ON THE EXTENSION OF WHITNEY ULTRAJETS

ARMIN RAINER AND GERHARD SCHINDL

ABSTRACT. We prove necessary and sufficient conditions for the validity of
Whitney’s extension theorem in the ultradifferentiable Roumieu setting with
controlled loss of regularity.

1. INTRODUCTION

Whitney’s extension theorem [3I] provides conditions for the extension of jets
defined in closed subsets of R™ to infinitely differentiable functions on R™. TIts
ultradifferentiable analogues ask for a precise determination how the growth rate
of the jets is preserved by their extension. The growth rate of the jets, respectively
of the derivatives of a smooth function, is measured by weight functions w. We
denote by B{“}(R") the associated space of ultradifferentiable functions f on R™;
by definition, the growth rate of the sequence (||f(®)||r®n))acnn is regulated in
terms of w. We use the letter B to emphasize that the bounds are global in R™.
These classes of ultradifferentiable functions were introduced by Beurling [2] and
Bjorck [3] and equivalently described by Braun, Meise, and Taylor [§]. Similarly,
B{‘“}(E) is the space of jets on the compact subset E C R™ with a growth rate
regulated by w, so-called ultrajets. Precise definitions will be given in Section

The weight functions w which allow for an extension theorem preserving the class
B} have been fully characterized. We denote by j% the mapping which sends a
smooth function to the infinite jet consisting of its partial derivatives of all orders
restricted to E.

Theorem 1.1. Let w be a weight function. The following conditions are equivalent:
(1) For every compact E C R™ the jet mapping i3 : BIHR") — B} (E) s

surjective.
(2) There is a compact E C R™ such that j% : BHR™) — BIWH(E) is surjec-
tive.
w 18 strong, 1.e., > du < Cw(t) + or allt > 0 and some C' > 0.
(3) wi g, e, [7°0 gy < Cw(t) +C for allt >0 and C>0

Note that a strong weight function is necessarily non-quasianalytic. Theorem [T.]]
is due to Bonet, Braun, Meise, and Taylor [4] and Abanin [I] (the latter showed
the equivalence with (2)). Partial results have been contributed in earlier papers,
e.g. Meise and Taylor [20], Bonet, Meise, and Taylor [6]. We want to mention that
the statement remains true if the Roumieu type classes B} are replaced by the
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2 A. RAINER AND G. SCHINDL

Beurling type classes B“), but we shall only be concerned with the Roumieu case
in this paper.

The purpose of this paper is to study the extension problem for weight functions
w which are not strong. In that case the extension involves a loss of regularity: the
class is not preserved. So we are led to the following problem.

Question 1.2. Let w be a non-quasianalytic weight function. Let o be another
weight function. Under which conditions is the jet mapping jg defined on Bl“HR™)
surjective onto B} (E) for all compact E C R™?

A complete answer has been given for the one-point set E = {0}, by Bonet,
Meise, and Taylor [7], and for compact convex sets E, by Langenbruch [I7]. In
these cases the mapping 5% : B{“}(R") — B{?}(E) is surjective if and only if
w(tu)

u2

EIC’>OVt>O:/ du < Co(t)+ C. (1.1)
1

So this condition is necessary for our problem.

We answer Question (for all compact E C R™) under three additional condi-
tions. The first condition is that w is concave. This has technical reasons, but it is
not incongruous, since every strong weight function is equivalent to a concave one;
cf. [20, Proposition 1.3]. Secondly, we require that o(t) = o(t) as t — oo; again any
strong weight function has this property.

To explain the third condition let us recall that any weight function o is associ-
ated with a family of weight sequences & = {S%},¢ such that for the corresponding
ultradifferentiable spaces we have

BI7HR™) = ind,u~o BEH(R™)  (and B)(R™) = proj,., BE)(R™)).  (1.2)
The condition we require is that
55 Sk
Ve>0dy>03C >1V1I<j<k: <C .
! Y B =7 3851 T kSEy

-

(1.3)

The following is our main result.

Theorem 1.3. Let w be a non-quasianalytic concave weight function. Let o be
a weight function satisfying o(t) = o(t) as t — oo and (1.3)). Then the following
conditions are equivalent:
(1) For every compact E C R™ the jet mapping j5 : BIHR"™) — BN (E) is
surjective.
(2) There is C > 0 such that [° 5 dqu < Co(t) + C for all t > 0.

1 u

The implication (1) = (2) follows from the aforementioned result of [7] and does
not require the three additional conditions on w and . We discuss the condition
and its relation to other properties of the weight function in Section and
Section Let us emphasize that, while (1) and (2) in Theorem are invariant
under equivalence of weight functions (two weight functions are equivalent if and
only if they generate the same class), concavity and are not invariant. Thus,
for the validity of Theorem is is enough that the assumptions on w and o are
satisfied up to equivalence of weight functions.

The problem put forward in Question [I.2] has been solved for Denjoy—Carleman
classes by Chaumat and Chollet [I0], where the growth rate of the derivatives
is controlled by weight sequences M. Indeed, under suitable conditions on the
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weight sequences, [I0] proved that the jet mapping 3 : BIVHR") — BIM}(E) is
surjective, for every compact £ C R™, if and only if

Ne_y kM,
4dC >0Vk e N: <C .
Dzk Ny — My,

The case that the extension preserves the class (i.e., M = N) is due to Bruna
[9) (see also [16]). We will see that our Theorem is a generalization of this
result (under an additional assumption on N). In general, a class B} cannot be
represented as a class BIM} for a weight sequence M, and vice versa, cf. Bonet,
Meise, and Melikhov[5] and Rainer and Schindl [24].

The approach of [10] was the starting point of our recent paper [26] in which we
obtained a generalization of their extension result for admissible unions of Denjoy—
Carleman classes. By virtue of , we deduced a version of Theorem which
however required an restrictive undesired condition on the involved weight func-
tions.

In the present paper we surmount this problem by using the special cut-off
functions which were constructed in [4]. They are tailor-made for weight functions
w; we actually need a modified version for two weight functions w and o related
by . Then we combine the resulting partition of unity {¢;} subordinate to a
collection of Whitney cubes @Q; with center z; with the technique of [10] which is
based on a extension method of Dynkin [12]. The extension of a ultrajet F of class
B9} is defined as a linear combination

S T F
[

of Taylor polynomials, where the degree p(z;) depends on the distance of z; to E
and Z; € F realizes this distance. More precisely, the dependence of p is through
counting functions corresponding to the sequences in &, the family associated with
o. It is this part of the proof which necessitates the assumption .

The paper is structured as follows. We introduce weight functions, weight se-
quences, and the corresponding spaces of ultradifferentiable functions and jets in
Section [2l A deeper analysis of the weights, their associated functions, and prop-
erties needed in the proof of the extension theorem follows in Section [B] We recall
the construction of special cut-off functions due to [4] in Section [} since we need a
slight generalization for two weight functions w and o satisfying, we indicate
the required modifications in the proof. The main theorem and its corollaries
are proved in Section

2. SPACES OF ULTRADIFFERENTIABLE FUNCTIONS AND JETS

2.1. Weight functions. By a weight function we mean a continuous increasing
function w : [0, 00) — [0, 00) with w(0) = 0 and lim;_, - w(t) = oo that satisfies

w(2t) =0(w(t)) ast— oo, (2.1)

w(t)=0(t) ast— oo, (2.2)

logt = o(w(t)) ast— oo, (2.3)

t (2.4)

p(t) == w(e") is convex.



4 A. RAINER AND G. SCHINDL

A weight function is called non-quasianalytic if
e t
/ @) 4 < oo (2.5)
0

Two weight functions w and o are said to be equivalent if w(t) = O(o(t)) and
o(t) = O(w(t)) as t — oco. For each weight function w there is an equivalent weight
function @ such that w(t) = @(t) for large ¢ > 0 and @p,;; = 0. It is thus no
restriction to assume that w|jo,;) = 0 when necessary.

