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ABSTRACT. We review and extend the description of ultradifferentiable func-
tions by their almost analytic extensions, i.e., extensions to the complex do-
main with specific vanishing rate of the O-derivative near the real domain.
We work in a general uniform framework which comprises the main classical
ultradifferentiable classes but also allows to treat unions and intersections of
such. The second part of the paper is devoted to applications in microlocal
analysis. The ultradifferentiable wave front set is defined in this general set-
ting and characterized in terms of almost analytic extensions and of the FBI
transform. This allows to extend its definition to ultradifferentiable manifolds.
We also discuss ultradifferentiable versions of the elliptic regularity theorem
and obtain a general quasianalytic Holmgren uniqueness theorem.
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1. INTRODUCTION

An almost analytic extension of a real function f is an extension F' to the complex
domain such that F(z) has a certain growth rate as z approaches the real domain.
It is well-known that this growth rate encodes regularity properties of f.

In this article we review and extend the characterization of ultradifferentiable
function classes by their almost analytic extensions. The almost analytic description
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of Denjoy—Carleman classes goes back to Dynkin [I4]. For the non-quasianalytic
classes introduced by Beurling [5] and Bjorck [6] the characterization was proved
by Petzsche and Vogt [33].

We introduce a uniform approach which generalizes all mentioned results. Our
characterization theorems work under very weak conditions, in particular, we need
not assume non-quasianalyticity. This is achieved by refining the extension method
of Dynkin following the ideas of [37, B8] and combining it with the description of
ultradifferentiable classes by weight matrices which was introduced in [35].

In the special case of Beurling—Bjorck classes we even obtain a complete char-
acterization of the classes which admit a description by almost analytic extension:
these are precisely the classes that are stable by composition.

In the second part of the paper we apply these results to microlocal analysis.
More precisely, we deal with the ultradifferentiable wave front set. The wave front
set was introduced in the smooth case by Hormander and in the analytic category
by Sato as a refinement of the singular support. In [I8] Hérmander introduced the
ultradifferentiable wave front set with respect to Denjoy—Carleman classes given by
weight sequences. In particular he gave an alternative definition of the analytic wave
front set by the Fourier transform, in contrast to Sato’s approach using holomorphic
extensions. Bony [10] showed that the definitions of Sato, Hérmander and the one
of Bros—Tagolnitzer [12] using the FBI transform describe the same set. The first
author [16] showed that the theorem of Dynkin can be used to prove a version of
Bony’s Theorem for the ultradifferentiable wave front set in the case of Denjoy—
Carleman classes.

On the other hand Albanese-Jornet—Oliaro [I] defined the ultradifferentiable
wave front set for Beurling—Bjork classes and proved a microlocal elliptic regularity
theorem. Our aim is to unify and generalize these results.

We begin by recalling and extending the definition of the ultradifferentiable wave
front set to classes given by weight matrices. We characterize it in terms of almost
analytic extensions as well as in terms of the FBI transform. In the last section of
the article we discuss ultradifferentiable versions of the elliptic regularity theorem
and obtain a general quasianalytic Holmgren uniqueness theorem.

1.1. Almost analytic extensions. Let h : (0,00) — (0,1] be an increasing con-
tinuous function which tends to 0 as t — 0. Let p > 0. Let U C R™ be a bounded
open set. We say that a function f : U — R admits an (h, p)-almost analytic ex-
tension if there is a function F' € C(C") and a constant C' > 1 such that F|y = f
and

|OF(2)| < Ch(pd(z,U)), for z € C".

Here d(z,U) := inf g [z — z| denotes the distance of z to U. A vector valued
function f = (f1,..., fm) : U = R™ admits an (h, p)-almost analytic extension if
each component f; does.

We wish to emphasize that functions that admit almost analytic extension have
good stability properties:

Proposition 1.1. Suppose that f : U — R has an (h, p)-almost analytic exten-
sion and g : V. — U has a (k,o)-almost analytic extension. Then f o g admits
a (max{h, k}, max{Cp, o})-almost analytic extension, where the constant C' equals
the Lipschitz constant of the extension of g.
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Proof. Let F and G denote the respective extensions. Then

0z, (FoG) = ZaF )0=.G; +Z =, F(G)0=,G
Jj=

Since G € C!, we have d(G(z), G(V)) < Lip(G)d(z,V). The assertion follows. [J

Notice that stability under inverse/implicit functions and solving ODEs follows
in a similar way; we refer to [I4].

Let M = (M) be a positive sequence. For p > 0 we consider the Banach space
B?A(U) ={felC>U): ||fH2/I < 0o}, where

M= sup 10T

zeU, aeNm p|(¥\M| |
and the limits
BMYU) = ind,en B};/I(U) and  BM)(U) := Proj,en Biv/lp(U).

Then BIMY(U) and BM)(U) are called Denjoy—Carleman classes of Roumieu and
Beurling type, respectively. We shall also need the local classes

M)y .= Projy e BMI(V),
where V ranges over the relatively compact open subsets of U; we write [M] if we
mean either {M} or (M).
Let m = (my) be the sequence defined by my, := My, /k! and let us assume that

1/k—>ooabk:—>oo We define

hm(t) := ;Egmkt , fort>0, and hn(0):=0. (1.1)

The following theorem is due to Dynkin [T4].

Theorem 1.2. Assume that m is logarithmically conver, m,lc/k — o0, and

(Myy1 /M) * is bounded. Let U C R™ be open. Then f € EMIU) if and only
if for each ball B @ U the restriction f|p has an (hm, p)-almost analytic extension
for some p > 0.

Our goal is to extend this result to the Beurling case and to the classes of Beurling
and Bjorck which were equivalently described by Braun, Meise, and Taylor [11].
These classes are defined in terms of a weight function w. By a weight function
we mean a continuous increasing function w : [0,00) — [0,00) with w(0) = 0 that
satisfies

w(2t) = O(w(t)) ast— oo, (1

w(t)=0() ast— oo, (1.

logt = o(w(t)) ast— oo, (1

o(t) := w(e') is convex. (1
Note that (1.4 implies lim;_, o w(t) = oco.

For p > 0 we consider the Banach space By (U) := {f € C®(U) : [|f|| < oo},
where, for ¢*(t) := sup,sq(st — ¢(s)),

IF15 := sup 0% f ()| exp(—5¢" (plal)),

zeU, aeN
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and the limits
BYHU) :==ind,en By (U) and  B“(U) := proj, ey By, (U).
The corresponding local classes are defined by
el = Projv ey BE(V);

we write [w] if we mean either {w} or (w). We recall that £4)(U) contains non-trivial
functions with compact support in U if and only if

* w(t

/ & dt < oo;
12
1
cf. [II] or [35]. In that case we say that w is non-quasianalytic and it makes sense
to set
DU .= ENU) N D),
where D(U) denotes the space of smooth functions with compact support in U.
In [33] the authors prove the following result.

Theorem 1.3. Let w be a concave non-quasianalytic weight function. Let U C R
be open and f € D(U). Then:

(1) f € DHU) if and only if there exist p > 0 and F € D(U) such that
Flr = f and

sup |9F (z)] exp(pw*(|y|/p)) < oo (1.6)
z€C\R

(2) f € DW(U) if and only if for each p > 0 there exists F € D(U) such that
Flg = f and (L.6).
Here U is an open subset of C such that U = UNR and w*(t) = supgso(w(s) — st).

In [33] the almost analytic extensions were obtained by an explicit formula sug-
gested by Mather based on the Fourier transform. That proof does not work for
quasianalytic classes.

Remark 1.4. In [33] the assumption (|1.5) is not made. This condition is important
for the equivalence of the classes £ with the classes originally introduced by
Beurling and Bjorck using the Fourier transform; cf. [11].

We will prove results which generalize both Theorem [I.2] and Theorem [T.3] and
which work also in the quasianalytic setting. Our most general results are for-
mulated and proved for ultradifferentiable classes defined by weight matrices; see
Theorem and Theorem We give full details in the proofs, since Dynkin’s
papers seem not to be widely known.

For classes described by weight functions we obtain a complete characterization:

Theorem 1.5. Let w be a weight function satisfying w(t) = o(t) as t — oo. The
following are equivalent.

(1) &8} can be described by almost analytic extensions.
(2) EW) can be described by almost analytic extensions.
(3) &%} is stable under composition.

(4) £ is stable under composition.

(5) w is equivalent to a concave weight function.
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This follows from the much more comprehensive Theorem [4.8]in which also the
precise meaning of the phrase “€[“! can be described by almost analytic extensions”
is explained. See also Theorem for our new version of Theorem

A widely used family of ultradifferentiable classes which falls into this framework
is the scale of Gevrey classes

Gs = LB} — g{thl/s}’ s> 1;
note that G! = Cv.

1.2. Applications to microlocal analysis. The uniform approach to ultradiffer-
entiable classes by imposing growth conditions in terms of weight matrices provides
us with a general framework to treat the ultradifferentiable wave front sets for
distributions v € D’. Our setting comprises and generalizes the wave front sets
WEFng of Hérmander [20] for weight sequences M and WE,; of Albanese, Jornet,
and Oliaro [I] for weight functions w.

In Section [5| we develop the basic properties trying to impose minimal assump-
tions on the weights.

As an application of the description of ultradifferentiable classes by almost ana-
lytic extensions we obtain in Section [0 a characterization of the ultradifferentiable
wave front set by almost analytic extensions; see Corollary [6.3] This description
allows us to show that the ultradifferentiable wave front set is compatible with
pullbacks by mappings of the corresponding ultradifferentiable class and hence the
definition of the wave front set can be extended to ultradifferentiable manifolds;
see Theorem Furthermore, we obtain a general ultradifferentiable version of
Bony’s theorem, that is a characterization of the ultradifferentiable wave front set
not only by almost analytic extensions but also in terms of the FBI transform; see
Theorem [6.61

In the particular case of a weight function the latter takes the following form.

Theorem 1.6. Let w be a concave weight function satisfying w(t) = o(t) ast — oo.
Let u € D'(Q) and (x0,&) € T*Q\ {0}. Then

(1) (wo,&0) & WF ) u if and only if there exist a test function ¢ € D(2) with
¥ =1 near g, a conic neighborhood U X T of (xg, &), and a constant v > 0
such that

sup e’*““f‘)]S(ww(t,g)\ < 0. (1.7)
(t,£)eUxT

(2) (z0,80) &€ WF () u if and only if there exist a test function 1) € D(Q) with
¥ =1 near g and a conic neighborhood U x T' of (xg,&y) such that (1.7))
is satisfied for all v > 0.

We refer to Section for the definition of the generalized FBI transform §.

In the last Section [7] we investigate ultradifferentiable versions of the elliptic
regularity theorem. Our most general result is Theorem which is formulated
for classes defined by weight matrices. It comprises the versions of Hormander
[21] for weight sequences M and of Albanese, Jornet, and Oliaro [I] for weight
functions w as special cases. The proof follows closely the approach of Hérmander.
As a corollary we obtain a general version of Holmgren’s uniqueness theorem; see
Theorem

Notice that in the Beurling case we must in general assume that the coefficients
of the linear operator are strictly more reqular than the wave front set in question,
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just as in [I]; Hérmander only considers operators with analytic coefficients. There
are however circumstances when the operator can be as regular as the wave front
set (both in the case of a single weight sequence and of a weight function); see
Section In particular, this occurs in the setting considered in [I], whence our
result Theorem actually strengthens [I, Theorem 4.1].

A further interesting corollary of Theorem [7.1]is the following. We are interested
in the intersection of all non-quasianalytic Gevrey classes

£ = g%
s>1
this is a non-quasianalytic function class, cf. [35].

Theorem 1.7. Let P(z,D) = 3, <, @a(z)D* be a linear partial differential
operator with £®)(Q)-coefficients. Then

WF(@)U - WF(@)PUUChaI‘P (1.8)
for all w € D'(Q). If P is elliptic, then WF (&) u = WF (&) Pu.
That Theorem [I.7] follows from Theorem [7.1] will be proved in Section [7.2}

Remark 1.8. It is clearly possible to define ultradistributions and their wave front
sets based on non-quasianalytic weight matrices (as dual spaces of the respective
spaces of ultradifferentiable test functions). For weight sequences and weight func-
tions there exists a comprehensive theory of ultradistributions, see e.g. [24] 25| 27].
One can expect that results similar to those obtained in this paper hold in that sit-
uation. For instance, an elliptic regularity theorem for ultradistributions of Braun—
Meise-Taylor type is proved in [2]. However, it seems that different techniques
will be required, since the growth of the Fourier—Laplace transform of compactly
supported ultradistributions quite differs from the one of classical distributions (cf.
[25]). In [2], for instance, tools from the theory of ultradifferentiable pseudodiffer-
ential operators of infinite order are used. These tools are not yet developed in the
framework of general weight matrices.

Acknowledgment. We wish to thank the anonymous referee for valuable sugges-
tions that improved the presentation of the paper.

2. WEIGHTS AND ULTRADIFFERENTIABLE CLASSES

2.1. Weight sequences. Let u = (1) be a positive increasing sequence, 1 = pg <
w1 < pz < ---. We associate the sequences M = (Mj,) and m = (my,) defined by

Hopipiz - -+ pe = My = klmy, (2.1)

for all £ € N. We call M a weight sequence if M,i/k — 00. A weight sequence M is
called non-quasianalytic if
1
d — <o (2.2)

Pk
k
We say that M has moderate growth if there exists C' > 0 such that M, <
CITEM; My, for all j,k € N, or equivalently,
e S MY (2.3)

we refer to [37, Lemma 2.2] for a proof and further equivalent conditions. (For real
valued functions f and g we write f < g if f < Cg for some positive constant C'.)
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Two weight sequences M and N are said to be equivalent if there is a constant
C > 0 such that 1/C < M,i/k/N,i/k < C for all k. We write M < N (resp. M < N)
if Mé/k/N;/k is bounded (resp. tends to 0).
Remark 2.1. Note that p uniquely determines M and m, and vice versa. In
analogy we shall use v <+ N <> n, ¢ <+ S < s, etc. That p is increasing means
precisely that M is logarithmically convex (log-convex for short). Log-convexity

of m is a stronger condition: if m is log-convex we shall say that M is strongly
log-convez.

