For fixed o and k, set
gm(z) == (1 + |2))*0° f,,(x) and g(z) := (1 + |z|)*0% f(x). Then g,, is a Cauchy

sequence with respect to || ||oc which converges uniformly to ¢, since g,, — g¢
pointwise and the limit is unique. That is ||fm — fllae = [[gm — glloc — 0 as
required. O

Proposition 8.3. The Fourier transform maps S(R™) continuously into itself.
PRrOOF. If f € S(R") then 20° f(x) € L' (R™)NCy(R™) for all , 3, by Lemma
Thus, by Lemma f e C>®(R™) and
€°0¢ (&) = (=1)/P12mi) Pl [ f(2)] (€) = (= 1)1 (2mi) P11l (92 (2 £ (2))] (£).
Consequently,

€0 O] < (2"l [ o’ f(a))] da

< (2m)ll=led /n(l +z)7" e sup (14 |2])" 03 (27 f(x)]

rER™

which implies the statement in view of Lemma O
Lemma 8.4 (Riemann-Lebesgue). ZL'(R") C Cy(R™).

ProOF. The Fourier transform maps functions in C°(R™) C S(R™) to func-
tions in S(R™) C CQ(R"). By Theorem 0f C°(R") is dense in L'(R"), and if
IIf& = fll1 — O then ||fk - f||Oo — 0, by (8.2 . This implies the statement, since
Co(R™) is closed with respect t0 || ||co- O

At this point we compute the Fourier transform of a Gaussian function; this
is a preparation for the Fourier inversion formula.
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Lemma 8.5 (Fourier transform of the Gaussian). For f(z) = e~malzl®  here
a >0, we have f(§) = a—™/2e~7I¢1/a,

PROOF. First suppose that n = 1. By Lemma 8.1

~ —~ ~

(F)'(§) = (=2mize™™") (&) = ia™"(f') (€) = ia~"2mi€ f(€) = —2ma™ "¢ (¢),
hence d¢ (€™ /2 f(£)) = 0, and so ™€’ /2f(¢) is constant. Thus

() = Flo) = [ e dn = a2
R

by Example|3.35] The case n = 1 and Fubini’s theorem [3.27]imply the general case,

n
7o =/ emmalzl’ g=2mise gp H/efm?efmwj dz; = a2~ /e O
n Jfl R

Let us turn to inversion of the Fourier transform. For f € L'(R"), we define

-~

@)= Fflen) = | et dg s e

Theorem 8.6 (Fourier inversion theorem). If f € LY(R"™) and f € LY(R™), then
f coincides a.e. with a continuous function fo, and we have

(A=) = fo-
PROOF. For t > 0 and = € R™, set
(€)= e27ri§.zf7rt2\§\2 _ Mxefwtr‘)\g\r‘)
By Lemmas [8.1] and
bly) = To(tme ™) = pmre e = gy (2 ),
for p(z) = e‘”‘w‘Q, cf. (4.7). By Lemma
| emrereneafioas = [ Fewe i = [ 1wiwdy= 1

which converges to f in L'(R™) as t — 0, by Proposition On the other hand,
since f € LY(R"),

lim [ el 2mier fleyge = [ 2T Fle) de = ()Y (w),

=0 Jrn Rn

~

by the dominated convergence theorem It follows that f = (f)Y a.e. and

analogously (fY) a.e. Being Fourier transforms of L'-functions, (f)V and (fY)
are continuous. (]

Corollary 8.7. If f € L*(R") and f=0, then f =0 a.c. O
Corollary 8.8. .# : S(R") — S(R"™) is an isomorphism.
PrOOF. By Proposition Z maps S(R™) continuously into itself, and so

does the mapping f +— [V, because fV(z) = A(—x). By Theorem these
mappings are inverse to each other. O

The Fourier transform of an L'-function need not be L' as illustrated by the
following example.
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Example 8.9 (The sinc function). Clearly, the characteristic function of the in-
terval [—a,a] is in L*(R). Its Fourier transform

“ ‘ —omiag 2miag in(2raf)
R _ Comive g, _ € e _ sin(27m
X[—a,a] (5) / € z 2mi€ + 2mi€ 775

—a

however is not an element of L!'(R). In particular, the Fourier transform of
the rectangular function x|_1/21/2] is the (normalized) sinc function sinc(z) =
sin(ma)/(7x).