The Young conjugate ©* of ¢ is defined by

Q" (t) = sup (st —(s)), t>0.

Assuming w|[071] = 0, we have that ¢* is a convex increasing function satisfying
©*(0) =0, t/o*(t) = 0 as t — oo, and ¢** = ; cf. [§] and [4, Remark 1.2].

2.2. The space B{“}(R") of ultradifferentiable functions. Let w be a weight
function and p > 0. We consider the Banach space By (R") := {f € C=(R") :
[ flls < oo}, where
£l = sup |0°f(x)]exp(—;¢" (plal)),
z€R™, aeN"

and the inductive limit
BHR™) := ind,en BY (R™).

For weight functions w and ¢ we have B} C B} if and only if o(t) = O(w(t))
as t — oo, cf. [24] Corollary 5.17]; in particular, w and o are equivalent if and only
if B« = B{o}, The space B{“}(R") contains non-trivial functions with compact
support if and only if w is non-quasianalytic (cf. [§] or [24]).

2.3. Weight sequences. Let u = (1) be a positive increasing sequence, 1 = pp <
1 < pg < ---. We associate the sequences M = (Mj) and m = (my,) defined by

Hopeipie - -+ pe = My, = Elmy,, (2.6)

for all £ € N. We call M a weight sequence if M,i/k — 00. A weight sequence M is

called non-quasianalytic if
1
Y — <. (2.7)
o Mk

We say that M has moderate growth if there exists C' > 0 such that M, ; <
CITEM; My, for all j, k € N, or equivalently,

e S MF (2.8)

we refer to [26] Lemma 2.2] for a proof and more equivalent conditions. (For real
valued functions f and g we write f < g if f < Cg for some positive constant C'.)

Two weight sequences M and N are said to be equivalent if there is a constant
C > 0 such that 1/C < M}"*/N}* < C for all k.

Remark 2.1. (1) Some authors (e.g. [I0], [24]) prefer to work with “sequences
without factorials”, that is my instead of Mj.

(2) Note that p uniquely determines M and m, and vice versa. In analogy we
shall use v <+ N <> n, 0 <+ S < s, etc. That p is increasing means precisely
that M is logarithmically convex (log-convex for short). Log-convexity of m is a
stronger condition: if m is log-convex we shall say that M is strongly log-convex.
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Lemma 2.2 (Properties of weight sequences). Let 1 = pug < p3 < pug < ---. Then:
(1) M,i/ F s increasing, equivalently,
Vk € Ny - M;/k < pg- (2.9)
(2) MjMy < Mjiy for all k,j.
3) If M,i/k — 00, then pui — oo.
Proof. This is straightforward to check.

2.4. The space BIM}(R") of ultradifferentiable functions. Let M = (M},) b
a weight sequence and p > 0. We consider the Banach space B,f)” (R™) := { f
C=(R™) : |||} < oo}, where

O

[0}
1A= sup 1T
zER™, a€N" P la \

and the inductive limit

BMI(R™) = ind ey BY (R™).
Traditionally, B{M }(R") is called a Denjoy—Carleman class. For weight sequences
M and N we have BIM} C BN} if and only if M,i/k < N,i/k; one implication is
obvious, the other follows from the existence of characteristic BIM}-functions, cf.
[24, Lemma 2.9 and Proposition 2.12]. In particular, M and N are equivalent if
and only if the corresponding classes coincide. By the Denjoy—Carleman theorem

(e.g. [14, Theorem 1.3.8]), B{M}(R") contains non-trivial elements with compact
support if and only if M is non-quasianalytic.

2.5. The connection between B{“}(R") and B{M}(R"). With any weight func-
tion w we can associate a family of weight sequences {W*},~¢ such that BlwH(R")
can be described us the union of the spaces B{W"}(R"); see Theorem below.

Definition 2.3 (The weight matrix associated with a weight function). With a
weight function w we associate a weight matriz 20 = {W?*},<¢ by setting

Wi = exp(Le*(zk)), keN;
cf. [24, 5.5]. Moreover, we define

WI

9% = Ik .

Wiy
Lemma 2.4 (Properties of the associated weight matrix). We have:
(1) Each W* is a weight sequence (in the sense of Section [2.3).
(2) 9* <Y if x <y, which entails W* < WY,
(3) For allz >0 and all j,k € N, Wr,, < WHW2* and wi,, < wi*wi®.
(4) For allx > 0 and all k € N3, 93, < 94,
(5) Vp>03H >1Vx>03C >1VkeN: pka <CW,
(6) Ifw(t) = o(t) ast — oo then (wi)'/* — oo andﬁi//ﬂ% oo for all z > 0.

Proof. (1)—(3) These are direct consequences of the properties of ¢*; cf. [24] 5.5].
(4) [26, Lemma 2.6].

(5) [24, Lemma 5.9].

(6 ) B [24, Corollary 5.15], we have (wf)'/* — co. That also 97 /k — oo follows

from O
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Theorem 2.5 ([24, Corollaries 5.8 and 5.15]). Let w be a weight function and let
W = {W?=},50 be the associated weight matriz. Then, as locally convex spaces,

B (R™) = indy»o BYYHR™) = ind,ysoind,so BY  (R™). (2.10)
We have B} (R™) = BIW'HR™) for all > 0 if and only if
IH > 1Yt > 0: 2w(t) < w(Ht) + H. (2.11)

Moreover, (2.11)) holds if and only if some (equivalently each) W* has moderate
growth. It is no restriction to let the inductive limits in (2.10) range only over
z,p € N.

Remark 2.6. Let us emphasize that the fact that B{} = BIM} for some weight
sequence M if and only if w satisfies (2.11)) is due to [5].

2.6. Whitney ultrajets. Let F be a compact subset of R”. We denote by J*°(E)
the vector space of all jets F' = (F®)qenn € CO(E,R)N" on E. Fora € Eandp € N
we associate the Taylor polynomial

(x—a)"

TP 7°(E) — C®(R",R), F s TPF(z) := Z i

la|<p

F(a),

and the remainder REF = ((RLF)%)|q|<p With

—a)B
(REF)¥(x) := F¥(x) — Z %F”‘*B(a)7 a,z € E.
[BI<p—|al ’
Let us denote by j& the mapping which assigns to a C'*°-function f on R™ the jet
IR (f) == (0*f|E)a. By Taylor’s formula, F' = j%°(f) satisfies
(RPF)*(z) = o(|z — a|P~1?l)  fora,z € E,peN, |a| <pas |z —a| = 0.
Conversely, if a jet F' € J°°(F) has this property, then it admits a C*°-extension to

R™, by Whitney’s extension theorem [31I] (for modern accounts see e.g. [I8, Ch. 1],
[30, TV.3], or [14, Theorem 2.3.6]).

Definition 2.7 (Whitney ultrajets). Let E C R™ be compact. Let M = (My) be
a weight sequence. For fixed p > 0 we denote by Bé” (E) the set of all jets F' such
that there exists C' > 0 with

|F(a)| < Cple] My, a€N' ack,

|b— a[pti-lel

(p+1=la)t’

The smallest constant C defines a complete norm on BZ)VI (E). We define
BMY(E) := ind en BY (E).

An element of BIM}(E) is called a Whitney ultrajet of class BIM} on E.

Let w be a weight function and 20 = {W*},~( the associated weight matrix. A
jet F is said to be a Whitney ultrajet of class B} on E if F € BYW"}(E) for some
x > 0; we set

B (E) = B (E) = indyso B (E) = indysoind,so BY  (E).

[(REF)*(b)| < CpPti My peN,|a| <p, a,b€ E.

