
SOBOLEV LIFTING OVER INVARIANTS

ADAM PARUSIŃSKI AND ARMIN RAINER

Abstract. We prove lifting theorems for complex representations V of finite groups G.
Let σ = (σ1, . . . , σn) be a minimal system of homogeneous basic invariants and let d be
their maximal degree. We prove that any continuous map f : Rm → V such that f = σ ◦ f
is of class Cd−1,1 is locally of Sobolev class W 1,p for all 1 ≤ p < d/(d−1). In the case m = 1
there always exists a continuous choice f for given f : R → σ(V ) ⊆ Cn. We give uniform
bounds for the W 1,p-norm of f in terms of the Cd−1,1-norm of f . The result is optimal:
in general a lifting f cannot have a higher Sobolev regularity and it even might not have
bounded variation if f is in a larger Hölder class.
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1. Introduction

1.1. Motivation and introduction to the problem. This paper arose from our wish to
understand and extend the principles behind our proof of the optimal Sobolev regularity
of roots of smooth families of polynomials [13, 15, 16, 17]. Here we look at this problem
from a representation theoretic view point. In fact, choosing the roots of a family of monic
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2 ADAM PARUSIŃSKI AND ARMIN RAINER

polynomials

Pa(x)(Z) = Zn +
n∑
j=1

aj(x)Zn−j

means solving the system of equations

a1(x) =
n∑
j=1

λj(x)

a2(x) =
∑

1≤j1<j2≤n

λj1(x)λj2(x)

...

an(x) =
n∏
j=1

λj(x)

for functions λj, j = 1, . . . , n. In other words, it means lifting the map a = (a1, . . . , an) over
the map σ = (σ1, . . . , σn) the components of which are the elementary symmetric functions
in n variables,

σi(X1, . . . , Xn) =
∑

1≤j1<···<ji≤n

Xj1Xj2 · · ·Xji .

The map σ can be identified with the orbit projection of the tautological representation of
the symmetric group Sn on Cn (it acts by permuting the coordinates).

In this paper we shall solve the generalized problem for complex finite dimensional repre-
sentations of finite groups. Let G be a finite group. Let ρ : G→ GL(V ) be a representation
of G on a finite dimensional complex vector space V . By Hilbert’s finiteness theorem the
algebra of invariant polynomials C[V ]G is finitely generated. Let σ1, . . . , σn be a system of
generators, we call them basic invariants, and let σ = (σ1, . . . , σn) be the resulting map
σ : V → Cn. The map σ separates G-orbits and hence induces a homeomorphism between
the orbit space V/G and the image σ(V ). (Notice that since G is finite and thus all G-orbits
are closed, there is a bijection between the orbits and the points in the affine variety V //G
with coordinate ring C[V ]G; in other words the categorical quotient V //G is a geometric quo-
tient.) As a consequence we may identify V/G with σ(V ) and the canonical orbit projection
V → V/G with σ : V → σ(V ). We will also write G 	 V for the representation ρ.

The basic invariants can be chosen to be homogeneous polynomials. A system of homo-
geneous basic invariants is minimal if none among them is superfluous. In that case their
number and their degrees are uniquely determined (cf. [5, p.95]).

Assume that a map f : Ω→ σ(V ) defined on some open subset Ω ⊆ Rm is given. We will
assume that f possess some degree of differentiability as a map into Cn. The question we
will address in this paper is the following:

How differentiable can lifts of f over σ be? By a lift of f over σ we mean a
map f : Ω→ V such that f = σ ◦ f .

Simple examples show that, in general, a big loss of regularity occurs from f to lifts of f . We
will determine the optimal regularity of lifts among the Sobolev spaces W 1,p under minimal
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differentiability requirements on f . In particular, the optimal p > 1 will be determined as
an explicit function of the maximal homogeneity degree of the basic invariants.

Note that the results do not depend on the choice of the basic invariants since any two
choices differ by a polynomial diffeomorphism.

Our results could be useful in connection with the orbit space reduction of equivariant
dynamical system for lifting the solutions from orbit space (even though it is not clear when
a lifted solution solves the original differential equation). Another application to multi-valued
Sobolev functions is discussed at the end of the paper.

1.2. The main results. The first result concerns the lifting of curves. We recall that, since
G is finite, each continuous a : I 7→ σ(V ), where I ⊆ R is an interval, has a continuous lift
a : I → V , by [9, Theorem 5.1].

Theorem 1.1. Let G be a finite group and let G 	 V be a representation of G on a finite
dimensional complex vector space V . Let σ = (σ1, . . . , σn) be a (minimal) system of homoge-
neous basic invariants of degrees d1, . . . , dn and set d = maxi di. Let a ∈ Cd−1,1([α, β], σ(V ))
be a curve defined on an open bounded interval (α, β) with values in σ(V ). Then each con-
tinuous lift a : (α, β)→ V of a over σ is absolutely continuous and belongs to W 1,p((α, β), V )
with

(1) ‖a′‖Lp((α,β)) ≤ C(G 	 V, (β − α), p) max
1≤j≤n

‖aj‖
1/dj
Cd−1,1([α,β])

for all 1 ≤ p < d/(d − 1), where C is a constant which depends only on the representation
G 	 V , the length of the interval (α, β), and p.

The conclusion of the theorem is in general optimal among Sobolev spaces, the differ-
entiability assumption on a is best possible; see Remark 3.2. Here and below we use the
notation

Cd−1,1([α, β], σ(V )) := Cd−1,1([α, β],Cn) ∩ σ(V )(α,β);

the Hölder class Cd−1,1 is defined in Section 2.

Remark 1.2. (a) In general the constant in (1) is of the form

C(G 	 V, p) max{1, (β − α)1/p, (β − α)−1+1/p}.

(b) If the curve a starts, ends, or passes through 0 (that is the most singular point in
σ(V )), then the constant in (1) is of the form

(2) C(G 	 V, p) max{1, (β − α)1/p}.

(c) If the representation is coregular, then for all a satisfying the assumptions of Theo-
rem 1.1 the constant is of the form (2). A representation G 	 V is called coregular if C[V ]G

is isomorphic to a polynomial algebra, i.e., there is a system of basic invariants without poly-
nomial relations among them. By the Shephard–Todd–Chevalley theorem ([20], [2], [19]),
this is the case if and only if G is generated by pseudoreflections.

(d) The constant is also of the form (2) if the curve a satisfies a(j)(α) = a(j)(β) = 0 for all
j = 1, . . . , d− 1.
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Question 1.3. The constant in (1) tends to infinity as p → d/(d − 1) =: d′. Our proof
yields that it blows up like a power of (d′− p)−1/p, since we have to iterate the inequality (5)
several times when we pass from Ld

′
w -(quasi)norm to Lp-norm. This is necessary, since the

former is not σ-additive. We expect that the asymptotic behavior of the constant as p→ d′

is actually better: Is the constant actually O((d′ − p)−1/p) as p → d′? Can one replace the
Lp-norm of a′ by the Ld

′
w -(quasi)norm in (1)?

The lifting of mappings defined in open domains of dimension m > 1 essentially admits
the same regularity as for curves, provided that continuous lifting is possible. However, there
are well-known topological obstructions for continuous lifting in general. We will prove the
following

Theorem 1.4. In the setting of Theorem 1.1 let f ∈ Cd−1,1(Ω, σ(V )), where Ω ⊆ Rm is an
open bounded box Ω = I1×· · ·×Im. Then each continuous lift f : U → V of f over σ defined
on an open subset U ⊆ Ω belongs to W 1,p(U, V ) for all 1 ≤ p < d/(d− 1) and satisfies

(3) ‖∇f‖Lp(U) ≤ C(G 	 V,Ω,m, p) max
1≤j≤n

‖fj‖
1/dj

Cd−1,1(Ω)

for all 1 ≤ p < d/(d − 1), where C is a constant which depends only on the representation
G 	 V , on Ω, m, and p.

The case U = Ω is not excluded! It is clear that Theorem 1.4 implies a version of the
statement, where Ω ⊆ Rm is any bounded open set, U b Ω is relatively compact open in Ω,
and the constant also depends on U (or more precisely on a cover of U by boxes contained
in Ω). Concerning a global result we have the following

Remark 1.5. If G 	 V is coregular, then Theorem 1.4 holds as stated for any bounded
Lipschitz domain Ω.

When continuous lifting is impossible, we expect that a general BV -lifting result is true
analogous to the existence of BV -roots for smooth polynomials proved in [17]. We shall not
pursue that question in this paper.

1.3. Linearly reductive groups. An algebraic group G is called linearly reductive if for
each rational representation V and each subrepresentation W ⊆ V there is a subrepresenta-
tion W ′ ⊆ V such that V = W ⊕W ′.

For rational representations of linearly reductive groups G Hilbert’s finiteness theorem
is true, that is the algebra of G-invariant polynomials C[V ]G is finitely generated. Let
σ = (σ1, . . . , σn) be a system of generators. Then the map σ : V → σ(V ) ⊆ Cn can
be identified with the morphism V → V //G induced by the inclusion C[V ]G → C[V ]; the
categorical quotient V //G is the affine variety with coordinate ring C[V ]G. In general V //G
is not a geometric quotient, that is the G-orbits in V are not in a one-to-one correspondence
with the points in V //G. In fact, for every point z ∈ V //G there is a unique closed orbit in
the fiber σ−1(z) which lies in the closure of every other orbit in this fiber.

In this setting it is not clear if a continuous curve in σ(V ) admits a continuous lift to
V . The notion of stability in geometric invariant theory provides remedy. A point v ∈ V is
called stable if the orbit Gv is closed and the isotropy group Gv = {g ∈ G : gv = v} is finite.
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The set V s of stable points in V is G-invariant and open in V , and its image σ(V s) is open
in V //G ∼= σ(V ) (cf. [11, Proposition 5.15]). The restriction σ : V s → σ(V s) of the map σ
provides a one-to-one correspondence between points in σ(V s) ∼= V s/G and G-orbits in V s,
that is V s/G is a geometric quotient.

Lemma 1.6. Let a : I → σ(V s), where I ⊆ R is an open interval, be continuous. Then a
has a continuous lift a : I → V s.

Proof. For every v ∈ σ−1(a(I)) there is a local continuous lift av of a defined on some
open subinterval Iv of I with av(tv) = v for some point tv ∈ Iv. This follows from the
lifting theorem [9, Theorem 5.1], since locally at any v the problem can be reduced to the
slice representation of the isotropy group Gv which is finite (cf. Theorem 4.2). Now each
continuous lift a of a defined on a proper subinterval J of I has an extension to a larger
interval J ′ ⊆ I. Thus there is a continuous lift on I. Indeed, say the right endpoint t1 of J
lies in I. There is continuous lift av : Iv → V s for v ∈ σ−1(a(t1)). Choose t0 ∈ J ∩ Iv and
g ∈ G such that a(t0) = gav(t0). Then gav extends the continuous lift a beyond t1. �

As a corollary of Theorem 1.1 we obtain

Theorem 1.7. Let G be a linearly reductive group and let G 	 V be a rational representation
of G on a finite dimensional complex vector space V . Let σ = (σ1, . . . , σn) be a (minimal)
system of homogeneous basic invariants of degrees d1, . . . , dn and set d = maxi di. Let a ∈
Cd−1,1([α, β], σ(V s)) be a curve defined on a compact interval with a([α, β]) ⊆ σ(V s). Then
there exists an absolutely continuous lift a : [α, β] → V s of a over σ which belongs to
W 1,p([α, β], V s) with

(4) ‖a′‖Lp([α,β]) ≤ C(G 	 V, [α, β], p) max
1≤j≤n

‖aj‖
1/dj
Cd−1,1([α,β])

for all 1 ≤ p < d/(d− 1).