The results contained in the next lemma are easy to check; the proof is left to
the reader.

Lemma 2.2 (Properties of weight sequences). Let 1 = pg < 3 < pa < ---. Then:
(1) M,i/ * s increasing, equivalently,
Vk € Nog : M/F < . (2.4)
(2) MMy, < M1y, for all k,j.
(3) If M,i/k — 00, then pj — 0.
(4) Ifm,lg/k — 00, then my/my_1 = pr/k — oo.
(5) i

iy k R
The condition m;'" — oo implies

VYp>03C >0Vk e N: k* < Cp*M,. (2.5)
2.2. Functions associated with weight sequences. There are a few functions
which one naturally associates with a weight sequence; cf. [29], [24], [13].

Let m = (my) be a positive sequence satisfying mo = 1 and m,lc/k — o0o. We
have already introduced the function hy, in (1.1)). Furthermore, we need

T (t) := min{k : hym(t) = mgt®}, >0, (2.6)
and, provided that my,1/my — oo,
. Mp41 1
r = : > - . 2.
L@ mln{kz e 21 }, t>0 (2.7)

The next lemma is immediate from the definitions, cf. [38, Lemma 3.2].

/

Lemma 2.3. Let m = (my,) be a positive sequence satisfying mo = 1, m,lc ko 0,

and my41/my — oo. Then:

(1) hm is increasing, continuous, and positive for t > 0. For large t we have
hm(t) = 1.

(2) L), is decreasing and L'y, (t) — o0 as t — 0.

(3) k> myt* is decreasing for k < T, (t).

(4) T,y <Twm. If m is log-convex then L'y, = .

It will be crucial to also have an “upper bound for T in terms of I'”. The next
lemma provides a sufficient condition for this.

Lemma 2.4 ([38]). Let M and N be weight sequences satisfying m,lc/k — 00 and
ni/k — 00. Assume that

3021V1§j§k;’ﬁgo%. (2.8)
j
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Then, for allt > 0,

Ta(Ct) < T (8). (2.9)
We also consider the function
tk
wm(t) = —10g hm(1/t) = suplog (7) >0, (2.10)
keN mg

which is increasing, convex in logt, and zero for sufficiently small ¢ > 0. The
log-convexr minorant m of m is given by

tk
my =S

up —————, keN.
150 exp(wm(f))

In particular, m is log-convex if and only if m = m.

2.3. Basic properties of Denjoy—Carleman classes. For weight sequences M
and N we have BM C BN if and only if M < N and BIM} € BN if and only
if M < N. In particular, M and N are equivalent if and only if the corresponding
classes BMI and B! coincide. By the Denjoy-Carleman theorem (e.g. [20, The-
orem 1.3.8]), BMI(U) contains non-trivial elements with compact support if and
only if M is non-quasianalytic.

2.4. Weight matrices and corresponding spaces of functions. A weight ma-
triz is a family 9 of weight sequences which is totally ordered with respect to the
pointwise order relation on sequences, i.e.,

(1) M CRY,
(2) each M € 9 is a weight sequence in the sense of Section
(3) for all M, N € Mt we have M < N or M > N.

Let 9t and 91 be two weight matrices. We define
M= = VMecMINeN:M=<N,
MM & YNeNIMeM:M=<N.
M<)N = YMeMYNeN: MaN.
We say that 9t and O are R-equivalent (resp. B-equivalent) if M{=<}N{<}M (resp.
M()N(X)M) and simply equivalent if they are both R- and B-equivalent.
For a weight matrix 901 we consider the corresponding Roumieu class
B (U) := indpeon BMH (D), (2.11)
and Beurling class

BO(U) := projygear BM(U). (2.12)

For weight matrices 9, 91 we have B C B if and only if M[=<]N and BN C
BOY if and only if 9{<)MN; cf. [35].
The limits in the definitions (2.11]) and (2.12]) can always be assumed countable

as is shown in the next lemma.

Lemma 2.5. Let 9 be a weight matriz. There exists a countable weight matriz

£ C M such that BENU) = BP(U) algebraically and topologically.
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Proof. Let us prove the Roumieu case. For every k € N let 9y, := {M}, : M € M}
which is a subset of R.

Case 1: If M := (sup 9My,)x € M then M > M and hence BIMH(U) = BT ().

Case 2: Assume M ¢ 90 but sup9, € My, for all k. For each k there exists
MP* € 9 such that M} = supMy. Then £ := {M* : k € N} is a countable totally
ordered subfamily of 9t. Moreover, BI¥(U') = BP(U) follows from the claim that
for each M € 90t there exists L € £ such that M < L. Since M # M, there is a ko
such that M, < sup My, = M,fg Since M is totally ordered, M < M*° =: L and
the claim is proved.

Case 3: Assume sup My, ¢ My, for some ky. For each k choose a strictly
increasing sequence M)’ in 9, such that M — supIM; as n — oo. For each £
and each n choose L = L(k,n) € 9 such that L, = M. This gives a countable
subfamily £ C 9. By construction, for given kg we clearly find L € £ such that
My, < Ly, which implies BI*/(U) = B™(U) as in Case 2.

The Beurling case is analogous (replacing sup by inf). |

The corresponding local classes are defined by
M) = Projy e B (V).

We say that a weight matrix 9 is quasianalytic if each M € O is quasianalytic.
For a quasianalytic 90 the class B™(U) is quasianalytic in the sense that it cannot
contain non-trivial elements with compact support. It is easy to see that in the
Roumieu case BI™}(U) also the converse is true. In the Beurling case the class
B™)(U) is quasianalytic if and only if there exists a quasianalytic M € 9U; this
follows from [43, Proposition 4.7]. In that case we may remove all non-quasianalytic
sequences from 9t without altering the class (thanks to the total order, see (3)).

Definition 2.6 (Regular weight matrix). A weight matrix 91 satisfying

(0) mi/k—>ooask—>ooforallM€9ﬁ
is called R-regular (for Roumieu) if

(1) YMeMINeMIC >1VjeN: My <CITIN;,

(2) VM eMIN €MIC > 1Vt >0:Tu(Ct) <L),
and B-regular (for Beurling) if

(3) YMeMINeMIC >1VjeN: Njpq <CIM;,

(4) VM eMIN € MIC >1Vt>0:Tiu(Ct) <L (1).
Moreover, 9 is called regular if it is both R- and B-regular. We say that a weight
matrix M is R-semireqular (resp. B-semiregular) if it satisfies (0) and (1) (resp.
(3)), and M is called semiregular if it is both R~ and B-semiregular. Occasionally,
we will also use [semiregular] (or [regular]) and mean that the weight matrix in
question is assumed to be R- or B-semiregular (R~ or B-regular) depending on the
case that is considered.

Let us discuss the relations among the conditions in this definition.

Remark 2.7. We have the following equivalences; see [35, Proposition 4.6]:
e C¥ C £ if and only if M satisfies (0).
o B (equiv. £1M1) is stable under derivation if and only if 90t satisfies (1).
e B (equiv. €M) is stable under derivation if and only if 90t satisfies (3).
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Suppose that 91 is an R-semiregular weight matrix. Then the following three
conditions are gradually weaker:
(1) VMEQJTEINESJTECEIVjSk:%gC%
(2) M satisfies Definition [2.6[2).
(3) YMeMIN e MIC > 0V) <k:m)’ <cn/*
Indeed, that (1) implies (2) follows from Lemma in Example we shall
see that (1) is strictly stronger than (2). And that (2) implies (3) follows from
Proposition and Theorem since (3) holds if and only if the class B{™
(equiv. £17) is stable under composition; cf. [36].
Similarly, if 9t is a B-semiregular weight matrix, then the following three condi-
tions are gradually weaker:
(4) VMEDJIEINES)J?HCEIVjSk:%SC“T’“
(5) M satisfies Definition [2.6/4).
(6) YM e M3IN € M3IC >0V) <k:n)/) <COm/"
This follows from Lemma Proposition Theorem and since (6) holds if
and only if the class B™) (equiv. £™V) is stable under composition; cf. [36].
The conditions Definition [2.6)(2)) and Definition [2.6{{4)) are a minimal requirement
(aside from semiregularity) for our proofs of Theor and Theorem [3.4]to work.
Additionally, we wish to emphasize that (1) holds if and only if 9 is R-equivalent
to a weight matrix which consists of nothing but strongly log-convex weight se-
quences. In the same way (4) holds if and only if 91 is B-equivalent to a weight
matrix which consists of nothing but strongly log-convex weight sequences. See [39,
Corollaries 9 and 10].

Example 2.8. There exist two positive sequences M < N such that:

(1) They satisty (2.9).
(2) If two sequences M’ and N’ satisfy (2.8)) (with a possibly different constant),
then either M is not equivalent to M’ or N is not equivalent to N’.

(3) pw/k — o0, v /k — o0, m,lﬁ/k — 00, and n,lﬂ/k — 00 as k — 0.
Proof. Let aj, j > 1, be integers satisfying
ar =1, aj41 > max{a?,aj +3} forallj>1,

and b;, j > 1, positive numbers such that

by =1, bjp1 >b; > %+t forall j>1.
We define o :=1 and for k > 1

= {c?jbj. %f a; <k <ajq1—1
jTu a0 — )by ifk=aj41 — 1.

Let ¢;, j > 1, be positive numbers such that

b aj+1—2 1
] J _ a; —a;—1
Cit1 > ¢ > L max {aj+2 -2, (ja_7+1 1 H f) 19 }
a; y
=a;

Define vg := 1 and for k > 1

a;Cj if a; <k< Aj+1 — 1
VE ‘= .
A ifk=a;41 —1.
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(1) The various definitions imply that

—a. 1ZP 1%
Vi >0k > aq  bi ot < Zum 2k

o < )
Jt aj1 k
. . . . Haj 1 ) _ HMaji,y
In particular, if ¢ > 0 is such that b; = o <71 <bjy1= i then
pair—k=1 o Yage Ve Tk
G541 k Najyq—1

i.e. npth > n,,,,_1t%+ 71, Since by construction *,;’jll < 1 forall k < aj;1—1,
we have [, (t) = a;j+1 — 1. Hence ngth > nzm(t)tzm(t) for all k£ > I,,(t) and,
consequently, T (t) < T, (t).

(2) If M’ and N’ satisfy and D™ < (M} /My)* < D as well as D! <
(N} /Ni,)'/* < D for a positive constant D, then

30,H21V1gjgk:%g1{ck%’“.

Clearly, this property is violated by the constructed sequences (to see this replace
j by a; and k by aj4q1 — 1).

(3) It is easy to see that pg/k < vy /k for all k. That uy/k — oo as k — oo follows

from b; > j%+1. This shows all assertions since px/k — oo implies m,lc/k — o0; cf.

the arguments given in [35] before Lemma 2.13. O

The constructed sequences M and N are not log-convex, but since mllc/ * and

ni/k tend to oo as k — 0o, we have EMI = £IM] apnd eINl = ¢INI | where M denotes
the log-convex minorant of M; see [35, Theorem 2.15].

For later use we also show the following.

Theorem 2.9. Let M be a weight matrix satisfying m,le/k — o0 for all M € M. If
¢ : Q1 = Qy is a real analytic mapping between open sets 0; CR™, j =1,2, then
the pullback ¢* : EM(Qy) — EPN(Q1) of ¢ is well defined.

Proof. Let us first assume that 97 consists of a single weight sequence M. In the
Roumieu case the statement follows easily from the proof of [20, Proposition 8.4.1];
it is enough that M is a positive sequence with m,lc/ b 0.

Suppose that u € EM)(Qy) and K C Q; is compact. For each p > 0 there exists
C > 0 such that Ly, := max{k!, maxq|— SUD,c (k) [0%u(x)|} < CpFMj for all k.
Then the sequence Ny, := /Ly M}, satisfies L<{N <<M and nllc/k — 00. So u belongs
to BIN}(o(K)) and, by the Roumieu case, p*u € BIN}K) € BM)(K).

The general case follows immediately. O

2.5. Whitney ultrajets. Let E be a compact subset of R”. We denote by J*°(E)
the vector space of all jets F' = (F®)qenn € CO(E,R)N" on E. Fora € Eandp € N
we associate the Taylor polynomial

TP : J%(E) = C®(R",R), F = TPF(z):= Y (SC%)QFQ(@,

la|<p
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and the remainder REF = ((RLF)%)|q|<p With

—a)B
(REF)¥(x) := F¥(x) — Z %F”‘*B(a)7 a,z € E.
[BI<p—|a] ’
Let us denote by jg the mapping which assigns to a C'°°-function f on R™ the jet
JX(f) == (0*f|E)a. By Taylor’s formula, F = j¥(f) satisfies
(RPF)*(z) = o(|z — alP71®l)  fora,z € E,peN, |a| <p as |z —a| — 0.

Conversely, if a jet F' € J°°(F) has this property, then it admits a C*°-extension to
R™, by Whitney’s extension theorem [47] (for modern accounts see e.g. [28, Ch. 1],
[46, TV.3], or [20, Theorem 2.3.6]).