Remark 2.8. This definition of Whitney ultrajet of class B{“} on E coincides with
the one given in [4]. This follows from Lemma [2.4{(5]).
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2.7. Notation for sequences.
The table summarizes our notation for sequences

. M |m| up
appearing in the paper. The three columns are N | nlv
mutually determined by the rule I 0|

Hopfhe - - - e = My = kl'my, we | w® | 9°
for k € N. (There will be no confusion by the fact s 519
that o usually denotes a weight function.) S 1 s ]o

3. MORE ON WEIGHT FUNCTIONS AND WEIGHT SEQUENCES

3.1. Functions associated with weight sequences. There are a few functions
which one naturally associates with a weight sequence; cf. [19], [15], [I0]. They will
play an essential role in the proof of the extension theorem [1.3

Definition 3.1 (Associated functions). Let m = (my) be a positive sequence

satisfying mo = 1 and m,lc/ P (not necessarily log-convex). We associate the

following functions

U k —
ho (t) == érelfN mgt™, t>0, h,(0):=0, (3.1)
T, (t) == min{k : hy,(t) = mytt}, ¢ >0, (3.2)

and, provided that my.1/mg — oo,

1
L) := min{k Dkt f}, t>0. (3.3)
my t
Lemma 3.2. Let m = (my) be a positive sequence satisfying mg = 1, m,t/
and myy1/my — co. Then:

k
— 00,

(1) Ay, is increasing, continuous, and positive for t > 0. For large t we have
hm(t) = 1.

) L, is decreasing and L, (t) — oo ast — 0.

) ks mytF is decreasing for k < T, (t).

) mpt1/my < ngy1/ng for all k implies T, < T, ..

) L,, <Tp. If m is log-convex then T, = T'p,.

Proof. These facts are well-known and immediate from the definitions; we refer to
[19], [15], and [I0]. O

Let M be a weight sequence satisfying m,lc/k — 0o0. Then mg/mp_1 = ug/k —
o0, in fact, we have (k!my)'/* = M,i/k < g, by .

So for such M the functions h,,, I',,, T, are well-defined and enjoy the properties
listed in Lemma The sequence m will not be log-conver in general, whence T,
and T, fall apart. We need them both. It will crucial to be able to compare them,
which is the content of the following lemma. Of course, we pay the price that we
must switch from m to another sequence n.

Lemma 3.3. Let M, N be weight sequences satisfying m,lc/k — 00 and ni/k — 00.
Assume that there exists C > 1 such that p;/j < Cvi/k for all j < k. Then, for
allt >0,

T,.(Ct) <T,,(t). (3.4)
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Proof. Let t > 0. If k > T, (t), then

ng Vg VL (t)+1 Br m+1  \FLn® —k+T. (1)
—r =, m > m > (Ot Lm
ne @ kL) +17 <C(£m(t) +1)) = (1)
and thus n(Ct)¥ > np ;) (Ct)E ). Tt follows that T',(Ct) < T, (t). 0

We also need the following property.

1/k 1/k

Lemma 3.4. Let M, N, L be weight sequences satisfying m,’” — oo, n,/~ — oo,
and 81/k — 00. Assume that
Kok S Vk (3.5)
and
C>1V1<j<k: J<C (3.6)
J
Then
3D > 1Vt >0:20,(Dt) <T,,(t). (3.7)
Proof. We first claim that (3.5)) and (3.6)) imply
A
AC >1V1 < h<2k: <0i. (3.8)

Note that is equivalent to 42& < k. Thus if h = 2j for 1 < j < k, then

br = “;JJ < C”\’c If h is odd, then “h < 2*,“;*11 < 20)"“ since p is increasing,.

Now it is easy to see that (| . 1mphes O

3.2. Good weight functions. Let us single out the weight functions whose asso-
ciated weight matrix satisfies the conditions required in Lemma and Lemma

Definition 3.5 (Good weight functions). A weight function w with associated
weight matrix 20 = {W?},5¢ is called good if
05 VY
Ve>03dy>03C >1V1<j<k: ,SCk (3.9
J
Remark 3.6. (1) By Lemma 2.44(2), it is no restriction to assume y > 2z in (3.9)
to the benefit that w® +k < w? wk for all j, k, by Lemma [2.4{(3)).
(2) We remark that is not 1nvar1ant under equlvalence of weight functions.
(3) If W* is strongly log—convex then is satisfied with y =z and C' = 1.

Proposition 3.7. Let w be a good weight function satisfying w(t) = o(t) as t — oo.
Let 90 = {W?},50 be the associated weight matriz. Then

Ve>03dys >yo >y > 3ID>1VE>0:

!

w® (t)
5 .

wk and wJJr,C <

Tous (D3t) < Typuo (D?*t) < Ty (D?*t) < Ty (D) <

(3.10)

We may assume that y1 > 2z and y2 > 2y, and hence wj,, < w?

wwy? for all j,k € N.

Proof. The rightmost inequality in (3.10]) follows from Lemma since 9%, < 93"
(for k& > 2) by Lemma [2.4(4). The other inequalities are easy consequences of
Lemma and Lemma 5). The supplement follows from Remark 3.6(1). O

J
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3.3. The conjugate of a weight function. The following conjugate will be im-
portant for the special partition of unity to be constructed in Section

Definition 3.8 (The conjugate of a weight function). Let w : [0,00) — [0, 00)
satisfy w(t) = o(t) as t — co. We define
w*(t) :=sup (w(s) —st), ¢>0. (3.11)
s>0
Then w* is decreasing, continuous, and convex with w*(¢) — co as t — 0, see
[23, Remark 1.5]. Since w(t) = o(t) as t — oo, w*(t) is finite for all ¢. If w is concave
and increasing, then, by [23, Proposition 1.6],

w(t) = inf (w*(s) +st), t>0. (3.12)

Lemma 3.9. Let w,0 : [0,00) — [0,00) satisfy w(t) = o(t) and o(t) = o(t) as
t — oo. Suppose that o(t) = O(w(t)) ast — oo. Then

AC > 1Vt >0:0%(t) < Cw*(t/C)+ C. (3.13)
Proof. This is an easy computation. O

3.4. The connection between wj}, and w,,. With every positive sequence M

satisfying My = 1 and M;/k — 00 we associate a function wp; by setting

k

t
wp(t) = —loghp(1/t) = itelglog (E), t>0.

Then wy, is increasing, convex in log ¢, and zero for sufficiently small ¢ > 0. If M is
a weight sequence such that liminf,_, m,t/k > 0 and liminfy_ o0 por/pr > 1 for
some @ € N, then wyy is a weight function. See [I5] and [5, Lemma 12]. The proof
of the latter shows that wps(t) = o(t) as t — oo provided that m,lﬂ/k — 00.

There is a connection between w}, and w,,. We found this in [I1l Lemma 5.7.8].

1/k

Lemma 3.10. Let M be a weight sequence such that m;'~ — oco. Then
1 t
Yt > 0w (t) §wm(¥> §w}*\/[<f). (3.14)
e
Proof. We have wy(t) = o(t) as t — oo and so w}; is well-defined. For s > 0,
tk k"
wir(8) :=sup (wp(t) — st) = supsu (lo (—) —st) = suplo (7),
w(s) tgg( m(t) ) keg tzlg & M, keg s (es)k M,
by an easy calculation. Using k! < k¥ < e*k! we find
1 1 k* s
iuls) < suplog () = (5) < suptoe (557 ) = i ()
wirt) < i (e ) =om () < puptes (e ) =
as required. O

Corollary 3.11. Let w be a weight function satisfying w(t) = o(t) as t — co. Let
20 be the associated weight matrixz. Then, for all M € 20 there exists C > 1 such
that for allt >0

t t
W (1) < Culy (5) YO and  wi(t) < Cw* (5) e (3.15)
as well as

WH(t) < cwm(%) YO and  wn(t) < cm(%) i) (3.16)
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In particular,

exp(w* () < (hm(i/OQC (3.17)

Proof. By [24, Lemma 5.7], for each M € 20, we have w(t) = O(wp(¢t)) and
wi(t) = O(w(t)) as t — oo. So (3.15) is a consequence of Lemma [3.9] The rest
follows from Lemma [3.10) ]

In the proof of the following lemma log-convexity of the sequences was used.
Lemma 3.12 (|26l Remark 2.5]). Let M and N be weight sequences such that
3C > 1Yk, j € N: My ; < C*N;N;. (3.18)
Then har(t) < hy(Ct)? for all t > 0.

