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Abstract. By an influential theorem of Boman, a function f on an open set U

in Rd is smooth (C∞) if and only if it is arc-smooth, i.e., f◦c is smooth for every

smooth curve c : R→ U . In this paper we investigate the validity of this result
on closed sets. Our main focus is on sets which are the closure of their interior,

so-called fat sets. We obtain an analogue of Boman’s theorem on fat closed sets

with Hölder boundary and on fat closed subanalytic sets with the property that
every boundary point has a basis of neighborhoods each of which intersects

the interior in a connected set. If X ⊆ Rd is any such set and f : X → R is

arc-smooth, then f extends to a smooth function defined on Rd. We also get
a version of the Bochnak-Siciak theorem on all closed fat subanalytic and all

closed sets with Hölder boundary: if f : X → R is the restriction of a smooth
function on Rd which is real analytic along all real analytic curves in X, then

f extends to a holomorphic function on a neighborhood of X in Cd. Similar

results hold for non-quasianalytic Denjoy-Carleman classes (of Roumieu type).
We will also discuss sharpness and applications of these results.
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1. Introduction

In this paper we study differentiability of functions defined on closed subsets of
Rd. One way to endow an arbitrary set X with a smooth structure is by declaring
which curves R→ X and which functions X → R should be smooth. Together with
a natural compatibility condition this leads to the notion of a Frölicher space; cf.
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2 A. RAINER

[20] and [32]. Here we study the Frölicher space generated by the inclusion of a
closed set X in Rd and some of its relatives. We will not use the terminology of
Frölicher spaces in the paper but the connection is made precise in Remark 1.7.

1.1. Boman’s theorem and its relatives. Let f : U → R be a function defined
in an open subset U of Rd. Then f induces a mapping f∗ : UR → RR, f∗(c) = f ◦ c,
whose invariance properties encode the regularity of f :

Result 1.1 (Boman [12]). A function f : U → R is smooth (C∞) if and only if
f∗C∞(R, U) ⊆ C∞(R,R).

Similarly, Hölder differentiability can be characterized by f∗; we denote by Ck,α,
for k ∈ N, α ∈ (0, 1], the class of k-times continuously differentiable functions whose
partial derivatives of order k satisfy a local α-Hölder condition.

Result 1.2 ([20], [19], [32]). A function f : U → R is of class Ck,α if and only if
f∗C∞(R, U) ⊆ Ck,α(R,R).

Furthermore, there is a ultradifferentiable version of Boman’s theorem. We re-
call that, for a positive sequence M = (Mk)k∈N, the Denjoy–Carleman class (of
Roumieu type) CM (U,Rm) is the set of all functions f ∈ C∞(U,Rm) such that for
all compact K ⊆ U ,

(1.1) ∃C, ρ > 0 ∀k ∈ N ∀x ∈ K : ‖f (k)(x)‖Lk(Rd,Rm) ≤ Cρkk!Mk.

The sequence M is called non-quasianalytic if CM contains non-trivial functions
with compact support. If M is log-convex, then CM is stable under composition.
We refer to Section 2.1 for this and more on Denjoy–Carleman classes.

Result 1.3 ([33]). Assume that M = (Mk) is non-quasianalytic and log-convex. A
function f : U → R is of class CM if and only if f∗CM (R, U) ⊆ CM (R,R).

Remark 1.4. Boman actually showed that f is smooth if and only if f∗CM (R, U) ⊆
C∞(R,R), for some arbitrary non-quasianalytic log-convex sequence M .

A glance at the proofs confirms that the curves along which the regularity in
question is tested can be taken to have compact support.

A function f : U → R with the property that f ◦ c is real analytic (Cω) for all
real analytic c : R → U clearly does not need to be real analytic on U ⊆ Rd, let
alone continuous, see [8]. But there is the following:

Result 1.5 (Bochnak, Siciak [10], [53], [11]). A function f : U → R is real analytic
if and only if f∗C∞(R, U) ⊆ C∞(R,R) and f∗Cω(R, U) ⊆ Cω(R,R).

Actually, a smooth function f ∈ C∞(U) which is real analytic on affine lines is
real analytic on U .

We remark that, if M = (Mk) is quasianalytic such that Cω ( CM , then a C∞-
function f : U → R which satisfies f∗CM (R, U) ⊆ CM (R,R) need not be of class
CM ; see [26].

1.2. Arc-smooth functions. In this paper we investigate the validity of the above
results on non-open subsets X ⊆ Rd. For arbitrary subsets X ⊆ Rd we define

A∞(X) :=
{
f : X → R : f∗C∞(R, X) ⊆ C∞(R,R)

}
,

AM (X) :=
{
f : X → R : f∗CM (R, X) ⊆ CM (R,R)

}
,
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A∞M (X) :=
{
f : X → R : f∗CM (R, X) ⊆ C∞(R,R)

}
,

where we set

C∞(R, X) :=
{
c ∈ C∞(R,Rd) : c(R) ⊆ X

}
,

CM (R, X) :=
{
c ∈ CM (R,Rd) : c(R) ⊆ X

}
.

We call the elements of A∞(X) arc-smooth functions and those of AM (X) arc-CM
functions on X. We will also consider

Aω(X) :=
{
f ∈ A∞(X) : f∗Cω(R, X) ⊆ Cω(R,R)

}
,

where

Cω(R, X) :=
{
c ∈ Cω(R,Rd) : c(R) ⊆ X

}
.

We will not speak of arc-analytic functions, since such are not assumed to be smooth
in the literature.

Evidently, Aω(X) ⊆ A∞(X) ⊆ A∞M (X) ⊇ AM (X). (We will see below that there
is no hope for the analogue of Result 1.2 to hold on even very simple non-open sets
like the closed half-space.)

With this notation, Result 1.1, Result 1.3, and Result 1.5 amount to

(1.2) A∞(X) = C∞(X), AM (X) = CM (X), Aω(X) = Cω(X),

if X ⊆ Rd is a non-empty open set and M = (Mk) is a non-quasianalytic log-convex
sequence.

Remark 1.6. The identities (1.2) imply that, in the definition of A∞(X), AM (X),
and Aω(X), we could equivalently replace the families of curves c : R → X by
families of plots p : U → X (of the same regularity), where U is any open subset of
Re with varying e.

Remark 1.7. Recall that a Frölicher space is a triple (X, CX ,FX) consisting of a
set X, a subset CX ⊆ XR and a subset FX ⊆ RX such that

(1) f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for all c ∈ CX .
(2) c : R→ X belongs to CX if and only if f ◦ c ∈ C∞(R,R) for all f ∈ FX .

Any subset F ⊆ RX generates a unique Frölicher space (X, CX ,FX) by setting

CX :=
{
c : R→ X : f ◦ c ∈ C∞(R,R) for all f ∈ F

}
,

FX :=
{
f : X → R : f ◦ c ∈ C∞(R,R) for all c ∈ CX

}
.

In this paper we are investigating the Frölicher spaces generated by the inclusion
map ιX : X → Rd of subsets X of Rd, i.e., (X, C∞(R, X),A∞(X)). For suitable
sets X we try to identify the corresponding set of functions FX = A∞(X). More
on Frölicher spaces can be found in [20] and [32].

1.3. Admissible sets. Let X ⊆ Rd be an arbitrary subset. A function f : X → R
is said to be smooth if for each x ∈ X there exist a neighborhood U in Rd and a
smooth function F : U → R such that F |U∩X = f |U∩X . If X is open, then this
notion of smoothness coincides with the usual one. We denote by C∞(X) the set
of all smooth functions on X.

Definition 1.8. A subset X ⊆ Rd is called A∞-admissible if A∞(X) = C∞(X),
i.e., the arc-smooth functions on X are precisely the smooth functions.
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Boman’s theorem states that open subsets X ⊆ Rd are A∞-admissible. We will
look for non-open A∞-admissible sets. It follows from a result of Kriegl [31] that
closed convex subsets X ⊆ Rd with non-empty interior are A∞-admissible. It is
natural to consider closed sets with dense interior.

Definition 1.9. A non-empty closed subset X of Rd is called fat if X = int(X).

If X ⊆ Rd is fat, then there are other natural possibilities to define “smooth”
functions on X which we compare in the following lemma.

Lemma 1.10. Let X ⊆ Rd be a fat closed set. Consider the following conditions:

(1) There exists F ∈ C∞(Rd) such that F |X = f .
(2) f ∈ C∞(X).
(3) f |int(X) ∈ C∞(int(X)) and the Fréchet derivatives (f |int(X))

(n) of all orders

have continuous extensions f (n) : X → Ln(Rd,R).
(4) f |int(X) ∈ C∞(int(X)) and the directional derivatives dnvf |int(X) for all v ∈

Rd and all n ∈ N have continuous extensions to X.
(5) f |int(X) ∈ C∞(int(X)) and the partial derivatives ∂αf |int(X) for all α ∈ Nd

have continuous extensions to X.

Then (1)⇒ (2)⇒ (3)⇔ (4)⇔ (5). All five conditions are equivalent if X has the
following regularity property:

(6) For all x ∈ X there exist m ∈ N>0, C > 0, and a compact neighborhood K
of x in X such that any two points y1, y2 ∈ K can be joined by a rectifiable
path γ which lies in int(X) except perhaps for finitely many points and has
length

`(γ) ≤ C |y1 − y2|1/m.

Proof. (1)⇒ (2)⇒ (3) are obvious.
(3) ⇔ (4) ⇔ (5) This follows from the fact that at points x ∈ int(X) Fréchet,

directional, and partial derivatives can be converted into one another in a linear
way; cf. [32, Lemma 7.13].

(5) ⇒ (1) By the regularity property (6), f defines a Whitney jet on X, see [4,
Proposition 2.16]. So Whitney’s extension theorem implies (1). �

In general the implication (5)⇒ (1) is false, see Example 10.9.
Another natural condition for A∞-admissibility is the following; see Exam-

ple 10.5.

Definition 1.11. A closed subset X ⊆ Rd is called simple if each x ∈ X has a
basis of neighborhoods U such that U ∩ int(X) is connected for all U ∈ U .

A function f : X → R is said to be real analytic if for each x ∈ X there exist
a neighborhood U of x in Cd and a holomorphic function F : U → C such that
F |U∩X = f |U∩X . We denote by Cω(X) the set of all real analytic functions on X.

If M = (Mk) is a positive sequence, we set

CM (X) :=
{
f ∈ C∞(X) : (1.1) holds for all compact K ⊆ X

}
.

Note that we do not require that a function f ∈ CM (X) is locally a restriction of
a CM -function on Rd. We shall discuss in Section 10.1 when a function in CM (X)
extends to a CM -function on Rd.
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Definition 1.12. A subset X ⊆ Rd is called Aω-admissible (resp. AM -admissible)
if Aω(X) = Cω(X) (resp. AM (X) = CM (X)).

By the Bochnak–Siciak theorem 1.5 and Result 1.3, all open subsets X ⊆ Rd are
Aω-admissible and AM -admissible, for each log-convex non-quasianalytic M .

1.4. Main results. Our results can be arranged in groups with respect to two
criteria: regularity of the functions (smooth, real analytic, ultradifferentiable) and
regularity of the domains (Hölder sets, fat subanalytic sets).

By a Hölder set we mean the closure of an open set which has the uniform cusp
property of index α for some 0 < α ≤ 1. If α = 1 we speak of a Lipschitz set. The
collection of all Hölder sets in Rd is denoted by H (Rd). (We use the term Hölder
set instead of domain, since the latter is usually reserved for open sets.) For precise
definitions we refer to Section 3.

The smooth case.

Theorem 1.13. Every X ∈H (Rd) is A∞-admissible. We even have

(1.3) A∞M (X) = A∞(X) = C∞(X),

for any non-quasianalytic log-convex positive sequence M = (Mk).

Theorem 1.13 is proved in Section 4.

Theorem 1.14. Every simple fat closed subanalytic set X ⊆ Rd is A∞-admissible.

This is proved in Section 5. The proof is based on the L-regular decomposi-
tion of subanalytic sets and the fact that fat closed subanalytic sets are uniformly
polynomially cuspidal. It uses the result for Hölder sets, i.e., Theorem 1.13.

Remark 1.15. Hölder sets X ∈H (Rd) and fat closed subanalytic subsets X ⊆ Rd

satisfy Lemma 1.10(6) and hence all items (1)–(5) in Lemma 1.10 are equivalent;
cf. Proposition 3.8 and Theorem 5.6.

Notice that the assumption that X is simple is necessary, see Example 10.5.
Hölder sets are always simple, see Proposition 3.9.

The real analytic case.