By the lemma of Riemann—Lebesgue the Fourier transform is a bounded
linear operator .% : L'(R™) — Co(R™). It is injective, but not surjective.
Proposition 8.10. The bounded linear operator F : L*(R™) — Co(R™) is injec-

tive, but not surjective.

PROOF. Assume f,g € L'(R") and f = . Then f—g € L*(R") and f—§ = 0.
Thus Corollary implies f = g a.e.

Let us show that Z : L'(R™) — Co(R™) is not surjective. For simplicity let
n = 1. It is more convenient to show that the inverse Fourier transform ( )¥ :
LY(R) — Co(R) is not surjective. The assertion is then an immediate consequence:
if g € Co(R) \ (L*(R))Y then g(—z) € Co(R) \ FL(R).

Assume that ( )V : L}(R) — Co(R) is surjective. By the open mapping theo-
rem there is a constant C' > 0 such that

£l < CllfYllo,  forall f e LY(R). (8.4)

For € > 0 let g.(x) := e 1/2e=m2%/¢ and f, = g, * X[=1,1]- Then f. € L*(R), by
[.3), and f. € Co(R), by a simple computation. Thus by (8.4) and Example [3.35]

1 Felli < Cllfelloo = C lge * X-1.11llo0 < C llgelh = C.
By Lemmas [8.3] and
Fo(©) = 36 Xm0 () = ™€ R1_11y(6) = K11 (€)

pointwise as € — 0. So, by Fatou’s lemma [3.17]

[ Rewlde = [ Jim (Fuldg < timint [ 17 pldg <.
R R k—o0 k—oo  Jr

a contradiction; see Example O

8.2. The Fourier transform on L2

In the previous section we have seen that the Fourier transform is a bounded

linear operator (cf. (8.2) and Lemma
F : LYR"™) = Co(R™).

If we abandon the requirement that .# be defined pointwise by (8.1), it can be
extended to other spaces.

Theorem 8.11 (Plancherel). If f € L*(R") N L%(R"), then f € L2(R"), and
F |1 @®mynr2@®ny extends uniquely to an isometric isomorphism on L2(R™).

PRrOOF. Let R
FYR™) :={f e L*(R"): f € L*(R™)}. (8.5)

Then F'(R") C L2(R"), since f € L'(R") implies f € L°(R") (cf. (8.2)) and thus
f € L*([R"™), by Proposition Moreover, F1(R") is dense in L?(R"), because
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S(R™) € F'(R") and S(R") is dense in L*(R"), by Theorem Let f,g €
F1(R™), and set h :=g. By Theorem

he) = [ G dn = [ G de = 500,
and hence, by Lemma

| J@e@da= | [@h@)de= | f@h@de= | @)@ de,

R”

ie., F# | F1(rn) Preserves the L?-inner product. In particular,

[£ll2 = [f]]2- (8.6)
Since 7 (FY(R")) = F1(R"), by Theorem Z | p1rn) extends by continuity to
an isometric isomorphism § on L?(R™).

It remains to check that % = .# on L}(R")NL*(R"). Let f € L'(R™)NL?(R")
and () = e~mle1*, Then f * ¢, € L'(R™), by Young’s inequality (4.15), and

(F*pe) (§) = J(Qe ™,
by Lemmas and and so (f * cpE)A € LY(R"), since f is bounded. That
is f* . € FY(R"). By Proposition [4.18) f * ¢ Converges to f in LY*(R") and in
L?(R™). We may infer (f*goe) f”oo — 0, by (8.2), and ||( Frp) —Z fll2 — 0, by
(18.6]). By Corollary 1} there is a Subsequence ( f * gpek) that converges pointwise
a.e. to f as well as to % f Therefore, .7 f Ff ae. O

We denote by f: Z f also the Fourier transform of functions f € L?(R"™).

~

Corollary 8.12 (Parseval’s theorem). If f,g € L*(R"™) then (f,g) = (f,9), i.e
Z : L2(R™) — L*(R") is unitary.