Let M = (Mj) be a weight sequence. For fixed p > 0 we denote by B}}/I (E) the
set of all jets F' such that there exists C' > 0 with

|F(a)| < Cpl®] My, a€N' ack,

|b— a[pti-lel
(p+1—lal’
The smallest constant C' defines a complete norm on B},}’I(E). We define the
Roumieu class

[(REF)*(b)| < CpP*! My yy peN,|al <p, a,b€ E.

BMY(E) := ind,en BY(E),
and the Beurling class
BM)(E) := proj . BY(E).
An element of BM(E) is called a Whitney ultrajet of class B™M on E.
If 901 is a weight matrix we set

BP(E) := indpeoe BMHE)  and  B™V(E) := projpgeay BM(E).
Remark 2.10. If U is an open subset of R” and F' € J*°(U) satisfies
(RPF)*(z) = o(|z — alP~1?l)  fora,z €U, peN, |a| <pas |z —a| =0,

then there exists f € C°(U) with F = ji(f). It follows that the space of functions
and the space of jets that were both denoted by B™I(U) coincide, which justifies
the consistent use of the notation.

2.6. Quasiconvex domains. A subset X of R” is called quasiconvez if any two
points 2,y € X can be joined by a rectifiable path in X of length < Clx — y|, for
some constant C' independent of x,y. By a quasiconver domain in R" we mean a
non-empty open subset U C R" that is quasiconvex.

It follows easily that the closure of any quasiconvex domain U is quasiconvex as
well, in fact, any two points z,y in the boundary of U can be joined by a rectifiable
path of length < C|z — y| (with possibly a larger constant) which lies in U except
the endpoints.

Lemma 2.11. Let U C R" be a bounded quasiconver domain and f € B[M](UL
Then each partial derivativgf(a) admits a unique continuous extension f* to U
such that (f*)aen» € BM(T).

Proof. That the extension f* exists (and is unique) follows from the mean value
theorem, since all first order derivatives of f (@) are uniformly bounded on U. Since
E = U is quasiconvex, (f) is a Whitney jet of class C* and hence extends to a
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smooth function on R”; cf. [34, Proposition 1.10]. That (f®) € BMI(E) follows
from [34, Lemma 10.1] (which is only formulated for Roumieu classes, but its proof
also shows the Beurling case). ]

3. ULTRADIFFERENTIABLE CLASSES BY ALMOST ANALYTIC EXTENSIONS

3.1. Characterization theorems. Before we formulate the main theorems of this
section, we need one additional definition.

Definition 3.1. Let 9 be a weight matrix.

(1) A function f: U — R is called {9}-almost analytically extendable if it has
an (hm, p)-almost analytic extension for some M € 9 and some p > 0.

(2) A function f : U — R is called (9)-almost analytic extendable if, for all
M € Mt and all p > 0, there is an (hy, p)-almost analytic extension of f.

Theorem 3.2 (Roumieu case). Let MM be an R-reqular weight matriz and U C R™
a bounded quasiconvex domain. Then f € B (U) if and only if f is {9M}-almost
analytically extendable.

Since any open subset of R™ can be exhausted by relatively compact quasiconvex
domains (e.g., connected finite unions of balls) we immediately get a characteriza-
tion of local classes.

Corollary 3.3. Let 0 be an R-reqular weight matrixz. Let U C R™ be open. Then
f e EMNU) if and only if fly is {IM}-almost analytically extendable for each
quasiconvex domain V relatively compact in U.

Theorem 3.4 (Beurling case). Let 9 be a B-reqular weight matriz and U C R™
a bounded quasiconvex domain. Then f € B™V(U) if and only if f is (IM)-almost
analytically extendable.

Again the following is immediate.

Corollary 3.5. Let 9 be a B-reqular weight matriz. Let U C R™ be open. Then
f € EMNU) if and only if fly is (9N)-almost analytically extendable for each
quasiconvexr domain V relatively compact in U.

Remark 3.6. In the case that 91 consists only of a single weight sequence, Theo-
rem reduces to a slight generalization of Dynkin’s original result [14]. In fact,
Dynkin’s assumption that py/k is increasing implies Definition [2.6](2]) with n = m.

If the assumption Definition is replaced by Remark hich is strictly
stronger, by Example then one can use [39, Corollary 9] and the result of Dynkin
to get Theorem [3.2]

3.2. Proofs of Theorem and Theorem The arguments in this section
are essentially due to Dynkin [I4]. First we recall the Bochner-Martinelli formula.
In the standard Wirtinger notation

1
W(dzl ANdz) A A (dZn A dzy) = AL (2)

is the usual volume element of R?™ 22 C" and

F(z) = f: 6F;?)dzj.
g=1

0z
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Theorem 3.7 (Bochner-Martinelli formula). Let V' C C™ be a bounded domain
with C* boundary and F € C*(V). Then

Fe) = [ FQuic.n) - [ TR0 nulco),
ov v

where w is the (n,n — 1)-form (dzj means that dzj is omitted)

(n—1! 1 “_ — _

T T D (G —Z)dly AdG A AdC A NdC,, A dG.

=1

w((,2) =

Proposition 3.8. Let M be a positive sequence with m,lc/k — o0, p > 0, and
U C R"™ bounded open. Any f : U — R with an (hm, p)-almost analytic extension
belongs to BMY(U). If for every p > 0 there is an (hm, p)-almost analytic extension
of f, then f belongs to BM)(U).

Proof. Let F be an (hm, p)-almost analytic extension of f. Since F' has compact
support, Theorem implies

flz)=F(x) =— - OF(() Aw(¢,z), x€U.

By differentiating under the integral sign it is easy to check that f := F|y is of
class C* on U with
0%f(x) = — OF(Q) NO°w(C,x), = €U.
Cn
By Faa di Bruno’s formula and the Leibniz rule, we get
C(n)*lal!
- |.’E _ <‘2n+|a|71 :

0° (|a;1<|2n i(é} - »”Uj))

Choose R > 0 large enough such that U Usupp(F) C B(0, R). Writing D =
we get for x € U,

0% f (2)] Al (pd(¢,T)) o
G = oy e 1670

(n—=1)!

" i

d(<7v)‘a| 2
< AD ———— dL"((
B(0,R) |JL‘ _ <‘2n+|a|71 ( )
1
< AD _— dﬁQ”(C) < 0.
B(o,r) |z — ¢!
The assertions follow. O

Lemma 3.9. Let E C R” be compact and f = (f*) € BIMYE) (resp. f €
BM)(E)). Then there exist C,D > 0 (resp. for each D there exists C) such that
forall aj,a0 € E, z € C*, and o € N™ with |o| < j,

02T, f(2) = 02T3, F(2)] < D Haltmysa (Jar — 2| + ar — a1,
Proof. For fixed ay,a2 € E and j € N, the function z — T7 f(z) — TJ f(2) is a

polynomial in z of degree j satisfying

. 4 i o
T - TLAE) = 3 (Rl ) E
|8]=0 :
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From this the assertion follows easily; cf. [I3], Proposition 10]. O

A crucial ingredient in the subsequent construction consists of the so-called reg-
ularized distance. Given a closed set E C R", the distance function z — d(z, E) is
far from being smooth. But it is possible to construct a smoothened version of the
distance, having essentially the same properties.

Proposition 3.10 ([45, VI 2.1 Theorem 2)). Let E C R™ be closed. There is a
C>®-function § : R\ E — R such that

(1) c1d(z, E) < 6(z) < cod(z, E) for all z ¢ E,
(2) foralla e N" and z € R"\ E,

|0°6(2)| < Bad(z, E)' 710,
where the constants By, c1,co are independent of E.
The following lemma is well-known.

Lemma 3.11. Let E C R" be compact. Let o > 1. There exists a Borel measurable
map b: R\ E — E such that |z — b(z)| < ad(x, E) for all z € R™\ E.

Proof. Let {zy}ren be a dense subset of E. Define m : R® \ E — N by m(x) :=
min{k : |z — x| < ad(z, E)} and x : N — E by (k) = zx. Then both m and = are
Borel measurable, hence so is b := z o m. Il

Proposition 3.12. Let M < N and S be positive sequences such that mi/k, n,lc/k,
1/k
and s, tend to co and
3C1 > 1Vt > 0: Ty (Cit) < T (1), (3.1)
3C, > 1Vj € N:injyy < Citls;. (3.2)
Let E CR™ be compact. Assume that f = (f*)a € B (E) satisfies
Va e NV € E : |f*(z)] < CCY' My, (3.3)
Vj e NVay,a € EVz e C":
T3, f(2) = T4, f(2)] < CCF  myia(lar — 2| + |ar — az])’*,

for suitable constants C,Cy > 0. Then there exists an extension F' € C°(C") of f
such that

(3.4)

Vz € C": |0F(2)| < Ahs(12nCoChd(2, E)), (3.5)
where A = A(C, Cy,Cy1,Ca,n).
Proof. By Lemma there is a Borel measurable map z + 2 such that
d(z) < |z — 2| < 2d(z), (3.6)
where d(z) = d(z, F). Then
G(z) :=T'?f(z), ze€C"\E,
where
p(2) := L (8nCo d(2)),
is Borel measurable and locally bounded. Indeed,
d(z) <2d(¢) < 3d(z) for ¢ € B(z,d(2)/2), (3.7)
and hence p(C) = Lyn(8nCo d(€)) < Ly (4nCo d(2)).
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Let v € C*°(C) be a non-negative, rotationally invariant function satisfying
[ dL? =1 such that U(z) := 1)(21) - - - ¥(z,) has support in the unit ball in C™.
Define

F(z) = f(cj)); / \11(202((555 Z>)G(<) AL (¢) for z € C"\ E.

Here 6 is the regularized distance for £ C C" = R?” from Proposition and ¢
is chosen as in Proposition (1) If we do not specify the domain of integration,
as above, it should be understood as C™. It is not hard to see that F' is C'*° on
C™\ E.
For each oo = (a1, ) € N™ x N we define F* : C™ — C by setting
F*(a):=00102?F(a) ifa¢FE

and if a € E then F%(a) is uniquely determined by the identity
Fa) 0,0 fP(a) . -
> — Az =y TZB in C[[Z,7Z]].
a=(a1,0)EN? XN" peEN?

Then for all j e N, a € E, and z = x + iy € C™,

j Fa(a) a1 (= [ j
TIF(z) := Z o (z—a)*(z—a)* =T)f(2). (3.8)
a=(a1,a2)
| <
We will write ' = (F%),; this should not cause too much confusion with the

function F. We will prove the following two claims from which the theorem follows
easily:
(1) (3.5) holds for all z € C™\ E.
(2) FYVis C* on C" and F* = 921022 F° for all a = (a1, 2) € N™ x N™.
Let us first show (1). Using Proposition it is not hard to see that
1 262(< — Z) Ka
oo (L (P2 )) o K 39
277 \§(z)2n 5(z) = d(z)2ntlel (39)
forall ¢,z ¢ E and o = (a1, a2) € N x N, For any polynomial P € C[z], we have
(2c2)%" /@(202@ —z)
o(z)%" 5(z)
which follows from the Cauchy integral formula,

((52(22))22: /q,<202§§z> Z))(Q ac2(¢) = /13(0,1)71' U(¢) (52(—;)( + z)a AL (¢)

11w (326 +2)” ace) ==
J=17B(0,1)
Thus, if z€ C*\ E, zp € E, and j € N, we get

_ 7 (202)2n 2c2(¢ — 2) j 2n
P = T30+ 52 [ () (E0 - T @) ac 0. (310

Hence, by choosing zg = 2,

= (22 (252 -t s

)P(O) AL (¢) = P(2),
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By (3.9), for all j € N,
a K J 2n
PG < gt [ o 1600 ~ TLHOI4C"(Q)

K
S -
d(2) ceB(z,d(=)/2)

where K denotes a generic constant. Now

G(Q) = TZF(Q)] < ITLF(Q) = TLIOI +TLF(0) = TV £ ().

17

sup  |G(¢) — TLf(Q)], (3.11)

We estimate the summands separately. So fix some arbitrary z € C" \ E, take

¢ € B(z,d(z)/2) and set
j+1:=Tn(12nCoC d(2)).
Since |2 — ¢| + |2 — ] < 9d(2), and the definition of j + 1 give
ITL£(C) = TLF(O] < C(9Co d(z))" ! mja
< 0(12nCoCy d(2))1 T njy1 = Chn (120004 d(2)).

By (3:1), (3-7), and Lemma 2), j+1<T,(12nCyd(z)) < T,,(8nCyd(())

p(¢). Thus (using that there are (k::ﬁl) < 28n=1 many 3 € N" such that |3| = k)

; 5 (€=0)F
T -TEO5I=| Y OS5
J<IBI<P(C)
<C Y (2nGed(C) lmyg by (B3)
J<IBI<P(Q)
p(C)
<2"7'C Y (8nCod(¢))Fmy27"
k=j+1
< 2"l (8nCy d(¢))mjiy by Lemma [2.3|(3)
< 2" 1O (8nCh d(¢)) sy since m < n

S 2”716(12710001 d(Z))j+1nj+1
= 2""1C hy (12nCo Oy d(2)) by (2.6)).

Combining the estimates, we get

— K
OF ()| < g5 hn(120C0Crd(2),

By (3.2)) and the definition of hy,, we have hy(t)/t < Cahs(t), which implies
|0F (2)| < Khs(12nCyCy d(2)).

Thus claim (1) is proved.