Theorem 1.16. Let X ⊆ Rd be a fat closed subanalytic set. Let f ∈ C∞(X) be real
analytic on real analytic curves in X. Then f extends to a holomorphic function
defined on an open neighborhood of X in Cd.

The proof of Theorem 1.16 (in Section 6) is based on the uniformization theorem
of subanalytic sets and a result of Eakin and Harris [18] (proved earlier by Gabrielov
[21]). The following consequence will also be proved in Section 6.

Corollary 1.17. Let X ⊆ Rd be a closed set such that for all z ∈ ∂X there is a
closed fat subanalytic set Xz such that z ∈ Xz ⊆ X. Let f ∈ C∞(X) be real analytic
on real analytic curves in X. Then f extends to a holomorphic function defined on
an open neighborhood of X in Cd.

Note that all Hölder sets satisfy the assumption in Corollary 1.17. Interestingly,
for these results we need not assume that X is simple (note that we already suppose
that f ∈ C∞(X)). Together with Theorems 1.13 and 1.14 we obtain:

Corollary 1.18. Every X ∈ H (Rd) and every simple fat closed subanalytic X ⊆
Rd is Aω-admissible. �
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The ultradifferentiable case. Let M = (Mk) be a non-quasianalytic log-convex pos-
itive sequence. For positive integers a let M (a) denote the sequence defined by

M
(a)
k := Mak.

Theorem 1.19. Let M = (Mk) be a non-quasianalytic log-convex positive se-

quence. Every Lipschitz set X ⊆ Rd satisfies CM (X) ⊆ AM (X) ⊆ CM(2)

(X).

A similar statement can be expected for Hölder sets (with the loss of regularity
also depending on the Hölder index). We will not pursue this in this paper. Instead,
combining our results with a result of [15] and [3], we show in Theorem 8.4 that for
fat closed subanalytic sets the loss of regularity can be controlled in a precise way.

In an earlier version of the paper we claimed that every Lipschitz set X ⊆ Rd is
AM -admissible. That is doubtful, but we do not have a counterexample.

1.5. Permanence of admissibility. The main results all concern subsets X ⊆ Rd

with maximal dimension d. The following permanence properties yield further
examples of admissible sets both of maximal dimension and of codimension ≥ 1.

Proposition 1.20. Let X ⊆ Rd be A∞-admissible. If U is an open neighborhood of
X in Rd and ϕ : U → Re is a smooth embedding, then ϕ(X) ⊆ Re is A∞-admissible.

Proof. Let Y := ϕ(X). If f ∈ A∞(Y ), then g := f ◦ϕ ∈ A∞(X). Since M := ϕ(U)
is an embedded submanifold of Re, it suffices to show that for each y ∈ Y there is a
neighborhood V in M and a smooth function F : V → R such that F |V ∩Y = f |V ∩Y .

Since X is A∞-admissible, for each x ∈ X there is a neighborhood W in Rd

and a smooth function G : W → R such that G|W∩X = g|W∩X . Taking U ∩W
instead of W we may assume that W ⊆ U . Then F := G ◦ ϕ−1|ϕ(W ) is smooth on
V := ϕ(W ) and satisfies F |V ∩Y = f |V ∩Y . �

The same proof yields the following.

Proposition 1.21. Let X ⊆ Rd be Aω-admissible. If U is an open neighborhood
of X in Rd and ϕ : U → Re is a real analytic embedding, then ϕ(X) ⊆ Re is
Aω-admissible. �

In the ultradifferentiable case we have the following. Note that, if M = (Mk)
is log-convex, then CM is stable under composition and the CM inverse function
theorem holds. If N ⊆ Re is an embedded submanifold of class CM (i.e., the chart
change maps are of class CM ), then we define CM (N) to be the set of f ∈ C∞(N)
which are of class CM in every local coordinate chart. If Y ⊆ N , then let CM (Y ) be
the set of C∞-functions on Y such that the defining estimates hold for all compact
subsets in Y in all local coordinate charts. The proof of Proposition 1.20 implies
the following.

Proposition 1.22. Let M = (Mk) be non-quasianalytic and log-convex, and let
N = (Nk) be a sequence with M ≤ N . Assume that X ⊆ Rd satisfies CM (X) ⊆
AM (X) ⊆ CN (X). If U is an open neighborhood of X in Rd and ϕ : U → Re is a
CM -embedding, then Y := ϕ(X) ⊆ Re satisfies CM (Y ) ⊆ AM (Y ) ⊆ CN (Y ). �

1.6. Sharpness of the results. We shall discuss in Section 10.2 counterexamples
which show that none of the conditions in the main results can in general be omitted
without suitable replacement.
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In particular, Example 10.4, which is based on a division theorem of [29], shows
that the ∞-flat cusp

X :=
{

(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ exp(−1/x)
}

is not A∞-admissible: in this case A∞(X) is strictly larger than C∞(X). Note,
however, that for Y := R2 \ int(X) we have f ∈ A∞(Y ) if and only if f satisfies
Lemma 1.10(3), but A∞(Y ) 6= C∞(Y ); see Example 10.9.

Interestingly, the analogue for finite differentiability (i.e., Result 1.2) fails even
on convex fat closed sets such as the half-space; see Example 10.7 which is a con-
sequence of Glaeser’s inequality.

1.7. Applications. As a corollary of the real analytic result (i.e., Theorem 1.16)
we obtain that smooth solutions of real analytic equations on Hölder sets or closed
fat subanalytic sets must be real analytic; see Theorem 9.1. Furthermore, we obtain
sufficient conditions for the existence of real analytic solutions g of the equation
f = g ◦ ϕ ∈ Cω(M), where ϕ : M → Rd is a real analytic map defined on a real
analytic manifold M ; see Corollary 9.3.

The usefulness of the smooth result is illustrated by some consequences for the
division of smooth functions, see Theorem 9.5, and for pseudo-immersions, see
Theorem 9.6.

1.8. Structure of the paper. We recall facts on weight sequences and Denjoy–
Carleman classes in Section 2, and we revisit and adapt the CM curve lemma which
is an essential tool for proving some results of the paper. In Section 3 we introduce
Hölder sets and collect some of their properties. The proofs of Theorems 1.13, 1.14,
1.16 and 1.19 are given in the Sections 4, 5, 6, and 7, respectively. In Section 8
we discuss the ultradifferentiable case on subanalytic sets. The applications are
given in Section 9. The final Section 10 contains complements, examples, and
counterexamples.

Some of the results of this paper were announced in [49].

Acknowledgements. I am grateful to Vincent Grandjean, Andreas Kriegl, and
Adam Parusiński for helpful discussions. A. Kriegl contributed Lemma 6.1 and
Example 10.6 and A. Parusiński suggested to use the results on Hölder sets to
attack subanalytic sets. In addition, I would like to thank the anonymous referees
for their valuable comments.

2. A CM -curve lemma

This section is only of relevance for the ultradifferentiable results in the paper.

2.1. Weight sequences and Denjoy–Carleman classes. Let M = (Mk)k∈N

be a positive sequence of reals. Let U ⊆ Rd be open and let CM (U,Rm) be the
corresponding Denjoy–Carleman class (of Roumieu type) as defined in Section 1.1.

If N = (Nk) is another positive sequence such that (Mk/Nk)1/k is bounded, then
CM (U) ⊆ CN (U). The converse holds if k!Mk is logarithmically convex (log-convex
for short). It follows that the class CM (U) is preserved by replacing M = (Mk)k
by (CkMk)k for some positive constant C.

We shall assume that the sequenceM is log-convex (which entails log-convexity of
k!Mk). We may assume that M0 = 1 and that M is increasing. Indeed, the sequence
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Nk := CkMk/M0 for some constant C ≥M0/M1, is log-convex, increasing, satisfies
N0 = 1, and CM (U) = CN (U). This motivates the following definition.

Definition 2.1. An increasing log-convex sequence M = (Mk) with M0 = 1 is
called a weight sequence.

The regularity properties of a weight sequence M = (Mk) entail stability prop-
erties of the class CM ; cf. [51]. Of particular interest in this paper is the fact that,
for a weight sequence M , the composite of CM mappings is CM . By the celebrated
Denjoy–Carleman theorem, the condition

(2.1)
∑
k

Mk

(k + 1)Mk+1
<∞

holds if and only if CM is non-quasianalytic, i.e., the Borel mapping which sends
germs at some point a of smooth functions to their infinite Taylor expansion at
a is not injective on CM -germs. Then there exist non-trivial CM -functions with
compact support. Note that (2.1) is equivalent to

(2.2)
∑
k

(k!Mk)−1/k <∞.

Definition 2.2. Let M = (Mk) be a weight sequence. We say that M is non-
quasianalytic if it satisfies (2.1); otherwise it is said to be quasianalytic. A weight
sequence M is called strongly non-quasianalytic if

(2.3) ∃C > 0 ∀k ∈ N :
∑
j≥k

Mj−1

jMj
≤ CMk−1

Mk
.

It is said to be of moderate growth if

(2.4) ∃C > 0 ∀j, k ∈ N : Mj+k ≤ Cj+kMjMk.

A weight sequence is called strongly regular if it is strongly non-quasianalytic and
of moderate growth.

Example 2.3. The Gevrey sequences Gsk = k!s, s > 0, which give rise to the

Gevrey classes CGs are strongly regular weight sequences. They appear naturally
in the theory of (partial) differential equations. For s = 0 we recover the real

analytic functions CG0

= Cω which obviously form a quasianalytic class.

Note that Cω(U) ⊆ CM (U) ⊆ C∞(U) for every weight sequence M . In fact, the
Denjoy–Carleman classes form an a scale of spaces intermediate between the real
analytic and the smooth functions.

2.2. The CM curve lemma revisited. We generalize the CM curve lemma, see
[33, Section 3.6] and [34, Section 2.5], which was inspired by [12, Lemma 2].

Lemma 2.4. There are sequences tk → t∞ and sk > 0 in R with the following
property. For any non-quasianalytic weight sequence M = (Mk) and each a ∈ N≥2
there is a real positive sequence λk → 0 satisfying

(2.5) λk

(Mak

Mk

) 1
ak+1 → 0 as k →∞
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such that the following holds. Let E be a Banach space. Let ck ∈ C∞(R, E) be a
sequence such that

(2.6)
{
λ−1k c

(`)
k (t) : t ∈ I, `, k ∈ N

}
is bounded in E, for every bounded interval I ⊆ R. Then there exists a CM -curve
c : R→ E with compact support and c(tk + t) = ck(t) for |t| ≤ sk.

Proof. There exists a non-quasianalytic weight sequence L = (Lk) such that
(Mk/Lk)1/k → ∞ (this follows e.g. from [30, Lemma 6]). Choose a CL-function
ϕ : R→ [0, 1] which is 0 on {t : |t| ≥ 1/2} and 1 on {t : |t| ≤ 1/3}.

Let T ∈ (0, 1] and R > 0. Assume that γ ∈ C∞(R, E) is such that

‖γ(`)(t)‖ ≤ R for all |t| ≤ 1/2, ` ∈ N.

Then, there exist C, ρ ≥ 1 such that for the curve c(t) := ϕ(t/T )γ(t) we have

‖c(`)(t)‖ =
∥∥∥∑̀
j=0

(
`

j

)
T−jϕ(j)

( t
T

)
γ(`−j)(t)

∥∥∥(2.7)

≤ R
∑̀
j=0

(
`

j

)
T−jCρjj!Lj ≤ CR

(
1 +

ρ

T

)`
`!L` ≤ CR

(2ρ

T

)`
`!L`.

Choose a sequence

(2.8) Tj ∈ (0, 1] with
∑
j

Tj <∞ and let tk := 2
∑
j<k

Tj + Tk.

Now choose λj such that the following conditions are fulfilled:

0 <
λj
T kj
≤ Mk

Lk
for all j, k,(2.9)

λj
T kj
→ 0 as j →∞ for all k.(2.10)

It suffices to take λj ≤ infk T
k+1
j Mk/Lk. Clearly, we may in addition require that

λj tends to zero fast enough so that (2.5) holds.
By (2.6), there is R > 0 such that

‖c(`)k (t)‖ ≤ Rλk for all |t| ≤ 1/2, `, k ∈ N.

Define

c(t) :=
∑
j

ϕ
( t− tj

Tj

)
cj(t− tj).

The summands have disjoint supports (the support of the jth summand is contained
in [tj − Tj/2, tj + Tj/2]). Thus c is C∞ on R \ {t∞}. By (2.7),

‖c(`)(t)‖ ≤ CRλj
(2ρ

Tj

)`
`!L` for |t− tj | ≤

Tj
2
.

Consequently, by (2.9),

‖c(`)(t)‖ ≤ CR(2ρ)``!M` for t 6= t∞.