Proor. This follows from ||f||2 = || f]|2 by polarization,
2(f.9) = If + 913 = illf +igll3 — @ = DIFIZ — 1 = 2)llgll3- O

The Fourier transform fof a function f € L?(R") is not given by the formula
(8.1)); the integral in (8.1)) may not exist. However, f is the L2-limit of the functions

(XBT(O)f)A(f) =/B " Flz)e 2mET g

as r — oo. Here xp, (0)f € L*(B,(0)) C L'(B,(0)), by Proposition and so the
integral exists. By the monotone convergence theorem [3.14] u I X B, (0) f fll2—0
as r — oo and hence [|(xp,.(0)f) — f||2 — 0, by Theorem By the same

argument f is the L2-limit of the Fourier transform of every sequence of functions
fm € LY(R™) N L*(R™) that converges to f in L?*(R™). By Corollary there is
a subsequence that converges a.e., and so for f € L'(R") N L?(R™) the integral in
coincides a.e. with the extension provided by Theorem

For instance, by Example

~ 2mifr go _ sin(2maf) 2mix
/[_M]x[a,a]@)e e /_m] mRl) camice g

converges t0 X[_q,q in L?(R) as r — oco.

o~

Corollary 8.13. The inversion formula f = (f)V continuous to hold on L*(R™).
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PrOOF. By Theorem the definition fY(x) := f(—2) makes sense for f €
L?(R™). Since f = (f)v holds on F'(R") (cf. (8.5)), by Theorem 8.6, and since
F1(R")is dense in L?(R™), we can conclude the assertion from Theorem (which
clearly holds also for freplaced by V). g

By Plancherel’s theorem the Fourier transform is a linear mapping
LY(R™) + L2(R") — L®(R") 4+ L2(R") satisfying || fllee < ||f|l1 for f € L*(R"
and HJ?HQ = ||f||2 for f € L?(R™). By the Riesz—Thorin interpolation theorem
we get the following result for immediate LP-spaces.

Theorem 8.14 (Hausdorff-Young inequality). Let 1 < p < 2 and let q be the
conjugate exponent to p. If f € LP(R™) then f € LY(R™) and

1fllg < £
PROOF. Apply the Riesz—Thorin interpolation theorem O

In Lemma [8.5| we have seen by means of a Gaussian function that the Fourier
transform maps an acute peak to a broadly spread peak. This is a general property
of the Fourier transform that is called the uncertainty principle.

Theorem 8.15 (Heisenberg’s uncertainty principle). If f € S(R™), then

13 < 4l (2 — y;) F @)= (&5 = ny) F(OIl2
forally,neR™ j=1,...,n.

Thus f and fcannot both be sharply localized about single points.

PRrROOF. Replacing f by M, .. Ty, f, where e; is the jth standard unit vector
in R™, we may assume that y = n = 0, in view of Lemma [8.1] Integration by parts

(cf. Corollary [6.14)), Holder’s inequality and yield

1£13= [ @) F@)d,x; d

R~

- [ O @T@ + )0, T, de
< 2l f @)l

~

= dm[z; f(2)]211€ f ()2,
where in the last step we again used Lemma and . O

8.3. Paley—Wiener theorems

As seen in Lemma the smoothness of a function is connected to the decay
of its Fourier transform at infinity (and vice versa). We shall see below that in the
extrem case, when f is compactly supported on R, its Fourier transform fextends
to an entire function. Theorems that relate decay properties of a function (or
distribution) at infinity with analyticity of its Fourier transform are called Paley
Wiener theorems. We will investigate two such theorems.

The Fourier transform f of a function f on R is by definition a function on
R. Often ]?admits a holomorphic extension to some region in C which is not too
surprising, since e2™** is an entire function of z for every real t.

Let us formally consider the integral that defines the inverse Fourier transform

f(z) = / h F(t)e*™ = dt (8.7)

— 00
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and allow z to be a complex number. In general, this integral may not be well-
defined. We shall consider two situations which ensure the existence of this integral.

First we assume that F is supported on Ry := {z € R: z > 0} and z lies in
the upper half-plane H := {z € C : Imz > 0}. For F € L*(R,) and 2z € H, the
integral

f(z) = / F(t)e*™ = dt, »¢cH, (8.8)
0
exists as Lebesgue integral, since |e?™**| = e=27¢Im= i in [2(R,) for each z € H.

Theorem 8.16 (Paley—Wiener I). If f is of the form (8.8), then f is holomorphic
i H and

sup/Oo |f(z +iy)[?dr = C < . (8.9)

y>0J —oc0

Conwversely, if f is holomorphic in H and satisfies , then there exists F' €
L?(Ry) such that f has the representation (8.8) and

/Oo |F(t)]?dt = C. (8.10)
0

PROOF. Assume that F € L?(R,) and that f is given by (8.8). By Theorem
[3-39] (applied to each half-plane {z : Imz > &}, § > 0), f is holomorphic in H. For
fixed y > 0,

flx+iy) = / F(t)e 2™ty e2mite gy
0

and Plancherel’s theorem [B.11] yields

| erwpd= [Ciropeas [Ciropa )

—o00 0

we may consider F' as a function in L?(R) by extending it by 0 on (—oo,0]. This

shows .