Let us show (2). To this end we prove that for all j € N, a = (a1, @2) € N* x N”

with |a| < j,z€ C", and a € E,

|FY(2) — 0102 TIF(2)| = o(|z —aP’~1%l) as |z —a| — 0. (3.12)
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This implies (2): First of all it implies that all F'* are continuous on C". If a € E
and z € C™\ E, then, for j > |a|, where e; denotes the i-th standard unit vector in
R™,

n
|F*(2) — F*(a) — Z(’Z’ — ;) Fleatena)(g)| = o(|z —a|)  as |z —a| — 0,
i=1
by (3.12)) and the fact that T/ F(z) = TJ f(z) is a polynomial. Notice that, by
(B8, 02102*TI F(z) = F(@1:22) (a) = 0 whenever ay # 0. It follows that F is C?,
Qs Fe = F(O(1+€i,a2)’ and 8§¢Fa — plaraster)
Now Lemma [3.9 implies, for a1,as € E,

92092, F(2) — 0202 T F(2)| = O((Jax — azl + |2 — ar)~171+1).  (3.13)

In particular, it suffices to show (3.12) for a = 2, since |2 —a|] < 3]z —al|. The
estimates for |G(¢) — T7 f(¢)| above also yield that for ( € B(z,d(z)/2) we have

G(Q) = TLF(Q) = 0(d(=)*).
Since T? f(2) = T/ F(z) by ([3.8), we may conclude with (B.10) for zp = 2 and (3.9)
that
021922 (F = TIF)(2)] = o]z — 2)71°1) s |z — 2] — 0,
if z€ C™\ E. Thus (3.12)) is proved. O

Proof of Theorem[3.3. The theorem now follows easily from Proposition [3.8
Lemma Lemma and Proposition [3.12 O

Proof of Theorem[3.J). Suppose that f € B™)(U). Let S € M and p > 0. Since M
is B-regular, there exist M, N € 91 such that (3.1) and (3.2 hold. By Lemma [2.11

and Lemma we have (3.3) and (3.4) for Cy = p/(12nC4). So Proposition [3.12
yields an extension F' € C°(C™) of f such that

[0F (2)| < Ahs(pd(2,0)).

Hence f is (9)-almost analytically extendable. The converse follows from Propo-
sition 3.8 O

3.3. A stronger result. Assume that M is a strongly log-convex (i.e. ui/k is

increasing) weight sequence such that m,lc/ ¥ s 0. Then we can choose the same

extension F of f € BM\(U) = M,>0 BM(U) for every p.

Theorem 3.13. Let M be a strongly log-conver weight sequence with m,lc/k — 00
and (M 1/M)" *+Y) bounded. Let U C R™ be a bounded quasiconvexr domain.
Then f € BM(U) if and only if f admits an extension F € C1(C") such that

Vp>03C >1Vz € C":|0F(2)| < Chm(pd(z,U)).
Proof. Use [20, Lemma 6] (or Lemma below) and the Roumieu result. O

We do not know if a similar statement holds in the general case.



ALMOST ANALYTIC EXTENSIONS AND MICROLOCAL ANALYSIS 19

4. APPLICATIONS TO CLASSES DEFINED BY WEIGHT FUNCTIONS

In this section we fully characterize when the classes B1“} and B admit a
description by almost analytic extensions. It turns out that this feature is equivalent
to several other pertinent properties of the classes.

First we recall the description by associated weight matrices.

4.1. Weight functions and the associated weight matrix. Two weight func-
tions w and o are said to be equivalent if w(t) = O(o(t)) and o(t) = O(w(t)) as
t — oo. For each weight function w there is an equivalent weight function @ such
that w(t) = &(t) for large t > 0 and @[jp,;) = 0. It is thus no restriction to assume
that wjg,1) = 0 when necessary.

For weight functions w and ¢ we have B! C Bl°l if and only if o(t) = O(w(t))
as t — oo, cf. [6], [II], or [35, Corollary 5.17]; in particular, w and o are equivalent
if and only if B! = Blo],

Definition 4.1 (Associated weight matrix). Following [35, 5.5] we associate with
any weight function w a weight matrix 20 = {W?*},-¢ by setting

Wi = exp(Le*(zk)), keN.

Moreover, we define

: %%%
9% = Ik .
Wi
Lemma 4.2 ([38, Lemma 2.4]). We have:
(1) Each W* is a weight sequence (in the sense of Section [2.1]).
(2) v* <Y if x <y, which entails W* < WY,
(3) Forallxz >0 and all j, k € N, Fore < WJZIW,CQI and wyi, < w?ww,%‘”
(4) For allz > 0 and all k € N>o, 9%, < 93*.
(5) Vp>03H >1Vx >03C >1Vk e N: prWg < CWH=,
(6) Ifw(t) = o(t) ast — oo then (wi)'/* — 0o and 9% /k — oo for all x > 0.
Theorem 4.3 ([35, Corollaries 5.8 and 5.15]). Let w be a weight function and let
W = {W?=},50 be the associated weight matriz. Then, as locally convex spaces,

B U) =B (U) and EWNU) = FU).
We have B\ (U) = BW'I(U) (or EWN(U) = EWV'N(U)) for all 2 > 0 if and only if
JH > 1Vt > 0:2w(t) <w(Ht) + H. (4.1)

Moreover, (4.1) holds if and only if some (equivalently each) W?* has moderate
growth.

Remark 4.4. Let us emphasize that the fact that £ = €M for some weight
sequence M if and only if w satisfies (4.1)) is due to []].

4.2. Concave weight functions. We will see that the classes B! that admit
description by almost analytic extension are precisely those determined by a concave
weight function w. The proof depends on the following result obtained in [39].

Proposition 4.5. Let w be a weight function satisfying w(t) = o(t) ast — oo which
is equivalent to a concave weight function. For each x > 0 there exist constants

A, B,C > 0 such that
AP < wi < wf < C*wP® for all k €N, (4.2)
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The weight matriz & := {S* = (klw})y : @ > 0} is reqular.

Proof. Only the regularity of & was not yet observed in [39]. Notice that w},; <
CIwY for all j implies w¥, ; < CIwY for all j which is clear by the properties of the
log-convex minorant, since w(ciy), (t) = wwe (t/C) and hence (CTwd); = (CIuwl);.

Since w” is log-convex, I'y= = Ly=. Evidently, (w}g)l/ k — oo for all x > 0, by
Lemma and (4.2)). O

Corollary 4.6. Let w be a weight function satisfying w(t) = o(t) as t — oo.
The weight matriz A associated with w is always semireqular. If additionally w is
equivalent to a concave weight function, then 20 is equivalent to a regular weight
matriz.

We will now prove a version of almost analytic extension in the Beurling case
B« for strong weight functions w which is stronger than provided by the general
Theorem Recall that a weight function w is called strong if
> w(tu)
2

3C >0Vt>0: / du < Cw(t) + C. (4.3)

1 U
Evidently, a strong weight function w is non-quasianalytic. In fact, is equiv-
alent to the validity of the Whitney extension theorem in the classes B“!; see 7.
Moreover, a strong weight function w is equivalent to a concave weight function,
see [31], Proposition 1.3], and satisfies w(t) = o(t) as t — oo, see [31, Corollary 1.4];
cf. also [7] and [38] Section 3.5].

This stronger results depends on [7, Lemma 4.4] which should be compared with
Lemma [7.6] and Remark [Z.8 below.

Theorem 4.7. Letw be a strong weight function and let 2T be the associated weight
matriz. Let U C R™ be a bounded quasiconvex domain. Then f € B (U) if and
only if f admits an extension F € C1(C™) such that

VM € Vp>03C >1Vz€C":|0F(2)] < Chm(pd(z,0)). (4.4)

Proof. If f admits an extension satisfying (4.4) then f € B“), by Proposition
and Theorem Conversely, let f € B« (U). Set

Lk::max{ sup \8O‘f(x)|,k:!}

zeU,|a|<k
Let us proceed as in the proof of [7, Theorem 4.5]: Define g : [0,00) — R by
g(t) :=log Ly, fork<t<k+1.
The arguments in 7, Theorem 4.5] show that there exists a convex function hg :
[0,00) — [0, 00) such that g < hg and h := h(max{0,logt}) satisfies w(t) = o(h(t))
as t — oco. We may apply [7, Lemma 4.4] which yields a strong weight function
o such that w(t) = o(o(t)) and o(t) = o(h(t)). Hence g < hg = hy* < (o(e))* +
A for some constant A > 0, whence f € B{°}(U). Since o is equivalent to a
concave weight function, there is a regular weight matrix & such that Bl°l = BIS,

Theorem implies that there is an extension F' € C}(C") of f and some S € &
and C, p > 0 such that

|OF (2)| < Chs(pd(z,U)), z¢€C"

Since w(t) = o(o(t)) as t — oo and hence S{<1)20, cf. [35, Lemma 5.16], (4.4)
follows. g
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4.3. A characterization theorem. The next theorem characterizes when the
classes B! admit a description by almost analytic extensions.

Theorem 4.8. Let w be a weight function satisfying w(t) = o(t) as t — oo. The
following are equivalent.

(1) B} can be described by almost analytic extensions, i.c., there is an R-
reqular weight matriz & such that f € BYHU) if and only if f is {S}-
almost analytically extendable, for every bounded quasiconvexr domain U C
R™.

(2) B can be described by almost analytic extensions, i.e., there is a B-reqular
weight matriz & such that f € BW(U) if and only if f is (&)-almost
analytically extendable, for every bounded quasiconvexr domain U C R™.

) B s stable under composition.

) B is stable under composition.

) w is equivalent to a concave weight function.

) AC > 03ty >0VA > 1Vt > tg: w(At) < CAw(t).

) There is a weight matriz & consisting of strongly log-convex weight se-
quences such that B“} = B{S},

(8) There is a weight matrix & consisting of strongly log-convex weight se-
quences such that B« = B(®),

(9) There is a weight matriz M satisfying VM € 9 IN € M IC > 1 V1 <
j < k:pj/j<Cu/k and such that B} = B (Recall that py =
Mk/Mk—l and Vg ‘= Nk/Nk—l-)

(10) There is a weight matriz M satisfying VN € MIAM € M IC > 1V1 < j <

k:p;/i < Cup/k and such that B&) = B,
(11) There is an R-regular weight matriz M such that B = B,
(12) There is a B-regular weight matriz 9 such that B« = BOW

If w is a strong weight function, then the extension of f € B&)(U) in may be
taken independent of S € & and p > 0, as in Theorem [{. 7}

Notice that the conditions in the theorem are furthermore equivalent to stability
of the class B! under inverse/implicit functions and solving ODEs and, in terms
of the associated weight matrix 20, to

Vo >03y>0: (wh) < Cwl)* forj<k

as well as
Yy > 03z >0: (wf)l/j <C(wHYE  forj <k
see [30].

Proof. = and = follow from Proposition Indeed, hs < hy if
S < T € &. For the Beurling case notice that for any given S € & and p > 0 we
know that g has an (hs, p)-almost analytic extension G and f has an (hs, p/ Lip(G))-
almost analytic extension F. Hence, by Proposition F oG is a (hs,p) -almost
analytic extension of f o g.

The equivalence of the conditions f was proved in [39]; for partial results
see also [32) Lemma 1], [I5] and [36].

That implies and is a consequence of Lemma and Proposi-
tion
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The implications = and = follow from Theorem and The-

orem [3.4] respectively.
The supplement follows from Theorem O

In the next theorem we make the connection to Theorem which is due to
33

Theorem 4.9. Let w be a concave weight function satisfying w(t) = o(t) ast — oo.
Let U C R"™ be a bounded quasiconvex domain. Then:
(1) f € BYHU) if and only if there exist F € CYH(C™) and p > 0 such that
Fly = f and

sup_|0F ()| exp(pw*(d(z,U)/p)) < oo (4.5)
z€CP\U

(2) f € BW(U) if and only if for all p > 0 there exists ' € C1(C™) such that
Fly = f and (4.5).
If w is a strong weight function, then the extension F in (2) may be taken indepen-
dent of p > 0.

Proof. Let 20 be the associated weight matrix of w. For each M € 2 there exists
a constant C > 1 such that
* C 1

WH(t) < Cwm( t) and  wm(t) < Cw <eC’t) e (4.6)
for all ¢t > 0; see [38, Corollary 3.11]. Here wp(t) = —loghm(1/t), cf. (2.10). By
Corollary there is a regular weight matrix & which is equivalent to 20. Hence
for each S € & there exists C' > 1 such that holds with wy, replaced by ws.
In view of Theorem [4.8] the conclusion follows easily. O

5. THE ULTRADIFFERENTIABLE WAVE FRONT SET

In this section we define and study the wave front set for ultradifferentiable
classes given by weight matrices. This extends the results of Hormander [I8] who
considered only Roumieu classes defined by a single weight sequence. In particular
we observe that our definition coincides with the one of Albanese—Jornet—Oliaro [1]
in the case that the classes are given by a weight function. We will follow primarily
the presentation given in [20, section 8.4-8.6].

In this section weight matrices are just assumed to be R- or B-semiregular. In
Section [6] below we will present stronger results for R- and B-regular matrices.

From now on (2 denotes a non-empty open set in R™ and we shall write £(Q) :=
C>(Q) from time to time. We will use D; := —i0;.

5.1. The ultradifferentiable wave front set. Our first preliminary result is the
local characterization of ultradifferentiable functions by the Fourier transform.

Proposition 5.1. Let pg € Q and u € D'(Q).

(1) If M is an R-semiregular weight matriz, then u € EOY near po if and only
if for some neighborhood V' of py there exist a bounded sequence (un)ny C
E'(Q) with uly = un|yv and some M € 9 and Q > 0 such that

sup €N an (€)] < o
cerr QN My
NeN

(5.1)
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(2) If M is a B-semiregular weight matriz, then u € E™ near py if and only
if for some neighborhood V' of py there exists a bounded sequence (un)n C
E'(Q) withuly = un|yv and such that (5.1)) holds for all M € M and Q > 0.