It follows that c : R→ E has compact support and is CM (cf. [32, Lemma 2.9] and
[33, Lemma 3.7]). �
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Remark 2.5. A similar statement holds for convenient vector spaces E. The proof
can be easily adapted to this case; cf. [33] or [34].

The next lemma is a variant of [32, Lemma 2.8]. Recall that, given some sequence
µk →∞, a sequence xk in E is called µ-convergent to x if µk(xk − x) is bounded.

Lemma 2.6. For any non-quasianalytic weight sequence M = (Mk) there is a
positive sequence λk → 0 such that the following holds. Let E be a Banach space.
Let xn → x be 1/λk-convergent in E. Then the infinite polygon through the xn
and x can be parameterized as a CM -curve c : R → E such that c(1/n) = xn and
c(0) = x.

Proof. Let L = (Lk) be a non-quasianalytic weight sequence with (Mk/Lk)1/k →
∞. Set Tj := 1/(j(j + 1)) and choose λj such that the conditions (2.9) and (2.10)
are satisfied. Let ϕ : R→ [0, 1] be a CL-function which vanishes on (−∞, 0] and is
1 on [1,∞). Let tn := 1/n and define

c(t) :=


x if t ≤ 0,

xn+1 + ϕ
(
t−tn+1

tn−tn+1

)
(xn − xn+1) if tn+1 ≤ t ≤ tn

x1 if t ≥ 1.

Clearly, c is C∞ on R \ {0}. For tn+1 ≤ t ≤ tn we have

c(k)(t) = ϕ(k)
( t− tn+1

tn − tn+1

)
(n(n+ 1))k(xn − xn+1)

= ϕ(k)
( t− tn+1

tn − tn+1

)
· λn
T kn
· xn − xn+1

λn
.

Condition (2.10) guarantees that c(k)(t)→ 0 as t→ 0 for all k, and hence c is C∞
on R. That c is of class CM follows from (2.9). �

3. Hölder sets

3.1. Uniform cusp property and Hölder sets. We denote by B(x, ε) := {y ∈
Rd : |x− y| < ε} the open ball with center x and radius ε in Rd.

Definition 3.1 (Truncated open cusp). Let us consider Rd = Rd−1 × R with the
Euclidean coordinates x = (x1, . . . , xd) = (x′, xd). For 0 < α ≤ 1 and r, h > 0,
consider the truncated open cusp

Γαd (r, h) :=
{

(x′, xd) ∈ Rd−1 × R : |x′| < r, h(|x′|/r)α < xd < h
}
.

For α = 1 this is a truncated open cone.

Definition 3.2 (Uniform cusp property). Let U ⊆ Rd be an open set and let
α ∈ (0, 1]. We say that U has the uniform cusp property of index α if for every
x ∈ ∂U there exists ε > 0, a truncated open cusp Γ = Γαd (r, h), and an orthogonal

linear map A ∈ O(d) such that for all y ∈ U ∩B(x, ε) we have y +AΓ ⊆ U .

Definition 3.3 (Hölder set). By an α-set we mean a closed fat set X ⊆ Rd such
that int(X) has the uniform cusp property of index α. We say that X ⊆ Rd is a
Hölder set if it is an α-set for some α ∈ (0, 1].
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We denote by H α(Rd) the collection of all α-sets in Rd and by

H (Rd) :=
⋃

0<α≤1

H α(Rd)

the collection of all Hölder sets in Rd. Note that H α(Rd) ⊆H β(Rd) if α ≥ β.

Remark 3.4. A bounded open subset U ⊆ Rd has the uniform cusp property of
index α if and only if U has Hölder boundary of index α with uniformly bounded
Hölder constant; see [16, Theorem 6.9, p.116] and [23, Theorem 1.2.2.2]. That
means the following. At each boundary point p there is an orthogonal system of
coordinates (x′, xd) and an α-Hölder function a = a(x′) such that in a neighborhood
of p the boundary of U is given by {xd = a(x′)} and the set U is of the form
{xd > a(x′)}. There is a uniform bound for the Hölder constant of a which is
independent of the boundary point p.

The boundary of an α-set with α < 1 can be quite irregular. It may have
Hausdorff dimension strictly larger than d − 1 and hence its Hausdorff measure
Hd−1 may be locally infinite. See [16, Theorem 6.10, p. 116].

Example 3.5. (1) The set X = {(x, y) ∈ R2 : x ≥ 0, |y| ≤ x1/α} is an α-set.
(2) The set X = {(x, y) ∈ R2 : x ≥ 0, x2 ≤ y ≤ 2x2} is not a Hölder set,

but X is the image of the Hölder set {(x, y) ∈ R2 : x ≥ 0, |y| ≤ x2/2} under the
diffeomorphism (x, y) 7→ (x, y + 3x2/2) of R2.

(3) The set X = {(x, y) ∈ R2 : x ≥ 0, x3/2 ≤ y ≤ 2x3/2} is not a Hölder set and
there is no smooth diffeomorphism of R2 which maps X to a Hölder set.

(4) Let C ⊆ [0, 1] be the Cantor set and let f : [0, 1]→ R be defined by f(x) :=
dist(x,C)α. Then the set X = {(x, y) ∈ R2 : −1 ≤ x ≤ 2, f(x) ≤ y ≤ 2 if x ∈
[0, 1], 0 ≤ y ≤ 2 if x 6∈ [0, 1]} is an α-set.

3.2. c∞-topology on Hölder sets. The c∞-topology on a locally convex space E
is the final topology with respect to all smooth curves c : R→ E. The c∞-topology
on Rd coincides with the usual topology; cf. [32, Theorem 4.11]. The c∞-topology
on a subset X ⊆ E is the final topology with respect to all smooth curves c : R→ E
satisfying c(R) ⊆ X.

Proposition 3.6. Let X ∈H (Rd). Then the c∞-topology of X coincides with the
trace topology from Rd.

Proof. Let A ⊆ X be c∞-closed in X. Let A be the closure of A in Rd. We have to
show that A ∩X = A ⊆ A. The converse implication is obvious.

Let x ∈ A. Then there is a sequence xn ∈ A which tends to x. It suffices to find
a smooth curve c ∈ C∞(R, X) passing through a subsequence of xn and through x.
Since A is c∞-closed in X, this shows x ∈ A.

Since X is an α-set, for some 0 < α ≤ 1, we may assume that there is a
neighborhood U of x in X and a cusp Γ = Γαd (r, h) such that for all y ∈ U we have
y + Γ ⊆ int(X). By rescaling, we may assume that r = h = 1.

Consider C(y, r) := y + Γαd (r, rα) for 0 < r ≤ 1. It is easy to see that there
is a universal constant c > 0 such that C(y1, r1) ∩ C(y2, r2) 6= ∅ provided that
|y1 − y2| ≤ cmin{r1, r2}.

Choose a decreasing sequence µn which tends to 0 faster than any polynomial.
By passing to a subsequence of xn (again denoted by xn), we may assume that
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|x− xn| ≤ cµn+1/2 for all n. Then, for all n,

|xn − xn+1| ≤ |x− xn|+ |x− xn+1| ≤ cµn+1.

Setting Cn := C(xn, µn) this guarantees the existence of a sequence un such that
un+1 ∈ Cn ∩ Cn+1 for all n. By construction, xn and un tend to x faster than any
polynomial.

For u ∈ Cn define πn(u) := xn + uded (where {ei} is the standard basis in Rd).
Consider the polygon Pn through the points un, πn(un), xn, πn(un+1), un+1. It
is contained in Cn. The infinite polygon consisting of the concatenation of all Pn
satisfies the assumptions of [32, Lemma 2.8] and can hence by parameterized by a
smooth curve c which is contained in X and satisfies c(0) = x. �

Remark 3.7. It is not difficult to modify the proof in order to obtain the following:
Let X ∈ H (Rd) and let M = (Mk) be a non-quasianalytic weight sequence. Then
the final topology on X with respect to all CM -curves c : R → Rd with c(R) ⊆ X

coincides with the trace topology from Rd. It suffices to take µn := λ
1/α
n for the

sequence λn provided by Lemma 2.6.

3.3. Further properties of Hölder sets. The following proposition is well-
known. We include a proof for the convenience of the reader.

Proposition 3.8. Let X ∈ H α(Rd). Then for each x ∈ X there is a compact
neighborhood K of x in X and a constant D > 0 such that any two points y1, y2 ∈ K
can be joined by a polygon γ contained in K with ∂X ∩ γ ⊆ {y1, y2} of length

`(γ) ≤ D|y1 − y2|α.

Proof. Clearly each x ∈ int(X) has this property. Let x ∈ ∂X. We may assume
that in a compact neighborhood K of x the set X is the epigraph {xd ≥ f(x′)} of a
α-Hölder function f with respect to an orthogonal system of coordinates (x′, xd) =
(x1, . . . , xd). For two points y1, y2 ∈ K consider the segments S := [y1, y2] and
S′ := [y′1, y

′
2]. If (y1, y2) ⊆ K ∩ int(X) there is nothing to prove. Otherwise

let z′ ∈ S′ be such that f(z′) = maxy′∈S′ f(y′) and let z = (z′, zd) with zd :=
f(z′) + ε|y1 − y2| for some small ε > 0 such that z ∈ K ∩ int(X). It is possible to
choose ε such that it only depends on K, not on y1, y2. We have (yi)d ≤ f(z′) and
thus |(yi)d − f(z′)| ≤ |f(y′i) − f(z′)| for at least one i ∈ {1, 2}, say for i = 1. If
(y2)d ≤ f(z′), then the polygon with vertices y1, (y′1, zd), (y′2, zd), y2 is contained
in K, meets ∂X at most at one of the points yi, and has length

|(y1)d − zd|+ |(y2)d − zd|+ |y′1 − y′2|
≤ |f(y′1)− f(z′)|+ |f(y′2)− f(z′)|+ 2ε|y1 − y2|+ |y′1 − y′2|
≤ C|y′1 − z′|α + C|y′2 − z′|α + (1 + 2ε)|y1 − y2|
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≤ D|y1 − y2|α,

for constants only depending on K. If (y2)d > f(z′), then the segment joining z
and y2 is contained in K ∩ int(X), and thus the polygon with vertices y1, (y′1, zd),
z, y2 is contained in K, meets ∂X at most at one of the points yi, and has length

|(y1)d − zd|+ |y2 − z|+ |y′1 − z′|
≤ |f(y′1)− f(z′)|+ (1 + ε)|y1 − y2|+ |y′1 − y′2|
≤ D|y1 − y2|α.

This finishes the proof. �

Proposition 3.9. Every X ∈H (Rd) is simple in the sense of Definition 1.11.

Proof. The proof of Proposition 3.8 implies that there is a basis of neighborhoods
U of each x ∈ X such that int(X) ∩ U is path-connected for each U ∈ U . �

4. Arc-smooth functions on Hölder sets

The aim of this section is to prove Theorem 1.13: All X ∈ H (Rd) are A∞-
admissible. We even have

(4.1) A∞M (X) = A∞(X) = C∞(X),

for any non-quasianalytic weight sequence M = (Mn).

Remark 4.1. For fat closed convex sets X ⊆ Rd, A∞-admissibility follows from
a result of Kriegl [31]. The statement in [31] is more general: Let X be a convex
subset of a convenient vector space E with non-empty interior. Then f ∈ A∞(X)
if and only if f is smooth on int(X) and all Fréchet derivatives (f |int(X))

(n) extend

continuously to f (n) : X → Ln(E,R) with respect to the c∞-topology of X. In
general the c∞-topology is finer than the given locally convex topology.

4.1. Proof of Theorem 1.13. It is evident that

C∞(X) ⊆ A∞(X) ⊆ A∞M (X).

The second inclusion is by definition, the first inclusion is a simple consequence of
the chain rule. Let us prove the other inclusions.

Lemma 4.2. Let 1 ≤ p ≤ q be integers. For x ∈ Rd and v = (v′, vd) ∈ Rd let
c(t) = x + (tqv′, tpvd), for t in a neighborhood of 0 ∈ R. Let f be of class Cq in a
neighborhood of the image of c. Then:

(f ◦ c)(k)(0)

k!
=


1
j!f

(j)(x)((0, vd)
j) if k = jp < q,

f ′(x)((v′, 0)) if k = q 6∈ pN,
f ′(x)((v′, 0)) + 1

j!f
(j)(x)((0, vd)

j) if k = jp = q.

For all other k < q we have (f ◦ c)(k)(0) = 0.

Proof. This follows easily from an inspection of the Faà di Bruno formula

(f ◦ c)(k)(t)
k!