Now let f be holomorphic in H and satisfy . Fix y > 0, o > 0, and let
Yo denote the rectangular path with vertices +« + i and +a + iy. By Cauchy’s
theorem, for all ¢ € R,

(¢)e~?mC d¢ = 0. (8.12)

VYo

Let ®(3), 8 € R, be the integral of f({)e™2"¢ along the line segment from 3 4+ i
to 6+ iy. If I denotes the real interval with endpoints 1 and y, then by Holder’s

inequality
B | [ 15+ imemosi gy
S/I|f(5+i5)|2ds/le4”ts ds =: \1/(5)/164’“3 ds. (8.13)
By and Fubini’s theorem
/Z w(3)df = /I/Z F(B+is)?dBds < CA(I) = CJ1 — y.

:

It follows that there is a sequence oy — oo such that ¥(+ay) — 0. Hence, in view

of (8.13),
d(+ay) — 0, (8.14)

for all ¢, and «y is independent of ¢.
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Let us consider

Qg

gk(y,t) = [z +iy)e 2™ d,
.
Then (B12) and (B3 imply
™ g (y,t) — e27rtgk(1, t) =0 ask— oo. (8.15)

If f,(x) := f(z +iy), then f, € L*(R) by (8.9). By Plancherel’s theorem
lgn(y.) = Tylla >0 as k — oo,

By Corollary there is a subsequence of (gx(y,t))r which converges to fy(t) for
a.e. t. Thus, if we define

F(t) == e*"fi(t), teR,
then (8.15)) implies that, for each y > 0, F(t) = ezﬂtyﬁ/(t) for a.e. t € R. Applying
Plancherel’s theorem [B.11] gives

[ee] oo Y

/ I P (1) 2 dt = / FPdt<c,
— 0o — 00

for all y > 0, by . Letting y — oo implies F'(t) = 0 for a.e. t < 0, and letting

y — 0 gives

/m |F(t)[*dt < C. (8.16)
0

This implies that fy(t) = e 2™ (t) is in L'(R). Thus, by Corollary[8.13[ (and the
arguments preceding it),

f(@) = / 7 (0e2its dr,

that is
f(z) = /OOO F(t)e ?™te2mite qp — /Ooo F(t)e*™#dt, =z € H.
Finally, follows from and . O
Thanks to , the dominated convergence theorem implies
lim h |f(z +iy) — FY(2)|* dz = 0. (8.17)

y—0t+ J_ o

The theorem describes the structure of the Hardy space H?(H) of the upper
half-plane, i.e.,

H?(H) := {f : f holomorphic on H, | f 1l 2 ey < o0},

which is a Hilbert space with norm given by

f ::sup/
Il = sup (

— 00

00 1/2
o +iy)d)
Indeed, the above theorem implies the following corollary.

Corollary 8.17. The mapping F — f(z) = [J° F(t)e*™* dt yields an isomor-
phism between L?(Ry) and H?(H). O
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Another way to make sense of the integral (8.7)) is to require that F' is compactly
supported. If 0 < A < oo and F € L?([—A, A]), then

A
£(z) = / Fl)e¥™* g, »¢C, (8.18)

—A

clearly is well-defined.

Theorem 8.18 (Paley—Wiener II). If f is of the form (8.18), then f is entire and
there exists C > 0 such that

If(z)| < ce™ 4=l 2 e, (8.19)

and flg € L?(R). Conversely, if f is an entire function satisfying (8.19) for some
positive constants A and C, and flg € L*(R), then there exists F € L*([—A, A])
such that f has the representation (8.18)).

Entire functions f satisfying (8.19) are said to be of exponential type.

PROOF. If f is of the form (8.18)), then f is entire by Theorem [3.39} and
A

A
£ [ IF@le e s [P
—A —A
which implies (8.19). By Plancherel’s theorem flr € LA(R).

Assume that f is an entire function satisfying @ for some positive constants
Aand C, and f|g € L*(R). Define f.(x) := f(x)e=?I*l for ¢ > 0 and 2 € R. We
claim that

hm/ fo(x)e ™ dz =0  fort € R\ [-A, Al (8.20)

e—0

This claim will imply the theorem as follows. By the dominated convergence
theorem lfe = flrll2 — 0 as ¢ — 0, and so by Plancherel’s theorem

If. — mgﬂz — 0. Then, by (8.20) and Corollary F := f|g vanishes a.e.
outside [—A, A]. By Corollary [8.13] the representation (8.18) holds for a.e. real z,

and hence for all z € C, because both sides of (8.18]) are entire functions.