Proof. Tt suffices to slightly modify the proof of [20, Proposition 8.4.2]. Fix M € 9.
Suppose that for some r > 0 and some constants C,h > 0
|D%u(z)| < C’hla‘MM for all @ and |z — zo| < 3r.
There exist smooth cut-off functions xn with support in |z — x| < 2r, equal 1
when |z — xo| < r, and satistying
[Dxn| < (CLN)Il, for |a| < N (5.2)

cf. the proof of |20 Proposition 8.4.2]. Then the sequence uy := xnu is bounded
in £'(Q) and, thanks to (2.5) and Lemma[2.2(1), satisfies, for |a| =

RENESY (O‘> cINVlenle=bIng, g
B<a
2 181 e
<Cy < ) C,N (C1h) MN ple=Blp, N < COy(Coh)N My,
B<a

for some constant Co. This easily implies (5.1)).
For the converse recall that, since (un)y is bounded in &'(€2), the Banach—
Steinhaus theorem implies that there are constants C, p > 0 such that

[an ()] < C(1+[¢))"  forall N. (5.3)
In V' we have D*u(z) = (2m)~" fRnemgfaﬂN(f) d¢ for N = |a] +n + 1, since then
(5.1)) implies that £%%y is integrable. Estimating the integrals over |¢| < Q ¥/ My
and || > Q V/My separately, using (5:3) and (.1), we conclude

ute)| < c((1+@¥/00) (@ V/3ty) " @y [ i72ar)

Q NVMy
< CQN_l(( IVM—N)\QHWM n M](\[Nfl)/N>

< CQla‘( \/7)|a|+”+ﬂ
where C is a generic constant independent from IN. Repeated use of Defini-
tion [2.6{[1)) or Definition [2.6/[3)) shows u € E(V). O
Definition 5.2. Let I be a weight matrix. Let u € D'(2) and (x,&) € T*N{0}.

(1) We say that u is microlocally ultradifferentiable of class {IM} at (xg,&p) iff
there exist a neighborhood V' of x(, a conic neighborhood I" of &y, and a
bounded sequence (uy)n € E'(Q) with un|y = uly such that for some
M € 9t and a constant @@ > 0 we have

o AN ©)
cer  QNMy
NEN
(2) w is called microlocally ultradifferentiable of class (M) at (xo,&) iff there
exist a neighborhood V of xg, a conic neighborhood T of &y, and a bounded
sequence (uny)n C E'(Q) with un|y = u|y such that is satisfied for
all M € M and all Q > 0.

(5.4)
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The ultradifferentiable wave front set WFgn) u of u is the complement of the set of
all (z,€) € T*Q \ {0}, where u is microlocally ultradifferentiable of class [901]. For
a weight function w and the associated weight matrix 20 we set

WF[W] u = WF[QI;] u.

This coincides with the definition given in [I] thanks to Theorem see also [35].
For the weight sequence (k!)g (resp. the weight function ¢ — t) we get the analytic
wave front set also denoted by WF 4 w.

Notice that, in Definition M is deliberately an arbitrary weight matrix, since
occasionally we want to compare WF (o) u with WF 9y) u. Most of the time we
will assume semiregularity of the particular type.

The distributions uy in Definition [5.2] can be chosen of the form yyu where x
is a bounded sequence of test functions as shown by the next lemma.

Lemma 5.3. Let M be a weight matriz, K C Q compact, u € D'(Q) of order p in
K, and F a closed cone.

(1) Suppose that WF ony un (K x F) = 0. If xy € D(K) and for each « there
exist M* € 9 and C, > 0 such that

D x| < Cal(Ca /1) 1Bl N =1,2,..., (5.5)
then xyu 1s bounded in E"* and there are M’ € MM and Q,C > 0 such that
€Y vul€)| < CQVMy,  NeN, EeF. (5.6)

(2) Suppose that WF ony unN(K x F) = 0. If xy € D(K) satisfies for some
totally ordered collection of positive sequences M® such that {M®} <),
then xnu is bounded in E* and for all M’ € MM and all Q > 0 there is a
constant C' such that holds.

It is not hard to see that there exist yny which satisfy (5.5); cf. (5.2). We
emphasize that in (2) the sequences M are not assumed to be weight sequences
in the sense of Section [2.1] (and do not belong to 9t).

Proof. The proof of (1) follows closely the arguments in [20, Lemma 8.4.4] with the
only difference that here we have to deal with more than just one weight sequence;
we provide details for later reference.

The boundedness of y yu is evident. Let xg € K, & € F'\ {0} and choose V, T’
and uy according to Definition[5.2} Obviously, if supp xny C V, then xyu = xnun.
By assumption, uy satisfies and in T for some M’ € 9 and @ > 0. For
convenience we set £ = ;1 +n + 1. Observe that, for n € R™ and k > 0,

n I+k {+k
|77|“’“§<Z|m|>+ = > ( N )In”l.
j=1

T
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Together with (5.5) we get, for k < N,
~ O+ R\,
RO < ' >|77”><N(77)|

ly|=t+k

<Cm0F Y DN ()
Ja|<E.181=k

<O 0% Y CalCa ¥/MR)*
|| <2,|Bl=k
< C(n, 0)F MEN
for some M € 9. This implies that, for all N,

v )] < OV My (ol + /3 ) (L fply (5.7)

for some C' > 0. We have xyu(§) = (2m)™" [Xn(n)un(€ —n)dn. Let 0 < ¢ <1
and consider the integrals over |n| < ¢[¢| and |n| > c|¢| separately. Since |n| > ¢/¢]
implies [€ —n| < (1+ ¢ 1)|n|, we find with (5.3)) (cf. [20 (8.1.3)])

Xvu() < IXwller  sup  [an(n)]+C (1+ 6_1)“/ |Xn ()| (1 4 [n])* dn.
[E—n|<cl€] [n|>cl¢]
(5.8)

If & € T'; C T U{0} is a closed cone, then we can choose ¢ such that n e T if € € Ty
and |£ — | < c|¢]. In this case |n] > (1 — ¢)|¢|. Combining all this we obtain

sup [€]Y [xnvu(€)| < (1 — )"V |[Xn |l pr sup|an ()]
cely nel

+C e [k i R dn

In view of (5.4) and (5.7) we have

sup €[V [xwu(€)] < ChN My
el

for some M” € 9 and some constants C,h > 0. Since £ € F \ {0} was chosen
arbitrarily, we see that F' can be covered by a finite number of conic neighborhoods
like T'; and therefore is proven for F' and supp xny C U, where U is a small
enough neighborhood of zg. But K is compact and xy was also chosen arbitrarily.
Hence K can be covered by finitely many sets U; in which holds. Now let
xn € D(K) satisfy (5.5). As in the proof [20, Lemma 8.4.4] we can choose a
partition of unity x; y € D(U;) for each N and each x; n satisfies with M®
independent of j. Then holds also for A\; y = x; nXn. The statement follows
since Zj AjN = XN-

For part (2) observe that the proof of remains unchanged and then the
condition {M®}{<1)9 easily implies the statement. O

The basic features of the ultradifferentiable wave front set are collected in the
following proposition (cf. [20] and [1]).

Proposition 5.4. Let M, N be weight matrices and u € D'(N). Then:

(1) WEonj v is a closed and conic subset of T*Q\ {0}.
(2) WF{gm} u C WF (o) u.
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(4) WF(cﬂ u C WF{gm} u if W{Q)

() (,8) ¢ WFpamj u & (z, =€) ¢WF[m]U

(6) If M is [semiregular] then mi(WF on) u) = sing suppon; u.

(7) If M is [semiregular] then WEgn) Pu C WFn) u for all linear partial dif-
ferential operators P with E™Y-coefficients.

All these properties also hold for WF[,) u, in particular, WF,ju C WF 5 u if
w(t) = O(o(t)) and WF(,yu € WF,y u if w(t) = o(o(t)) as t — oo.

Proof. The proof of (1)—-(5) is straightforward.

(6) If we use Proposition and Lemma then this follows along the lines of
the proof of [20, Theorem 8.4.5].

(7) We first prove the Roumieu case. If 9 is R-semiregular, then Definition [2.6{(L])
implies WFony 9ju © WFgpy u. Hence it suffices to show that WFon) au C
WF oy u, where a € EMTF (20, &) ¢ WPF (95} u, then by (1) there are a compact
neighborhood K of xy and a closed conic neighborhood I" of £, such that (K x
I') " WFopy u = ). Suppose that xy € D(K) satisfies (5.5) and let M € 9 be
such that a|r € EIM}(K). Observe that, by Definition [2.6{[T)), for each k there is

M) € M such that My, < C’H'1 (k) for all j. Moreover, for each M € 901,

M ,i/ is increasing. Thus, for |8] < N and arbitrary «, (the constants change from
line to line)

|Da+ﬁ(a)(1v)| SQ\‘XHW Z |D0¢+5*“/CLHDWXN|
y<a+p

+1 a+ _ /+ 1"
Sc\aﬂ\ § |D B 7a||D7 v XN|
Y=+ L,y <B

"

vl
< flt Z hlalHﬁl_l’YlM\aHL@lflvl Cy (CM A M}(,)

v <a
//<ﬁ
1841 1Bl= 7" 4+1 3 (o)) Nt
— «
<t Sl e o (07, MX,)
//<B

18]
< B (M) N

where M/ = max{M{o) M"" : 5/ < a}. Therefore Ay = axn € D(K) also satisfies
(5.5). Hence holds for Ayu = yyau and some M” € 9, by Lemma that
is, (20,%0) € WF (ony au.

Let us prove the Beurling case. If 9 is B-semiregular, then Definition [2.6)3))
implies WF 95) 9ju € WF (gny u. We claim that WF gy) au € WFgpyu if a € € m
If (x0,&0) ¢ WF (9n) u, then there are a compact neighborhood K of 2y and a closed
conic neighborhood T' of &y such that (K x I') N WF(gn) u = 0. By semiregularity,
we have (N!)n{<)9 and there exist xny € D(K) which satisfy (5.5)) for Y/Mg
replaced by N. Since a € B™)(K) we are in the situation of Lemmabelow which
provides a collection of sequences suitable to perform the above computation. It
follows that for each « there is a sequence L*{<1) such that Ay = axny € D(K)
satisfies (with L instead of M®). An analogous statement holds for the
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collection {f,m}m, where Z? i= max|,|<m L{, which is totally ordered and satisfies
L™{<)M for all m. Thus Lemma (2) implies the analogue of (5.6) for Ayu =
xnau for all M € M and Q > 0. Hence (g, &) € WF (an) au. a

Lemma 5.5. Let M be a B-reqular weight matrix, and let a € B(m)(K) for some
compact K C R™. Then there exists a collection of positive sequences £ with the
following properties:
(1) For each L € £ there evists L' € £ such that (Lgy1/L},)Y *+V is bounded.
(2) &{<)M and a € B} (K).
(3) For each L € £ there exists a sequence L > L (not necessarily in £) such
that L"{<)9 and (L})Y/* is increasing. Let £" :={L" :L € £}.
(4) If § C LU L is finite, then F := max§ defined by F) := maxpeg Ly
satisfies F{<)IM.
Proof. Let us define L by
Ly = max{ sup \6°‘a(m)|,k‘!}, ke N.
zeK,|a|<k

For v > 1 set L} := Ly, and £ := {L”}, ey with LO := L. Then £ satisfies (1).
Clearly, a € B{LO}(K). Let M € 9 and v € N. Since 9 is B-regular, there
exists M’ € M and C' > 0 such that M, < Ck+v My, for all k. Then

Y 1/k 1/k 1/ (k+v) ,
(L)' _ Lin < v/ Ly _ Cl+u/k( Ly 14v/k
VAL VA (M, )1/ (M, )M/ )

tends to 0 as k — oo, since L{<)M by assumption. This implies (2).
Given L € £ we define L” by setting Ly := 1 and

(L)V* = max{L}7 1 j <k}, k>1.

Then (L})'/* is increasing and L” > L. For M € 9 and € > 0 there exists jo such
(L)1

that ]V}l/j < ¢ for all j > jo, since L <« M. Then, for k > jo,
(LY /¥ max{L}"7 : j < jo} max{L}7 :jo <j <k}
IVRL = maX{ IRk ; IVRL }
k k k
maX{le/j 1j < jo} L .
< mas { VL max { Do << k)
M, M
j
< max{maX{L;/] 1< ]0} }

Mm*

which equals ¢ if k is large enough, since M,i/k ' 0o. This shows L"{<1)9 and
hence (3).

(4) follows easily from £{<1)M and £"{<)M. O
Proposition 5.6. Let 9 be a weight matriz satisfying Definition[2.6(0) and u €
D'(Q).

(1) We have

WF{gm} u = ﬂ WF{M} (% and WF(gm) u = U WF(M) u.
MeMm MeMm
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(2) If for all M € 9 there is M’ € M such that M <M’ then
WFmyu= () WFau.
Mem
(3) If for all M € 9 there is M’ € M such that M’ <M then
Mem

Proof. (1) The first identity is clear from the definition. So is the inclusion
UMESUI WFE iy u € WF (9p) u, since the wave front set is closed. Now assume that

(70,€0) € Upeon WF () u. Then there exist a compact neighborhood K of z¢ and
a closed conic neighborhood T" of ¢y such that

(KxT)n | ) WFapu=0
Mem
and hence (K xT)NWF (pp) u = 0 for all M € 9. That O satisfies Definition [2.6{(0)

guarantees that (N!)y <M for all M € M. Let xn € D(K) satisfy (5.5) for §/ Mg
replaced by N. Then, by Lemma [5.3] for all M € 9t and all Q@ > 0

€1 [xXvu(é)]
sup e < 00,
£€F,1€€N QN My
ie., (20,8) & WF(on)u. This shows (1). Now (2) and (3) follow easily from (1)
and Proposition 2)&(4). O

5.2. Description of the wave front set by boundary values of holomorphic
functions. Let I' C R™ be an open convex cone and set I',. := {y € " : |y| < r} for
r > 0. A function g € C1(Q x T',.) is said to be of slow growth if there exist ¢ > 0
and k£ > 0 such that

lg(z,y)| < cly|™*, foryel,.