=
∑
j≥1

∑
αi>0

α1+···+αj=k

f (j)(c(t))

j!

(c(α1)(t)

α1!
, . . . ,

c(αj)(t)

αj !

)
and the special form of c. �
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Proposition 4.3. Let X ∈H (Rd) and f ∈ A∞(X). Then f |int(X) is smooth and

its derivative (f |int(X))
′ extends uniquely to a mapping f ′ : X → L(Rd,R) which

belongs to A∞(X,L(Rd,R)), i.e.,

(4.2) (f ′)∗C∞(R, X) ⊆ C∞(R, L(Rd,R)).

Proof. That f |int(X) is smooth follows from Boman’s theorem 1.1.

There is 0 < α ≤ 1 such that X ∈ H α(Rd). Let x ∈ ∂X. We may assume
that there is a truncated open cusp Γ = Γαd (r, h) and an open neighborhood Y of
x in X such that for all y ∈ Y we have y + Γ ⊆ int(X). It suffices to show that
(f |Y ∩int(X))

′ extends uniquely to a mapping f ′ : Y → L(Rd,R) which belongs to

A∞(Y,L(Rd,R)).
Let p < q be positive integers such that p/q ≤ α and q/p 6∈ N. Let x ∈ Y and

v = (v′, vd) ∈ Γ. Then the curve

cx,v(t) := x+ (t2qv′, t2pvd)

lies in int(X) for 0 < |t| < 1 and cx,v(0) = x. Since f ∈ A∞(X), f ◦ cx,v is C∞.
Let v ∈ Γ be fixed. We define

f ′(x)(v) :=
(f ◦ cx,v)(2p)(0)

(2p)!
+

(f ◦ cx,v)(2q)(0)

(2q)!
, for x ∈ Y.

This definition turns into a correct statement if x ∈ int(X), by Lemma 4.2.
We claim that

(4.3) f ′(·)(v) : Y → R maps C∞-curves to C∞-curves.

Let R 3 s 7→ x(s) be a C∞-curve in Y . Then (s, t) 7→ cx(s),v(t) is a smooth mapping
near (0, 0) with values in X. Thus (s, t) 7→ f(cx(s),v(t)) is smooth, by Boman’s

theorem 1.1. So, in particular, s 7→ ∂kt |t=0(f ◦ cx(s),v(t)) is smooth for all k. It
follows that s 7→ f ′(x(s))(v) is smooth, which implies the claim.

Let s 7→ x(s) be any C∞-curve in Y such that x(s) ∈ int(X) for 0 < |s| ≤ 1 and
x(0) = x0. Then

f ′(x0)(v) =
(f ◦ cx0,v)

(2p)(0)

(2p)!
+

(f ◦ cx0,v)
(2q)(0)

(2q)!

= lim
s→0

( (f ◦ cx(s),v)(2p)(0)

(2p)!
+

(f ◦ cx(s),v)(2q)(0)

(2q)!

)
= lim
s→0

f ′(x(s))(v).

Consequently, the given definition of f ′(x0)(v) is the only possible extension of
f ′(·)(v) to x0 which is continuous on C∞-curves.

Now let v ∈ Rd be arbitrary. Since Γ is open, there exist ε > 0 and w ∈ Γ such
that εv + w ∈ Γ. For all x ∈ Y ∩ int(X), we have

f ′(x)(v) =
f ′(x)(εv + w)− f ′(x)(w)

ε
,

and the right-hand side uniquely extends to points x0 ∈ Y ∩ ∂X and satisfies (4.3),
by the arguments above.

Thus, we define f ′(x0)(v) := lims→0 f
′(x(s))(v) for some C∞-curve s 7→ x(s) in

Y with x(0) = x0 and x(s) ∈ int(X) for 0 < |s| ≤ 1. Then f ′(x0) is linear as the
pointwise limit of f ′(x(s)) ∈ L(Rd,R). The definition does not depend on the curve
x, since it is the unique extension for v ∈ Γ.
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Let us finally show that f ′ : Y → L(Rd,R) belongs to A∞(Y,L(Rd,R)). Let
x : R → Y be a C∞-curve and let v ∈ Rd. It suffices to show that s 7→ f ′(x(s))(v)
is smooth. For v ∈ Γ this follows from (4.3). For general v, f ′(x(s))(v) is a linear
combination of f ′(x(s))(v1) and f ′(x(s))(v2) for vi ∈ Γ which locally is independent
of s. The proof is complete. �

Corollary 4.4. Let M = (Mk) be a non-quasianalytic weight sequence. Let
X ∈ H (Rd) and f ∈ A∞M (X). Then f |int(X) is smooth and its derivative

(f |int(X))
′ extends uniquely to a mapping f ′ : X → L(Rd,R) which belongs to

A∞M (X,L(Rn,R)), i.e.,

(4.4) (f ′)∗CM (R, X) ⊆ C∞(R, L(Rd,R)).

Proof. The proof is the same with the only difference that we use CM -curves (thanks
to Remark 1.4); note that the curves cx,v are polynomial and thus of class CM . �

Proof of Theorem 1.13. Let f ∈ A∞(X) (resp. f ∈ A∞M (X)). Proposition 4.3 and

Corollary 4.4 imply by induction that the Fréchet derivatives (f |int(X))
(n) of all

orders have unique extensions f (n) : X → Ln(Rd,R) which satisfy

(f (n))∗C∞(R, X) ⊆ C∞(R, Ln(Rd,R))

(resp. (f (n))∗CM (R, X) ⊆ C∞(R, Ln(Rd,R))). So f satisfies Lemma 1.10(3), since
the c∞-topology of X (resp. the final topology on X with respect to all CM -curves
in X) coincides with the trace topology from Rd, by Proposition 3.6 (resp. Re-
mark 3.7). Thus f ∈ C∞(X), by Lemma 1.10 and Proposition 3.8. �

5. Arc-smooth functions on subanalytic sets

The goal of this section is to prove Theorem 1.14.

5.1. Subanalytic sets. Let M be a real analytic manifold. A subset X of M is
called subanalytic if for each x ∈M there is an open neighborhood U of x in M such
that X ∩U is the projection of a relatively compact semianalytic subset of M ×N ,
where N is a real analytic manifold. Recall that a subset X of a real analytic
manifold M is semianalytic if for each x ∈M there exist an open neighborhood U
of x in M and finitely many real analytic functions fij , gij on U such that

X ∩ U =
⋃
i

⋂
j

{
fij = 0, gij > 0

}
.

If dimM ≤ 2, then the family of subanalytic sets in M coincides with the family of
semianalytic sets. In higher dimensions the family of subanalytic sets is essentially
larger.

Henceforth we restrict to the case M = Rd.

Theorem 5.1 (Rectilinearization of subanalytic sets [25], [6], [42]). Let X ⊆ Rd be
closed subanalytic. There exists a locally finite collection of real analytic mappings
ϕα : Uα → Rd such that each ϕα is the composite of a finite sequence of local
blow-ups with smooth centers and

(1) each Uα is diffeomorphic to Rd and there are compact subsets Kα ⊆ Uα
such that

⋃
α ϕα(Kα) is a neighborhood of X in Rd,

(2) for each α, ϕ−1α (X) is a union of quadrants in Rd.
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A quadrant in Rd is a set

Q(I0, I−, I+) =
{
x ∈ Rd : xi = 0 if I0, xi ≤ 0 if I−, xi ≥ 0 if I+

}
,

where I0, I−, I+ is any partition of {1, 2, . . . , d}.

5.2. Bounded fat subanalytic sets are uniformly polynomially cuspidal.
This is due to Paw lucki and Pleśniak [45]. We recall some steps of the proof which
will be needed later.

Definition 5.2. A subset X ⊆ Rd is called uniformly polynomially cuspidal if there
exist positive constants M,m > 0 and a positive integer n such that for all x ∈ X
there is a polynomial curve hx : R → Rd of degree at most n with the following
properties:

(1) hx((0, 1]) ⊆ X and hx(0) = x,
(2) dist(hx(t),Rd \X) ≥Mtm for all x ∈ X and all t ∈ (0, 1].

Remark 5.3. Every compact set X ∈H (Rd) is uniformly polynomially cuspidal;
this is clear by Definition 5.2. The converse is not true: for instance, the sets in
Example 3.5(2) and (3) are uniformly polynomially cuspidal but not in H (Rd). The
set X in Example 10.9 is uniformly polynomially cuspidal but neither subanalytic
nor in H (Rd); cf. [46, p. 284].

Theorem 5.4 ([45, Proposition 6.3]). Let X be a bounded open subanalytic subset
of Rd. Then there is a map h : X×R→ Rd such that h(x, t) is a polynomial in t with
degree n independent of x ∈ X with h(x, 0) = x for all x ∈ X, h(X × (0, 1]) ⊆ X,
and there exist positive constants M,m such that

dist(h(x, t),Rd \X) ≥Mtm, for all x ∈ X, t ∈ [0, 1].

We give a sketch of the proof in order to explicate the uniformity of hx which
will be of importance later.

The following is a corollary of the rectilinearization theorem.

Proposition 5.5 ([45, Proposition 6.3]). Let X be a relatively compact subanalytic
subset of Rd of pure dimension d. Then there is a finite number of real analytic
maps ϕj : Rd × R→ Rd such that, for Id := [−1, 1]d,

ϕj(I
d × (0, 1]) ⊆ X for all j,⋃
j

ϕj(I
d × {0}) = X.

Let X be a bounded open subanalytic subset of Rd. Let ϕj be the maps provided
by Proposition 5.5. Then, for each j, the function

Id × [0, 1] 3 (y, t) 7→ dist(ϕj(y, t),R
d \X)

is subanalytic (cf. [6, Remark 3.11]). By the  Lojasiewicz inequality (cf. [6, Theorem
6.4]), there exist positive constants L,m such that

dist(ϕj(y, t),R
d \X) ≥ Ltm, (y, t) ∈ Id × [0, 1].

The constants L, m may be assumed independent of j, by taking the minimum and
maximum, respectively. Choose an integer n ≥ m and write

ϕj(y, t) = Tj(y, t) + tn+1Qj(y, t), (y, t) ∈ Rd × R,
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where Tj(y, ·) is the Taylor polynomial at 0 of degree n of ϕj(y, ·) and Qj : Rd×R→
Rd is real analytic. If we choose δ ∈ (0, 1] such that |tQj(y, t)| ≤ L/2 for all j, y ∈ Id,
and t ∈ [0, δ], then

dist(Tj(y, t),R
d \X) ≥ Ltm − L

2
tn ≥ L

2
tm, (y, t) ∈ Id × [0, δ].

Replacing t by δt, we obtain

dist(Tj(y, δt),R
d \X) ≥Mtm, (y, t) ∈ Id × [0, 1],

where M := Lδm/2. Clearly,
⋃
j Tj(I

d×{0}) =
⋃
j ϕj(I

d×{0}) = X. Theorem 5.4
follows.

5.3. Fat closed subanalytic sets are m-regular. Another property of fat closed
subanalytic sets we need is the fact that they are m-regular in the following sense.

Theorem 5.6 ([4, Theorem 6.17], [24], [6, Theorem 6.10]). Let X ⊆ Rd be a fat
closed subanalytic set. For each a ∈ X there exist a compact neighborhood K in
X, a constant C > 0, and a positive integer m such that any two points x, y ∈ K
can be joined by a semianalytic path γ in X which intersects ∂X in at most finitely
many points and satisfies

`(γ) ≤ C |x− y|1/m.

5.4. L-regular decomposition. Let us recall the L-regular decomposition of sub-
analytic sets.

First we introduce sets which are L-regular with respect to a given system of
coordinates. Let X ⊆ Rd be a subanalytic set of dimension d. If d = 1, then
X is called L-regular, if X is a non-empty compact interval. If d > 1, then X is
L-regular, if it is of the form

(5.1) X =
{

(x′, xd) ∈ Rd : f(x′) ≤ xd ≤ g(x′), x ∈ X ′
}
,

where X ′ ⊆ Rd−1 is L-regular and f , g are continuous subanalytic functions on X ′,
analytic and satisfying f < g on int(X ′) with bounded partial derivatives of first
order. If dimX = k < d, then X is L-regular, if

(5.2) X =
{

(y, z) ∈ Rk × Rd−k : z = h(y), y ∈ X ′
}
,

where X ′ ⊆ Rk is L-regular, dimX ′ = k, and h is continuous subanalytic on X ′,
analytic on int(X ′) with bounded partial derivatives of first order.