We need a corresponding version for the sequences m, n which are not log-convex
in general. This can be achieved by using the connection between wj, and wy,.

Lemma 3.13. Let M and N be weight sequences satisfying (3.18) and m,lﬁ/k — 0
and ni/k — 00. Then there is a D > 1 such that hy,(t) < h,(Dt)? for all t > 0.

Proof. By Lemma ha(t) < hy(Ct)? and hence 2wy (t) < wpr(Ct) for all
t > 0. Then

2t
2wy (t) = sup (2wn(s) — 2ts) < sup (wp(Cs) — 2ts) = w&(—).
$>0 >0 C
By (3.14),
1 t 2t eC
2 (7) = 260 () i (G) < (37).
“Wny) =29N\e) =mo) =“m Ty
This entails the statement. ]

3.5. The heirs of a weight function. We introduce notation for our convenience.

Definition 3.14 (The heirs of a weight function). Let w be a non-quasianalytic
weight function. Then

K(E) = Ky (t) = /100 wit) g, t/too ) gy s, (3.19)

u? u?
defines a weight function (possibly quasianalytic) satisfying x(t) = o(t) as t — oo;
cf. [7 Remark 3.20]. Moreover, & is concave; see [20, Proposition 1.3]. Since w is
increasing we have x > w, which implies K% < W7 for all > 0, where {K%},~¢
is the weight matrix associated with k.
All weight functions o satisfying o(t) = o(t) and £(t) = O(o(t)) as t — oo, i.e.,

3C>0V>0: / ”Sf) du < Co(t) + C, (3.20)
1

are called heirs of the weight function w. A good heir of w is a heir of w which is a

good weight function in the sense of Definition If w itself is a heir of w, then w
is said to be a strong weight function.

In particular, k is a heir of w. By [7], the condition (3.20) is necessary and
sufficient for the surjectivity of jG, - BlwHR™) — B{7}({0}). That a heir o satisfies
o(t) = o(t) as t — oo guarantees that we can work with the conjugate o*.
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Lemma 3.15. Let w be a non-quasianalytic weight function and o a heir of w. Let
W= {W?*},s0 and & = {S%},50 be the weight matrices associated with w and o,
respectively. Then

3O >1Ve >0: 8% < e/*Wwor,

Proof. By (3.20), w < k < Co + C and hence ¢, < Cyp, + C. For the Young
conjugates this means ¢} (Ct) + C > C¢?(t) which entails the assertion. O

Next we recall that (3.20) can be equivalently stated with w replaced by its

. . . . . t
harmonic extension. For a continuous function u : R — R with fR |1u _‘(_ t)2|

define its harmonic extension P, : C — R by

Pu(:E + iy) = {uﬂ(mf)R —2)2 142 . 3; i 07

dt < 0o, we

Then P, is continuous on C and harmonic in the open upper and lower half plane.
If w is a weight function, we extend w to C by z — w(|z]), and P, denotes the
harmonic extension of ¢ — w(|t|). We have w < P,,, cf. [20, Remark 1.6].

Lemma 3.16 ([, Lemma 3.3]). For a non-quasianalytic weight function w and a
weight function o the following conditions are equivalent:

(1) ku(t) =0(c(t)) as t — co.

(2) P,(t)=0(c(t)) ast — oco.

3.6. Concave and good weight functions. Let w be a non-quasianalytic weight
function. The weight function k = k., defined in is concave, and hence sub-
additive, since (0) = 0. Since & is the heir of w which defines the largest function
space among all heirs of w, it is of interest to find conditions which guarantee that
K is a good heir of w.

Let us recall a result which relates concavity of a weight function with a condition
on the associated weight matrix.

Theorem 3.17 ([25, Theorem 3 and 5]). Let w be a weight function and let
W = {W*},.s0 be the associated weight matriz. Then the following conditions
are equivalent:

(1) w is equivalent to its least concave majorant.
(2) 3C>03to >0VA> 1Vt >ty : w(At) < CAw(t).
(3) Vo> 03y >03D >1V1<j<k:(wh) <D wj)/*.

The equivalence of the first two conditions can be found in [23] and is based on
[21, Lemma 1]. The equivalence with the third condition was proved in [25] building
on a result of [I3], by showing that the conditions are all equivalent to several
stability properties of the corresponding spaces of ultradifferentiable functions.

Theorem 3.18. Let w be a weight function. Assume that the associated weight
matriz W = {W?*},50 satisfies

Ve > 03y >0:98 < (WYY (3.21)

Then w is a good weight function if and only if it is equivalent to its least concave
majorant.
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Proof. By ([3:21) and (2.9), for all > 0 there exists y > 0 such that (WZ)/* <
¥ < (WP)Y* < 9% and consequently,

U

i

Then clearly the conditions (3.9) and [3.17|(3]) are equivalent. d

Remark 3.19. Note that (3.21) is not invariant under equivalence of weight func-
tions, in contrast to the three equivalent conditions in Theorem [3.17} compare with

Remark [3.6{2).

Corollary 3.20. Let w be a non-quasianalytic weight function. Then kK, defined
in (3.19), is a good heir of w provided that its associated weight matriz satisfies
B21).

(i) 5 U < (u) /¥ <

This raises the following question.
Question 3.21. Is every concave weight function equivalent to a good one?

A strong weight function w is equivalent to the concave weight function k.. We
will discuss the relation between strong and good weight functions in Section [5.5

Remark 3.22. For the sake of completeness we remark that (3.21)) amounts to the
following condition on the secants of ¢*:

pr(zk) — " (zk —x) _ ¢"(yk)

Vr>03dy>03C >0Vk € Nyg:
x yk

+C.

A weight function w is good if and only if
Vz>03y>03C>0V1<j<k:
* k_ * k_ * "\ * >
1ogk—1ogjg‘p(y) j(y y) ¢ (z)) f(xj ) .o

4. A CONVENIENT PARTITION OF UNITY

In this section we construct a special partition of unity which will be a corner-
stone for the extension theorem. The construction is based on a result of [4].

4.1. Special bump functions. The following proposition is due to [4] in the case
that w is a strong concave weight function and ¢ = w. The proof of the general
case (with o # w) requires some slight modifications of the original proof of [4].
We recall the main steps and detail the passages, where a transition from w to o
occurs.

In this section 2 = {W*},50 will always be the weight matrix associated with
the weight function w.

Proposition 4.1. Let w be a non-quasianalytic concave weight function and let
o be a heir of w. Then for each n € Nsq there exist m € Nyg, M > 0, and
0 < 19 < 1/2 such that for all 0 < r < 1o there are functions f,, € C®(R)
satisfying the following properties:

0< fur <1, supp fu, C[—3r 27, forlrn =1, (4.1)
0 ()] 1

su . < M ex (70* nr ) 4.2

a;eJR,?eN wir "\ ) -

The proof will show that m = cn for some ¢ € Nsq independent of n.
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Note that, in Proposition o need not be a good heir of w.

The following two lemmas can be taken without modification from [4]. They are
based on Hoérmander’s L?-method to construct entire functions and on a Paley—
Wiener theorem.

Lemma 4.2 ([4, Lemma 2.3]). Let w be a non-quasianalytic weight function. Then
there exists A > 0 such that for each 0 < r <1, each k € N, and each subharmonic
function u on C satisfying

u(z) < r|Im(z)| —

% for all z € C,

there exists an entire function F' on C with F(0) =1 and

P < Aexp (rfim(2)] — X 4 310001+ |212) sup expl-u(u)

for all z € C.