Proof. Since the lifting problem can be reduced to the slice representations (cf. Theorem 4.2
and Lemma 4.5), and for all v ∈ V s the isotropy group Gv is finite, Theorem 1.1 implies
that for all v ∈ σ−1(a([α, β]) there exists a local absolutely continuous lift av of a defined on
a subinterval Iv of [α, β] which is open in the relative topology on [α, β] such that

‖a′v‖Lp(Iv) ≤ C(G 	 V, |Iv|, p) max
1≤j≤n

‖aj‖
1/dj

Cd−1,1(Iv)
, 1 ≤ p <

d

d− 1
,

and there is a point tv ∈ Iv with av(tv) = v. By compactness, there is a finite collection
of local lifts which cover [α, β]. It is then easy to glue these pieces (after applying fixed
transformations from G) to an absolutely continuous lift a defined on [α, β] and satisfying
(4). �

For a mapping f defined on a compact subset K of Rm with f(K) ⊆ σ(V s) the situation
is more complicated. We can apply Theorem 1.4 to the slice representations at any point
v ∈ V s. But it is not clear if these local (and partial) lifts can be glued together in a
continuous fashion.
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1.4. Polar representations. More can be said for polar representations (which include
e.g. the adjoint actions). The following results can be found in [3]. Let G be a linearly
reductive group and let G 	 V be a representation of G on a finite dimensional complex
vector space V . Let v ∈ V be such that Gv is closed and consider the linear subspace
Σv = {x ∈ V : gx ⊆ gv}, where g denotes the Lie algebra of G. All orbits that intersect
Σv are closed, whence dim Σv ≤ dimV //G. The representation G 	 V is said to be polar if
there exists v ∈ V with closed orbit Gv and dim Σv = dimV //G. Then Σv is called a Cartan
subspace of V . Any two Cartan subspaces are G-conjugate. Let us fix one Cartan space Σ.
All closed orbits in V intersect Σ.

The Weyl group W is defined by W = NG(Σ)/ZG(Σ), where NG(Σ) = {g ∈ G : gΣ = Σ}
is the normalizer and ZG(Σ) = {g ∈ G : gx = x for all x ∈ Σ} is the centralizer of Σ in G.
The Weyl group is finite and the intersection of any closed G-orbit in V with the Cartan
subspace is precisely one W -orbit. The ring C[V ]G is isomorphic via restriction to the ring
C[Σ]W . If G is connected, then W is a pseudoreflection group and hence C[V ]G ∼= C[Σ]W is
a polynomial ring, by the Shephard–Todd–Chevalley theorem (([20], [2], [19]).

Theorem 1.8. Let G 	 V be a polar representation of a linearly reductive group G. Let
σ = (σ1, . . . , σn) be a (minimal) system of homogeneous basic invariants of degrees d1, . . . , dn
and set d = maxi di.

(1) Let a ∈ Cd−1,1([α, β], σ(V )) be a curve defined on an open bounded interval (α, β)
with values in σ(V ). Then there exists an absolutely continuous lift a : (α, β)→ V of
a over σ which belongs to W 1,p((α, β), V ) for all 1 ≤ p < d/(d− 1) and satisfies (1).

(2) Let f ∈ Cd−1,1(Ω, σ(V )), where Ω ⊆ Rm is an open bounded box Ω = I1 × · · · × Im.
Each continuous lift f defined in an open subset U ⊆ Ω with values in a Cartan
subspace Σ is of class W 1,p on U for all 1 ≤ p < d/(d− 1) and satisfies (3).

(3) In the case that G is connected the constant in (1) is of the form (2) and Ω can be
any bounded Lipschitz domain.

Proof. Apply Theorem 1.1 and Theorem 1.4 to the Weyl group W acting on a Cartan
subspace Σ. If G is connected, then W 	 Σ is coregular, so (3) follows from Remark 1.2 and
Remark 1.5. �

1.5. A related problem. In an analogous way one may consider the case that V is a real
finite dimensional vector space and ρ : G → O(V ) is an orthogonal representation of a
finite group. Again the algebra of G-invariant polynomials R[V ]G is finitely generated, and
a system of basic invariants σ allows us to identify σ(V ) with the orbit space V/G. In this
case σ(V ) is a semialgebraic subset of Rn. In that setting the problem was solved in [14]:

Theorem 1.9. Let G be a finite group and let G 	 V be an orthogonal representation of G
on a finite dimensional real vector space V . Let σ = (σ1, . . . , σn) be a (minimal) system of
homogeneous basic invariants of degrees d1, . . . , dn and set d = maxi di.

(1) Let a ∈ Cd−1,1([α, β], σ(V )). Then each continuous lift a : (α, β) → V of a over σ
belongs to W 1,∞((α, β), V ) with

‖a′‖L∞((α,β)) ≤ C(G 	 V, (β − α)) max
1≤j≤n

‖aj‖
1/dj
Cd−1,1([α,β])

.
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Every continuous curve in σ(V ) has a continuous lift.
(2) Let f ∈ Cd−1,1(Ω, σ(V )), where Ω ⊆ Rm is open and bounded. Then each continuous

lift f : U → V of f over σ defined on an open subset U ⊆ Ω belongs to W 1,∞(U, V )
with

‖∇f‖L∞(U) ≤ C(G 	 V,Ω, U,m) max
1≤j≤n

‖aj‖
1/dj

Cd−1,1(Ω)
.

In the special case of the tautological representation of Sn on Rn this corresponds to the
problem of choosing the roots of hyperbolic polynomials, i.e., monic polynomials all roots of
which are real; see [13].

The main difference between the complex and the real problem is that in the latter case
the map v 7→ 〈v, v〉 = ‖v‖2 is an invariant polynomial which may be taken without loss of
generality as a basic invariant and thus as a component of the map σ. The key is that this
basic invariant dominates all the others, by homogeneity,

|σj(v)| ≤ max
‖w‖=1

|σj(w)| ‖v‖dj .

Even though we can always choose an invariant Hermitian inner product in the complex case
(by averaging over G) and hence assume that the representation is unitary, the invariant form
v 7→ ‖v‖2 is not a member of C[V ]G. The fact that there is no invariant that dominates all
others makes the complex case much more difficult.

1.6. Elements of the proof. We briefly describe the strategy of the proof of Theorem 1.1.
The basic building block of the proof is that the result holds for finite rotation groups Cd

in C, where C[C]Cd is generated by z 7→ zd and a lift of a map f is a solution of the equation
zd = f . This follows from [6]. Among all representations of finite groups G of order |G| it
is the one with the worst loss of regularity, since in general d ≤ |G|, by Noether’s degree
bound, and equality can only happen for cyclic groups. See Section 3.

In the general case we first observe that evidently one may reduce to the case that the linear
subspace V G of invariant vectors is trivial. Then Luna’s slice theorem (see Theorem 4.2)
allows us to reduce the problem locally to the slice representation Gv 	 Nv of the isotropy
group Gv = {g ∈ G : gv = v} on Nv, where TvV ∼= Tv(Gv)⊕Nv is a Gv-splitting. Since in our
case G is finite, we have Nv

∼= V . The assumption V G = {0} entails that for all v ∈ V \ {0}
the isotropy group Gv is a proper subgroup of G which suggests to use induction.

For this induction scheme to work we need that the slice reduction is uniform in the sense
that it does not depend on the parameter t of the curve a in σ(V ) ⊆ Cn. We achieve this
by considering the curve

a = (a
−d1/dk
k a1, . . . , a

−dn/dk
k an), when ak 6= 0,

and the compactness of the set of all a ∈ σ(V ) such that |aj| ≤ 1 for all j = 1, . . . , n and
ak = 1. Let us emphasize that hereby we use a fixed continuous selection âk of the multi-

valued function a
1/dk
k which is absolutely continuous by the result for the rotation group

Cdk 	 C.
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If a ∈ Cd−1,1([α, β], σ(V )) and t0 ∈ (α, β) is such that a(t0) 6= 0, then we choose k ∈
{1, . . . , n} dominant in the sense that

|a1/dk
k (t0)| = max

1≤j≤n
|a1/dj
j (t0)| 6= 0.

It is easy to extend the lifts to the points, where a vanishes, so we will not discuss them here.
We work on a small interval I containing t0 such that for all j = 1, . . . , n and s = 1, . . . , d−1,

‖a(s)
j ‖L∞(I) ≤ C(d)|I|−s|ak(t0)|dj/dk ,

LipI(a
(d−1)
j ) ≤ C(d)|I|−d|ak(t0)|dj/dk .

This can be achieved by choosing the interval I in such a way that t0 ∈ I ⊆ (α, β) and

M |I|+
n∑
j=1

‖(a1/dj
j )′‖L1(I) ≤ B|ak(t0)|1/dk ,

where B is a suitable constant which depends only on the representation and the constant M
depends on the representation and the curve a. Notice here we use again absolute continuity
of radicals (i.e. the result for complex rotation groups). Uniform slice reduction allows us to
switch to a reduced curve b : I → τ(W ) of class Cd−1,1, where H 	 W is a slice representation
of G 	 V and the map τ = (τ1, . . . , τm) consists of a system of homogeneous generators for
C[W ]H . For convenience we will refer to the tuple (a, I, t0, k; b) as reduced admissible data
for G 	 V .

The core of the proof (see Proposition 8.2) is to show that, if (a, I, t0, k; b) is reduced
admissible data for G 	 V , then every continuous lift b : I → W of b is absolutely continuous
and satisfies

‖b′‖Lp(I) ≤ C(d, p)
(
‖|I|−1|ak(t0)|1/dk‖Lp(I) +

m∑
i=1

‖(b1/ei
i )′‖Lp(I)

)
for all 1 ≤ p < d/(d − 1), where ei = deg τi. This is done by induction on the group order
and involves showing that the set of points t in I where b(t) 6= 0 can be covered by a special
countable collection of intervals on which b defines reduced admissible data for H 	 W . The
difficult part is to assure that each point is covered by at most two intervals in the collection
(see Proposition 7.1) which is needed for gluing the local Lp-estimates to a global estimate on
I. It would suffice that each point lies in no more than a uniform finite number of intervals,
but the crucial thing is that the intervals must not be shrunk (see Remark 7.2).

1.7. An application: Q-valued functions. In Section 10 we explore an interesting con-
nection between invariant theory and the theory of Q-valued functions. These are functions
with values in the metric space of unordered Q-tuples of points in Rn (or Cn). There is a nat-
ural one-to-one correspondence between unordered Q-tuples of points in Kn (where K stands
for R or C) and the n-fold direct sum of the tautological representation of the symmetric
group SQ on KQ. Using the theory of Q-valued Sobolev functions rooted in variational cal-
culus, cf. [1] and [4], we will show that our main results entail optimal multi-valued Sobolev
lifting theorems. Thanks to the multi-valuedness there are no topological obstructions for
continuity.
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2. Function spaces

In this section we fix notation for function spaces and recall well-known facts.