In general a subanalytic set X in Rd is said to be L-regular, if it is L-regular
with respect to some linear (or equivalently orthogonal) system of coordinates. It
is called an L-regular cell, if it is the relative interior of an L-regular set, i.e., it
is int(X) in case (5.1) and the graph of h restricted to int(X ′) in case (5.2). By
definition, every point is a zero-dimensional L-regular cell.

It is well-known that L-regular sets and L-regular cells are quasiconvex (cf. [35],
[41, Lemma 2.2], or [36]): there is a constant C > 0 such that any two points x, y
in the set can be joined in the set by a subanalytic path of length ≤ C |x− y|.

Theorem 5.7 ([35], [36], [44]). Let X ⊆ Rd be a bounded subanalytic set. Then X
is a finite disjoint union of L-regular cells.

For the proof of Theorem 1.14 we need the following preparatory results.
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Lemma 5.8. Let [a, b] ⊆ R be a non-trivial interval such that [a, b] =
⋃k
i=1 Fi for

closed sets Fi. If a ≤ supFi < b then there exists j 6= i such that supFi ∈ Fj and
supFi < supFj.

Proof. Fix i and suppose that t := supFi < b. There is a sequence (t, b) 3 tn → t.
After passing to a subsequence we may assume that tn ∈ Fj for some fixed j 6= i.
Since Fj is closed, t ∈ Fj . �

Lemma 5.9. Let X ⊆ Rd be a fat closed subanalytic set. Let x ∈ ∂X and suppose
there is a basis of neighborhoods U of x such that U ∩ int(X) is connected for all
U ∈ U . Then there is U0 ∈ U and a positive constant C such that the following
holds. For all U ∈ U0 := {U ∈ U : U ⊆ U0} and for any two points y, z ∈
U ∩ int(X), there exists a rectifiable path γ in int(X) which connects y and z and
satisfies

`(γ) ≤ C diam(U).

Proof. We may assume that X is bounded, by intersecting with a ball centered at
x. Let U0 be any member of U which is contained in this ball. By Theorem 5.7,
int(X) is a finite disjoint union of L-regular cells {A1, . . . , Ak}.

Fix U ∈ U0 and let y, z ∈ U ∩ int(X). Since U ∩ int(X) is connected, there is
a path σ : [0, 1] → U ∩ int(X) with σ(0) = y and σ(1) = z. Then we have a finite

disjoint union [0, 1] =
⋃k
i=1Ei, where Ei := σ−1(Ai).

Let E′i be the set of limit points of Ei. Then [0, 1] =
⋃k
i=1E

′
i. Let i1 ∈ {1, . . . , k}

be such that t0 := 0 ∈ E′i1 . If t1 < 1, then there exists i2 ∈ {1, . . . , k}\{i1} such that
t1 ∈ E′i2 and t2 := supE′i2 > t1, by Lemma 5.8. Moreover, [t1, b] =

⋃
j 6=i1 E

′
j∩[t1∩b].

If t2 < b we may apply Lemma 5.8 again and find i3 ∈ {1, . . . , k} \ {i1, i2} such
that t2 ∈ E′i3 and t3 := supE′i3 > t2. This procedure ends after finitely many
steps and gives a finite partition 0 = t0 < t1 < · · · < th−1 < th = 1 of [0, 1]. The
points y = z0, z1, . . . , zh = z, where zj = σ(tj), all lie in U ∩ int(X). Let ε > 0 be
sufficiently small such that the balls Bj := B(zj , ε) are all contained in U ∩ int(X).
For all j = 1, 2, . . . , h − 1, there exist z−j ∈ Bj ∩ Aij and z+j ∈ Bj ∩ Aij+1 , by

construction. Additionally, there exist z+0 ∈ B0 ∩Ai1 and z−h ∈ Bh ∩Aih .
Since the cells are quasiconvex, for all j = 1, 2, . . . , h, there exist rectifiable paths

γj ∈ Aij joining z+j−1 and z−j such that

`(γj) ≤ Cj |z+j−1 − z
−
j |,

where the constant Cj depends only on Aij . Joining the paths γj with the line

segments [z0, z
+
0 ], [z−j , z

+
j ], for j = 1, . . . , h− 1, and [z−h , zh], we obtain a rectifiable

path γ in int(X) which connects y and z and has length

`(γ) ≤ C diam(U),

for a constant C which depends only on the Cj and the number of cells k, since all
points zj , z

−
j , z+j lie in U . �

5.5. Proof of Theorem 1.14. The inclusion C∞(X) ⊆ A∞(X) is clear.
Let f ∈ A∞(X). Then f is smooth in int(X), by Result 1.1. We must show that

f ∈ C∞(X). This is a local problem, so we may assume without loss of generality
that X is compact (by intersecting with a suitable ball). By Lemma 1.10 and
Theorem 5.6, it suffices to show that f satisfies Lemma 1.10(3).
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Fix x ∈ ∂X. By Theorem 5.4, there is a polynomial curve hx : R→ Rd of degree
at most n with the following properties:

(1) hx((0, 1]) ⊆ int(X) and hx(0) = x,
(2) dist(hx(t),Rd \X) ≥Mtm for all t ∈ (0, 1],

where n,M,m are independent of x and t. Then there is a positive integer k =
k(x) such that hx(t) − x = tkh̃x(t), where h̃x(0) 6= 0. Set v1 := h̃x(0)/|h̃x(0)| ∈
Sd−1. Choose d−1 directions v2, . . . , vd ∈ Sd−1 such that v1, v2, . . . , vd are linearly
independent and define

Ψx,v(t1, t2, . . . , td) := hx(t1) + t2v2 + · · ·+ tdvd

for t = (t1, . . . , td) in the set

Y :=
{

(t1, . . . , td) ∈ Rd : t1 ∈ (0, δ), |tj | < Ctm1 for 2 ≤ j ≤ d
}
.

If C := M/(2(d − 1)) and δ > 0 is chosen small enough, then Ψx,v is a diffeomor-
phism of Y onto the open subset Hx,v := Ψx,v(Y ) of int(X) and it extends to a
homeomorphism between Y ∪ {0} and Hx,v ∪ {x}; indeed, by (2),

dist(Ψx,v(t),R
d \X) ≥ dist(hx(t1),Rd \X)− |t2| − · · · − |td|

> Mtm1 − (d− 1)Ctm1 =
M

2
tm1 > 0,

for t ∈ Y . Since f is smooth in int(X), we have

(5.3) ∂α2
t2 · · · ∂

αd
td

(f ◦Ψx,v)(t) = dα2
v2 · · · d

αd
vd
f(Ψx,v(t)), for all t ∈ Y, αj ≥ 0.

The left-hand side of (5.3) extends continuously to t = 0, since f ◦Ψx,v ∈ A∞(Y )

and A∞(Y ) = C∞(Y ), by Theorem 1.13, as Y is a Hölder set. Since Ψx,v is a
homeomorphism Y ∪ {0} → Hx,v ∪ {x}, we may conclude that the directional
derivatives dα2

v2 · · · d
αd
vd
f , αj ≥ 0, extend continuously from Hx,v to x.

If we perturb the directions v2, . . . , vd a little such that v1, v2, . . . , vd remain
linearly independent and take the intersection Hx of the corresponding sets Hx,v,
then Hx still is an open subset of int(X) with hx(t) ∈ Hx for small t > 0 and
x ∈ Hx. Then dα2

w2
· · · dαdwdf , αj ≥ 0, extend continuously from Hx to x for all

w2, . . . , wd near v2, . . . , vd. By Lemma 1.10, we infer that the Fréchet derivatives
f (p) of all orders of f extend continuously from Hx to x.

Thus for all x ∈ ∂X and p ∈ N, we have a candidate for the Fréchet derivative
f (p)(x) of f at x and an open set Hx ⊆ int(X) on which f (p)(y) tends to this
candidate as y → x. It remains to prove that the thus defined extension of f (p) to
X is continuous on X. First we show that it is bounded.

Claim 1. For all p ∈ N, f (p) is bounded on X.

Let p ∈ N be fixed. It suffices to show that f (p) is bounded on int(X) (since
X is fat). For contradiction suppose that there is a sequence (x`) in int(X) such
that ‖f (p)(x`)‖Lp → ∞. Since X is compact, we may assume that x` → x. Then
x ∈ ∂X, since we already know that f is smooth on int(X).

By Proposition 5.5, there is a finite number of real analytic maps ϕj : Rd×R→ Rd

such that

ϕj(I
d × (0, 1]) ⊆ int(X) for all j,⋃

j

ϕj(I
d × {0}) = X,
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where Id := [−1, 1]d. After passing to a subsequence we may assume that x` ∈
ϕj0(Id×{0}) for all ` and some j0. Choose y` ∈ Id such that ϕj0(y`, 0) = x`. Since
Id is compact, after passing to a subsequence we may assume that y` → y and
in turn that this convergence is faster than any polynomial. The infinite polygon
through the points y` and y can be parameterized by a smooth curve c : R → Id

such that c(1/`) = y` and c(0) = y (cf. [32, Lemma 2.8]). Then s 7→ ϕj0(c(s), 0) is
a smooth curve in X through the points x` and x.

Since ϕj0 is real analytic, for small t1 we have ϕj0(y, t1) = x + tk1ϕ̃j0(y, t1) for
some positive integer k and a real analytic map ϕ̃j0 with ϕ̃j0(y, 0) 6= 0. Then
ϕ̃j0(z, t1) 6= 0 for (z, t1) in a neighborhood of (y, 0). Thus,

v1(z, t1) :=


∂t1ϕj0 (z,t1)

|∂t1ϕj0 (z,t1)|
=

kϕ̃j0 (z,t1)+t1ϕ̃
′
j0

(z,t1)

|kϕ̃j0 (z,t1)+t1ϕ̃
′
j0

(z,t1)| if t1 > 0,
ϕ̃j0 (z,0)

|ϕ̃j0 (z,0)|
if t1 = 0,

is continuous in (z, t1), where t1 ≥ 0, near (y, 0). It follows that we can find an
open set of directions v ∈ Sd−1 such that v1(c(s), 0) and v are linearly independent
for s near 0. For such v,

(s, t1, t2)→ f
(
ϕj0(c(s), t1) + t2v

)
is smooth for small s ∈ R, t1 ≥ 0, and |t2| ≤ Ctm1 , by the arguments in Section 5.2
and the considerations in the first part of the proof. But this implies that dpvf(x`)
is bounded for all such v, and hence f (p)(x`) is bounded, a contradiction. Claim 1
is proved.

Claim 2. The Fréchet derivatives f (p), p ∈ N, are continuous on X.

Let x ∈ ∂X and suppose that (xn) and (yn) are two sequences in int(X) both
converging to x. By Lemma 5.9, for each ε > 0 there exists n0 ∈ N such that for
all n ≥ n0 the points xn and yn can be joined by a rectifiable path γn in int(X)
with length `(γn) ≤ ε. Since f is smooth in int(X), we may apply the fundamental
theorem of calculus and Claim 1 to conclude

‖f (p)(xn)− f (p)(yn)‖Lp ≤
(

sup
z∈γn

‖f (p+1)(z)‖Lp+1

)
`(γn)→ 0 as n→∞.

If we assume that the sequence (xn) lies in Hx, we obtain that f (p)(y) → f (p)(x)
for all int(X) 3 y → x. Finally, suppose that ∂X 3 xn → x. Choose yn ∈
Hxn ∩B(xn, 1/n). Then

‖f (p)(x)− f (p)(xn)‖Lp ≤ ‖f (p)(x)− f (p)(yn)‖Lp + ‖f (p)(xn)− f (p)(yn)‖Lp → 0

as n→∞. This proves Claim 2 and hence the theorem. �

6. The Bochnak–Siciak theorem on tame closed sets

In this section we prove Theorem 1.16. The strategy for the proof is the following.
Since f ∈ C∞(X), we can associate with every x ∈ X the formal Taylor series Fx
of f at x. Using a result of Eakin and Harris [18] and Gabrielov [21] we show that
each Fx is convergent and coincides with f on their common domain. To prove
that all Fx glue together to give a global holomorphic extension we will use the
following lemma.
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Lemma 6.1. Let X ⊆ Rd be closed and let U ⊆ Rd be open with U ∩X 6= ∅. Then
there is an open subset U0 of U with U0 ∩X = U ∩X and such that for all x ∈ U0

and all a ∈ Ax := {a ∈ X : |a− x| = dist(x,X)} we have [x, a] ⊆ U0.

Proof. Set U0 :=
{
x ∈ U : [x, a] ⊆ U for all a ∈ Ax

}
. Then, for all x ∈ U0 and all

a ∈ Ax, we have [x, a] ⊆ U0. For, let y ∈ [x, a]. If y = x there is nothing to prove.
Otherwise Ay = {a} and [y, a] ⊆ [x, a] ⊆ U (as in the figure).