Let us prove (8.20). For real « let 7y, be the ray defined by 7,(s) := se'®,
s € [0,00). Define

Balw) = [ F)e e = e [ (s as,
0

Ya
for w € I, := {w € C : Re(we') > A}. By ({8.19),

. i i i
‘f(sela)e—%rwse | < CeQ'frAse—Q-rrs Re(we™) _ Ce—Qws(Re(we )—A),

and so, by Theorem [3.39] ®,, is holomorphic on the half-plane II,. More is true for
a =0 and o = 7. Since f|g € L*(R),

Do(w) = /000 f(s)e 2™ ds
is holomorphic in {w € W : Rew > 0} and
D, (w) = _/000 f(—s)e*™5 ds = —/O f(s)e 2™5 ds
is holomorphic in {w € W : Rew < 0}. Now, for t € R,

/OO fe(2)e™ 2™ dg = Bg(e + it) — By (—e + it). (8.21)
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We will show that any two of the functions ®, coincide on the intersection of their
domains of definition (i.e., they are analytic continuations of each other). Then

q)ﬂ/g(G—f—Zt) - <I>7r/2(—e+zt) if t < —A,
(I),Tr/g(é + Zt) — (I),ﬂ-/g(—G + Zt) if t > A,
evidently tends to 0 as € — 0, and (8.20)) is proved.

Suppose that 0 < 8 —a < 7. If w = |w|e~*+F)/2 then
—p

Bo(e +it) — Pp(—e+it) = {

Re(we™) = |w| Re(e"@=#/2) = |w]| cos a

=: |w|n > 0,

08—«
2 = |w|77'

Thus, w € II, NIz provided that |w| > A/n. Consider the path integral

/f(z)e*%wzdz, v(t) = re, t € [, B). (8.22)

Re(we™) = |w|Re(eP~)/2) = || cos

Since Re(wy(t)) = |w|r Re e!¢=(@+8)/2) > |oy|ry and so, by (8.19),
|f(’y(t))€_27rw7(t)‘ < Cve2Trr(A—|w\7])7

the path integral (8.22) tends to 0 as r — oo if |w| > A/n. Thus, Cauchy’s theorem

implies that ®,(w) = ®g(w) if w = |wle~*TA/2 and |w| > A/n. By the identity

theorem for holomorphic functions ®, = ®3 on the intersection of their domains

of definition. g







APPENDIX A
Appendix

A.1. Basic set-theoretic operations

For an arbitrary index set A we have the distribution laws
EN|JEa=|JENE, and EU()Es=()EUE,,
acA acA acA acA
and de Morgan’s laws

(U Ea)c = N (E)e and () Ea)c = J (B,

a€A acA a€cA acA
E\|JE.=()E\E, and E\()E.=|JE\E..
acA acA acA a€A

A map f: X — Y induces maps f : P(X) — P(Y) and f~1 : PY) — P(X)

satisfying
f(UE)=U fE) and f( () E) < ) FE,
acA acA acA acA
f—l( U Ea> = f'(E.) and f—l( N Ea) = /' (Ea),
acA acA acA a€cA

FHEY) = (FHE)",
ECF=f(E)Cf(F) and ECF= fYE)Cf(F),
EC fTHf(E) and E2 f(f7Y(E)).
A.2. Banach spaces
Let K denote either R or C and let X be a vector space over K. A function

I 'l : X — [0,00) is called a seminorm if

o || Az|| = |\|||z] for all x € X and A € K,
o [lz+yll <llzll+ llyll for all z,y € X,

and it is called a norm if additionally
e ||z|| = 0 if and only if z = 0.

A vector space equipped with a norm is called a normed space. The norm induces
a metric d(z,y) = ||z — y|| and hence a topology on X. A normed space that is
complete with respect to the induced metric is called a Banach space.

A linear mapping 7' : X — Y between normed spaces is called bounded if it
is bounded on bounded sets, i.e., there is a constant C' > 0 such that

ITz|| < C|lz|| for all x € X.

Lemma A.1. For a linear mapping T : X — Y between normed spaces, the fol-
lowing are equivalent:

(1) T is bounded,
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(2) T is continuous,
(3) T is continuous at 0.