2.1. Hölder spaces. Let Ω ⊆ Rn be open and bounded. We denote by C0(Ω) the space of
continuous complex valued functions on Ω. For k ∈ N ∪ {∞} (and multi-indices γ) we set

Ck(Ω) = {f ∈ CΩ : ∂γf ∈ C0(Ω), 0 ≤ |γ| ≤ k},
Ck(Ω) = {f ∈ Ck(Ω) : ∂γf has a continuous extension to Ω, 0 ≤ |γ| ≤ k}.

For α ∈ (0, 1] a function f : Ω→ C belongs to C0,α(Ω) if it is α-Hölder continuous in Ω, i.e.,

Höldα,Ω(f) := sup
x,y∈Ω,x 6=y

|f(x)− f(y)|
|x− y|α

<∞.

If f is Lipschitz, i.e., f ∈ C0,1(Ω), we write LipΩ(f) := Höld1,Ω(f). We define

Ck,α(Ω) = {f ∈ Ck(Ω) : ∂γf ∈ C0,α(Ω), |γ| ≤ k},

which is a Banach space when provided with the norm

‖f‖Ck,α(Ω) := max
|γ|≤k

sup
x∈Ω
|∂γf(x)|+ max

|γ|=k
Höldα,Ω(∂γf).

2.2. Lebesgue spaces and weak Lebesgue spaces. Let Ω ⊆ Rn be open and 1 ≤ p ≤ ∞.
Then Lp(Ω) is the Lebesgue space with respect to the n-dimensional Lebesgue measure Ln.
For Lebesgue measurable sets E ⊆ Rn we denote by

|E| = Ln(E)

the n-dimensional Lebesgue measure of E. Let p′ := p/(p−1) denote the conjugate exponent
of p with the convention 1′ :=∞ and ∞′ := 1.

Let 1 ≤ p < ∞ and let us assume that Ω is bounded. The weak Lp-space Lpw(Ω) is the
space of all measurable functions f : Ω→ C such that

‖f‖p,w,Ω := sup
r>0

(
r |{x ∈ Ω : |f(x)| > r}|1/p

)
<∞.

It will be convenient to normalize:

‖f‖∗Lp(Ω) := |Ω|−1/p‖f‖Lp(Ω),

‖f‖∗p,w,Ω := |Ω|−1/p‖f‖p,w,Ω.

Note that ‖1‖∗Lp(Ω) = ‖1‖∗p,w,Ω = 1. For 1 ≤ q < p <∞ we have (cf. [7, Ex. 1.1.11])

‖f‖∗Lq(Ω) ≤ ‖f‖∗Lp(Ω),

‖f‖∗q,w,Ω ≤ ‖f‖∗Lq(Ω) ≤
( p

p− q

)1/q

‖f‖∗p,w,Ω(5)

and hence Lp(Ω) ⊆ Lpw(Ω) ⊆ Lq(Ω) ⊆ Lqw(Ω) with strict inclusions.
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We remark that ‖ · ‖p,w,Ω is only a quasinorm: the triangle inequality fails, but for fj ∈
Lpw(Ω) we still have ∥∥∥ m∑

j=1

fj

∥∥∥
p,w,Ω

≤ m

m∑
j=1

‖fj‖p,w,Ω.

There exists a norm equivalent to ‖ · ‖p,w,Ω which makes Lpw(Ω) into a Banach space if p > 1.
The Lpw-quasinorm is σ-subadditive: if Ω =

⋃
Ωj is a countable open cover, then

‖f‖pp,w,Ω ≤
∑
j

‖f‖pp,w,Ωj for every f ∈ Lpw(Ω).

But it is not σ-additive.

2.3. Sobolev spaces. For k ∈ N and 1 ≤ p ≤ ∞ we consider the Sobolev space

W k,p(Ω) = {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω), 0 ≤ |α| ≤ k},
where ∂αf denote distributional derivatives, with the norm

‖f‖Wk,p(Ω) :=
∑
|α|≤k

‖∂αf‖Lp(Ω).

On bounded intervals I ⊆ R the Sobolev space W 1,1(I) coincides with the space AC(I)
of absolutely continuous functions on I if we identify each W 1,1-function with its unique
continuous representative. Recall that a function f : Ω → C on an open subset Ω ⊆ R is
absolutely continuous (AC) if for every ε > 0 there exists δ > 0 such that for every finite
collection of non-overlapping intervals (ai, bi), i = 1, . . . , n, with [ai, bi] ⊆ Ω we have

n∑
i=1

|ai − bi| < δ =⇒
n∑
i=1

|f(ai)− f(bi)| < ε.

Notice that W 1,∞(Ω) ∼= C0,1(Ω) on Lipschitz domains (or more generally quasiconvex do-
mains) Ω.

We shall also use W k,p
loc , ACloc, etc. with the obvious meaning.

2.4. Vector valued functions. For our problem we need to consider mappings of Sobolev
regularity with values in a finite dimensional complex vector space V . Let us fix a basis
v1, . . . , vn of V and hence a linear isomorphism ϕ : V → Cn. We say that a mapping
f : Ω→ V is of Sobolev class W k,p if ϕ ◦ f is of class W k,p. The space W k,p(Ω, V ) of all such
mappings does not depend on the choice of the basis of V .

For f = (f1, . . . , fn) : Ω→ Cn we set

(6) ‖f‖Wk,p(Ω,Cn) :=
n∑
j=1

‖fj‖Wk,p(Ω).

If f ∈ W k,p(Ω, V ), f 6= 0, and ϕ, ψ : V → Cn are two different basis isomorphisms, then

c ≤
‖ϕ ◦ f‖Wk,p(Ω,Cn)

‖ψ ◦ f‖Wk,p(Ω,Cn)

≤ C
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for positive constants c, C > 0 which depend only on the linear isomorphism ϕ◦ψ−1. We will
denote by ‖f‖Wk,p(Ω,V ) or simply ‖f‖Wk,p(Ω) any of the equivalent norms ‖ϕ ◦ f‖Wk,p(Ω,Cn).

Now suppose that we have a representation ρ : G→ GL(V ) of a finite group G on V . By
fixing a Hermitian inner product on V and averaging it over G we obtain a Hermitian inner
product with respect to which the action of G is unitary. We could equivalently define

‖f‖Wk,p(Ω) = ‖f‖Wk,p(Ω,V ) :=
∑
|α|≤k

(∫
Ω

‖∂αf‖p dx
)1/p

,

where ‖ · ‖ is the norm associated with the G-invariant Hermitian inner product. In that
case ‖f‖Wk,p(Ω,V ) is G-invariant.

2.5. Extension lemma. The following extension lemma simply follows from the C-valued
version proved in [16]. Similar versions can be found in [15, Lemma 2.1] and [6, Lemma 3.2].

Lemma 2.1. Let V be a finite dimensional vector space. Let Ω ⊆ R be open and bounded,
let f : Ω → V be continuous, p ≥ 1, and set Ω0 := {t ∈ Ω : f(t) 6= 0}. Assume that
f |Ω0 ∈ ACloc(Ω0, V ) and f |′Ω0

∈ Lp(Ω0, V ). Then the distributional derivative of f in Ω is a
measurable function f ′ ∈ Lp(Ω, V ) and

(7) ‖f ′‖Lp(Ω,V ) = ‖f |′Ω0
‖Lp(Ω0,V ),

where the Lp-norms are computed with respect to a fixed basis isomorphism.

3. Finite rotation groups in C

Let Cd ∼= Z/dZ denote the cyclic group of order d and consider its standard action on C
by rotation. Then C[C]Cd is generated by σ(z) = zd. A lift over σ of a function f : Ω → C
is a solution of the equation zd = f .

The solution of the lifting problem in this simple example is completely understood. We
shall see that the general solution is based on this prototypical case. Interestingly, it is also
the case with the worst loss of regularity.

The following theorem is a consequence of a result of Ghisi and Gobbino [6].

Theorem 3.1. Let d be a positive integer and let I ⊆ R be an open bounded interval.
Assume that f : I → C is a continuous function such that fd = g ∈ Cd−1,1(I). Then we
have f ′ ∈ Ld′w (I) and

(8) ‖f ′‖d′,w,I ≤ C(d) max
{(

LipI(g
(d−1))

)1/d|I|1/d′ , ‖g′‖1/d
L∞(I)

}
.

In other words any continuous lift f over σ(z) = zd of a curve in Cd−1,1(I, σ(C)) =
Cd−1,1(I) is absolutely continuous and f ′ ∈ Ld′w (I) with the uniform bound (8).

Remark 3.2. This result is optimal: in general, f ′ is not in Ld
′

even if g is real analytic
(consider g(t) = t). On the other hand, if g is only of class Cd−1,β(I) for every β < 1, then
f does in general not need to have bounded variation in I (see [6, Example 4.4]).

Remark 3.3. If we consider the real representation of Cd on R2 by rotation, basic invariants
are given by

σ1(x, y) = zz, σ2(x, y) = Re(zd), σ3(x, y) = Im(zd), where z = x+ iy,
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with the relation σd1 = σ2
2 + σ2

3. Let f be a map that takes values in σ(R2), where σ =
(σ1, σ2, σ3), and which is smooth as a map into R3. Then the constraints f has to fulfill , in
contrast to the complex case where there are no constrains, give reasons for the more regular
lifting in the real case (cf. Theorem 1.9).

For instance, suppose that f is a smooth complex valued function. By Theorem 1.9 and
the previous paragraph, the equation zd = f has a solution of class W 1,∞ provided that
|f |2/d is of class Cd−1,1. Observe that for d = 2 and f ≥ 0 this condition is automatically
fulfilled; it corresponds to the hyperbolic case.

4. Reduction to slice representations

LetG 	 V be a complex finite dimensional representation of a finite groupG. Suppose that
σ = (σ1, . . . , σn) is a system of homogeneous basic invariants. Let V G = {v ∈ V : Gv = v}
be the linear subspace of invariant vectors. It is the subspace of all vectors v for which the
isotropy subgroup Gv = {g ∈ G : gv = v} is equal to G.

4.1. Removing invariant vectors. Since finite groups are linearly reductive, there exists
a unique subrepresentation V ′ ⊆ V such that V = V G ⊕ V ′ (cf. [5, Theorem 2.2.5]). Then
C[V ]G = C[V G] ⊗ C[V ′]G and V/G = V G × V ′/G. A system of basic invariants of C[V ]G

is given by a system linear coordinates on V G together with a system of basic invariants of
C[V ′]G. Hence the following lemma is immediate.

Lemma 4.1. Any lift f of a mapping f = (f0, f1) in V G × V ′/G has the form f = (f0, f 1),
where f 1 is a lift of f1.

Consequently, we may assume without loss of generality that V G = {0}.

4.2. Luna’s slice theorem. Let us recall Luna’s slice theorem. Here we just assume that
V is a rational representation of a linearly reductive group G. The categorical quotient π :
V → V //G is the affine variety with the coordinate ring C[V ]G together with the projection
π induced by the inclusion C[V ]G ↪→ C[V ]. In this setting π does not separate orbits, but
for each element z ∈ V //G there is a unique closed orbit in the fiber π−1(z). If Gv is a
closed orbit, then Gv is again linearly reductive. We say that U ⊆ V is G-saturated if
π−1(π(U)) = U .

Theorem 4.2 ([10], [18, Theorem 5.3]). Let Gv be a closed orbit. Choose a Gv-splitting
Tv(Gv)⊕Nv of V ∼= TvV and let ϕ denote the mapping

G×Gv Nv → V, [g, n] 7→ g(v + n).