If g is of slow growth, then limp 5.0 g(+, ) exists in the sense of distributions. We
call this limit the boundary value brg of g.

Let us define
I(¢) ::/ e dw.
Jw|=1

For n =1 we have I(¢) = 2cosh¢ and, for n > 1, I(£) = Io((&,£)'/?), where

1
Io(p) = cn / (1- tQ)(n_g)/Qetp dp
-1
and c,,_1 denotes the area of S”~2. Finally, set
K(z):= (2w)—"/eizf/1(§) d¢, z€X:={z€C":|Imz| < 1}.

We recall the content of [20, Lemma 8.4.9 and Lemma 8.4.10]: Iy is an even entire
function such that for every € > 0 we have
In(p) = (277)("_1)/2epp_("_1)/2(1 +0(1/p)) asp—oo,|argp| <m/2—e. (5.9)
There is a constant C' > 0 such that
Iop)] < C(1+ |p))~"~D/2elBerl | for p e C.
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The function K is analytic in the connected open set
X:={2€C":(z,2) ¢ (—o0,-1]} D X.

For any closed cone I' C X such that (z, z) is never < 0 for z € I'\{0} there is some
¢ > 0 such that K(z) = O(e™°*l) as z — oo in T'. We have for real  and y

|K(x +iy)| < K(iy) = (n = 1)}2m)""(1 = [y) "1+ O0A = y[)), as[y] 71
The following theorem is a generalization of [20, Theorem 8.4.11].

Theorem 5.7. If u € §'(R™) and U = K x u, then U is analytic in X and there
exist C,a,b such that

UR) <C(1+12)"(1—|Imz])™b, zeX. (5.10)
The boundary values U(- + iw) are continuous functions of w € S™~1 with values
in §'(R™), and
(u, p) = / (U(-+iw),p)dw, ¢€S8. (5.11)
Sn—l

On the other hand, if U is given satisfying (5.10), then the formula (5.11) defines
a distribution v € §" with U = K * u.

For all [semiregular] weight matrices M we have
(R™ x §™1) NWFonu = {(z,w) : |w| =1, U is not in EP gt @ — iw}.

This follows from a straightforward modification of the proof in [20] using
[semiregularity] of 9t. The same applies to the following corollary.

Corollary 5.8. LetT',...TN CR™\{0} be closed cones such that |J;T7 = R™\{0}.
Any u € S'(R™) can be written v =Y u;, where u; € S’ and
WEF oy uj € WFpgpjun (R x ITV). (5.12)
Ifu=>%" u;» s another such decomposition, then u; =u;+ Yy, Ujk, where uj, € S’,
Ujp = —Ug; and
WF g3 wjre © WF gy u N (Rn X (Fj N Fk)).
The next theorem generalizes [20, Theorem 8.4.15]; it suffices to follow the ar-

guments in [20]; recall that I'° := {£ € R™ : (y,&) > 0 for all y € T'} denotes the
dual cone of T'.

Theorem 5.9. Let M be a [semiregular] weight matriz. Let T C R™\{0} be an open
convex cone and u € D'() such that WFgpyu C Q\T°. IfV € Q and I" C T is an
open convex cone with closure in T'U {0}, then there is a function F holomorphic
in V + 1l of slow growth and uly — br/ F' € EM(v).

Combining Theorem with Corollary and [20, Theorem 8.4.8] yields:

Corollary 5.10. Let M be a [semiregular] weight matriz. Let v € D'(Q) and
(w0,&0) € T*Q\{0}. Then (x0,&0) ¢ WFon) u if and only if there exist a neighbor-
hood V of zo, f € EP(V), open cones T'Y, ..., T'9 with the property &I < 0 for
all j, and holomorphic functions F; € O(Q2 + Z'F%) of slow growth such that

q
uly =f+> b Fj.

Jj=1
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Since €M is stable by pullback with real analytic mappings, see Theorem [2.9
we can follow the proof of [20, Theorem 8.5.1] to obtain the following statement.

Theorem 5.11. Let M be a [semiregular] weight matriz. Let F : Q1 — y be a real
analytic mapping, where ; € R™ are open. If u € D'(Q2) and Np N WFgnu = 0,
then

Here Np = {(f(x),n) € Qo x R"2 : F'(x)Tn = 0} is the set of normals of F.

Remark 5.12. If the map F in Theorem is a real analytic diffeomorphism
then for all distributions u € D'(23)

Hence the ultradifferentiable wave front set can be defined for distributions on real
analytic manifolds.

The following result can be proved in analogy to [20, Theorems 8.5.4 and 8.5.4].

Theorem 5.13. Let M be a [semiregqular] weight matriz. Let X C R™ and Y C
R™ be open sets and K € D'(X xY) be a distribution such that the projection
supp K — X is proper. If u € EPN(Y) then

WF ) Ku C {(z,€) € X xR"\{0} : (z,y,&,0) € WFgn)(K) for some y € suppu},
where IC is the linear operator with kernel K.

5.3. Toward a quasianalytic Holmgren uniqueness theorem. We want to
close this section with the proof of a generalization of [22] Theorem 7.1] which will
be needed for a version of the Holmgren uniqueness theorem in Theorem [7.10

Proposition 5.14. Let M be a quasianalytic R-semiregular weight matriz. Let
u € D'(I) be a distribution on an open interval I of R. If zy € I is a boundary
point of suppu, then (xo,+1) € WF ropy .

Since WF o5y u € WF (o) u, by Proposition only the Roumieu case is inter-
esting.

Proof. By Theorem 5.9, we have a decomposition u = u + u_, where u, € 1™},

Set vy :=uy o f with f(x):= \/% and 6 > 0. By Theorem vy € E e

W (x)| < CQIM;, forall j €N,z €R, (5.13)

for some C,Q > 0 and some M € 91. Now it suffices to follow the arguments
in the proof of [22] Theorem 6.1] which show that the weight sequence M is non-
quasianalytic. (These arguments do not require that M is derivation closed.) O

A straightforward modification of the proof of [20, Theorem 8.5.6] yields the
following version in several variables.

Theorem 5.15. Let M be a quasianalytic R-semireqular weight matriz. Let u €
D'(Q) and let F : Q — R be real analytic. If xo € suppu is such that dF(xq) # 0
and F(x) < F(xg) for all x € suppu, then (zo, £dF(x0)) € WF an; u.
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6. CHARACTERIZATION OF THE ULTRADIFFERENTIABLE WAVE FRONT SET

In this section all weight matrices are [regular]. We need a microlocalized version
of the almost analytic extension. Now we say that a smooth function F' € £(Q2xT)
is (h, Q)-almost analytic if there is a constant C' > 1 such that

< Ch(Qly|) (z,y) e QxTy, j=1,...,n, (6.1)

oF
T%(x’y)
where z; = x; + iy;. Let 2 C R" be a bounded open set.

Definition 6.1. Let 9 be a weight matrix. Let v € D'(Q2) and T' C R™ an open

convex cone. We say that

(1) wis {9M}-almost analytically extendable into I if there exist M € M, Q > 0,
r > 0, and an (hpy,, Q)-almost analytic function F' € £(Q x T';.) of slow
growth such that v = bpF.

(2) wis (IM)-almost analytically extendable into T if for all M € 9 and all @ >
0 there exist r > 0 and an (hm, @)-almost analytic function F € £(Q x T',.)
of slow growth such that u = bpF'.

6.1. Almost analytic description of the ultradifferentiable wave front set.

Theorem 6.2. Let M be a [semiregular] weight matriz. If u € D'(Q) is [IM]-almost
analytically extendable into T', then

WF[gﬁ] u C Q x I\ {0}. (6.2)

Proof. Assume that uw = bpF, where F € £(Q x T} is an (A, Q)-almost analytic
function of slow growth, i.e., there exist ¢,k > 0 such that
[F(z,y)| <clyl™ zeQyel,.

Let Yy € T and let (x0,&) € T*Q\ {0} with Y5&y < 0. Choose bounded neighbor-
hoods Vi and V5 of g such that V; C V5 and a sequence (on)n C D(Q) such that
supp on C Vo, only; = 1, and

0%on (@) < QI (N + 1)l for [a] < N 41, (6.3)

where Q7 is a constant independent of N. We set

(63 ,1: [e3%
Oy(z,y) = afaN (z) ( z? , for N>k,
la|<N '

and recall from [20, 8.4.8] that the estimate (6.3 yields

8a<,oN (ZYO)(X
dz® ol

Yot
!

<Qf (N+1)#*, for0<pu<N+1. (6.4)

lal=p
Here |Yo|1 = Z?:o |Yy,;]. For N > k we have (see e.g. [16])

Fule) = / F(z, Yo)e o090 8y (¢, Yo) da
Q

1
+2i// <5F(m,7‘YO),%>e‘i<x+iTY°’5><I>N(a?,TYO)dex
aJo
(iYp)®

O drde.
al

1
+(N+1)// F(z,7Yy)rN e HatirYo.6) Z 0%pn (1)
aJo

la]=N+1
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If Yp€ < 0 we know from [20, p. 285] that the first and third integral above can be
estimated by

QT (M + (N = N (=Yoe)* V).
Since F' is (hm, Q)-almost analytic, the second integral is estimated by (cf. [16])

1
Q{V“QN_’“/ my T FeT 0 dr < QYTTQN TFmn k(N — k) (=Y )R N
0

where Q7 is a suitable constant. We set uy = ¢4 n_1u and observe that there are
an open conic neighborhood V of & and a constant v > 0 such that Y5¢ < —v|¢]
for all £ € V. For such ¢ we conclude (using e~ 1él < N1(y|¢))~N)

[un (6| < C (Q{V (677‘5‘ + (N =1)NEN) + (QlQ)NMN—1|§|7N)
<OQY (N ™M+ (N = 1)1+ Q¥ My 1) ¢
S C(QlQ)NMN‘€|7N7

by (2.5). This shows that (zo,&) & WF gy u.
Since Y; € I was chosen arbitrarily the statement of the theorem follows. O

Combining Theorem with Theorem Theorem and Corollary we
obtain the following characterization of the ultradifferentiable wave front set.

Corollary 6.3. Let M be a [reqular] weight matriz. Let u € D'(Q) and (z9,&) €
T*Q\{0}. Then (x0,&) ¢ WFamyu if and only if there are open convexr cones
I T4 with &T7 < 0, an open neighborhood V' of xo and distributions u; €
D'(V) such that u; is [M]-almost analytically extendable into TV for j = 1,...,d

and
d
uly = E uj.
=1

6.2. Invariance by pullback with ultradifferentiable mappings. We are now
ready to show that the ultradifferentiable wave front set is compatible with the
pullback by ultradifferentiable mappings. As a consequence the ultradifferentiable
wave front set can be defined for distributions on ultradifferentiable manifolds.

Theorem 6.4. Let M be a [regular] weight matriz. Let F : Qy — Qo be an g
mapping. If u € D'(Qy) and WFgpu N Np = () then

WEF op F*u C F* WF (93] u.
Here Np = {(F(z),n) € Q2 x R™ : F'(2)Ty = 0} is the set of normals of F.
Proof. First assume that u is [91]-almost analytically extendable into an open con-
vex cone I'. By Theorem WFpgpyu € Q x '\ {0}. Since WF gy u N Np = 0,

we have F'(x)Tn # 0 for all n € T'° \ {0}. Hence F’(2)TT° is a closed convex cone
for all z € 1. We claim that for x¢ € 2; we have

WEFon) (F*u)|s, € {(z0, F'(z0)"n) : n€T°\ {0} (6.5)
We can write (see [20, page 296])
F'(20)"T° = {¢ €R" : (h,&) > 0 if F'(zo)h € T'}.

Let @ € £(Qy xT',.) be an (hm, @)-almost analytic function such that u = bp®. Let
X1 C Q4 be a relatively compact quasiconvex neighborhood of xy and denote by
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F e &(X; x R", Q5 x R") an (hy, p)-almost analytic extension of F, which exists
by Theorem and Theorem (3.4, Since hy, < hy if M < N and since hy, is
increasing, we can assume that M = N and Q = p.

Let h € R™ and F'(zg)h € . Then

Im F(z +ich) €T for small ¢ > 0 if z € Xy,

where X is a small neighborhood of .

From the proof of the existence of the boundary value of an almost analytic func-
tion (see e.g. [16], for the special case of boundary values of holomorphic functions
see [20]) we observe that the map

R>o x (TU{0}) 3 (g,y) — ®(e,y) := ®(F(- + ich) +iy) € D'(Xo)

is continuous. Now

= e—0

(e, y) — &)(0’ Y) ‘I’(ﬁ( + 00) + iy) Y9 Py and
—

D(e,y) 5 B(e,0) = O(F(- +ich)) in D'(Xo).
Hence by continuity

F*u = lim ®(F(- +ich)) in D'(Xo).
e—0
Now ®o F is (hm, CQ)-almost analytic, where the composition is defined and C' is
the Lipschitz constant of F' (cf. Proposition . Thus the proof of Theorem
implies
WEFom) F*ulzy € {(20,§) : (h,§) > 0}.