Lemma 4.3 ([4, Lemma 2.4]). Let w be a non-quasianalytic weight function. There
exists L € Nsg such that for each k € N5 there exists B > 0 such that for all
0 < r < 1/2 the following holds. If there is an entire function F with F(0) = 1
such that

EW>OVz€C:W@ﬂgﬂlprﬂm@”_wgn,

then there exists ¥ € BI“}(R) with the following properties:
0<y <1, ¢Y(x)=0forz<—r, P()=1forz>r,

(4)
wp 0@

=< BMA.
2€R, jEN WJ_QLk

Next we generalize [4, Lemma 2.5]. For T' > 1 we define wy : R — [0, 00) by

. UJ/ T ’ T . .
oMz <O (T if [t < T

Lemma 4.4. Let w be a non-quasianalytic concave weight function and let o be a
heir of w. Then there is a D > 0 such that for all T > 1,
o(T)

0
sup — P, (x+1) <D ——=. 4.4
Ryt Y =P Y

Proof. Tt suffices to follow the proof of [4, Lemma 2.5] and replace the use of the
estimate [ @) qu < Cw(t) + C (that is [ 1.7(1)]) by the estimate [@.20). O

u2

Let w,wr be as in Lemma and (4.3). We consider Ay : C — R given by
he(2) = P, (z+ z) %f Im(z) > 0,
P,.(z—1) ifIm(z) <0.

If wr is replaced by w, then we will write h for the corresponding function. By the
symmetry of wr and of the Poisson kernel, hr is continuous on C. We have

hr(z) —w(T) < h(z) < hp(z) foralzeC, T >1, (4.5)
by [, 2.7(2)]. The following generalizes [4, Lemma 2.7].
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Lemma 4.5. Let w be a non-quasianalytic concave weight function and let o be a
heir of w. Then there exist E, F,G > 0 such that for all T > 1 and all z € C,

E7'hp(2) — Fw(T) < o(2), w(z) <hr(z)+G. (4.6)
Proof. The proof of [4 Lemma 2.7] yields that there exists G > 0 such that

|P,(z4+w) — P,(2)]| <G forall zyweC, |w <1
Together with this implies
w(z) < Py(2) < P,(2+1i)+G=h(z) +G < hr(z) + G,

if Im(z) > 0, and similarly for Im(z) < 0. This gives the second inequality in (4.6).
For the first inequality note that P, < Co + C, by Lemma Then, by (4.5),

hr(z) —w(T)—G < h(z) =G < P,(z) < Co(z) + C,
which easily implies the first inequality in (4.6]). O
Now we generalize [, Lemma 2.8].

Lemma 4.6. Let w be a non-quasianalytic concave weight function and let o be a
heir of w. Then for each n € N5 there exist m € Nsg, M > 0 and 0 < 1o < 1/2
such that for all 0 < r < ro there are functions g, € C®(R) satisfying the
following properties:

0<gnr <1, gn,=0forx<-—-r, gy, (z)=1forz>r, (4.7)
99} ()] 1

sup ———>% < Mex (fa* nr ) 4.8

mGR,?GN ij P n (nr) (4.8)

Proof. There is a constant C' such that w < Co 4+ C. Let A,L,D,E,F,G be the
constants arising in Lemma [£.2] Lemma [4.3] Lemma [£.4] and Lemma [{.5] We can
assume that C, L, D, E, F are positive integers. For n € N+ let

k:=(2CEF+D)n and m:=4Lk. (4.9)

Choose 0 < 79 < 1/2 such that the equation o(t)/t = rok/D has a solution ¢ > 1.
Fix 0 < r < rg and choose T'= T'(k,r) > 1 such that

rk
o(T)=T o (4.10)
Define u, , : C = R by
hr(z G
() = rfim(z)| - )€
Then, by (4.6), for all z € C
Un,r(2) < rlIm(z)] — %, (4.11)
E EF G
—Up,r(2) < —r|Im(z)| + Ea(z) + Tw(T) + (4.12)

By definition u,, , is subharmonic on the open upper and lower half plane. By (4.4)

and (4.10]), we have

19 10
_ - - ) > —
Foy T = gyl i) 2

o) _

T

=T
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for all x € R. Thus, for each non-negative g € C°(C),

o 10
/ Un r(2)Ag(z) dN\(z) = 2/ (r — f—yhT(x)>g(x) dx > 0,
C —o0
whence uy, , is subharmonic on C. By (4.11)) and Lemma there is an entire
function F), , with F,, ,(0) =1 and
_ w(z) 2 _
|Fh.r(2)] < Aexp (7]Im(z)] A + 3log(1+ |2|%) ) sup exp(—up,(w))
Jw]<1

for all z € C. By (4.12) and since w < Co + C, there is a constant K (n) > 0 such
that

sup exp(—uy r(w)) < K(n)exp
|w|<1

Using log(t) = o(w(t)) as t — oo (i.e., (2.3])), we find that (for a possibly larger
constant K (n))

(CEFO'(T)>.

|Fpr(2)| < K(n)exp (T|Im(z)| — WZ(Ij)) exp (CfFU(T))

for all z € C. By Lemma there is a constant B(n) > 0 and functions g, , €
C*(R) satisfying (4.7)) and
2CEF

|gn T(x)| 2
u = < B K X o(T)).
JE?%?EN W 4Lk — (n) (n) P ( k ( ))

By the definition of o*, (4.10)), and the choice of k (see (4.9)),

1 1 1 D 2CEF
- > — — = —_—— =
0 (nr) > - (o(T) —nrT) = o(T) (n k ) o(T) k
which implies (4.8]). The proof is complete. O

Proof of Proposition[{.1 Follow the proof of 4, Proposition 2.2 (p.168)] and use
Lemma, [4.6 O

4.2. A special partition of unity. Let £ C R™ be a compact set. We denote
by d(Q, E) the Euclidean distance of a closed set @ C R™ to E, in particular,
d(z,E) =inf{|lz —y| : y € E}.

Lemma 4.7 ([29, p.167], [0, Lemma 3.2], [4 Lemma 3.6]). Let E C R™ be a non-
empty compact set. There exists a collection of closed cubes {Q;}ieny with sides
parallel to the azxes satisfying the following properties:

(1) R"\ E = U'LEN Q;-

(2) The interiors of the Q; are pairwise disjoint.

(3) diam Q; < d(Q;, F) < 4diam Q; for all i € N.

(4) Let QF be the closed cube which has the same center as Q; expanded by the
factor 9/8. For each i € N the number of cubes Q7 which intersect Q7 is
bounded by 122",

(5) There exist by, By > 0 (independent of E) such that for all i,j € N with
Qi NQ; # 0 we have by diam Q; < diam Q; < By diam Q;.

For every x € R™ we denote by & any point in F with |z — &| = d(z, E).
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Corollary 4.8. In the setting of Lemmal[].7} let x; be the center of Q;. Then for
all x € Q7,

1
1
3 diam Q; < d(z, F) < 9diam Q;,
‘LIA’JZ‘ — {E| S 2d($i,E), ‘LIA’JZ — ,@| S 4d($1,E)
Proof. All this follows easily from

MM < D 0(Qu ) < (i, ). .

|z; — x| < <
8 2 16

In analogy with |4, Lemma 3.7] we may conclude the following.

Proposition 4.9. Let E C R™ be a non-empty compact set and let {Q;}ien be
the family of cubes provided by Lemmal[{.7} Let w be a non-quasianalytic concave
weight function and let o be a heir of w. Then for all p € Ny there exist m € N+,
M >0,0<1my<1/2, and a family of smooth functions {¢; p}ien satisfying

(1) 0< @i p <1 forallieN,

(2) suppyip C QF for alli €N,

(3) YienPiplx) =1 for allz € R™\ E,

(4) if d(Q;, F) <ro/By, then for all § € N* and x € R™ \ E,

(B) < m Al(n) * blp . )
pip ()] < MW/G exp <7p o (Ag(n) diam Qz>),

for constants Aj(n) < As(n) only depending on n.