There is an affine open G-saturated subset U of V and an affine open Gv-saturated neigh-
borhood Bv of 0 in Nv such that

ϕ : G×Gv Bv → U

and the induced mapping
ϕ̄ : (G×Gv Bv)//G→ U//G

are étale. Moreover, ϕ and the natural mapping G×GvBv → Bv//Gv induce a G-isomorphism
of G×Gv Bv with U ×U//G (Bv//Gv).
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Corollary 4.3 ([10], [18, Corollary 5.4]). In the setting of Theorem 4.2, Gy is conjugate
to a subgroup of Gv for all y ∈ U . Choose a G-saturated neighborhood Bv of 0 in Bv

(classical topology) such that the canonical mapping Bv//Gv → U//G is a complex analytic
isomorphism, where U = π−1(ϕ̄((G×Gv Bv)//G)). Then U is a G-saturated neighborhood of
v and ϕ : G×Gv Bv → U is biholomorphic.

4.3. Uniform slice reduction. Let {τi}mi=1 be a system of generators of C[Nv]
Gv and let

τ = (τ1, . . . , τm) : Nv → Cm be the associated mapping. Consider the slice

(9) Sv := v +Bv,

where Bv is the neighborhood from Corollary 4.3.

Lemma 4.4. Let a = (a1, . . . , an) be a curve in σ(V ) with ak 6= 0 and such that the curve

a :=
(
ak
−d1/dka1, . . . , ak

−dn/dkan
)

lies in σ(Uv), where Uv is a neighborhood of v in Sv. Composition of the curve a−σ(v) with
the analytic isomorphism of Corollary 4.3 gives a curve b = (b1, . . . , bm) in τ(Uv − v) and

b = (b1, . . . , bm) :=
(
a
e1/dk
k b1, . . . , ak

em/dkbm
)
, ei = deg τi,

is a curve in τ(Nv). If b is a lift of b over τ then

(10) a
1/dk
k v + b

is a lift of a over σ.

Proof. The curve a
−1/dk
k b is a lift of b over τ , indeed by homogeneity,

τi(a
−1/dk
k b) = a

−ei/dk
k τi(b) = a

−ei/dk
k bi = bi.

Thus ak
−1/dkb+v is a lift of a over σ. By homogeneity, we find σi(b+ak

1/dkv) = ak
di/dkai = ai

as required. �

The following lemma shows that the maximal degree of the basic invariants does not
increase by passing to a slice representation. It can be shown in analogy to [8, Lemma 2.4]
or [14].

Lemma 4.5. Assume that the systems of basic invariants {σj}nj=1 and {τi}mi=1 are minimal
and set e := maxi ei = maxi deg τi. Then e ≤ d.

In order to make the slice reduction uniform, we consider the set

(11) K :=
( n⋃
k=1

{
(a1, . . . , an) ∈ Cn : ak = 1, |aj| ≤ 1 for j 6= k

})
∩ σ(V )

which is compact, since σ(V ) is closed. For each point p ∈ K choose v ∈ σ−1(p). Then the
collection {σ(Uv)} for all such v is a cover of K by sets σ(Uv) that are open in the trace
topology on σ(V ) and on which the conclusion of Lemma 4.4 holds. Choose a finite subcover

(12) B := {Bδ}δ∈∆ = {σ(Uvδ)}δ∈∆.
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Then there exists ρ > 0 such that for every p ∈ K there is a δ ∈ ∆ such that

(13) Bρ(p) ∩ σ(V ) ⊆ Bδ,

where Bρ(p) is the open ball with radius ρ centered at p.

Definition 4.6. We refer to this data as the uniform slice reduction of the representation
G 	 V , in particular, we call ρ > 0 from (13) the uniform reduction radius.

5. Estimates for a curve in σ(V )

In the next three sections we discuss preparatory lemmas for the proof of Theorem 1.1
which is then given in Section 8.

5.1. An interpolation inequality. For an interval I ⊆ R and a function f : I → C we set

VI(f) := sup
t,s∈I
|f(t)− f(s)| = diam f(I).

Lemma 5.1 ([16, Lemma 4]). Let I ⊆ R be a bounded open interval, m ∈ N>0, and α ∈ (0, 1].
If f ∈ Cm,α(I), then for all t ∈ I and s = 1, . . . ,m,

|f (s)(t)| ≤ C|I|−s
(
VI(f) + VI(f)(m+α−s)/(m+α)(Höldα,I(f

(m)))s/(m+α)|I|s
)
,

for a universal constant C depending only on m and α.

5.2. The local setup. Let G 	 V be a complex finite dimensional representation of a
finite group G. Assume V G = {0}. Let σ = (σ1, . . . , σn) be a system of homogeneous basic
invariants of degrees d1, . . . , dn and let d := maxj dj. Let a ∈ Cd−1,1(I, σ(V )), where I ⊆ R
is a bounded open interval.

It will be crucial to consider the radicals a
1/dj
j of the components aj of a which is justified

by the following remark.

Remark 5.2. Every continuous selection f of the multi-valued function a
1/dj
j is absolutely

continuous on I, by Theorem 3.1. (Clearly, continuous selections exist in this case.) More-
over, ‖f ′‖L1(I) is independent of the choice of the selection. Indeed, if g is a different contin-
uous selection then on each connected component J of I \{t : aj(t) = 0} the functions f and
g just differ by multiplication with a fixed dj-th root of unity. Thus ‖f ′‖L1(J) = ‖g′‖L1(J).
The C-valued version of Lemma 2.1 implies that ‖f ′‖L1(I) = ‖g′‖L1(I).

Henceforth we fix one continuous selection of a
1/dj
j and denote it by

âj : I → C

as well as, abusing notation, by a
1/dj
j . We will also consider the absolutely continuous curve

â = (â1, . . . , ân) : I → Cn.

Suppose that t0 ∈ I and k ∈ {1, . . . , n} are such that

(14) |âk(t0)| = max
1≤j≤n

|âj(t0)| 6= 0.

Assume further that, for some constant B < 1/3,

‖â′‖L1(I) ≤ B|âk(t0)|.(15)
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In accordance with (6), ‖â′‖L1(I) =
∑n

j=1 ‖â′j‖L1(I).

Definition 5.3. By admissible data for G 	 V me mean a tuple (a, I, t0, k), where a ∈
Cd−1,1(I, σ(V )) is a curve in σ(V ) for a representation G 	 V with V G = {0} defined on an
open bounded interval I such that t0 ∈ I and k ∈ {1, . . . , n} satisfy (14) and (15).

5.3. The reduced curve a. Let (a, I, t0, k) be admissible data for G 	 V . We shall see in
the next lemma that ak does not vanish on the interval I and so the curve

a : I → {(a1, . . . , an) ∈ Cn : ak = 1}(16)

t 7→ a(t) :=
(
a
−d1/dk
k a1, . . . , a

−dn/dk
k an

)
(t) =

(
(â−1
k â1)d1 , . . . , (â−1

k ân)dn
)
(t)

is well-defined. The homogeneity of the basic invariants implies that a(I) ⊆ σ(V ).

Lemma 5.4. Let (a, I, t0, k) be admissible data for G 	 V . Then for all t ∈ I and j =
1, . . . , n,

|âj(t)− âj(t0)| ≤ B|âk(t0)|,(17)

2

3
< 1−B ≤

∣∣∣ âk(t)
âk(t0)

∣∣∣ ≤ 1 +B <
4

3
,(18)

(19) |âj(t)| ≤
4

3
|âk(t0)| ≤ 2|âk(t)|.

The length of the curve a is bounded by 3d2 2dB.

Proof. First (17) is a consequence of (15),

|âj(t)− âj(t0)| = |
∫ t

t0

â′j ds| ≤ ‖â′j‖L1(I) ≤ B|âk(t0)|.

Setting j = k in (17) easily implies (18). Together with (14), the inequalities (17) and (18)
give (19). In order to estimate the length of a observe that

a′j = ∂t
(
(â−1
k âj)

dj
)

= dj(â
−1
k âj)

dj−1
(
â−1
k â′j − â−2

k âj â
′
k

)
.

Since |â−1
k âj| ≤ 2, by (19), and thanks to (18) we obtain

|a′j| ≤ 3d 2d|âk(t0)|−1
(
|â′j|+ |â′k|

)
.

Consequently, using (15), ∫
I

|a′| ds ≤ 3d2 2dB,

as required. �
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6. The estimates after reduction to a slice representation

6.1. The reduced local setup. Let (a, I, t0, k) be admissible data for G 	 V such that for
all j = 1, . . . , n and s = 1, . . . , d− 1,

‖a(s)
j ‖L∞(I) ≤ C(d)|I|−s|âk(t0)|dj ,

LipI(a
(d−1)
j ) ≤ C(d)|I|−d|âk(t0)|dj .

(20)

Additionally, we suppose that the curve a (defined in (16)) lies entirely in one of the balls
Bρ(p) from (13). By Lemma 4.4, we obtain a curve b ∈ Cd−1,1(I, τ(W )), where H 	 W with
H = Gv and W = Nv is a slice representation of G 	 V and

(21) bi = a
ei/dk
k ψi(a

−d1/dk
k a1, . . . , a

−dn/dk
k an), i = 1, . . . ,m,

where ei = deg τi and the ψi are analytic functions which are bounded on their domain
together with all their partial derivatives (this may be achieved by slightly shrinking the
domain).

In accordance with Remark 5.2 we denote by

b̂i : I → C

a fixed continuous selection of b
1/ei
i . Sometimes it will also be convenient to use just the

symbol b
1/ei
i for b̂i. We set

b̂ = (b̂1, . . . , b̂m) : I → Cm.

Hence (21) can also be written as

bi = âeik ψi(â
−d1
k a1, . . . , â

−dn
k an) = âeik · ψi ◦ a.

Thanks to Lemma 4.1 we may assume that WH = {0}.

Definition 6.1. By reduced admissible data for G 	 V me mean a tuple (a, I, t0, k; b), where
(a, I, t0, k) is admissible data for G 	 V satisfying (20) such that a lies entirely in one of the
balls Bρ(p) from (13) and b ∈ Cd−1,1(I, τ(W )) is a curve resulting from Lemma 4.4 and thus
satisfies (21).

The goal of this section is to show that the bounds (20) are inherited by the curve b on
suitable subintervals. This requires some preparation.

6.2. Pointwise estimates for the derivatives of b on I.

Lemma 6.2. Let (a, I, t0, k; b) be reduced admissible data for G 	 V . Then for all i =
1, . . . ,m and s = 1, . . . , d− 1,

‖b(s)
i ‖L∞(I) ≤ C|I|−s|âk(t0)|ei ,

LipI(b
(d−1)
i ) ≤ C|I|−d|âk(t0)|ei ,

(22)

where C is a constant depending only on d and on the functions ψi.
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Proof. Let us prove the first estimate in (22). Let F be any Cd-function defined on an open
set U ⊆ Cn that contains a(I) and assume ‖F‖Cd(U) <∞. We claim that, for s = 1, . . . , d−1,

‖∂st (F ◦ a)‖L∞(I) ≤ C|I|−s,(23)

where C is a constant depending only on d and ‖F‖Cd(U). For any real exponent r, Faà di
Bruno’s formula implies

(24) ∂st
(
arj
)

=
s∑
`≥1

∑
γ∈Γ(`,s)

cγ,`,r a
r−`
j a

(γ1)
j · · · a(γ`)

j

where Γ(`, s) = {γ ∈ N`
>0 : |γ| = s} and

cγ,`,r =
s!