PRrROOF. (1) = (2) We have [|[Tz—Ty| = |T(z—y)| < C||lz—y| < e whenever
[z —yll <€/C.
(2) = (3) Obvious.
(3) = (1) By assumption there is § > 0 so that || Tz| < 1 when ||z|| < . Thus,
1> || T(0]|zl| " )| = 8]~ |,
and so T is bounded. g

The space L(X,Y) of all bounded linear mappings between normed spaces X
and Y is a normed space with respect to the operator norm

[T|

T :== sup [[Tz|| = sup
|lz||=1 xz#0 |l

It is easy to see that L(X,Y) is complete if so is Y. For T € L(X,Y) and S €
L(Y,Z) we have ST € L(X, Z) with

ST < IS,
in particular, L(X, X) is an algebra. If X is complete, L(X, X) is a Banach algebra.

=inf {C: ||Tz| < C|z| for all z}.

A bounded linear mapping 7' € L(X,Y) is an isomorphism if T is bijective
and T~! is bounded. We say that T is an isometry if ||Tz| = ||| for all z € X.
An isometry is an isomorphism onto its image.

The dual space X* of a normed space X is the space of bounded linear
functionals on X, i.e., X* = L(X,K). It is always a Banach space with respect
to the operator norm. That there are plenty of bounded linear functionals on a
normed space is a consequence of the Hahn—Banach theorem.

Theorem A.2 (Hahn-Banach theorem).

Real version. Let X be a real vector space, M a linear subspace of X, and { a
linear functional on M such that £(x) < p(x) for x € M, where p: X — R satisfies
p(z+y) < p(x)+ ply) and p(Ax) = Ap(x) for all x,y € X and A\ > 0. Then there

is a linear functional £ on X such that /() < p(x) for all x € X and €|y = /.
Complex version. Let X be a complex vector space, M a linear subspace of X,
and £ a complez linear functional on M such that [{(z)| < p(z) for x € M, where

p_is a seminorm. Then there is a complex linear functional £ on X such that
[¢(x)] < p(x) for all z € X and L]y = L.

Let M be a closed linear subspace of a normed space X and let z € X \ M.
Then there exists £ € X* such that ¢(z) # 0 and £|p; = 0. Indeed, if we let
§ := infyen ||z — y|| and define £ on M + Cx by setting £(y + Az) := AJ, then
Uy + Az)| = [Md < MM Yy + z|| = |y + Az|| and the Hahn-Banach theorem
implies the statement.

If we take M = {0} and = # 0 we get £ € X* so that ¢(x) # 0. Thus, the
bounded linear functionals on X separate points: if  # y there is £ € X* with
Uz —y) # 0, that is £(x) # £(y).

For x € X we may consider the functional ev, : X* — C defined by ev,(¢) :=
¢(z). Then the mapping = — ev, is a linear isometry from X into X**, in fact

leva ()] = [€(x)] < [|€][[|=|

which implies || ev, || < ||z||, on the other hand ||z|| < ||ev, ||, since by the previous
paragraphs there is £ € X* such that ||z|| = £(z) = ev,(¢).
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Since X** is always complete, the closure cl(X) of X := {ev, : € X} in X**
is a Banach space; cl(X) is the completion of X, and cI(X) = X if X is complete.
The mapping  — ev, embeds X into cl(X) as a dense subspace.

If X = X** then X is called reflexive. For instance, finite dimensional vector
spaces are reflexive, since X and X** have the same dimension.

Theorem A.3 (Open mapping theorem). Let X and Y be Banach spaces. Any
surjective bounded linear mapping T : X — Y is open, i.e., T takes open sets to
open sets.

Consequently, a bijective bounded linear mapping between Banach spaces is an
isomorphism.

Theorem A.4 (Closed graph theorem). Let X and Y be Banach spaces. Any
closed linear mapping T : X =Y, i.e., the graph T'(T) := {(z,y) e X xY :y =
Tz} is closed in X XY, is bounded.

Theorem A.5 (Uniform boundedness principle or Banach—Steinhaus theorem).
Let X be a Banach space, Y a normed space, and let A be a subset of L(X,Y). If
supre4 || Tz|| < oo for all x in some nonmeager subset of X, then suprc 4 || T < oco.

A.3. Hilbert spaces
Let H be a complex vector space. An inner product on H is a mapping
Hx H — C: (x,y) — (x,y) such that

o {(ax +by,z) =alx,z) + by, z) for all 2,y € H and a,b € C,
o (z,y) = (y,z) forall z,y € H,
e (z,z) >0 for all x # 0.