Proof. Let p be a positive integer. Let f, ., for 0 < r < rg = r9(p), be the functions
provided by Proposition The function
gpﬂ‘(m) = fP;T(x1> U fpﬂ‘(xn)’ T = (‘rlv s 7wn) € an

satisfies 0 < g, < 1, has support in the cube centered at 0 with sidelength 9r/4
and equals 1 in the cube centered at 0 with sidelength 2r. There exist m, M such
that for all » < rg, f € N*, and v € R"

m n
1982 ()] < MW[3 exp (50*@7«)), (4.13)

thanks to Lemma [2.2)2) and Lemma [2.4)5).
Let 2r; denote the sidelength of Q; and z; its center. If r; < 7y, or equivalently,
diam Q; < 24/nrq, then we define
Yip(@) := gpr, (T — 24).
Then

0<¢ip <1, supptip CQF, Vip
Moreover, by ,
|1/)£§;) (z)] < MW exp (ﬁa*( P_ diam Ql)) (4.15)
p \2yn
For those i with r; > 19, we just choose arbitrary C°°-functions v;, satisfying
(4.14]).

0 =1 (4.14)
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Then put
i—1
Pl,p = wLpa Pip ‘= '(/}i,p H(1 - wkw)a 12> 2.
k=1
It is easy to check that (1)—(3) are satisfied (cf. [9, Lemma 3.3]).

Assume that d(Q;, E) < ro/Bi. Then Lemma [£.7)(3)&(5) guarantees that the
diameters of the cubes which correspond to nontrival factors in the product which
defines ; ,, satisfy diam Qi < r¢g < 24/nrg. So for those factors we have the estimate
(#.15]). There are at most 122" such factors. Consequently, by Lemma 2) and

Lemma [4.7)(5), we get
(8) 122" 1 irm nl2** _bip .
@iy (@) < M= WG exp (TO' (2\/71 diam Ql))

This implies (4), since o* is decreasing. O

5. THE EXTENSION THEOREM

In this section we prove the implication (2) = (1) in Theorem[I.3] We subdivide
the proof into three parts for two reasons:
(1) The proof is (by nature) quite technical. We hope that the subdivison
improves the clarity of the presentation.
(2) The organization into parts should make it easier to see, where in the line
of arguments the particular assumptions are needed. The first two parts
Section [5.1] and Section[5.2] prepare the stage with preliminary lemmas and
estimates. This is the place, where we use that the heir ¢ of w is good.
The actual proof of the extension theorem is given in the third part, i.e.,
Section

In Section we deduce a consequence for Denjoy—Carleman classes and compare
it with the result of [10]. Finally, in Section we discuss the relation of strong
and good weight functions.

5.1. Preliminaries, I. Let F C R™ be a compact set. Let S = (Si) be a weight
sequence satisfying s,i/k — oo and let F' = (F'%), be a Whitney ultrajet of class
B{5} on E, i.e., there exist C > 0 and p > 1 such that
|[F*(a)] < Cpl*1 S|, a€N", a€BE, (5.1)
[((REF)*(b)] < CpF*t o' spgr |0 —al* 1710l keN, |o| <k, a,be E. (5.2)
The extension of F' will be of the form
> i@ To I F@), ceRM\E, (5.3)
ieN
where

e {©iptien is a partition of unity provided by Proposition (z; is the center
of the cube Q;),
e S’ is a suitable weight sequence and L is a constant, both depending on S.

For simplicity of notation we use the abbreviation d(z) := d(z, E). Recall that &
denotes any point in F with d(z) = |z — &|.
We begin with several estimates for the Taylor polynomials appearing in (5.3)).
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Lemma 5.1. Foraj,as € E, x € R" and |a| < ¢,
(T3 F = T4 F) ()] < C2n°p)T ol sgpa(lar — 2] + |y — ag]) T 71
Proof. This is straightforward; for details see [10, Proposition 10]. O

/k

Lemma 5.2. Let S, S’ be weight sequences satisfying 3,1C — 00, (s1)"F = oo,

and
A< 1VE>0: 2T (t) < L (At). (5.4)

Then there is a constant D1 = D1(S,S") > 1 such that, for all Whitney ultrajets
F = (F%)q4 of class BUSY that satisfy (5.1) and (5.2), all L > Dip, all z € R™, and
a e N,

(25 D YD )] < O@L) S, (55)
and, if |a| < 2Ty (Ld(x)),
(@ DR @) - (@) < CL ol sapd(@). (5.6)
Proof. For we may restrict to the case |a| < 2Ty (Ld(z)). By (5.1)),

QF/ de
|(Tj o (Ld( ))F)(a)($)| < Z

a<p
|B]<2T ./ (Ld(x))

|x_£|\6\—\a|
G-ay 7

L nd(z))81-1a]
T S R

a<p
|B1<2T s (Ld(x))

Cla|!
< ——— (2npd(z))1Pls
(nd(x))le az;ﬂ 1l
|8|<2T/ (Ld(x))

T, (Ld(x))
' S
< Skl Ty
= (nd(a))

j=lal

since the number of 8 € N* with |3| = j is bounded by n’. By (5.4), we may let j

(20 pd(2))s;, (5.7)

run from |a| to I',(LAd(z)) in the sum on the right-hand side of (5.7)). For such j
we have (LAd(z))7s; < (LAd(z))!®ls|,, by Lemma , and hence
o Lo (@) ( 2n2p>j
; LX
j=lal
We obtain (5.5) if L is chosen such that 2n?p/(L\) < 1/2; then Dy = 4n?/\.
For (5.6) note that, if |a| < 2Ty (Ld(x)), then

o .
(2T D ) )| < 051 (£2)

n

_ _ A\B—a

(T;FS/(Ld(I))F)(a) (1’) o Fa(ii’) _ Z (.’E CL') ' F’B(fﬁ)
]

la| <|BI<2T s (Ld())

Thus the same arguments yield (5.6)). O
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5.2. Preliminaries, II. Let ¢ be a good weight function and let & be the asso-
ciated weight matrix. Let E be a compact subset of R" and F € B} (E ) There

there are S, S Se6 Satlsfylng S<S§< S < S such that
AD=D(S) > 1Vt >0:

_ _ T,
Ts(D*) < Ty(D?*t) < Ts(D?*) <Ty(Dt) < 5 ) (5.8)
as well as
Vj, ke N: Sjtk < éjék, (59)
Vi k€ N: 45 < 55 (5.10)

Let {Q;}ien be the family of cubes provided by Lemma and let by, By be the
constants from Lemma [£.7] Let z; be the center of Q;.

Lemma 5.3. There is a constant C’1 = C1(S) > 0 such that for all L > C1p, all
B €N, and all x € QF with d(x) <

|98 (p 2 (Fde)) p _ p2Pa(Ld(@:) )(a:)|§0L|5|+1§w|h§(Ld(a:i)). (5.11)

Proof. Tt suffices to consider || < 2T's(Ld(w;)) =: q. Let H; denote the left-hand
side of . By Lemma
H1 < C@np) 8| sqra (|8 — @] + &5 — &)L
By and ,
Sq+1 < 818¢ = 3152F (Ld(z; )) > 3132 Ts(Ld(x:))"
Together with Corollary 4.8 we conclude that

Hy, < C51(2n2p)1TH B! 52

T (La(any (6() T

By the definition of T's,
ha(Ld(2)) = 35, (La(a,) (Ld(@ ;)T @) < 50 (Ld(x:))1) for all B.
Since d(z;) < 3d(z), by Corollary [4.8 we find

q
) @) L8155 s (Ld(2)).
If L > 36n251 p and d(z) < 1, then (5.11)) follows. O

Lemma 5.4. There is a constant Co = C3(S) > 0 such that for all L > Csp, all
B eN", and all x € QF with d(z) < 1

12n2p

H; <36 Céln2p(

1B+
|ag( 2r (Ld(zi) o _ T2r (Ld(g,))F)( )|<C<3LD)

Swh (3LDd(x)). (5.12)
Proof. Let Hs denote the left-hand side of ([5.12] - Using (5.8)), Corollaryand the
fact that I, is decreasing, it is easy to see that both 2T's(Ld(z;)) and 2Ts(Ld(z))
are majorized by [ (LAd(x)) for some A < 1. So the degree of the polynomial