`!γ!
r(r − 1) · · · (r − `+ 1).

By (20) and (18), this implies for j = k

‖∂st
(
ark
)
‖L∞(I) ≤

s∑
`≥1

∑
γ∈Γ(`,s)

cγ,`,r ‖ar−`k ‖L∞(I)‖a(γ1)
k ‖L∞(I) · · · ‖a(γ`)

k ‖L∞(I)

≤ C(d)
s∑
`≥1

∑
γ∈Γ(`,s)

cγ,`,r |ak(t0)|r−`|I|−s|ak(t0)|`

≤ C(d)|I|−s|ak(t0)|r.(25)

Together with the Leibniz formula,

∂st
(
a
−dj/dk
k aj

)
=

s∑
q=0

(
s

q

)
a

(q)
j ∂s−qt

(
a
−dj/dk
k

)
,

(25) and (20) lead to

‖∂st
(
a
−dj/dk
k aj

)
‖L∞(I) ≤ C(d)|I|−s.(26)

Again by the Leibniz formula,

∂t(F ◦ a) =
n∑
j=1

((∂jF ) ◦ a) ∂t
(
a
−dj/dk
k aj

)
,

∂st (F ◦ a) =
n∑
j=1

∂s−1
t

(
((∂jF ) ◦ a) ∂t

(
a
−dj/dk
k aj

))
=

n∑
j=1

s−1∑
p=0

(
s− 1

p

)
∂pt ((∂jF ) ◦ a) ∂s−pt

(
a
−dj/dk
k aj

)
.

For s = 1 we immediately get (23). For 1 < s ≤ d− 1, we may argue by induction on s. By
induction hypothesis,

‖∂pt ((∂jF ) ◦ a)‖L∞(I) ≤ C(d, ‖∂jF‖Cs(U))|I|−p,
for p = 1, . . . , s− 1. Together with (26) this entails (23).
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Now the first part of (22) is a consequence of (21), (25) (for r = ei/dk), and (23) (applied
to F = ψi).

For the second part of (22) observe that for functions f1, . . . , fm on I we have

LipI(f1f2 · · · fm) ≤
m∑
i=1

LipI(fi)‖f1‖L∞(I) · · · ̂‖fi‖L∞(I) · · · ‖fm‖L∞(I).

Applying it to (24) and using

LipI(a
r−`
j ) ≤ |r − `|‖ar−`−1

j ‖L∞(I)‖a′j‖L∞(I)

we find, as in the derivation of (25),

LipI(∂
d−1
t (ark)) ≤ C(d, r)|I|−d|ak(t0)|r.

As above this leads to

LipI(∂
d−1
t

(
a
−dj/dk
k aj

)
) ≤ C(d)|I|−d.

and

LipI(∂
d−1
t (F ◦ a)) ≤ C(d, ‖F‖Cd(U))|I|−d,

and finally to the second part of (22). �

6.3. Integral bounds for b̂′. Recall that e = maxi ei = maxi deg τi and e′ = e/(e− 1).

Corollary 6.3. Let (a, I, t0, k; b) be reduced admissible data for G 	 V . Then, for all
1 ≤ p < e′ and all i = 1, . . . ,m,

(27) ‖b̂′i‖∗Lp(I) ≤ C|I|−1|âk(t0)|,

for a constant C which depends only on d, p, and the constant in (22).

Proof. Notice that, by Lemma 4.5, we have e ≤ d. By (8) and (22),

‖b̂′i‖e′i,w,I = ‖(b1/ei
i )′‖e′i,w,I ≤ C(ei) max

{(
LipI(b

(ei−1)
i )

)1/ei |I|1/e′i , ‖b′i‖
1/ei
L∞(I)

}
≤ C|I|−1+1/e′i |âk(t0)|,

or equivalently,

‖b̂′i‖∗e′i,w,I ≤ C|I|−1|âk(t0)|.
This entails (27) in view of (5). �

6.4. Special subintervals of I and estimates on them. Let (a, I, t0, k; b) be reduced
admissible data for G 	 V .

Suppose that t1 ∈ I and ` ∈ {1, . . . ,m} are such that

(28) |b̂`(t1)| = max
1≤i≤m

|b̂i(t1)| 6= 0.

By (19) and (21), for all t ∈ I and i = 1, . . . ,m,

(29) |b̂i(t)| ≤ C1|âk(t0)|,
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where the constant C1 depends only on the functions ψi. Thanks to (29) we can choose a
constant D < 1/3 and an open interval J with t1 ∈ J ⊆ I such that

|J ||I|−1|âk(t0)|+ ‖b̂′‖L1(J) = D|b̂`(t1)|,(30)

where ‖b̂′‖L1(J) =
∑m

i=1 ‖b̂′i‖L1(J). It suffices to take D < C−1
1 where C1 is the constant in

(29). Here we use that b̂i is absolutely continuous, by Theorem 3.1.
We will now see that on the interval J the estimates of Section 5 hold for bi instead of aj.

Lemma 6.4. Let (a, I, t0, k; b) be reduced admissible data for G 	 V . Assume that t1 ∈ I
and ` ∈ {1, . . . ,m} are such that (28) holds and let D and J be as in (30). Then, for all
t ∈ J and i = 1, . . . ,m,

|b̂i(t)− b̂i(t1)| ≤ D|b̂`(t1)|,(31)

2

3
< 1−D ≤

∣∣∣ b̂`(t)
b̂`(t1)

∣∣∣ ≤ 1 +D <
4

3
,(32)

|b̂i(t)| ≤
4

3
|b̂`(t1)| ≤ 2|b̂`(t)|.(33)

The length of the curve

(34) J 3 t 7→ b(t) :=
(
b
−e1/e`
` b1, . . . , b

−em/e`
` bm

)
(t) =

(
(b̂−1
` b̂1)e1 , . . . , (b̂−1

` b̂m)em
)
(t)

in τ(W ) is bounded by 3e2 2eD. For all i = 1, . . . ,m and s = 1, . . . , d− 1,

‖b(s)
i ‖L∞(J) ≤ C|J |−s|b̂`(t1)|ei ,

LipJ(b
(d−1)
i ) ≤ C|J |−d|b̂`(t1)|ei ,

(35)

for a universal constant C depending only on d and ψi.

Proof. The proof of (31)–(33) is analogous to the proof of Lemma 5.4; use (28) and (30)
instead of (14) and (15). The bound for the length of the curve J 3 t 7→ b(t) (which is
well-defined by (32)) follows from (30)–(33); see the proof of Lemma 5.4.

Let us prove (35). By (22), for i = 1, . . . ,m and s = 1, . . . , d− 1

‖b(s)
i ‖L∞(I) ≤ C|I|−s|âk(t0)|ei ,

LipI(b
(d−1)
i ) ≤ C|I|−d|âk(t0)|ei ,

(36)

where C = C(d, ψi). Recall that e ≤ d.
For s ≥ ei (including the case s = d), we have (|J ||I|−1)s ≤ (|J ||I|−1)ei and thus

|I|−s|âk(t0)|ei ≤ |J |−s
(
|J ||I|−1|âk(t0)|

)ei ≤ |J |−s|b̂`(t1)|ei ,
where the second inequality follows from (30). Hence (36) implies (35).

For t ∈ J and s < ei,

|b(s)
i (t)| ≤ C|J |−s

(
VJ(bi) + VJ(bi)

(ei−s)/ei(LipJ(b
(ei−1)
i ))s/ei |J |s

)
by Lemma 5.1

≤ C1|J |−s
(
|b̂`(t1)|ei + |b̂`(t1)|ei−s|J |s|I|−s|âk(t0)|s

)
by (33) and (36)

≤ C2|J |−s|b̂`(t1)|ei by (30),
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for constants C = C(ei) and Ch = Ch(d, ψi). �

7. A special cover by intervals

In the proof of Theorem 1.1 we shall have to glue local integral bounds on small intervals
which result from the splitting process to global bounds. In this section we present a technical
result which will allow us to do so.

Let us suppose that H 	 W is a complex finite dimensional representation of a finite
group H, τ = (τ1, . . . , τm) is a system of homogeneous basic invariants of degree ei = deg τi,
and e := maxi ei.

7.1. Covers by prepared collections of intervals. Let I ⊆ R be a bounded open interval
and let b ∈ Ce−1,1(I, τ(W )). For each point t1 in

I ′ := I \ {t ∈ I : b(t) = 0}

there exists ` ∈ {1, . . . ,m} such that (28). Assume that there are positive constants D < 1/3
and L such that for all t1 ∈ I ′ there is an open interval J = J(t1) with t1 ∈ J ⊆ I such that

L|J |+ ‖b̂′‖L1(J) = D|b̂`(t1)|.(37)

Note that (28) and (37) imply (32) (cf. the proof of Lemma 6.4); in particular, we have
J ⊆ I ′.

This defines a collection I := {J(t1)}t1∈I′ of open (in the relative topology) intervals which
cover I ′. We will prepare this collection in the following way. Let us consider the functions

ϕt1,+(s) := L(s− t1) + ‖b̂′‖L1([t1,s)), s ≥ t1,

ϕt1,−(s) := L(t1 − s) + ‖b̂′‖L1((s,t1]), s ≤ t1.

Then ϕt1,± ≥ 0 are monotonic continuous functions defined for small ±(s − t1) ≥ 0 and
satisfying ϕt1,±(t1) = 0.

Fix t1 ∈ I ′. Thanks to (37) there exist s−, s+ ∈ R such that

ϕt1,−(s−) + ϕt1,+(s+) = D|b̂`(t1)|

and J(t1) = (s−, s+). But there may also be a choice s′−, s
′
+ ∈ R such that this occurs

symmetrically, that is

(38) ϕt1,−(s′−) = ϕt1,+(s′+) =
D

2
|b̂`(t1)|.

If such a choice s′−, s
′
+ ∈ R exists, we replace J(t1) in the collection I by the interval (s′−, s

′
+).

(In [16] we said that these are intervals of first kind.) If such a choice does not exist, then
we leave J(t1) in I unchanged; this happens when we reach the boundary of the interval I

before either ϕt1,− or ϕt1,+ has grown to the value (D/2)|b̂`(t1)|. (These intervals were said
to be of second kind in [16].)

If a collection I satisfies this property, we say that it is prepared.
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7.2. A special subcollection of intervals.

Proposition 7.1. Let I ⊆ R be a bounded open interval. Let b ∈ Ce−1,1(I, τ(W )). For each
point t1 in I ′ fix ` ∈ {1, . . . ,m} such that (28) holds. Let I = {J(t1)}t1∈I′ be a collection of
open intervals J = J(t1) with t1 ∈ J ⊆ I ′ such that:

(1) There are positive constants D < 1/3 and L such that for all t1 ∈ I ′ we have (37)
for J = J(t1).

(2) The collection I is prepared as explained in Section 7.1.

Then the collection I has a countable subcollection J that still covers I ′ and such that every
point in I ′ belongs to at most two intervals in J . In particular,∑

J∈J

|J | ≤ 2|I ′|.

Proof. It follows from the proof of [16, Proposition 2]. �

Remark 7.2. It is essential for us that J is a subcollection and not a refinement; by
shrinking the intervals we would lose equality in (37). We will need this proposition for
gluing local Lp-estimates to global ones.