A complex vector space equipped with an inner product is called a pre-Hilbert
space. In a pre-Hilbert space we set ||z|| := \/(z,x). Then we have the Schwarz
inequality

[z, 9) < llzllllyll,  for all z,y € H,

with equality if and only if x and y are linearly dependent. Indeed, assume without
loss of generality that ||z|| = ||y|| = 1. Then (z,y) # 0 and (x,y) = a|{z,y)| for
some a € C with |a] = 1. Now, for t € R,

0<{a 'z —ty,a e —ty) =1—2tRe(a "(x,y)) + 1> =1 - 2t|(x,y)| + >

The right-hand side is minimal for ¢t = |[(z,y)| and so |(x,y)| < 1 as required.
The Schwarz inequality implies that || || is a norm on H,

lz +yl? = ll2l1* + (@, 9) + (v, 2) + lyll* < (l= ]l + 1y ]).

A pre-Hilbert space that is complete with respect to the norm |lz| = /(z, z) is
called a Hilbert space.

In any pre-Hilbert space we have the parallelogram law,
lz +ylI* + [l = ylI> = 2(|z)* + ly[?), for all 2,y € H.

Lemma A.6. Any closed convex subset A of a Hilbert space H contains a unique
element of smallest norm.
PROOF. Set § := inf,¢ 4 ||z| and choose a sequence x,, € A such that ||z,| — J.

By the parallelogram law and convexity of A,

lzn = 2ml* = 2(l2n 1 + l2m]?) = llzn + 2ml* < 2(l2n ] + lom]?) — 467,
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since (z,, + %, )/2 € A and hence ||z, + 24, || > 20. This implies that x,, is Cauchy
and so x,, > x € A, since A is closed. As
izl = ll2ll] < llen — 2] =0

we have ||z|| = J. If there is another y € A with |ly|| = J, then by the parallelogram
law
lz = yl* = 20 — 4]l (= +y)/2]* < 0,

and hence x = y. O

Let H be a Hilbert space, and let A be a subset of H. We define the orthogonal
complement
At :={zc H:(z,y) =0forall y € A}.
Then A* is a closed linear subspace of H; indeed, if AL > x,, — x and y € A, then

(@ 9)| = [{@n, y) = (2, y)] = [(@n — 2, 9) < llzn = [l[ly[] = 0.

Proposition A.7. If M is a closed linear subspace of H, then H = M @& M>*, i.e.,
each © € H is of the form x = y + z for unique elements y € M and z € M~*.
Moreover, y and z are the unique elements in M and M* whose distance to x is
minimal.

PROOF. By Lemma[A.6] there is a unique element y € M such that ||z —y|| <
|z — u|| for all w € M. Set z := z —y. If u € M, then after multiplication by a
nonzero scalar we may assume that (z,u) € R, and then
Rt |z +tul® = ||2]” + 2t(z, u) + |Jul?

is real valued. Since z +tu = x — (y — tu) and y — tu € M, this function has a
minimum at ¢ = 0 and hence its first derivative vanishes at ¢ = 0, that is (z,u) = 0.
It follows that z € M*.

If 2/ € M+ then ||z — 2'||? = |lz — 2||> + ||z — 2'||* > ||z — 2|/, and thus z is the
unique element in M+ with minimal distance to .

Ifz =y +2 withy € Mand 2/ € M+ theny—y' =2—2 € MNM* and
soy—y =z—2'=0. O
Theorem A.8 (Riesz). Let £ be a bounded linear functional on a Hilbert space H.
Then there is a unique y € H such that {(x) = (x,y) for allx € H.

PROOF. If £ = 0 choose y = 0. Otherwise M = ker/ is a proper closed
subspace of H and there exists a unit vector z € M, by Proposition Since
(x)z — l(2)x € M, for each x € H, we find

0= {l(x)z —U(2)x,2) = L(x) — L(2){x, 2),
ie., y:= @z is as required.

If w € H so that () = (z,u) for all x € H, then (z,v —u) = 0 for all z, and
hence u = v. 0

For y € H, {,(z) := (x,y) defines a bounded linear functional on H satisfying
14,1 = |lyll, by the Schwarz inequality. So the mapping y — £, is a conjugate-linear
isometry from H onto H*, by Theorem It follows that a Hilbert space H is
reflexive in a strong sense: H is naturally isomorphic to H*, not only to H**.