T2ed@) p Tgfg(Ld(m))F is at most I';(LAd(z)). Similarly the valuation of the

x

polynomial is at least 23(3LDd(x)) =: 2q, indeed, using that T; is decreasing
2T:(Ld(x;)) > 20 ;(Ld(z;)) > 2L:(3Ld(x)) > 2T(3LDd(x))
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and analogously for 2I's(Ld(z)). Thus, by the calculation in (5.7)),

c|]! L (LAd(z)) ‘
Hy < W Z (2n2pd(m))35j.
J=2q

By Lemma [3.2{(3)),
sj(LAd(z))? < s9q(LAd(2))??  for 2¢ < j < T (LAd(x)).
By (5.9]), 524 < 53 < 83 By the definition of ¢,
hs(3LDd(z)) = 5,(3LDd(z))? < 55/ (3LDd(z))"l  for all |B].
All this leads to

L_(LAd(z)) .
clpll 2n%p\ 7 2
Hy < — 1T L a
2= do)? & L ) s2¢(LAd(z))
L. (LAd(z)) .
_CIBt 2n’p ) B (LA ()
= (nd(z))!Pl 5, LX) 71
L (LXd(z)) .
3LD\ |8l A \2q¢° 2n2p J
— 15 .
= C( n ) w"s'ﬁ'hs(?’LDd(x))(?)D) 2 ( [3) ) '

If we choose L > 4n2p/), then the sum is bounded by 2, and (5.12) follows, as
A<land D >1. [l

5.3. The extension theorem.

Theorem 5.5. Let w be a non-quasianalytic concave weight function and let o
be a good heir of w. Let E be a compact subset of R™. Then the jet mapping
3% BWHR) — BITH(E) is surjective.

Proof. We assume that the setup of Section holds. Assume
L > max{C1,Cs} p (5.13)

so that (5.11]) and (5.12)) are valid.
Let p € N be fixed (and to be specified later). Let {¢; p}ien be the family of

functions provided by Proposition relative to the family of cubes {Q; }ien from
Lemma and let 7o = r9(p) be the constant appearing in this proposition. Recall
that x; denotes the center of @Q;.

We will show that an extension of class B{“} of F' to R” is provided by

2T s (Ld(z; . n
Fo) o | Sien #i(@) T3] LD p(g),  ifz e RM\ E,
FO(x), ifexeE.
Clearly, f is C* in R™\ E.
In the following 20 denotes the weight matrix associated with w.

Claim. There ezist constants K; = K;(S), j = 1,2,3, such that the following
holds. If p = KiL and L > Ksp, then there exist weight sequences W € 23,
S € & and a constant My = My(S,L) > 0 such that for all z € R" \ E with
d(z) < (3B1) 7 and all o € N",

10°(f — T2 Y ()| < CMIM W 0y hs (LK d(x)), (5.14)
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where C' and p are the constants from (5.1) and (5.2) (and B; stems from
Lemma .

Proof of the claim. By the Leibniz rule,
aa(f _ T?fs(Ld(m))F> (1.>

72T (Ld(z: oT s (Ld(>
—Z(>Z D) (2) 9 (TN p_ pTe @ py 0y (5,15
BLla
Using Corollary @ 3 S § which entails h; < hg, and the fact that hy is increasing,
we conclude from and (5.12), that for 2 € Q7 with d(z) < 1,
9% (T Ld(%”p 72T @) By (2)] < C(6DL)PHLS gy hs(3LDd(x)).

By Proposmon H there exist W = W(p) € 20 and M = M(p) > 0 such that,
provided that d(Q;, E) < ro/Bj, we have, for all 8 € N® and z € R" \ E,

|80(ﬁ)( )| < MW, exp (z‘h}in) a*(Ab;(p) diam Qz))

< MW exp (Alzgn)a*(gj;’; sl 7)) = MWigT(p, ),

by Corollary E since o* is decreasing (recall that supp(gpl p) C Q).
Let us assume that z € R™ \ E satisfies d(z) < (331) ro. Then, if x € QF,

d(Q;, E) < d(z;) < 3d(z) < 37,
1
by Corollary So, for all i € N, z € R™ \ E with d(z) < (3B1)~ "o, and € N,
|§0§§7)(1')| < MVVW\ I(p, x).

By Lemma and Lemma , we may assume that S < D W for some
constant D;. Then, by (5.15) and Lemma for x € R"\ E with d(z) < (3B1) " tro,

0°(f — Tde@”’)F)( )l

<> o 122" MW,o)— 15 (p, z) - C(6DL)PIT1S 5 hg(3LDd(x))
BLla

< 122"C’M( Z W(GDL)J‘+1W|Q|_J.§J-) T(p, z) hs(3LDd(x))

o]
< 6122"DLCD, Mn/*W,,, (Z (|(|1||'_j)(6DLn) ) I(p, z) hs(3LDd())
=6122"DLCD; M(n(1 + 6DLn))|a|Ma|H(p, ) hg(3LDd(x)),

since W|a‘,j§j < Dy W —;W; < Dy W, by Lemma 2). By (3.17)), for each
S € & there is a constant H > 1 such that

(p,z) < (

Aj(m)H
€ P

bipd(x)
ha( 9A§(an )

By Lemma there is a constant B > 1 such that hy(t) < hz(Bt)? provided that
S]J,.k < S Sk for all j, k. That such S € & exists follows from Lemma |l)
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Let us choose L according to (5.13)) and such that p := 27 Ay(n)HBDL/b; >
Aj(n)H is an integer. Then, since hz < 1,

ehz(3LDd(x))
< ————— < ehz(3BLDd
S 1BBLDd()) = M ()
and we obtain ([5.14). (Note that M depends on p, and hence on L, which results
in the non-explicit dependence of Mj.) The claim is proved.

End of proof. By (5.8), we have (5.4) with §’ := S. We may additionally assume
that L > D;p for the corresponding constant D; in Lemma So, by (5.5) and
(5.14), for x € R™\ E with d(z) < (3B1) 'rg and a € N”,
1O @) < |0 B @) 4 o (f - T F) @)
< oM w, (5.16)
for a suitable constant M = M (S, L); here we use that hy < 1.

Let us fix a point @ € E'and o € N". Since Ti(t) = coast — 0 (see Lemma,
we have |a| < 2T';(Ld(x)) if x € R™ \ E is sufficiently close to a. Thus, as x — a,

£ (@) - F*(a)|
<[0(f — TN ) ()] 4 (T2 PO F) @ (2) — F2 ()] + [F(&) — F*(a)]
— O(hs(LK3d(2))) + O(d(x)) + O(|i - al),

by (5.2), (where &’ = §), and (5:14). Hence f™(z) — F%(a) as = — a.

We may conclude that f € C°°(R™). After multiplication with a suitable cut-off
function of class B} with support in {z : d(z) < (3B;) 'ro}, we find that f €
B} (R™) thanks to (5.1)), (5.16)), and Lemma [2.4|[). The theorem is proved. [

Remark 5.6. The proof of Theorem shows that for each p > 0 there exist
M(p) > 0 and a continuous linear extension operator B (E) — BJ\VZ(,;) (R™). This

I(p, x) hs(3LDd(x))

extension operator depends on p and S (through L and p) and in general there is
no continuous extension operator BL7H(E) — BI“}(R™), cf. 22] and [27, p. 223)].

5.4. The extension theorem for Denjoy—Carleman classes. In this section
we prove a consequence of the extension theorem [5.5] for Denjoy—Carleman classes
and compare it with the result of [10]. The sine qua non for the extension of jets
of class B} to a function of class B} is the following condition:

1 k
IC>0VEEN: Y — <C—. (5.17)
>k Ve B

(This is true, if M has moderate growth, which we shall have to assume in the
main result of this section, Theorem In general, the right condition seems to
be () in [28] which is equivalent to provided that M has moderate growth,
see [28, 2.(c)].) In the next lemma we show that (5.17) implies for the
associated weight functions wys and wy. This is based on [I5], Proposition 4.4] and
was announced in [I0, p.39]. We include a full proof for the convenience of the
reader.