This proves (6.5)).
Now suppose that (F(zo),70) € WFgn) u. By Corollary there are an open
neighborhood V' of g, distributions wy,...,uq € D/(V) and open convex cones

I'y,...,T¢ such that 7oI'; < 0 and u; is [9]-almost analytically extendable into I';
forall j=1,...,d and

d
uly = Zuj.
i=1

By assumption, F’(z)"n # 0 when (F(z),n) € WFay u for 2 € F~(V). Hence we
can assume that F’(z)Tn # 0 for n € T5\ {0} for all j =1,...,d and z € F~1(V),
since in the proof of Corollary @ the cones I'; can be chosen such that the set
ren S™~! has small measure and rsn WFon) ulp(a) # () for x € V. By the
arguments above we have for a smaller neighborhood Vj of z( that

N
F*’U/‘VO = ZF*U’leO
7j=1

and WFgn) (F*u )|z, € {(zo, F'(z0)"n) : n € T5\{0}} for all j = 1,...,d. How-
ever, since nol'; < 0 it follows that (2o, F'(20)"no) ¢ WFon)(F*u;) and therefore
(z0, F'(x0)"no) ¢ WF gy (F*u). O

Remark 6.5. If the mapping F' in Theorem is a diffeomorphism of class ™Y,
then

WF[gm] Fru=F" WF[m] u, uUe€ D/(Q)
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Hence the ultradifferentiable wave front set WFgn) u can be defined for distributions
on ultradifferentiable manifolds of class ™Y,

6.3. An ultradifferentiable version of Bony’s theorem. Bony [I0] showed
that the analytic wave front can be described either by the Fourier transform, by
holomorphic extensions, or by the FBI transform. The latter can be viewed as a
nonlinear version of the Fourier transform and was introduced by [12].

We use here the generalized FBI transform defined by [4] as

Fult, &) = ¢ (u(z), D=2y -y € £1(q),

where p is a real homogeneous positive elliptic polynomial of degree 2k and ¢, L=
[ e P@dz, ie., c|z[** < p(z) < C|z|** for constants 0 < ¢ < C.
Theorem 6.6. Let M be a [regular] weight matriz. Let u € D'(Q) and (x0, &) €
T*Q\{0}. Then

(1) (20,80) & WFony u if and only if there exist a test function 1 € D(2) with

¥ = 1 near zg, a conic neighborhood U x T of (x0,&), a weight sequence
M € M, and a constant v > 0 such that

sup e”M("’lg‘)’S(wu)(t,ﬁﬂ < o0. (6.6)
(t,£)eUXT

(2) (x0,80) & WF (ony u if and only if there exist a test function ¢ € D(Q) with
¥ = 1 near xg, a conic neighborhood U x T' of (xg, &) such that is
satisfied for all weight sequences M € 9 and all v > 0.

Note that Theorem is a direct consequence, since a weight function w and
the associated weight matrix 20 = {W?*} . satisfy

Ve >03C, >0V > 0: zww:(t) <w(t) < 2zww=(t) + Cy,
see [23) Lemma 2.5] and [35, Lemma 5.7], and w and all ww-= satisfy (1.2).
Proof. First let (xo,&) ¢ WFgn u. W.lo.g. we can assume that zo = 0.

Suppose that u is locally the boundary value of an (hm, p)-almost analytic func-
tion F € E(V x Ts), i.e. uly = brF, where V is a neighborhood of the origin and
&l < 01is an open convex cone. We assume that this holds either for some M € 90t
and some p > 0 or for all M € 91 and all p > 0, depending on the case we treat.
We will show that this implies for the same M and either some v > 0 or all
~ > 0, respectively. By Corollary one direction of the theorem follows.

Choose r > 0 such that Bs, = {z : |z| < 2r} € V and let ¢ € D(Ba,) be such
that ¢|p, = 1. Take v € T's and define

Q(t,f,l’) = Zf(t - CL’) - |£|p(t - {E)
Then
F(u)(t, &) = lim / QST (1) P (2 + iTv) da. (6.7)
T—0+ Bo,.
As in the proof of [4, Theorem 4.2] we put z = x + iy, ¥(z) = ¥(z), and
D, := {x—f—iovE(C":wEBgT, Tgag)\},
for some A > 0 to be determined later, and consider the n-form

eQ(t,&z)d)(Z)F(z) dz1 A+ Ndzy,.
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Stokes’ theorem implies

/ eQULTHITO Y (1) P + i7v) da
Bar
= / eQUETTN) Y () F (2 + idv) dx

B27‘

0
- Z/ e@tL Z) (w(z)F(z)) dzj Ndzy A -+~ Ndzy,

= / eQUETTN) Y () F (2 + idv) dx

B27‘

+Z/

BZT‘

+Z/

B

/ Q(t,&,x+iov) gw (z +iov)F(z + iov) dodx

A Q(t,&,z+iov) . oF .
e~\Hs P(z+ wv)a—_(x + iov) dodx.
2r Zj

=10 + 1+ I. (6.8)

Since £yv < 0 there is an open cone I'1 containing &y such that & < —¢g|€||v| for all
¢ € I'; and some constant ¢y > 0. For ¢ € I'y and ¢ in some bounded neighborhood
W of the origin we have

ReQ(t,&, x4+ idv) = A(&v) — [{|Rep(t —z —ilv)

Agv) = [gl(Rep(t — ) + O(A)v]?)
< A(€v) = clé|(1t — 2** + O(A)|v]?)
—coAll[€] + O (N) ¢].

IN

Hence for A small enough
ReQ(t, €, 2 + i\v) < —%OA|U||5|, €ely,z€ Byt €W (6.9)
We conclude that there are constants 1, C; > 0 such that
| < Cre Mkl ceTy tew.

We recall that Definition [2.6[0) implies that wa(t) = O(t) as t — oo (cf. e.g. [24],
[8], or [35]). Hence there are constants 7;,C7 > 0 such that, for all p > 0,

|| < CremwmiPlé) e eyt e W.
For I we estimate
Re Q(t, &, x + iov) < o(§v) — cft — x**[¢] + O(N?)[¢]
< —clt = a[*lg] + O(\) ¢]-

If € supp(0¢/0z;) then |xz| > r. Therefore, for [t| < r/2 and A small enough,
there is a constant 72 > 0 such that

ReQ(t@,x—i—iav) < _72|£‘7 gerl'
Hence, for all p > 0,
|I5| < Che 218l < CpewmG2rlEl) e e Py |t] < /2,0 <7 < A
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By (6.9), we have for a generic constant C3 > 0 and all k € N
oo o0
|I5] < C’g/ ec0lllEly  (pov)) do < Cg/ e~ llEl gk ok |y oy, dor
0 0

k- ok -
< Capteg*€| " klmy, = Cs(cy ' p)” Mil¢| ™"
and thus
|I5] < Cshaa (peg €] 71) < Cemenaleor™ HIeD),

In the Roumieu case this holds for some M € 9t and some p > 0, in the Beurling
case for all M € 9t and all p > 0. Since the appearing constants do not depend on

7, we may conclude in view of and (6.8).

Let us now prove the converse implication. Fix (g = 0,&) and assume that

holds either for some M € 9t and some v > 0 or for all M € 9t and all v > 0.
We will prove that (0,&) ¢ WFn v where v = u. We invoke the inversion
formula for the FBI transform [4]

v = lim €=t e =el€ 3 (1, €)|¢|2F dide.
€70 JRn xR

Let v°(z) denote the above integral for x replaced by z € C". Then v°(z) is an
entire function which we split as v®(z) = v§(z) + v5(2) + v5(z) + v5(2), where

vi(z) = the integral over {¢ € R",|t| < a},
v5(z) = the integral over {|¢| < B,a < [t| < A},
v5(z) = the integral over {{ € R", |t| > A},
vi(z) = the integral over {|¢| > B,a < |t| < A}

for certain constants a, A and B to be determined. Following [3] or [4] we see that
v5, v5, and v§ converge to holomorphic functions in a neighborhood of the origin
ase — 0.

It remains to look at v§. Suppose that a is small enough such that B, C U. Let
Cj, 1 <7 < N, be open acute cones such that

N
R" = | JC;
j=1

and the intersection C; N Cy has measure zero for j # k. We may assume that
& €C1,C CT,and & ¢ C; for j > 1. In particular, by we have

|3 (v) (2, €)| < Ce~wmleD) x € By, € €. (6.10)
For j =2,..., N we can choose open cones I'; such that {I'; < 0 and
(,€) = clyll§]  fory el € €C, (6.11)

for some constant ¢ > 0. For j € {2,..., N} and € > 0 we set
fitevin) = [ [ et t2 g 613 drac
Cj a

Each f5 is entire and for £ — 0 the functions f; converge uniformly on compact
subsets of the wedge R" + ¢I'; to the holomorphic function

filw+iy) = /c /B DT (1 €€ 3 dde
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on R™ x ¢T'; thanks to (6.11]). Similarly we define

fi@) :/c /B S0 2IE 5 (1, €)]¢| 3 drde

and
fi@) = | | /| g, el e

The functions f;, € > 0, extend to entire functions, whereas f; is smooth, by
(6.10)), since e~*M is rapidly decreasing. This decrease also shows that f§ converges
uniformly to f1 in a neighborhood of 0, since

[fie) = fi(z)] < C / jg|2F ememGIEN |1 — e=<IeF gg — 0
C1
by the monotone convergence theorem. Moreover,

ID°u(2)| < /C /B €[3F |evG(t, )| dede

<C |£‘%+\a|6*ww{(vlél) ¢ =C |§|%+\ath(L) d¢
= e e vl

< Oy 2 My, /C |2k 2" dg < C'A1I My,
1

for a suitable M’ € 9. Here we use the [semiregularity] of 9. Thus f; € £,
So we have shown that on an open neighborhood V' of the origin and some open
cones I';, j = 2,..., N that satisfy {,I'; < 0 we can write

N
vy =vo+ Y _br,f
j=2
with vy € EMI(V) and f; holomorphic on V +iT'; for j = 2,..., N. This completes
the proof, by Corollary (]

7. ELLIPTIC REGULARITY

The smooth elliptic regularity theorem, cf. [20, Theorem 8.3.1], states that a
linear differential operator P with smooth coefficients satisfies

WFu C WF PuUCharP, ueD.

In particular, if P is elliptic then it is microhypoelliptic, i.e., WF Pu = WF w.
Analogous results hold in the analytic category (see [40]). Recall that

Char P = {(z,£) € T*Q\ {0} : Pp(z,€) = 0}

is the characteristic set of P =3}, ,, aa(x)D* with principal symbol P, (z,§) =
Z\a|:m aa(@)E”.

In the ultradifferentiable case an elliptic regularity theorem was proven in [I§]
for Roumieu classes given by weight sequences and operators with real analytic
coefficients. In [I] an elliptic regularity theorem was obtained for operators with
ultradifferentiable coefficients of type £,

In this section we prove an elliptic regularity theorem in the general setting of
ultradifferentiable classes defined by weight matrices. As [I] we follow the pattern
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of proof of [I8] and we try to find the weakest possible conditions on the weights.
The results of [I8] and [I] follow as special cases of our theorem.

7.1. The ultradifferentiable elliptic regularity theorem. We will need a con-
dition with generalizes moderate growth of a sequence:

YM € M 3IN € M3IC > 04,k € N: M;y, < CITEN; Ny (7.1)

Note that this is the “Roumieu variant” which will be sufficient for our purpose.
Recall that for an R-semiregular weight matrix condition Remark [2.7|(3]) is equiv-
alent to

YMeMINEMIC >0VEeN: DX My My < C*lng. (7.2)
Q1T o=
ay>0

Let us point out that the weight matrix 20 associated with a weight function w

always satisfies (7.1)) (see Lemma [£.2), and 20 fulfills Remark 2.7|@) if and only if

w is equivalent to a concave weight function (see Theorem |4.8]).

Theorem 7.1. Let M be an R-semireqular weight matriz that satisfies (7.1) and
(7.2) and P(z,D) = }_4j<m ta(x)D* a linear partial differential operator with
EMH(Q)-coefficients. Then we have the following statements.
(1) If £ is a R-semiregular weight matriz such that M{=<}L then
WF ¢y u C€ WFigy PuU Char P (7.3)
for alluw € D'(Q). If P is elliptic, then WF gy u = WF ¢y Pu.
(2) If £ is B-semiregular and M{<)L then
WF(¢yu € WF(g) PuU Char P (7.4)
for all w € D'(Q). If P is elliptic, then WF ¢y u = WF ¢y Pu.
Proof. Tt suffices to show that (zo,) ¢ WF(¢ Pu U Char P for § # 0 implies
(w0,&0) ¢ WF[¢j u. Therefore we can assume that there are a compact neighborhood

K of zy and a closed conic neighborhood V of &y such that the principal symbol
Prn(2,8) = 32 a)=m @a(x)€ is non-zero in K x V and

(K X V) ﬂWF[£] Pu=10.

By [21, Theorem 1.4.2] there is a sequence (Ay) C D(K) with Ay|y = 1 on some
fixed neighborhood U of xg such that for all « € N™ there are constants Cy, hy > 0
such that

D AN| < Co(haN) for B/ <N =1,2,... (7.5)
Now the sequence uy = Aoyu is bounded in £'(K') and each of its elements is equal
to u on U. Hence it suffices to show that the sequence (uy)y satisfies
e for some @ > 0 and some L € £ in the Roumieu case,
e for all @ > 0 and all L € £ in the Beurling case.
The first part of the proof is valid in both cases.