Clearly, U0 ∩X = U ∩X. It remains to show that U0 is open. To this end we
first observe that, if xn → x and Axn 3 an → a, then a ∈ Ax. This follows from
letting n→∞ in |xn − an| = dist(xn, X), since X is closed.

If U0 is not open, then there exists a sequence xn → x, where xn 6∈ U0 and
x ∈ U0. So, for all n, there is an ∈ Axn and yn ∈ [xn, an] \ U . After passing to a
subsequence, we may assume that an → a ∈ Ax, by the observation above, and in
turn that yn → y ∈ [x, a]. Since x ∈ U0 we have y ∈ U , a contradiction. �

Proof of Theorem 1.16. Suppose that X ⊆ Rd is a fat closed subanalytic set. There
exists an analytic manifold M and a proper analytic map ϕ : M → Rd such that
X = ϕ(M), by the uniformization theorem, see e.g. [6]. Then f ◦ ϕ is C∞ and real
analytic on real analytic curves in M . By the Bochnak–Siciak theorem (Result 1.5),
f ◦ϕ is analytic on M . For each x ∈ X there is y ∈ ϕ−1(x) such that ϕ has generic
rank d at y. By a result of Eakin and Harris [18] (proved earlier by Gabrielov [21]),
the homomorphism ϕ∗ of formal power series rings given by formal composition
with ϕ at y is strongly injective, that is, the formal Taylor series Fx of f at x
converges. It represents a holomorphic function Fx in a neighborhood Ux of x in
Cd which coincides with the real analytic function f |int(X) on int(X) ∩ Ux.

It remains to show that the Fx piece together to give a global holomorphic
extension of f to a neighborhood of X in Cd. We may assume that

(6.1) Ux = UR
x × i(−rx, rx)d,

where UR
x ⊆ Rd. We use Lemma 6.1 to replace each UR

x by the connected component
of (UR

x )0 which contains x (and leave the part of Ux in iRd unchanged). Thus we
may assume that the cover {UR

x } of X has the property that for each z ∈ UR
x all

segments [z, a], a ∈ Az, belong to UR
x . By (6.1), each Ux has the property that for

z + iw ∈ Ux also z + itw ∈ Ux for all t ∈ [0, 1].
Let V be a connected component of Ux ∩ Uy. It follows that, if z + iw ∈ V ,

then z ∈ V R := V ∩ Rd, and V R is a connected component of UR
x ∩ UR

y . Moreover,

[z, a] ⊆ V R for all a ∈ Az ⊆ X. Since X = int(X), the intersection V R ∩ int(X)
is non-empty and on this set the holomorphic extensions Fx and Fy coincide with
f . By the identity theorem, Fx and Fy coincide on V . Since the component V of
Ux ∩ Uy was arbitrary, Fx and Fy coincide on Ux ∩ Uy. �

Proof of Corollary 1.17. The assumption for X clearly implies that X = int(X).
For each boundary point z ∈ ∂X there is a holomorphic function Fz defined in a
neighborhood Uz of z in Cd which coincides with f on Uz ∩ int(X); this follows



22 A. RAINER

from Theorem 1.16 applied to the subanalytic set Xz. Using Lemma 6.1 as in the
proof of Theorem 1.16, one easily concludes the assertion. �

7. Arc-CM functions on Lipschitz sets

In this section we prove Theorem 1.19: All X ∈H 1(Rd) satisfy

CM (X) ⊆ AM (X) ⊆ CM
(2)

(X),

for any non-quasianalytic weight sequence M = (Mk).
It can be expected that a similar statement holds for X ∈H α(Rd), where α < 1,

with a larger weight sequence N = N(α,M) instead of M (2). We do not pursue
this question any further for α-sets, but results of this type for subanalytic sets are
presented in Section 8.

7.1. Reduction to an open set of directions. Let f : R2 → R be smooth. The
mixed partial derivatives of order k of f at any point x ∈ R2 can be computed from
directional derivatives of order k of f at x by means of the identity

(7.1) dkvf(x) =

k∑
j=0

(
k

j

)
vj1v

k−j
2 ∂j1∂

k−j
2 f(x), v = (v1, v2) ∈ R2.

The next lemma guarantees that the constants which appear in the process of
solving these linear equations grow at most exponentially in k and hence the class
CM is preserved; a similar lemma was proved in [40].

Lemma 7.1. Let −1 ≤ t0 < t1 < · · · < tk ≤ 1 be equidistant points such that
tk − t0 = a. If x0, x1, . . . , xk is a solution of the linear system of equations

(7.2)

k∑
j=0

(
k

j

)
tjixj = yi, i = 0, 1, . . . , k,

then we have

(7.3) max
j
|xj | ≤

(16e2

a

)k
max
m
|ym|.

Proof. Let P (t) = a0+a1t+· · ·+aktk be the polynomial with coefficients aj =
(
k
j

)
xj .

Then the system (7.2) reads

P (ti) = yi, i = 0, 1, . . . , k.

By Lagrange’s interpolation formula (e.g. [48, (1.2.5)]),

P (t) =

k∑
i=0

yi

k∏
j=0
j 6=i

t− tj
ti − tj

,

and therefore

am = (−1)k−m
k∑
i=0

yiσ
i
k−m

k∏
j=0
j 6=i

1

ti − tj
,

where σij is the jth elementary symmetric polynomial in (t`)` 6=i. We have

|ti − tj | =
a|i− j|
k

, |tj | =
∣∣∣t0 + a

j

k

∣∣∣ ≤ 2
k + j

k
,
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and hence, using e−kkk ≤ k! ≤ kk,

k∏
j=0
j 6=i

1

|ti − tj |
=

kk

aki!(k − i)!
≤
(2e

a

)k
,

and

|σik−m| ≤
(
k

m

)(2

k

)k−m (2k)!

(k +m)!
≤
(
k

m

)(2

k

)k−m
4k(k −m)! ≤

(
k

m

)
8k.

It follows that

|xm| ≤
(16e

a

)k k∑
i=0

|yi| ≤
(16e2

a

)k
max
i
|yi|,

that is (7.3). �

Proposition 7.2. Let f : Rd → R be smooth. Let K ⊆ Rd be compact and let
M = (Mk) be a positive sequence. The following assertions are equivalent:

(1) ∃C, ρ > 0 ∀k ∈ N ∀x ∈ K ∀v ∈ Sd−1 : |dkvf(x)| ≤ Cρkk!Mk.
(2) There exist v0 ∈ Sd−1 and r > 0 such that
∃C, ρ > 0 ∀k ∈ N ∀x ∈ K ∀v ∈ B(v0, r) ∩ Sd−1 : |dkvf(x)| ≤ Cρkk!Mk.

(3) ∃C, ρ > 0 ∀x ∈ K ∀α ∈ Nd : |∂αf(x)| ≤ Cρ|α||α|!M|α|.
The constants C, ρ may differ from item to item, but they change in a uniform way
which depends only on r.

Proof. Let us first consider the case d = 2. In this case B := B(v0, r) ∩ Sd−1 is an
open arc I ⊆ S1; let `(I) denote the length of I.

(1) ⇒ (2) is trivial and (3) ⇒ (1) follows easily from (7.1).
(2) ⇒ (3) By a linear change of coordinates, we may assume that the arc I

is symmetric about the y-axis and by shrinking I, we may also assume that its
projection to the y-axis is contained in {(0, y) : 1/2 ≤ y ≤ 1} and that the estimates
in (2) hold also at the endpoints of I. Let (−a/2, a/2) be the projection of I to the
x-axis and let −a/2 = t0 < t1 < · · · < tk = a/2 be an equidistant partition. Apply
Lemma 7.1 to the system (7.1) with the k + 1 directions vi = (ti, si), i = 0, . . . , k,
in I; then 1/2 ≤ si ≤ 1. The statement about the uniform change of the constants
follows from (7.3).

Now we consider the general case.
(1)⇔ (2) The statement follows by applying the 2-dimensional analogue to every

affine 2-plane π containing the affine line x+ Rv0. The change of the constants C,
ρ depends only on the length of the arcs defined by the intersection π ∩B which is
independent of π.

(1) ⇔ (3) By the polarization formula [32, Lemma 7.13(1)], we have

sup
|v|≤1

|dkvf(x)| ≤ ‖dkf(x)‖Lk ≤ (2e)k sup
|v|≤1

|dkvf(x)|

which entails the assertion. �

7.2. Proof of Theorem 1.19. Let M = (Mk) be a non-quasianalytic weight se-
quence. Let X ∈H 1(Rd). The inclusion CM (X) ⊆ AM (X) is an easy consequence
of Faà di Bruno’s formula and log-convexity of M (cf. [50, Proposition 3.1]).
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Let us prove AM (X) ⊆ CM(2)

(X). A function f ∈ AM (X) belongs to C∞(X), by

Theorem 1.13. Suppose for contradiction that f 6∈ CM(2)

(X). Then there is a ∈ X
such that for all δ, C, ρ > 0 there exist x ∈ X ∩B(a, δ), v ∈ Sd−1, and k ∈ N with

(7.4) |dkvf(x)| > Cρkk!M
(2)
k .

We may assume that a ∈ ∂X (if a ∈ int(X) then the arguments in the proof of [33,
Theorem 3.9] lead to a contradiction). Since X ∈ H 1(Rd), we may suppose that
there exist ε > 0 and a truncated open cone Γ = Γ1

d(r, h) such that

(7.5) for all y ∈ X ∩B(a, ε) we have y + Γ ⊆ int(X).

By rescaling, we may assume that r = h = 1. Set C(y, r) := y + Γ1
d(r, r) for

0 < r ≤ 1. There is a universal constant c > 0 such that C(y1, r1) ∩ C(y2, r2) 6= ∅
if |y1 − y2| < cmin{r1, r2}.

Let λk ↘ 0 be the sequence associated with the sequence Mk, by Lemma 2.4.
By Proposition 7.2 and (7.4) (using δ := cλn+1/3, C := λ−1n , ρ := λ−3n ), there exist
sequences xn ∈ X ∩B(a, cλn+1/3), vn ∈ Sd−1 ∩ R+Γ, kn ∈ N such that

(7.6) |dknvnf(xn)| ≥ λ−3kn−1n kn!M
(2)
kn

for all n.

Let us set Cn := C(xn, λn). Since |xn−xn+1| < cλn+1, there is a sequence un such
that un+1 ∈ Cn ∩ Cn+1 for all n. Evidently, xn and un are both 1/λn-converging
to a. We may assume that for all n ≥ n0 we have Cn ⊆ int(X), by (7.5).

Without loss of generality assume that a = 0. Let cn(t) = xn + t2λnvn. Let
Tn and tn be chosen as in (2.8), and let ϕ be the function used in the proof of
Lemma 2.4. Define

c(t) = ϕ
( t− tn

Tn

)
cn(t− tn) +

(
1− ϕ

( t− tn
Tn

))(
un1(−∞,tn](t) + un+11[tn,+∞)(t)

)
for t ∈ [tn − Tn, tn + Tn] (here 1A denotes the characteristic function of the set A);
note that tn + Tn = tn+1 − Tn+1.

Extend c by c = 0 on [t∞,∞). Then c is C∞ on [tn0
− Tn0

,+∞) \ {t∞} and
c(tn − Tn) = un and c(tn + Tn) = un+1. By construction, c(t) ∈ Cn if t ∈ [tn −
Tn, tn +Tn] and thus c lies in X. Since the curves cn as well as un satisfy (2.6), the
proof of Lemma 2.4 implies that c is a CM -curve.

Then, since f ∈ A∞(X), for all k,

(f ◦ c)(2k)(tn) =
(2k)!

k!
λknd

k
vnf(xn).
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Using (7.6), we may conclude( |(f ◦ c)(2kn)(tn)|
(2kn)!M2kn

) 1
2kn+1

=
(λknn |dknvnf(xn)|

kn!M2kn

) 1
2kn+1 ≥ 1

λn
→∞,

as n→∞, contradicting the assumption f ∈ AM (X). �

8. Arc-CM functions on subanalytic sets

Let M = (Mk) be a non-quasianalytic weight sequence. Let X be a simple fat
closed subanalytic set. We will see in this section that AM (X) ⊆ CN (X) for some
other non-quasianalytic weight sequence N which depends only on M and X (in
an explicit way).

8.1. Rectilinearization. We start with some simple observations. For arbitrary
sets Y ⊆ Re, X ⊆ Rd we denote by C∞(Y,X) the class of mappings ϕ : Y → X
such that ϕi ∈ C∞(Y ) for all components ϕi = pri ◦ϕ. Similarly, for CM (Y,X) and
Cω(Y,X).