Lemma 5.7. Let M and N be weight sequences satisfying u < v and (5.17). Then

° wy (tu)
u2

IC>0Vt>0: / du < Cwp(t) + C. (5.18)

1
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Proof. Let ¥p(t) := max{k : pp, <t}. Then (cf. [19, p.21])

wy(t) = /Ot Zu () du. (5.19)

u

Similarly for ¥ and wpy. Since pg < v for all & we have Xy < ¥y, By (5.17),
N is non-quasianalytic and, by [15, Lemma 4.1],
En(t) wn (1)
t

Fix t > 14 and set p := Xy (t) and ¢ := En(¢); then p > ¢ > 1, vgy1 > ¢, and
Hp+1 > t. Integration by parts yields

[Ea,, B0, [ B

— 0 and —0 as t— oo.

u? t u
En(t — 1
_ Nt( ), 1
l=q+1 ¢
Y (t) "1 =1
Tt + Z ot ;Z
l=q+1 {=p+1
En(t 1
<IN P ppt
t Vg+1 Hp+1
by
<(2+20)$ for t > 11
Consequently, by integrating,
o0
by
[ B [ [ 2
s vy u
DX
< (2420) / w®) g

< (24 2C)wp(s)  for s > 1.

It follows that, for s > vy,

8/00 v (w) du < (24 2C)wp(s) + 11 /00 En(w) du

u? 0 u?

Clearly, this also holds for all 0 < s < v;. By partial integration and (5.19)),
/ wy(w) o, wWN(s) +/ En() o
s u? s s u?

Thus, using wy < way,

s/Oo wn (1) du < (34 2C)wp(s) + 11 /OO ENgu) du
s 0

2

U U
which implies (5.18]). O
Lemma 5.8. Let M be a weight sequence of moderate growth such that

liminfy_ oo m,lc/k > 0 and liminfy_, o por/mk > 1 for some Q € N>o. Then

BIMY(R") = Blesl(R™) and BIMY(E) = Bl“M}(E) for each compact E C R™.
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Proof. Since M is log-convex, we have (cf. e.g. [19])
VL — e et
e ® e T (520)
So the first identity follows from Theorem [2.5] since wyy is a weight function. The
second identity is a consequence of [24] (5.11)] and Definition O

Theorem 5.9. Let M and N be weight sequences of moderate growth satisfying
p S v, Assume that both the sequences pp/k and vy /k tend to infinity and are
almost increasing in the sense that

30>0V1§j§k:%§0%. (5.21)

Then the following conditions are equivalent:
(1) For every compact E C R™ the jet mapping j% : BINHR"™) — BIMH(E) is
surjective.
(2) There is a C > 0 such that [~ MNT(;U) du < Cwp(t) + C for allt > 0.
(3) Thereis a C >0 such that ), 712 <C - forallk €N.

k.

n
Proof. (3) = (2) follows from Lemma [5.7]since we may assume without loss of gen-
erality that p < v (otherwise we replace (N},) by an equivalent sequence (C¥Ny)).

(2) = (1) Since M has moderate growth, pi/k < m,lc/k tends to infinity and
hence wys(t) = o(t) as t — co. By (2), was is a heir of wy. The condition
(and ) guarantees that wys is a good heir of wy. Moreover, for v implies
that wy is equivalent to its least concave majorant; this follows from Theorem [3.1
and Theorem @ since v S N,i/ " as N has moderate growth (cf. [26, Lemma
2.2]). So Theorem and Lemma [5.8| entail (1).

(1) = (3) This follows from [10, Proposition 27]; an inspection of its proof shows
that the general assumption of [I0] that all sequences are strongly log-convez (i.e.
my, = My /k! is log-convex) is not needed. Alternatively, it is a consequence of [28]
Theorem 1.1] thanks to [28] 2.(c)]. O

Remark 5.10. By Theorem the condition (5.21)) can be replaced by
30> 0v1<j<k:m)) <Oom/". (5.22)

Theorem [5.9[should be compared with [I0, Theorem 30]. In the latter the sequences
M and N are assumed to be strongly log-convex which entails the weaker condition
(and (5.22))). On the other hand, in [I0, Theorem 30] moderate growth of N
is not required.

5.5. Strong and good weight functions. In view of Question and the fact
that every strong weight function is equivalent to a concave one it is natural to ask:

Question 5.11. Is every strong weight function equivalent to a good one?

By Theorem this holds true if the associated weight matrix satisfies ((3.21]).
We do not know the general answer to this question. However, we can provide
some more information on strong weight functions. We start with a corollary to

Lemma [5.7]
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Corollary 5.12. Letw be a weight function and let 20 = {W*},~¢ be the associated
weight matriz. Then w is a strong weight function provided that

1k
3x,y>ozzwgﬁ. (5.23)
0>k 4 k

Proof. This is immediate from Lemma since w is equivalent to wy = for all x > 0,
by [24, Lemma 5.7], and (5.18) is invariant under equivalence. O

Remark 5.13. Together with Theorem and [26, Corollary 5.13], the corol-
lary implies that actually (5.23)) is equivalent to w being strong, provided that the
associated weight matrix satisfies (3.21]). We do not know if this is always true.

The next lemma is based on a construction from [26] which stems from an idea
in [22] Proposition 1.1].

Lemma 5.14. Let M = {M*},~0 be a collection of non-quasianalytic weight se-
quences satisfying p* < pY whenever x < y. Assume that

1 k
Vo>03y>03C>0:) — <C—.

= (5.24)
0>k Hy i

Then there exists a collection of non-quasianalytic weight sequences & = {S%} >0
with the following properties:
(1) 1 <o} /k is increasing to oo for all x > 0.
(2) o < oY whenever x < y.
(3) Vx>03y>030>0:252ké§00%.
(4) V2 >03y>0:0" S ¥ and Y > 03y >0: pu® S ov.
Proof. With any positive increasing sequence p = (ug) satisfying po = 1 and

> x 1/ < oo we may associate a positive sequence 0 = o(p) in the following
way: we define

Kk ik Hj
and set f
ok :Tl—, k>1, o9:=1
Tk

Then, cf. |26, Lemma 4.2],

o< .

ijk; 1/p; S k/ok.

1 < o1 /k is increasing to oo (in particular, S is strongly log-convex).

If 4/ is an increasing positive sequence satisfying p' < pand 30,5, 1/p5 S
k/uy, then ¢/ S o.

If we apply this construction to the sequences in 9t we obtain a collection of weight
sequences & = {S5%},~( which satisfies the properties (1)—(4). By (4), there exists
o > 0 such that S* is non-quasianalytic for all x > xg. If we set S* := S*° for all
x < xg, the collection G is as desired. (I

Theorem 5.15 (Strong weight functions). Let w be a weight function. Assume
that the associated weight matriz 2 = {W*} .o satisfies

Vo > 03y >0: 97 < (W)VE, (5.25)
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Then the following conditions are equivalent:

(1) w 1is strong.
(2) Vx>03y>030>0:222k%§0%,

(3) 3x>03y>030>0:2£>kﬂ%30%.
- 4

If w is strong, then there exists a collection & = {S*},~0 of strongly log-convex
sequences such that

Ve>03y>0:0"<9Y and Vr>03y>0:9° SoY (5.26)
and w s good.

Note that (5.25)) is only needed for (1) = (2).

Proof. For the equivalence of (1), (2), and (3), see Corollary Remark
and the references cited therein.

Lemma [5.14] implies the statement about &. Goodness of w follows either from
Theorem [3.18] since a strong weight function is equivalent to a concave one, or from
the strong log-convexity of the S* and : for each x > 0 we find y, z > 0 such
that y

x Y z
P Y for 1 < j < k. 0
3~ k™~ k

We remark that the condition entails B{“}(R") = ind,~q BIS"H(R"), by

Theorem 2.5
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