A subset {24 }aca of a pre-Hilbert space H is called orthonormal if

@arapy =1L @37
Loy Xp) = 0 a;«éﬂ
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An orthonormal set {x,}aca and any element x satisfy Bessel’s inequality:

Y Kz, za)l? < Jall?,

a€cA

where the sum is understood as sup { 3 c 4, [(#,2a)|? : Ag C A finite}. Indeed,
let M be the linear subspace generated by {Zs}aca,.- By Proposition r =
Y aca, Cata +y for y € M+, and so (z,24) = co and [|Jz]|> = 3 c 4, lcal® + [lyl?,
by orthonormality. It follows that the sum in Bessel’s inequality has only countably
many nonzero terms.

An orthonormal set {z,}aca in a Hilbert space H is called complete if its
orthogonal complement is {0}. If {z4}aca is a complete orthonormal set {4 }aca
in H, then each z € H can be written in the form

T = Z(x,xa>xa, (A1)
acA

where the sum has only countably many nonzero terms and converges in the

norm topology. To see this, let us enumerate by aj,as,... the indices « for
which (z,24) # 0. By Bessel’s inequality, the series > = |[(z,2q4,)|* converges,
and hence |31 (x, 20,0, > = 20,0 [(@,20,)[* = 0 as m,n — oo, So

o2 (@, @a, )Ty, converges, since H is complete. The difference z—Y (%, Ta, ) Ta,
is zero, because {Zs}aca is complete, and (A.1]) is shown. From this we obtain
Parseval’s identity

n

2= tim Y| wa )P = Y [ w,)

i=1 acA

2

b

n
lell? = T ||, %, )
=1

which in turn implies that {z4}aeca is complete. For this reason a complete or-
thonormal set in a Hilbert space is called a Hilbert basis.

Every Hilbert space has a Hilbert basis. For by Zorn’s lemma there exists
a maximal orthonormal set and it is easy to see that it must be complete. A
Hilbert space is separable if and only if it has a countable Hilbert basis (then
every Hilbert basis is countable). This can be proved using the Gram—Schmidt
orthonormalization process; in this case the existence of a Hilbert basis follows
without using Zorn’s lemma.

An invertible linear mapping U : H; — Hy between Hilbert spaces that pre-
serves inner products, i.e.,

(Uz,Uy) = (x,y), forallz,ye€ Hy,

is called unitary. Unitary mappings are isometries, and conversely, surjective
isometries between Hilbert spaces are unitary which follows from the polarization
identity

Uz, y) = o +yI* + llz = yl* +ille + iyl* — iz — iy|*.

Let H be a Hilbert space with Hilbert basis {4 }aca. For & € H consider
the element # in the Hilbert space ¢2(A) defined by Z(«) := (x,z,). The mapping
x + & is an isometry from H to ¢?(A) by Parseval’s identity. It is surjective and
thus also unitary. For if f € £2(A) then > ., |f(a)* <0 and so the partial sums
of the series Y f(a)z, form a Cauchy sequence (by similar arguments as before).
Then z := ) f(a)z, exists in H and & = f. This implies the following theorem.

Theorem A.9. All separable infinite dimensional Hilbert spaces are isomorphic to

2(N).
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A.4. Fréchet spaces

A topological vector space is a vector space endowed with a topology in
which addition and multiplication by scalars are continuous. A locally convex
space is a topological vector space whose topology has a basis consisting of convex
sets.

If X is a vector space and {ps}aca is a family of seminorms on X, then
the topology generated by the balls B(x,a,€) := {y € X : po(z —y) < €}, for
x € X, a€ A, and € > 0, turns X into a locally convex space. Actually, in every
locally convex space the topology can be defined by means of a family of seminorms
{pa}aeA'

Let T : X — Y be a linear mapping between locally convex spaces X and Y
with topologies defined by families {pq}aca and {gg}gep of seminorms, respec-
tively. Then T is continuous if and only if for each 8 € B there are a1, ...,a, € A
and C' > 0 such that gg(Tz) < C Y7 | Pa, ().

A locally convex space X with topologies definded by a family {ps}aca of
seminorms is Hausdorff if and only if for each = # 0 there exists « € A so that
palx) # 0. If X is Hausdorff and A is countable, then the topology of X is given
by the translation invariant metric

_ Pa (1' - y)
d(z,y) = 27— =
( ) Za: 1+ Pa (J} - y)
we say that X is metrizable. A complete Hausdorff locally convex space whose
topology is defined by a countable family of seminorms is called a Fréchet space.
The open mapping theorem and the closed graph theorem remain valid for Fréchet
spaces.
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