Lemma 8.1. Let X ⊆ Rd and Y ⊆ Re. We have:

(1) If ϕ ∈ C∞(Y,X) and A∞(Y ) = C∞(Y ), then ϕ∗A∞(X) ⊆ C∞(Y ).
(2) If ϕ ∈ Cω(Y,X) and Aω(Y ) = Cω(Y ), then ϕ∗Aω(X) ⊆ Cω(Y ).
(3) If ϕ ∈ CM (Y,X) and AM (Y ) ⊆ CN (Y ), then ϕ∗AM (X) ⊆ CN (Y ).

Proof. We prove (1); (2) and (3) work similarly. Let f ∈ A∞(X). Assume that
f ◦ ϕ 6∈ C∞(Y ). Since C∞(Y ) = A∞(Y ), there exists c ∈ C∞(R, Y ) such that
f ◦ ϕ ◦ c 6∈ C∞(R,R). But ϕ ◦ c is a C∞-curve in X, contradicting f ∈ A∞(X). �

Combining this lemma with the rectilinearization of subanalytic sets (see Theo-
rem 5.1) we conclude the following.

Theorem 8.2. Let M = (Mk) be a non-quasianalytic weight sequence. Let X ⊆ Rd

be a fat closed subanalytic set. There is a locally finite collection of real analytic
mappings ϕα : Uα → Rd, where the Uα are open sets in Rd, such that, for all α,

ϕ∗αA∞(X) ⊆ C∞(ϕ−1α (X)),(8.1)

ϕ∗αAω(X) ⊆ Cω(ϕ−1α (X)),(8.2)

ϕ∗αAM (X) ⊆ CM
(2)

(ϕ−1α (X)).(8.3)

Proof. We use Theorem 5.1. Since X = int(X), we may assume that, for the
quadrants Q(I0, I−, I+) whose union is ϕ−1α (X), we have I0 = ∅. We claim that
a union Y of quadrants Q(∅, I−, I+) is A∞- and Aω-admissible. Furthermore, we

claim that Y satisfies AM (Y ) ⊆ CM(2)

(Y ). Then Lemma 8.1 implies the result.
A∞-admissibility. By Theorem 1.13, each Q = Q(∅, I−, I+) is A∞-admissible.

Any two different quadrants Q1, Q2 have non-empty intersection π which consists of
a coordinate sector of dimension k ∈ {0, . . . , d− 1} (for k = 0, π = {0}). Suppose
that π is a coordinate sector of dimension k. Let v ∈ Q1 ∪ Q2 be any vector
perpendicular to π. Then σv := π + Rv is a k + 1 dimensional closed convex set
contained in Q1 ∪Q2. We may conclude that f |σv ∈ C∞(σv). Thus the directional
derivatives dnwf of f of all orders n at points in π with direction w ∈

⋃
v∈Q1∪Q2

σv
exist and are unique. These suffice to compute the partial derivatives of f of all
orders at points in π. This proves that Q1∪Q2 is A∞-admissible. The general case
follows by induction. This also proves that we even have A∞M (Y ) = C∞(Y ).
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Aω-admissibility. This follows from Theorem 1.16 and the fact that Y is A∞-
admissible.

Finally we show AM (Y ) ⊆ CM(2)

(Y ). Since we already have A∞M (Y ) = C∞(Y ),

it suffices to check that the estimates (1.1) (for M (2) instead of M) hold for all
f ∈ AM (Y ) and for each compact K ⊆ Y . This is clear, since f |Q ∈ AM (Q) ⊆
CM(2)

(Q), by Theorem 1.19, for each of the finitely many quadrants Q which make
up Y . �

8.2. Controlled loss of regularity. Let M = (Mk) be a weight sequence. Recall

that, for positive integers a, M (a) denotes the weight sequence defined by M
(a)
k :=

Mak.

Proposition 8.3. Let M = (Mk) be a non-quasianalytic weight sequence. Let X ⊆
Rd be a fat compact subanalytic set. Then there is a positive integer a, independent
of M , such that

(8.4) C∞(X) ∩ AM (X) ⊆ CM
(a)

(X).

Proof. Let ϕα be the finitely many mappings provided by Theorem 5.1. We may
assume that the Jacobian determinant of each ϕα is a monomial times a nowhere

vanishing factor. Let f ∈ C∞(X) ∩ AM (X). By Theorem 8.2, f ◦ ϕα ∈ CM
(2)

(Yα)
where Yα is a union of quadrants in Rd. By [3, Theorem 1.4], for each α there

is a positive integer aα such that f is of class CM(aα)

on ϕα(Yα). It follows that

f ∈ CM(a)

(X), where a = maxα aα. �

For a ∈ R>0 we may define the weight sequence Ma by Ma
k := (Mk)a. If

M = (Mk) has moderate growth (see (2.4)) and a is an integer, then there exists
C = C(a) such that

Ma
k ≤Mak ≤ CkMa

k for all k,

i.e., M (a) and Ma define the same Denjoy–Carleman class. Note also that Ma has
moderate growth whenever M has.

Assume that for each a > 0, the weight sequence Ma is non-quasianalytic and
define

ÂM (X) :=
⋂
a>0

AM
a

(X) and ĈM (X) :=
⋂
a>0

CM
a

(X).

Theorem 8.4. Let M = (Mk) be a weight sequence of moderate growth such that
Ma is non-quasianalytic for all a > 0. Let X ⊆ Rd be a fat closed subanalytic set.
Then

(8.5) C∞(X) ∩ ÂM (X) = ĈM (X).

If X is simple, then

(8.6) ÂM (X) = ĈM (X).

Proof. The inclusion ĈM (X) ⊆ C∞(X)∩ÂM (X) is obvious. The converse inclusion
follows from Proposition 8.3. �

Remark 8.5. Instead of [3, Theorem 1.4] one can also use the results of [15].
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9. Applications

9.1. Solutions of real analytic equations.

Theorem 9.1. Let U ⊆ Rd+1 be open and let H : U → R be a real analytic function
(not identically zero). Let X ⊆ Rd be a closed set such that for all z ∈ ∂X there
is a closed fat subanalytic set Xz such that z ∈ Xz ⊆ X; e.g. X itself is fat and
subanalytic or a Hölder set. If f ∈ C∞(X) satisfies H(x, f(x)) = 0 for all x ∈ X,
then f extends to a holomorphic function on a neighborhood of X in Cd.

Proof. Suppose first that X ⊆ Rd is fat closed subanalytic. As in the proof of
Theorem 1.16 there is a proper real analytic map ϕ : M → Rd with X = ϕ(M).
Then (z, y) 7→ H(ϕ(z), y) is not identically zero. By the classical version of this
theorem, cf. [10], [53], and [38], we may conclude that z 7→ (f ◦ϕ)(z) is real analytic
on M . The proof of Theorem 1.16 (in Section 6) then yields the assertion.

In the general case, fix z ∈ ∂X and a closed fat subanalytic set Xz with z ∈ Xz ⊆
X. Then f |Xz ∈ C∞(Xz) satisfies H(x, f(x)) = 0 for all x ∈ Xz. Thus, by the first
part of the proof, f |Xz extends to a holomorphic function on a neighborhood of Xz

in Cd. That these local extensions glue to the desired global extension follows from
Lemma 6.1 as in the proof of Theorem 1.16. �

We obtain the following corollary for Nash functions, i.e., real analytic functions
f : U → R defined in an open semialgebraic set U ⊆ Rd which satisfy a non-trivial
polynomial equation P (x, f(x)) = 0 for all x ∈ U .

Corollary 9.2. Let X ⊆ Rd be a fat closed semialgebraic set and let f : int(X)→
R be a Nash function whose partial derivatives of all orders extend continuously
to the boundary of X. Then f is the restriction of a Nash function on an open
neighborhood of X.

Proof. The extension of f clearly also satisfies the defining polynomial equation. �

9.2. Composite real analytic functions. Suppose that ϕ : M → Rd is a real
analytic map, where M is a real analytic manifold. Assume that g ∈ C∞(Rd) and
f = g ◦ ϕ ∈ Cω(M). Let X := ϕ(M). Our results yield a sufficient condition for
g|X to admit a real analytic extension to some open neighborhood of X.

Corollary 9.3. Let ϕ : M → Rd be real analytic and such that:

(1) X := ϕ(M) is a fat closed subanalytic subset of Rd.
(2) Each c ∈ Cω(R, X) admits a lifting c̃ ∈ Cω(R,M), i.e., c = ϕ ◦ c̃.

Then, for each g ∈ C∞(Rd) with g◦ϕ ∈ Cω(M), there exists a holomorphic function
G defined in an open neighborhood of X in Cd such that g|X = G|X .

Proof. Follows from Theorem 1.16. �

Conditions for the existence of a smooth solution g of the equation f = g ◦ ϕ
have been intensively studied; see [5], [9], [7].

Remark 9.4. For instance, the conditions of the corollary are satisfied in the
following situation. Let ρ : G→ O(V ) be a coregular finite dimensional orthogonal
representation of a compact Lie group. Let σ = (σ1, . . . , σd) be a minimal system of
generators of the algebra R[V ]G of G-invariant polynomials. Schwarz’ theorem [52]
(see also [39]) holds that for each G-invariant f ∈ C∞(V ) there exists g ∈ C∞(Rd)
such that f = g ◦ σ. The set X = σ(V ) is closed semialgebraic and fat, by the
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assumption that ρ is coregular, cf. [47]. Real analytic curves in X admit real
analytic liftings to V , by [1] and [43, Theorem 4]. The corollary implies that every
G-invariant real analytic function f on V is of the form f = g ◦ σ, where g is a
holomorphic function defined in an open neighborhood of X in Cd. A more general
result (with a different proof) is due to Luna [37].

9.3. Division of smooth functions and pseudo-immersions. Statements
about smooth functions on open sets can sometimes be reduced to correspond-
ing statements for functions of one real variable, thanks to Boman’s theorem 1.4.
This principle extends to A∞-admissible sets. We illustrate this using two selected
examples. The first concerns division of smooth functions:

Theorem 9.5. Suppose that X is a Hölder set or a simple fat closed subanalytic
subset of Rd. If f, g : X → C satisfy

(1) g, fg, fm ∈ C∞(X,C), and
(2) |f(x)| ≤ C |g(x)|α for all x ∈ X,

for some m ∈ N≥1 and C,α > 0, then f ∈ C∞(X,C).

Proof. This follows from [29, Theorem 1] which is precisely the case X = R, Theo-
rem 1.13, and Theorem 1.14. �

In [29] this theorem (for X = R) was used to prove that certain maps are pseudo-
immersions. A C∞-map p : N → M between C∞-manifolds is a pseudo-immersion
if for each continuous map f : P → N , where P is a C∞-manifold, p ◦ f ∈ C∞
implies f ∈ C∞; see also [28]. Pseudo-immersivity of a smooth map is a local
property. So it is enough to consider germs of smooth maps p : (Rn, 0) → (Rm, 0).
By Boman’s theorem 1.1, the defining universal property must be checked only for
smooth curves: p is a pseudo-immersion if and only if for each (continuous) curve
c : R→ Rn we have the implication p ◦ c ∈ C∞ =⇒ c ∈ C∞.

The results of Theorem 1.13 and Theorem 1.14 entail the following.

Theorem 9.6. Let p : Rn → Rm be a pseudo-immersion. Then the universal
property of p extends to maps f : X → Rn, where X ⊆ Rd is A∞-admissible, in
particular, for X a Hölder set or a simple fat closed subanalytic subset of Rd.

For instance, if f : X → C is continuous and f2, f3 ∈ C∞(X,C), then f ∈
C∞(X,C). In addition, by Theorem 9.1, if at least one of f2 or f3 is real analytic,
then also f is real analytic.

10. Complements and examples

10.1. CM -extensions. Let X ⊆ Rd be a Hölder set or a fat closed subanalytic set.
By Lemma 1.10, Proposition 3.8, and Theorem 5.6, any function f : X → R which
satisfies Lemma 1.10(3) extends to a C∞-function on Rd. Let us investigate this
in the ultradifferentiable case. For strongly regular weight sequences M there is a
CM -version of Whitney’s extension theorem [13].

Lemma 10.1. Let X ⊆ Rd be a fat compact set either in H (Rd) or subanalytic.
Suppose there is a positive integer m and a constant D > 0, such that any two
points x, y ∈ X can be joined by a rectifiable path γ in X and

(10.1) `(γ)m ≤ D|x− y|.
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Let M be a weight sequence. Then each f ∈ CM (X) defines a Whitney jet on X of
class CN where Nk := Mmk, i.e., there exist constants C, ρ > 0 such that

|f (α)(x)| ≤ Cρ|α||α|!N|α|, α ∈ Nd, x ∈ X,(10.2)

|(Rpxf)α(y)| ≤ Cρp+1|α|!Np+1|x− y|p+1−|α|, p ∈ N, |α| ≤ p, x, y ∈ X,(10.3)

where

(Rpxf)α(y) = f (α)(y)−
∑

|β|≤p−|α|

f (α+β)(x)

β!
(y − x)β .