8. Proof of Theorem 1.1

The proof is based on uniform slice reduction and induction on the order of G. We will
apply the following convention:

We will no longer explicitly state all the dependencies of the constants. Hence-
forth, their dependence on the data of the uniform slice reductions will be sub-
sumed by simply indicating that they depend on the representation G 	 V .
This includes the choice of σ: different choices of the basic invariants yield
different constants. The constants which are uniform in this sense will be
denoted by C = C(G 	 V ) and may vary from line to line.

Outline of the proof. The proof of Theorem 1.1 is divided into three steps.

Step 1: We check that for any a ∈ Cd−1,1([α, β], σ(V )) and all points t0 ∈ (α, β), where
a(t0) 6= 0, we can find k and a suitable interval I such that (a|I , I, t0, k; b), where b is
obtained by Lemma 4.4, is reduced admissible data for G 	 V .

Step 2: The reduced admissible data (a|I , I, t0, k; b) represents the hypothesis of the
inductive argument which is the heart of the proof. It will show that every continuous
lift of b is absolutely continuous on I and it will give an Lp-bound for the first
derivative of the lift on I.

Step 3: We assemble the proof of Theorem 1.1. The local bounds will be glued to
global bounds for lifts of the original curve a.

Step 1: The assumptions of Theorem 1.1 imply the local setup of the induction.
Assume that V G = {0}. Let a ∈ Cd−1,1([α, β], σ(V )). Let ρ be the uniform reduction radius
from (13). We fix a universal positive constant B satisfying

B < min
{1

3
,

ρ

3d22d

}
.(39)
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Fix t0 ∈ (α, β) and k ∈ {1, . . . , n} such that

(40) |âk(t0)| = max
1≤j≤n

|âj(t0)| 6= 0

This is possible unless a ≡ 0 in which case nothing is to prove. Choose a maximal open
interval I ⊆ (α, β) containing t0 such that

M |I|+ ‖â′‖L1(I) ≤ B|âk(t0)|,(41)

where

(42) M = max
1≤j≤n

(LipI(a
(d−1)
j ))1/d|âk(t0)|(d−dj)/d.

Consider the point p = a(t0), where a is the curve defined in (16). By (40), p is an element
of the set K defined in (11). By the properties of the uniform slice reduction specified in
Section 4.3, the ball Bρ(p) is contained in some ball of the finite cover B of K. By Lemma 5.4
and (39), the length of the curve a|I is bounded by ρ. Thus

(43) b ∈ Cd−1,1(I, τ(W )) is obtained by Lemma 4.4 and satisfies (21).

Lemma 8.1. Assume that V G = {0}. Let (α, β) ⊆ R be a bounded open interval and let
a ∈ Cd−1,1([α, β], σ(V )). Let B be a positive constant satisfying (39). Let t0 ∈ (α, β) and
k ∈ {1, . . . , n} be such that (40) holds. Let I be an open interval with t0 ∈ I ⊆ (α, β)
satisfying (41) and b the reduced curve from (43). Then (a|I , I, t0, k; b) is reduced admissible
data for G 	 V .

Proof. It remains to prove (20), i.e., for all j = 1, . . . , n and s = 1, . . . , d− 1,

‖a(s)
j ‖L∞(I) ≤ C |I|−s|âk(t0)|dj ,

LipI(a
(d−1)
j ) ≤ C |I|−d|âk(t0)|dj ,

for C = C(G 	 V ). The second bound is immediate from (41). Let t ∈ I. By Lemma 5.1,

|a(s)
j (t)| ≤ C|I|−s

(
VI(aj) + VI(aj)

(d−s)/d LipI(a
(d−1)
j )s/d|I|s

)
.

By (19) (it is clear that (a|I , I, t0, k) is admissible data for G 	 V ),

VI(aj) ≤ 2‖aj‖L∞(I) ≤ 2 (4/3)d|âk(t0)|dj ,

and, by (41),

max
1≤j≤n

(LipI(a
(d−1)
j ))s/d|âk(t0)|−djs/d|I|s = |âk(t0)|−sM s|I|s ≤ 1.

Thus

|a(s)
j (t)| ≤ C|I|−s|âk(t0)|dj

(
C1 + C2 LipI(a

(d−1)
j )s/d|âk(t0)|−djs/d|I|s

)
≤ C3|I|−s|âk(t0)|dj ,

for constants Ci that depend only on d. So (20) is proved. �
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Step 2: The inductive argument. The heart of the proof of Theorem 1.1 is the following

Proposition 8.2. Let (a, I, t0, k; b) be reduced admissible data for G 	 V . Then every
continuous lift b ∈ C0(I,W ) of b is absolutely continuous and satisfies

(44) ‖b′‖Lp(I) ≤ C
(
‖|I|−1|âk(t0)|‖Lp(I) + ‖b̂′‖Lp(I)

)
,

for all 1 ≤ p < d′ and a constant C depending only on G 	 V and p.

Remark 8.3. Notice that we bound the Lp-norm of the derivative of a general lift b by the
Lp-norm of the derivatives of the lifts b̂i for the standard action of rotation in C.

Proof of Proposition 8.2. We proceed by induction on the group order.

Induction basis. Proposition 8.2 trivially holds, if the slice representation H 	 W is trivial.
In that case C[W ]H ∼= C[W ] and any system τ = (τ, . . . , τm) of linear coordinates is a
minimal system of generators. Hence τ : W → Cm is a linear isomorphism. Moreover,
e1 = e2 = · · · = em = e = 1 whence b̂i = bi for all i. Any lift of b ∈ Cd−1,1(I, τ(W )) is of the
form b = τ−1 ◦ b and thus (44) is trivially satisfied.

Inductive step. Let us set
I ′ := I \ {t ∈ I : b(t) = 0}.

For each t1 ∈ I ′ choose ` ∈ {1, . . . ,m} such that (28) holds. By Section 6.4, there is an open
interval J = J(t1), t1 ∈ J ⊆ I ′, such that (30), i.e.,

|J ||I|−1|âk(t0)|+ ‖b̂′‖L1(J) = D|b̂`(t1)|.
The constant D can be chosen sufficiently small such that the length of the curve b|J is
bounded by the uniform reduction radius σ of the representation H 	 W . It suffices to take

(45) D < min
{1

3
,

σ

3e22e
, C−1

1

}
,

where C1 is the constant in (29). This follows from Lemma 6.4, and the arguments in Section
4.3 and in Step 1 applied to b.

Then Lemma 4.4 provides a curve c ∈ Cd−1,1(J, π(X)), where K 	 X is a slice represen-
tation of H 	 W , π = (π1, . . . , πq) is a system of homogeneous basic invariants with degrees
f1, . . . , fq, and f = maxh fh. The components of c satisfy

(46) ch = b
fh/e`
` θh(b

−e1/e`
` b1, . . . , b

−em/e`
` bm), h = 1, . . . , q,

for suitable analytic functions θh. We adopt our usual convention that

ĉh : J → C

denotes a fixed continuous selection of c
1/fh
h and set

ĉ = (ĉ1, . . . , ĉq) : J → Cq.

In view of Lemma 6.4 we conclude that (b, J, t1, `; c) is reduced admissible data for H 	 W .
By Proposition 7.1 (where (30) plays the role of (37)), we may conclude that there is a

countable family {(Jγ, tγ, `γ, cγ)} of open intervals Jγ ⊆ I ′, of points tγ ∈ Jγ, of integers
`γ ∈ {1, . . . ,m}, and reduced curves cγ such that, for all γ,
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• (b, Jγ, tγ, `γ; cγ) is reduced admissible data for H 	 W ,
• we have

|Jγ||I|−1|âk(t0)|+ ‖b̂′‖L1(Jγ) = D|b̂`γ (tγ)|,(47)

• and

(48)
⋃
γ

Jγ = I ′,
∑
γ

|Jγ| ≤ 2|I ′|.

Let b ∈ C0(I,W ) be a continuous lift of b. Fix γ and let K 	 X be the corresponding
slice representation of H 	 W . Since H is a finite group, we have W ∼= X. With this
identification and the decomposition X = XK ⊕X ′ we may deduce that the component of
b in X ′ is a continuous lift of cγ on the interval Jγ. To simplify the notation we will assume

without loss of generality that XK = {0} and that b is a lift of cγ on the interval Jγ.

The induction hypothesis implies that b is absolutely continuous on Jγ and satisfies

(49) ‖b′‖Lp(Jγ) ≤ C
(
‖|Jγ|−1|b̂`γ (tγ)|‖Lp(Jγ) + ‖ĉ′γ‖Lp(Jγ)

)
,

for all 1 ≤ p < e′, where C is a constant depending only on H 	 W and p.

Lp-estimates on I. To finish the proof of Proposition 8.2 we have to show that the esti-
mates (49) on the subintervals Jγ imply the bound (44) on I. To this end we observe that
Corollary 6.3 (applied to (b, Jγ, tγ, `γ; cγ)) implies that, for all p with 1 ≤ p < f ′γ,

(50) ‖ĉ′γ‖∗Lp(Jγ) ≤ C|Jγ|−1|b̂`γ (tγ)|,
for a constant C that depends only on H 	 W and p.

Now (50) and (47) allow us to estimate the right-hand side of (49):

‖|Jγ|−1|b̂`γ (tγ)|‖∗Lp(Jγ) + ‖ĉ′γ‖∗Lp(Jγ) = |Jγ|−1|b̂`γ (tγ)|+ ‖ĉ′γ‖∗Lp(Jγ)

≤ C|Jγ|−1|b̂`γ (tγ)|

= CD−1
(
‖|I|−1|âk(t0)|‖∗L1(Jγ) + ‖b̂′‖∗L1(Jγ)

)
≤ CD−1

(
‖|I|−1|âk(t0)|‖∗Lp(Jγ) + ‖b̂′‖∗Lp(Jγ)

)
and therefore

‖|Jγ|−1|b̂`γ (tγ)|‖
p
Lp(Jγ) + ‖ĉ′γ‖

p
Lp(Jγ) ≤ CD−p

(
‖|I|−1|âk(t0)|‖pLp(Jγ) + ‖b̂′‖pLp(Jγ)

)
,(51)

for a constant C that depends only on H 	 W and p.
Let us now glue the bounds on Jγ to a bound on I. By (48), (49), and (51),∑

γ

‖b′‖pLp(Jγ) ≤ CD−p
(
‖|I|−1|âk(t0)|‖pLp(I) + ‖b̂′‖pLp(I)

)
,(52)

for a constant C that depends only on H 	 W and p. Thus b is absolutely continuous on I ′

and

‖b′‖Lp(I′) ≤ CD−1
(
‖|I|−1|âk(t0)|‖Lp(I) + ‖b̂′‖Lp(I)

)
,
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for a constant C that depends only on H 	 W and p. Since b vanishes on I \ I ′, Lemma 2.1
implies that b is absolutely continuous on I and satisfies (44), since D = D(H 	 W ) by
(45). This completes the proof of Proposition 8.2. �

Step 3: The proof of Theorem 1.1. In view of Lemma 4.1 we may assume V G = {0}. Let
a ∈ Cd−1,1([α, β], σ(V )). Suppose that B is a positive constant fulfilling (39) and assume that
t0 ∈ (α, β), k ∈ {1, . . . , n}, and I 3 t0 satisfy (40) and (41). Let b ∈ Cd−1,1(I, τ(W )) be the
reduced curve from (43). Then Lemma 8.1 implies that (a, I, t0, k; b) is reduced admissible
data and consequently each continuous lift b of b satisfies (44), by Proposition 8.2. In
particular, if a ∈ C0((α, β), V ) is a continuous lift of a, then we may assume that a|I is a lift
of b. It follows that a is absolutely continuous on I and

(53) ‖a′‖Lp(I) ≤ C(G 	 V, p)
(
‖|I|−1|âk(t0)|‖Lp(I) + ‖b̂′‖Lp(I)

)
.

Our next goal is to estimate the right-hand side of (53) in terms of a.
By Corollary 6.3, we get for all p with 1 ≤ p < e′,

‖|I|−1|âk(t0)|‖∗Lp(I) + ‖b̂′‖∗Lp(I) ≤ C|I|−1|âk(t0)|(54)

where the constant C depends only on G 	 V and p. At this stage we distinguish the two
cases of strict inequality or equality in (41):

(i) Strict inequality: we have I = (α, β) and

M |I|+ ‖â′‖L1(I) < B|âk(t0)|.(55)

(ii) Equality:

M |I|+ ‖â′‖L1(I) = B|âk(t0)|.(56)

Case (i). In this case we can reduce to the curve b ∈ Cd−1,1(I, τ(W )) on the whole interval
I = (α, β); cf. Step 1. Thus, (54) becomes

‖(β − α)−1|âk(t0)|‖Lp((α,β)) + ‖b̂′‖Lp((α,β)) ≤ C(β − α)−1+1/p|âk(t0)|

which can be bounded by

C(β − α)−1+1/p max
1≤j≤n

‖aj‖
1/dj
L∞((α,β)).(57)

By (53), a is absolutely continuous on (α, β) and

‖a′‖Lp((α,β)) ≤ C(β − α)−1+1/p max
1≤j≤n

‖aj‖
1/dj
L∞((α,β)),(58)

where C = C(G 	 V, p).

Remark 8.4. The bound in (58) tends to infinity if β − α→ 0 unless p = 1.



26 ADAM PARUSIŃSKI AND ARMIN RAINER

Case (ii). Using (56) to estimate (54) (as in the derivation of (51)), we get

‖|I|−1|âk(t0)|‖Lp(I) + ‖b̂′‖Lp(I) ≤ C
(
M‖1‖Lp(I) + ‖â′‖Lp(I)

)
,(59)

for a constant C that depends only on G 	 V and p; note that B = B(G 	 V ) by (39).
Thus, by (53),

‖a′‖Lp(I) ≤ C
(
M‖1‖Lp(I) + ‖â′‖Lp(I)

)
.

Let us set A := max1≤j≤n ‖aj‖
1/dj
Cd−1,1([α,β])

. Then

M = max
1≤j≤n

(LipI(a
(d−1)
j ))1/d|âk(t0)|(d−dj)/d ≤ max

1≤j≤n
Adj/dA(d−dj)/d = A.

Consequently,

(60) ‖a′‖Lp(I) ≤ C
(
A‖1‖Lp(I) + ‖â′‖Lp(I)

)
.

By Proposition 7.1 (applied to a instead of b and (56) instead of (37)), we can cover the
set (α, β) \ {t : a(t) = 0} by a countable family I of open intervals I on which (60) holds
and such that

∑
I∈I |I| ≤ 2(β − α). Together with Lemma 2.1 we may conclude that a is

absolutely continuous on (α, β) and satisfies

‖a′‖Lp((α,β)) ≤ C
(
A‖1‖Lp((α,β)) + ‖â′‖Lp((α,β))

)
,

Using (8) and the fact that 1− 1/dj < 1/p for all j ≤ n, we obtain

‖a′‖Lp((α,β)) ≤ C
(
A(β − α)1/p

+
n∑
j=1

max
{

(Lip(α,β)(a
(dj−1)
j ))1/dj(β − α)1−1/dj , ‖a′j‖

1/dj
L∞((α,β))

})
≤ C max{1, (β − α)1/p} max

1≤j≤n
‖aj‖

1/dj
Cd−1,1([α,β])

,

where C = C(G 	 V, p). The proof of Theorem 1.1 is complete.

Proof of Remark 1.2. Remark 1.2(a) is clear by the above discussion.
Suppose that there exists s ∈ [α, β] such that a(s) = 0. Then for all t ∈ (α, β) and all j,

|âj(t)| = |
∫ t

s

â′j(τ) dτ | ≤ ‖â′j‖L1((α,β)).

Thus the Case (i), i.e., (55), cannot occur. This implies Remark 1.2(b).
If the representation is coregular, then σ(V ) = Cn and we may use a simple version of

Whitney’s extension theorem to extend a to a curve defined on (α− 1, β+ 1) which vanishes
at the endpoints of this larger interval and such that ‖a‖Cd−1,1([α−1,β+1]) ≤ C‖a‖Cd−1,1([α,β]),
where C is a universal constant independent of (α, β). As above one sees that Case (i)
cannot occur and hence we obtain the bound (1) with the constant (2) on the larger interval
(α − 1, β + 1). Thanks to the continuity of the extension, we obtain the desired bound on
the original interval (α, β). For details see [16]. This shows Remark 1.2(c). In general, if
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σ(V ) is a proper subset of Cn, it is not clear that the extended curve is contained in σ(V )
and hence liftable.

To see Remark 1.2(d) we observe that under the assumption that a(j)(α) = a(j)(β) = 0
for all j = 1, . . . , d − 1 the curve a can be extended beyond the interval (α, β) by setting
a(t) = a(α) for t < α and a(t) = a(β) for t > β. Then the extended curve still lies in σ(V )
and we have ‖aj‖Cd−1,1([α−1,β+1]) = ‖aj‖Cd−1,1([α,β]) for all j = 1, . . . , n. Choose a smooth
function ϕ : R → [0, 1] such that ϕ(t) = 1 for t ≤ 0 and ϕ(t) = 0 for t ≥ 1. Then
ψ(t) := ϕ(α− t)ϕ(t− β) is equal to 1 on [α, β] and 0 outside [α− 1, β + 1]. Let us consider

aψ := (ψd1a1, ψ
d2a2, . . . , ψ

dnan)

which is a Cd−1,1-curve in σ(V ) coinciding with a on [α, β] and vanishing at the endpoints
of [α− 1, β + 1]. As above we conclude that for aψ Case (i) cannot occur. Since we have

‖(aψ)j‖Cd−1,1([α−1,β+1]) ≤ C(ϕ)‖aj‖Cd−1,1([α,β]), j = 1, . . . , n,

it is easy to conclude Remark 1.2(d).

9. Proof of Theorem 1.4

Lemma 9.1. Let c : I → σ(V ) be continuous and let c : J → V a continuous lift of c on an
open proper subinterval J b I of I. Then c can be extended to a continuous lift of c defined
on I.

Proof. Since we already know that c admits a continuous lift c1 on I it suffices to show that
c extends continuously to the endpoints of J . Then c can be extended left and right of J by
c1 after applying a fixed transformation from G.

So let t0 be the (say) right endpoint of J . The set of limit points A of c(t) as t → t−0 is
contained in the orbit corresponding to c(t0). On the other hand A must be connected, by
the continuity of c. Since every orbit is finite, A consists of just one point. �

Lemma 9.2. Let c1, c2 be continuous lifts of a curve c : I → σ(V ). If c1 is absolutely
continuous and c1 ∈ W 1,p(I), then c2 is absolutely continuous, c2 ∈ W 1,p(I), and

‖c′2‖Lp(I) ≤ C ‖c′1‖Lp(I),

where C depends only on G 	 V and on the coordinate system on V .

Proof. For each subset E of I we have c2(E) ⊆
⋃
g∈G gc1(E). It follows that

length(c2) ≤
∑
g∈G

length(gc1) <∞

and that c2 has the Luzin (N) property. Hence c2 is absolutely continuous.
Suppose that both c1 and c2 are differentiable at t. After replacing c1 with gc1 for a

suitable g ∈ G we may suppose that c1(t) = c2(t) =: v. Then after switching to the slice
representation at v we have, for gh ∈ Gv (which entails c2(t) = ghc1(t)),

c2(t+ h)− c2(t)

h
=
ghc1(t+ h)− ghc1(t)

h
= gh

(c1(t+ h)− c1(t)

h

)
which implies that c′2(t) ∈ Gvc

′
1(t), since G, and hence Gv, is finite. This implies the

lemma. �
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Now we are ready to prove Theorem 1.4.
Let f ∈ C0(U, V ) be a continuous lift of f ∈ Cd−1,1(Ω, σ(V )) on U .
By Theorem 1.1, f is absolutely continuous along affine lines parallel to the coordinate

axes (restricted to U). So f possesses partial derivatives of first order which are defined
almost everywhere and measurable.

Set x = (t, y), where t = x1, y = (x2, . . . , xm), and let U1 be the orthogonal projection of
U on the hyperplane {x1 = 0}. For each y ∈ U1 we denote by Uy := {t ∈ R : (t, y) ∈ U} the
corresponding section of U .

Let f
y
(t) := f(t, y) for t ∈ Uy; it is clear that f

y
is a continuous lift of f |Uy×{y}. Recall

that Ω = I1×· · ·× Im is an open box in Rm. Let Cy denote the set of connected components
J of the open subset Uy ⊆ R. For each J ∈ Cy we may extend the lift f

y
continuously to

I1×{y}, by Lemma 9.1. So for each J ∈ Cy we get a continuous lift f
y

J of f |I1×{y} such that

f
y

J |J = f
y|J .

By Theorem 1.1, for all y ∈ U1 and J ∈ Cy, the lift f
y

J is absolutely continuous on I1 with
(f

y

J)′ ∈ Lp(I1), for 1 ≤ p < d/(d− 1), and

(61) ‖(f yJ)′‖Lp(I1) ≤ C max
1≤i≤n

‖fi‖1/di
Cd−1,1(Ω)

,

where C depends only on G 	 V , p, and |I1|.
Let J, J0 ∈ Cy be arbitrary. By Lemma 9.2, both (f

y

J)′ and (f
y

J0
)′ belong to Lp(I1) and

‖(f yJ)′‖Lp(J) ≤ C(G 	 V ) ‖(f yJ0)
′‖Lp(J).

Thus,

‖(f y)′‖pLp(Uy) =
∑
J∈Cy
‖(f yJ)′‖pLp(J) ≤ Cp

∑
J∈Cy
‖(f yJ0)

′‖pLp(J) = Cp ‖(f yJ0)
′‖pLp(Uy)

and consequently, by (61),

‖(f y)′‖Lp(Uy) ≤ C max
1≤i≤n

‖fi‖1/di
Cd−1,1(Ω)

.

By Fubini’s theorem,∫
U

|∂1f(x)|p dx =

∫
U1

∫
Uy
|∂1f(t, y)|p dt dy ≤

(
C max

1≤i≤n
‖fi‖1/di

Cd−1,1(Ω)

)p ∫
U1

dy.

This implies Theorem 1.4.
For Remark 1.5 notice that, if G 	 V is coregular, then σ(V ) = V //G = Cn and hence

we may use Whitney’s extension theorem to extend f to a mapping defined on a box R
containing Ω such that the Cd−1,1-norm on R is bounded by the Cd−1,1-norm on Ω times a
constant. In general it is not clear that after extension f still takes values in σ(V ).