Proof. Let f ∈ CM (X). Now (10.2) is clearly satisfied since we even have

(10.4) |f (α)(x)| ≤ Cρ|α||α|!M|α|, α ∈ Nd, x ∈ X.

Since f has a smooth extension to Rd, f defines a Whitney jet of class C∞ on X.
We claim that

(10.5) |(Rpxf)α(y)| ≤ (d`(σ))p+1−|α|

(p+ 1− |α|)!
sup
ξ∈σ
|γ|=p+1

|f (γ)(ξ)|

for any rectifiable path σ which joins x and y. Then, by (10.1) and (10.4), there
are constants Ci, ρi > 0 such that

|(Rpxf)α(y)| ≤ |(Rm(p+1)−1
x f)α(y)|+

∣∣∣ ∑
p−|α|<|β|<m(p+1)−|α|

f (α+β)(x)

β!
(y − x)β

∣∣∣
≤ dm(p+1)−|α|Cρm(p+1)|α|!Mm(p+1)`(σ)m(p+1)−|α|

+ C1ρ
m(p+1)
1 |α|!Mm(p+1)|x− y|p−|α|+1

≤ C2ρ
m(p+1)
2 |α|!Mm(p+1)|x− y|p−|α|+1,

that is (10.3). To see (10.5) notice that, with T px f(y) :=
∑
|β|≤p

f(β)(x)
β! (y − x)β ,

(Rpxf)α(y) = f (α)(y)− T p−|α|x f (α)(y) = T p−|α|y f (α)(y)− T p−|α|x f (α)(y).

By choosing a suitable parameterization, we may assume that σ : [0, 1]→ Rd is an
absolutely continuous curve from x to y such that |σ′(t)| = `(σ) for a.e. t. Then

(Rpxf)α(y) =

∫ 1

0

∂t(T
p−|α|
σ(t) f (α)(y)) dt

=

∫ 1

0

∑
|β|=p−|α|

1

β!

d∑
i=1

f (α+β+ei)(σ(t))(y − σ(t))βσ′i(t) dt

By the Cauchy–Schwarz inequality,

|
d∑
i=1

f (α+β+ei)(σ(t))(y − σ(t))βσ′i(t)| ≤ |∇f (α+β)(σ(t))||σ′(t)||y − σ(t)||β|.

Moreover, |y − σ(t)| = |σ(1)− σ(t)| ≤ `(σ)(1− t). Thus

|(Rpxf)α(y)| ≤
√
d sup

ξ∈σ
|γ|=p+1

|f (γ)(ξ)| `(σ)p+1−|α|
∫ 1

0

(1− t)p−|α|

(p− |α|)!
dt

∑
|β|=p−|α|

|β|
β!
,

that is (10.5). �
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Corollary 10.2. Let M = (Mk) be a strongly regular weight sequence. For all
X ∈ H 1(Rd) the functions in CM (X) are precisely the functions which admit a
CM -extension to Rd.

Proof. This follows from Lemma 10.1 and the CM -version of Whitney’s extension
theorem [13], since a bounded Lipschitz set is quasiconvex, i.e., (10.1) holds with
m = 1; cf. Proposition 3.8. �

Corollary 10.3. Let M = (Mk) be a non-quasianalytic weight sequence of mod-
erate growth such that Ma is non-quasianalytic for each a > 0. Let X ⊆ Rd be a

closed fat subanalytic subset. Then the functions in ĈM (X) are precisely the func-

tions which admit a ĈM -extension to Rd. If X is simple, they are precisely the

functions in ÂM (X).

Proof. This follows from Theorem 8.4, Theorem 5.6, and Lemma 10.1. Indeed,

Lemma 10.1 implies that each f ∈ ĈM (X) defines a Whitney jet of class ĈM on X

(the integer m of Lemma 10.1 is local but it is absorbed by ĈM ). The extension
theorem [14, Theorem 8] yields the required extension to Rd. �

10.2. Examples and counterexamples. The following examples complement
the results and indicate their sharpness.

Example 10.4 (Infinitely flat fat cusps are not A∞-admissible). Let p : [0,∞)→
[0,∞) be a strictly increasing C∞-function which is infinitely flat at 0. Consider
the set X := {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ p(x)} and the function f : X → R
defined by f(x, y) =

√
x2 + y. Clearly, f is C∞ in the interior of X but ∂yf does

not extend continuously to the origin.
On the other hand, f ∈ A∞(X). Let x, y : R → R be C∞-functions such that

(x(t), y(t)) ∈ X for all t ∈ R. To see that f ∈ A∞(X) it suffices to prove that there
is a C∞-function z : R→ R such that y = x2z.

We use the following result due to [29, Theorem 7]: Let ϕ,ψ : R→ R be such that
ψ ∈ C∞, ϕψ ∈ C∞, and |ϕ| ≤ |ψ|α for some positive constant α. Then ϕ ∈ Cb2αc.

We apply this result for ψ = x2 and

ϕ =

{
y(t)/x(t)2 if x(t) 6= 0,

0 if x(t) = 0.

The assumption 0 ≤ y ≤ p(x) implies that for each n ∈ N there is an interval [0, εn)
such that for all x ∈ [0, εn) one has y ≤ x2n+2. We may conclude that ϕ is C2n on
the set x−1([0, εn)). Clearly, ϕ is C∞ on the set {t ∈ R : x(t) 6= 0}. Thus ϕ is C∞
everywhere.

Example 10.5 (Necessity of simpleness). Let X1 = {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤
x} and X2 = {(x, y) ∈ R2 : 0 ≤ x ≤ y/2} and set X = X1 ∪ X2. The function f
on X defined by f(x, y) = x if (x, y) ∈ X1 and f(x, y) = y if (x, y) ∈ X2 belongs
to A∞(X) but clearly not to C∞(X). This follows from the fact that a C∞-curve
c(t) in X must vanish of infinite order at each t0 with c(t0) ∈ X1 ∩ X2 = {0}.
Indeed, suppose that c(t) = tpc̃(t) with (a, b) := c̃(0) 6= 0 and c(t) ∈ X1 if t ≤ 0 and
c(t) ∈ X2 if t ≥ 0. If p is even, it follows that b ≤ a ≤ b/2 which entails a = b = 0,
a contradiction. If p is odd, we conclude that 0 ≤ a ≤ 0, b ≤ 0, a ≤ b/2 hence
a = b = 0 again.
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A modification of this example shows that the assumption that X is simple
cannot be replaced by the weaker assumption that each x ∈ X has a neighborhood
U such that U ∩ int(X) is connected: Let 0 < r < R, consider X := X1 ∪X2 ∪X3,
where X3 = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x2 + y2 ≥ R2}, and multiply f with a
smooth bump function which is 1 on B(0, r) and has support in B(0, R).

Nevertheless we have the following.

Example 10.6. Let X1 = {(x, 0) ∈ R2 : x ≥ 0} and X2 = {(0, y) ∈ R2 : y ≥ 0}
and set X = X1∪X2. Then X is A∞-admissible. Indeed, let f ∈ A∞(X). We may
assume without loss of generality that f(0, 0) = 1 (by multiplying with or adding
a constant). Now f |Xi has a C∞-extension Fi to R for i = 1, 2, by Theorem 1.13,
and F (x, y) := F1(x)F2(y) is a C∞-extension of f .

Example 10.7 (There is no analogue for finite differentiability). This is an inter-
esting consequence of Glaeser’s inequality [22]: for f : R→ [0,∞),

f ′(t)2 ≤ 2f(t)‖f ′′‖L∞(R), t ∈ R.

Indeed, consider the closed half-space X = {x ∈ Rd : xd ≥ 0} and the function

f : X → R given by f(x) = x
k+1/2
d . Then all partial derivatives of f up to order

k extend continuously by 0 to ∂X, and the partial derivatives of order k are 1/2-
Hölder continuous, but not better, near points of ∂X. On the other hand, for each
Ck,1-curve c in X with compact support, the composite (f ◦ c)(t) = cd(t)

k+1/2 is Ck
with

(f ◦ c)(k)(t) = Ck(c′d(t))
k
√
cd(t) +Dk(c(t)),

where t 7→ Dk(c(t)) is Lipschitz. Since
√
cd is Lipschitz, by Glaeser’s inequality, we

conclude that f ◦ c is of class Ck,1.

We want to add that the images of pseudo-immersions (which are not immer-
sions) yield examples of sets X ⊆ Rd which are not A∞-admissible.

Example 10.8. If gcd(p, q) = 1 then the map ϕ : R 3 t 7→ (tp, tq) ∈ R2 is a pseudo-
immersion, by [27], see also [28], [29], [17], and [2]. Now the function f(x, y) = y1/q

belongs to A∞(ϕ(R)) but has no smooth extension to R2.

The following example shows that there are closed fat sets X ⊆ Rd which satisfy

(10.6) A∞(X) =
{
f : X → R : f satisfies 1.10(3)

}
6= C∞(X).

Example 10.9. Let X be the complement in R2 of the set {(x, y) ∈ R2 : x >
0, |y| < e−1/x}. It is well-known (cf. [4, Example 2.18]) that there exist functions
f : X → R which satisfy Lemma 1.10(3), but f 6∈ C∞(X).

Let us show that for this X the identity in (10.6) holds. To this end let h : R→ R
be defined by h(x) = 0 if x ≤ 0 and h(x) = e−1/x if x > 0. Consider

X± :=
{

(x, y) ∈ R2 : ±y ≥ h(x)
}
∪
{

(x, y) ∈ R2 : x ≤ 0
}
.

Then X± are 1-sets and hence are A∞-admissible, by Theorem 1.13.
Suppose f ∈ A∞(X). Then f is smooth on int(X). The restrictions f |X±

belong to A∞(X±), respectively. So all their derivatives extend to the boundary
arcs {(x, y) ∈ R2 : x ≥ 0, ±y = h(x)}, respectively. It remains to check that the
extensions of the derivatives of f |X± coincide at the origin. But this is clear, since
they are uniquely determined by the restriction of f to X+ ∩X−.
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For the converse suppose that f : X → R satisfies 1.10(3). We have to show that
f ◦ c is smooth for all smooth curves c : R→ X. Since X± are A∞-admissible, this
is clear on the complement of c−1(0) in R. Assume that c(0) = 0. We claim that
f ◦ c is differentiable at 0 and the chain rule (f ◦ c)′(0) = f ′(0)(c′(0)) holds. The
set X is star-shaped with respect to each point in (−∞, 0].

For each v ∈ X, the curve γ(t) := tv lies in X for 0 ≤ t ≤ 1. Moreover,
γs(t) := γ(t) + s2(−1 − γ(t)) lies in X for 0 ≤ t ≤ 1 and |s| ≤ 1. If s 6= 0, then
γs(t) ∈ int(X) and hence

f(γs(t))− f(γs(0))

t
=

∫ 1

0

(f ◦ γs)′(tu) du = (1− s2)

∫ 1

0

f ′(γs(tu))(v) du.

Letting s→ 0 and using 1.10(3), we get

f(γ(t))− f(γ(0))

t
=

∫ 1

0

f ′(γ(tu))(v) du.

This tends to f ′(γ(0))(v) as t→ 0.
Now for 0 ≤ s ≤ 1 and t ∈ R we have s · c(t) ∈ X. We may apply the last

paragraph for v = c(t)/t and obtain

f(c(t))− f(0)

t
=

∫ 1

0

f ′(uc(t))
(c(t)

t

)
du,

which tends to f ′(0)(c′(0)), since f ′(uc(t)) → f ′(0) uniformly on the bounded set
{c(t)/t : t near 0}. This proves the claim.

By iteration we may conclude that f ◦ c is smooth; cf. the proof of [32, Theorem
24.5].
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Inst. Fourier (Grenoble) 26 (1976), no. 1, ix, 33–49.

[38] B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research

Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay, 1967.
[39] J. N. Mather, Differentiable invariants, Topology 16 (1977), no. 2, 145–155.

http://www.ams.org/online_bks/surv53/
http://www.ams.org/online_bks/surv53/


34 A. RAINER

[40] T. Neelon, Ultradifferentiable functions on lines in Rn, Proc. Amer. Math. Soc. 127 (1999),

no. 7, 2099–2104.
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