10. Q-valued functions

The basic reference for the background on Q-valued Sobolev functions used in this section
is [4].
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10.1. The metric space AQ(Rn). Unordered Q-tuples of points in Rn can be formalized
as positive atomic measures of mass Q. Let JpiK denote the Dirac mass at pi ∈ Rn. We
consider the space

AQ(Rn) :=
{ Q∑

i=1

JpiK : pi ∈ Rn
}

of unordered Q-tuples of points in Rn. Then AQ(Rn) is a complete metric space when
endowed with the metric

(62) d
(∑

i

JpiK,
∑
i

JqiK
)

:= min
σ∈SQ

(∑
i

|pi − qσ(i)|2
)1/2

.

10.2. Invariants. There is a natural one-to-one correspondence between the unordered Q-
tuples

∑
iJpiK ∈ AQ(Rn) and the orbits of the n-fold direct sum W := (RQ)⊕n of the

tautological representation RQ of the symmetric group SQ. By a result of Weyl [21], the
algebra R[W ]SQ is generated by the polarizations of the elementary symmetric functions.
Up to integer factors the polarizations are

σ1(u) =
∑
i

ui,

σ2(u, v) =
∑
i 6=j

uivj,

σ3(u, v, w) =
∑

i,j,k all 6=

uivjwk,

...

σQ(u, v, . . . , w) =
∑

i,j,...,k all 6=

uivj · · ·wk,

where u = (u1, u2, . . . , uQ), v = (v1, v2, . . . , vQ), etc. A system of generators of R[W ]SQ is
obtained by substituting the arguments x1, x2, . . . , xn ∈ RQ for u, v, w, . . . in all possible
combinations (including repetitions). Note that the ring R[W ]SQ is not polynomial unless
n = 1, e.g. by the Shephard–Todd–Chevalley theorem.

10.3. Subspaces AG	Rn(Rn). Let G 	 Rn be a representation of a finite group G. We
define the space

AG	Rn(Rn) :=
{∑
g∈G

JgpK : p ∈ Rn
}

of G-orbits. It is a closed subspace of the complete metric space A|G|(Rn), thus also complete.
A system of generators for R[V ]G can be obtained from the generators of R[W ]S|G| by

means of the Noether map η∗ : R[W ]S|G| → R[Rn]G, where η : Rn → W is defined by
η(p)(g) = gp and W = (R|G|)⊕n is identified with the space of mappings G→ Rn; for details
see e.g. [12].
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10.4. Q-valued Sobolev functions. Let Ω be a bounded open subset of Rm. A measurable
function f : Ω→ AQ(Rn) is said to be in the Sobolev class W 1,p (for 1 ≤ p ≤ ∞) if

(1) x 7→ d(f(x), P ) ∈ W 1,p(Ω) for all P ∈ AQ(Rn),
(2) there exist functions ϕ1, . . . , ϕm ∈ Lp(Ω,R+) such that

|∂jd(f, P )| ≤ ϕj a.e. in Ω for all P ∈ AQ(Rn) and j = 1, . . . ,m.

The minimal functions ϕj satisfying (2) are denoted by |∂jf | and they are characterized as
follows: for every countable dense subset {P`}`∈N ⊆ AQ(Rn) and all j = 1, . . . ,m we have

|∂jf | = sup
`∈N
|∂jd(f, P`)| a.e. in Ω.

One sets |Df | := (
∑m

j=1 |∂jf |2)1/2. This intrinsic approach is developed in [4].

Alternatively, one may use Almgren’s extrinsic approach [1] to Q-valued Sobolev functions.
There is an injective Lipschitz map ξ : AQ(Rn) → RN , where N = N(Q, n), with Lipschitz
constant Lip(ξ) ≤ 1 such that the inverse θ := ξ|−1

ξ(AQ(Rn)) is Lipschitz with Lipschitz constant

≤ C(Q, n). Here the constants N and C depend only upon Q and n. The inverse θ :
ξ(AQ(Rn))→ AQ(Rn) has a Lipschitz extension Θ : RN → AQ(Rn). It follows that ρ := ξ◦Θ
is a Lipschitz retraction of RN onto ξ(AQ(Rn)).

A function f : Ω → AQ(Rn) is of class W 1,p if and only if ξ ◦ f belongs to W 1,p(Ω,RN),
and in that case

(63) |D(ξ ◦ f)| ≤ |Df | ≤ C(Q, n) |D(ξ ◦ f)|;

see [4, Theorem 2.4].

10.5. Q-valued Sobolev functions and invariant theory. We may identify the SQ-
module W = (RQ)⊕n with the space of Q× n matrices RQ×n. Then σ ∈ SQ acts on a Q× n
matrix by permuting the rows. Consider the surjective mapping π : RQ×n → AQ(Rn) which

sends a matrix with rows p1, . . . , pQ to
∑Q

i=1JpiK. If we endow RQ×n with the Frobenius norm

(i.e. ‖(pij)ij‖ = (
∑Q

i=1

∑n
j=1 |pij|2)1/2) then π is Lipschitz with Lip(π) ≤ 1.

Let σ1, . . . , σr be any system of homogeneous generators of R[W ]SQ . The corresponding
map σ = (σ1, . . . , σr) induces a bijective map Σ : AQ(Rn)→ σ(W ) ⊆ Rr such that σ = Σ◦π.
We may assume that dj := deg σj ≤ Q for all j = 1, . . . , r.

Theorem 10.1. Let Ω be a bounded open subset of Rm. Let f : Ω → AQ(Rn) be con-
tinuous. If Σ ◦ f ∈ CQ−1,1(Ω,Rr), then for each relatively compact open Ω′ ⊆ Ω we have
f ∈ W 1,∞(Ω′,AQ(Rn)). Moreover,

‖Df‖L∞(Ω′) ≤ C(Q, n,m,Ω,Ω′)
(

1 + max
1≤j≤r

‖Σj ◦ f‖
1/dj

CQ−1,1(Ω)

)
.

Proof. Let us first consider the case that m = 1 and Ω is an interval. In that case we even
obtain a global statement with I := Ω′ = Ω. Indeed, the curve c := Σ ◦ f in σ(W ) ⊆ Rr

admits an absolutely continuous lift c to W which belongs to W 1,∞(I,W ), by Theorem 1.9.
Then the statement follows by superposition with the Lipschitz map ξ ◦ π. The uniform
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bound easily follows from the bound in Theorem 1.9 and (63).

W

π
����

σ

)) ))
I

f //

c

77

''

AQ(Rn)

ξ
��

� � Σ // // σ(W ) ⊆ Rr

RN

The general case follows from a standard argument by covering Ω′ by boxes contained in Ω
and using Fubini’s theorem in a similar fashion as in the proof of Theorem 1.4. �

Corollary 10.2. The bijective mapping Σ induces a bounded mapping

(Σ−1)∗ : CQ−1,1(Ω, σ(W ))→ W 1,∞
loc (Ω,AQ(Rn)), ϕ 7→ Σ−1 ◦ ϕ.

Proof. It suffices to check that Σ−1 ◦ ϕ is continuous. This follows from the fact that π is
continuous and that σ is proper and thus closed. �

10.6. Multi-valued Sobolev liftings. Let G 	 Rn be a representation of a finite group G.
The surjective map π : Rn → AG	Rn(Rn) defined by π(p) =

∑
g∈GJgpK is clearly Lipschitz.

Let σ1, . . . , σr be any system of homogeneous generators of R[Rn]G. There is a bijective map
Σ : AG	Rn(Rn) → σ(Rn) ⊆ Rr such that σ = Σ ◦ π, since σ = (σ1, . . . , σr) separates orbits.
Let d := maxj deg σj.

Let Ω be a bounded open subset of Rm. We say that a function f : Ω→ AG	Rn(Rn) is of
class W 1,p, and write f ∈ W 1,p(Ω,AG	Rn(Rn)), if f ∈ W 1,p(Ω,A|G|(Rn)).

Thus we obtain, analogously to Theorem 10.1,

Theorem 10.3. Let f : Ω → AG	Rn(Rn) be continuous. If Σ ◦ f ∈ Cd−1,1(Ω,Rr), then for
each relatively compact open Ω′ ⊆ Ω we have f ∈ W 1,∞(Ω′,AG	Rn(Rn)). Moreover,

‖Df‖L∞(Ω′) ≤ C(d, n,m,Ω,Ω′)
(

1 + max
1≤j≤r

‖Σj ◦ f‖
1/dj

Cd−1,1(Ω)

)
.

Corollary 10.4. The bijective mapping Σ induces a bounded mapping

(Σ−1)∗ : Cd−1,1(Ω, σ(Rn))→ W 1,∞
loc (Ω,AG	Rn(Rn)), ϕ 7→ Σ−1 ◦ ϕ.

10.7. Complex Q-valued functions. It is evident that one can define the space AQ(Cn)
of unordered Q-tuples of points in Cn in analogy to AQ(Rn). It is a complete metric space
with the metric d from (62). Again there is a natural bijection between the points in AQ(Cn)
and the orbits of the SQ-module (CQ)⊕n, the basic invariants of which are again given by
the polarizations of the elementary symmetric functions.

Given a complex representation G 	 Cn of a finite group G we may consider the closed
subspace AG	Cn(Cn) of A|G|(Cn).

The theory of complex Q-valued Sobolev functions can simply be taken over from the
identification AQ(Cn) ∼= AQ(R2n) induced by C ∼= R2.

Let Ω be a bounded open subset of Rm. With the analogous definition of the basic
invariants σi and the maps π and Σ we may deduce from Theorem 1.1 the following
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Theorem 10.5. Let f : Ω→ AQ(Cn) be continuous. If Σ◦f ∈ CQ−1,1(Ω,Cr), then for each
relatively compact open Ω′ ⊆ Ω and all 1 ≤ p < Q/(Q − 1) we have f ∈ W 1,p(Ω′,AQ(Cn)).
Moreover,

‖Df‖Lp(Ω′) ≤ C(Q, n,m, p,Ω,Ω′)
(

1 + max
1≤j≤r

‖Σj ◦ f‖
1/dj

CQ−1,1(Ω)

)
.

Similarly we get

Theorem 10.6. Let f : Ω → AG	Cn(Cn) be continuous. If Σ ◦ f ∈ Cd−1,1(Ω,Cr),
then for each relatively compact open Ω′ ⊆ Ω and all 1 ≤ p < d/(d − 1) we have
f ∈ W 1,p(Ω′,AG	Cn(Cn)). Moreover,

‖Df‖Lp(Ω′) ≤ C(d, n,m, p,Ω,Ω′)
(

1 + max
1≤j≤r

‖Σj ◦ f‖
1/dj

Cd−1,1(Ω)

)
.

Again we may conclude that the bijective mapping Σ induces a bounded mapping

(Σ−1)∗ : CQ−1,1(Ω, σ((CQ)⊕n))→ W 1,p
loc (Ω,AQ(Cn)), ϕ 7→ Σ−1 ◦ ϕ,

for all 1 ≤ p < Q/(Q− 1). In the case of a G-module Cn we find that

(Σ−1)∗ : Cd−1,1(Ω, σ(Cn))→ W 1,p
loc (Ω,AG	Cn(Cn)), ϕ 7→ Σ−1 ◦ ϕ,

is a bounded mapping for all 1 ≤ p < d/(d− 1).
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