Following the approach of Hérmander [21] Theorem 8.6.1] we first want to solve
the equation Qg = e~ )y, where Qg = >_(—D)%(aqg) is the formal adjoint of
P. The ansatz g = e~*¢ P, (z, &) 'w leads to the equation

w— Rw = AN (7.6)

where R = Ry + -+ + Ry, and R;|¢|7 is a differential operator of order < j with
EMY_coefficients which are homogeneous of degree 0 in £ if z € K and £ € V. A
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formal solution of (7.6) would be w = 3";7 ; R*Aan, but this series may diverge in
general and we cannot consider derivatives of \on of arbitrary high order. Hence
we set

wN = Z le--~Rjk)\2N
Jit+ik<N—m
and calculate
wN—RwN:)\gN— Z Rj1~--Rjk)\2N = >\2N_pN.
Z?:] Js >N_m2215€:2 Js
Therefore
Q (e7 P (@, &) hwn (2,€)) = €7 (han(2) — pi (2, €)) -
We obtain
un (&) = <u,e_i<"5>)\21v>
= <Pu767i<.’€>Pn;1(‘,£)wN('a£)> + <uveii<V7£>pN('a£)>, g ev. (77)

In order to proceed we make the following claim which will be proved in
Lemma, below: There exist M € I, h > 0, and constant C > 0 (only de-
pending on R, 9, h and the sequence (An)n) such that, if j = j1 + -+ + jk and
Jj+ 18] < 2N, then

A i+18l ‘
|DP(Rj, ... Rj,don)| < CHITPIMGN g7, €eV. (7.8)

We use this to estimate the terms on the right-hand side of (7.7)) for £ € V|
where [¢| is large. We begin with the second term I7 := (u,e "9 py (-, €)).

Since u is of finite order, say u, near K, there is a constant C, that only depends
on K and u such that for all ¢ € D(Q) with suppy C K we have

|<u,¢>| <C, Z sup|D°‘¢’.
lal<p ¥
Note that supp, pn(-,§) C K for all £ € V and N € N. Thence
m<c > g sup|Dlpy(z,€)] < C D [¢)* 1 sup| D pw (w,€)],
ol <u B<a ek lal < ek

for ¢ € V with |¢| > 1 and N € N. There are at most 2%V terms in py and each
term can be estimated by (7.8]) (since N > j > N —m), whence
Netp
| D2 pn (&) < CRN2N g™ MM N
for v € K and £ € V with |§| > 1. Thus, by Definition [2.6{[1), there exists M € I
and h; > 0 such that
I < Chy|gm+m™ =N My. (7.9)

(1) Let us consider the Roumieu case and assume that 9t{<}£. Then, by (7.9),

there exists L € £ and h > 0 such that

IT < CRN[gPTm=NLy. (7.10)
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The first term I := (Pu,e "9 P1( wn (-, €)) in (7.7) is more difficult to esti-
mate. For N > m, |8| < N and £ € V with |£] > Mjlv/N, (7.8) gives

Nom Bl 18] N—m 18
|D5wN(x,§)| <C Z hJHﬁIMNN l€|~7 < ChlﬁIMNN Z hi < CyhN M
j=0 =0

for suitable C; and h;. Analogously, one obtains a similar bound for wy(z,§) =
wy (z,&)|E]m P (2, €). Let

Fn(n) = /Q ey (1, €) di

be the partial Fourier transform of wy (+,£). Then, by the above, there exist M € It

and h > 0 such that
N 18
[nPan(n, &) < CRN MY (7.11)

for all N >m, |8] < N, £ € V with |£] > M}V/N and n € R™. So, for some g > 0,

LNV NN\ kb Nk
(14 02) " [awtn )| < ctwam™ Y- () d s < coan. (112
k=0
Now set f = Pu and recall that by assumption WFey f N (K x V) = . By
Lemma we find a sequence (fn )y which is bounded in £"#, equals f in some
neighborhood of K, and there exist L € £ and @ > 0 such that

n QN Ly

where W is a conic neighborhood of V. Then @y f = Wy fy: for N =N — p—n.
In analogy with (5.8]) we find, for 0 < ¢ < 1,

@n)"|nF(©)] < 1=~ | (-9

L, sup [ )i~ )™
new
+C / ‘@N(n,f)) (14" (1 + n)*dn.
[n]>cl]

By (7.12)), if N > n + g+ m, then

Jxt.0)], <ca*an [ (1n+ Vaty) " an
1 R™
< Ci¢" My /Oo(r+ ’VMiN)_Nrnfl dr
0

00 —N'—1
< cquMN/ (r+ VL) ar
0
= CquMN/ 87N,71 ds
N/ NN
= VMY N
utn
< CquMNN .
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Together with (7.13) and (7.11)), and since /My is increasing, we conclude that
for £ € V with |£] > ¥V My,

n+u

N 7 ! ’
i< (1L) M QY Lwi

1 Co(v/ih)N My / = = dn

[n]>clé]
qQ N m M ’ / ’
< Ciqo (1—0) LN LY €Y + Co(vngoh)N Lve ™™ |¢] =
< Csqd L g™, (7.14)

where we used the fact that there is a constant gg such that M 1{,/ N < qOLJl\,/N.
Now setting N* = N +n+ pu+m and vy = uy~ we may conclude from ([7.10))
and (7.14]) that there exist L € £ and h > 0 such that

€[N [on (€)] < ChN Ly, for € € V with |¢] > MM

The boundedness of the sequence (vy)y in E"* implies an estimate analogous to
(5.3) and hence we have

Ntp .
e[V [on(e)| < CMET L for g < MM (7.15)

This completes the proof of (1).

(2) Let us treat the Beurling case. The assumption {<)£ and yield
that holds for all L € £ and all o > 0. Moreover, f = Pu now satisfies
WEF ¢y f N (K x V) =0, by assumption, and hence holds for all L € £ and
all @ > 0. Together with M{<)£ this allows us to finish the proof in analogy to
the Roumieu case in (1). O

It remains to establish the claim (7.8):

Lemma 7.2. There exist M € 9, h > 0, and constant C > 0 (only depending on
R, M, h and the sequence (AN)n) such that, if j = j1+ -+ jr and j+ 5] < 2N,
then

4 J+l8l ,
|DP(Rj, ... Rj, don)| < CRITWPIMN g7, eV (7.16)

Proof. Since both sides of are homogeneous of degree —j in £ € V' it suffices
to prove the lemma for |¢| = 1. The set R C £ (K) of all coefficients of the
operators Ry,..., R, is finite. Hence there are constants h and C and a weight
sequence M € I such that

|D%a(z)| < Chl*I M., fora€ R,z € K,acN. (7.17)
Thus the assertion is a consequence of the next lemma. ([l

Lemma 7.3. Let K C Q be compact, (An)n C D(K) a sequence satisfying (7.5)
and ai,...,a;_1 € R. Then there exist M € 9 and C,h > 0 (independent of N)
such that

L
|Di1(a1Di2(a2-~~Di]._1(aj_1Dij)\2N)~-~))} S ChJMK[V, fOTj S 2N (718)
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Proof. By and (2.5, for each ¢ > 0 and each M € 9 there exists C’ > 1 such
that
18]
|DPXon| < C'qPIMY for |B] < 2N. (7.19)

The left-hand side of (7.18) is a sum of terms of the form
(D*aq)--- (D% 'a;_1)D¥ Xon for |ou| + -+ + || = j. If Cg, ..k, is the
number of terms with |aq| = k1,...,|a;| = kj, then, thanks to , , and
, there exists M’ € 9 such that the left-hand side of is bounded by

E j—1p5—k;j k; )
Co crn kjclch...,kjmkl "'mkjflkll"'kjfl!hOJNkf
'—1§ : j—k; k; .
< G’ W ks m;;kj Ckl,.‘.,kj kql--- /{‘j,ﬂho] Nkf

kl!...kjfll / k

—— M. , NP, 7.20
TG R (7:20)
By (7.1)), there exist M” € 91 and a constant g2 > 0 such that M;_kj <

qgfkj M} M if o1 402 = j — kj. By (2.5), there exists Cy > 0 such that

< CoC? > TR b Oy

‘ L} , k; kj ‘ ;
W R e MY N5 < O (hae)! MY MU, (M) N < CY (hao)? (M)

since ¥/ My is increasing. As noted in [I] and [20, p. 308] one has

Byl ok 4! 2 20(2j — 1)
E C’kl,“.,kjil — kj'),l < F E Cry,ookyborl ekl = 7( ], ) < 47,
) !

zf~

(j 4!
The lemma follows. O

7.2. Stronger versions in special cases. As a special case of (7.3)) we obtain
WF{gm} u C WF{gm} PuUCharP, uweD,

for any P with £{™}_coefficients, where 91 satisfies the assumptions of Theorem|7.1
We do not know if an analogous statement holds in this generality in the Beurling
case, but we have two important partial results Theorem and Theorem [7.7]

Theorem 7.4. Let M be a strongly log-convex weight sequence of moderate growth
with mi/k — 00 and P(z,D) =}, < @a(x)D* a linear partial differential oper-
ator with EM) _coefficients. Then

WF(M) u C WF(M) PuUCharP, uecD.
If P is elliptic, then WF ngy u = WF ) Pu.
Proof. As in the proof of Theorem [7.1] we fix a compact K C Q. Let

Ly = max{ max max sup |8Baa(x)|,k!}.

[Bl=Fk la|<m ze K

Then L < M. By Lemma below, there exists a strongly log-convex weight

sequence of moderate growth M’ such that L < M’ <M. Thus we may apply (the
proof of ) Theorem [7.1]2) and the statement follows. O

Lemma 7.5. Let L, M be positive sequences satisfying L <M and Lo = My = 1.

Suppose that M is strongly log-convex and satisfies m,lc/

strongly log-convex sequence M with m,ﬁ/’“ — 00 such that L < M <1 M. If M has

moderate growth, then so does M.

¥ s 0. Then there exists a
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Proof. The first assertion simply follows from [26], Lemma 6]. Since L <« M, for all
p > 0 there is C' > 0 such that

L, < Cp*M,,  for all k. (7.21)
Let C, be the infimum of all C' > 0 such that (7.21)) holds. Consider the sequence
L = (L) defined by B
Lk = ,1)I>1% CppkMk.
Notice _that cp = pk/j\k,.where pr = My, /My_1, My := Li/Lj_1, is increasing.
Then My = i1t - - i, Mo := 1 with

P { Pk j\j}
— = max —, max — ,
k k T1<i<k j

satisfies the first part of the assertion; for details see [20, Lemma 6]. Let us check
that M has moderate growth if that is true for M. By [37, Lemma 2.2], M has
moderate growth if and only if por < pg. In that case

@:max{ Kok - nax j\j}<@
2k 2k T1<<2ek 5 ) k7

because for k < j < 2k we have
N Mk o e _ M
J jcj = 2ker © key k

since ¢ and py/k are increasing. It follows that M has moderate growth. O

We get a similar result for concave weight functions which is a strengthened
version of [I, Theorem 4.1] with operator and wave front set of the same Beurling
class. It depends crucially on the following lemma.

We recall that a weight function w is equivalent to a concave weight function if

and only if
w(At)

30213t1>0Vﬁ2t1V/\212 N

see Theorem [4.8

< C@; (7.22)

Lemma 7.6. Letw : [0,00) — [0,00) be continuous, increasing, surjective and such
that w(t) = o(t) as t — oo. Assume that w satisfies (7.22)). Let h : [0,00) — [0, 00)
be a function such that w(t) = o(h(t)) as t — co. Then there exists a continuous,
increasing, surjective function o : [0,00) — [0,00) such that w(t) = o(t) as t — oo
and

(1) w(t) =o(a(t)) as t — oo,
(2) o(t) = o(h(t)) as t — oo,

(3) o(At) < Ao(t) for all X\ > 1 and t > t1 (with the same t1 as above).
Proof. Note that (|7.22)) can be reformulated as follows

w
a

t
IC>13 >0Vs >t >t ”(SS) gc#. (7.23)
Let us define
w(s)
U.}l(t) = tsup ’ t> t17

s>t S
and extend wy to [0,¢1] in such a way that w; : [0,00) — [0,00) is continuous,
increasing, surjective and such that w(t) = o(t) as t — oo; that this is possible
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follows from the fact that w(t) = O(w1(t)) and wy (t) = O(w(t)) as t — oo which is
a consequence of . By definition ws (t)/t is decreasing for ¢t > t;. Moreover,
w1(t) = o(h(t)) as t — oo.

We define o : [0,00) — [0,00) and 0 = tg < t1 < t3 < --- — 00 as follows:
If ¢; with odd j is already chosen, take ¢;41 > t; to be the smallest solution of
tjwi(t;) = (§ + 2)tyw1 () which exists since wy(t)/t — 0 as t — co. If t; with even
j is already chosen, choose t;11 > t; such that

ax{wl(t) wl(t)} 1
t )] T GHDG+3)

This is possible since w(t) = o(t) and wq(t) = o(h(t)) as t — o0o. Now set
) = {jwl(t) if ¢ € [tj_1,t;) and j > 1 is odd,

forall t > ¢j44. (7.24)

(] — 1)twl(tj_1)/tj_1 ift e [tj_l,tj) andj > 1 is even.

Then o is continuous, increasing, and surjective.

That wy(t) = o(o(t)) as t — oo follows easily from the fact that wi(¢)/t is
decreasing for t > t1.

Observe that for each odd j we have o(t) < (5 + 2)wi(t) for all t € [t;,t;42], by
the choice of ¢;11. Together with this implies o(t) = o(t) and o (t) = o(h(t))
as t — oo.

By construction o(t)/t is decreasing for ¢ > ¢;. This completes the proof. O

Theorem 7.7. Let w be a concave weight function and let P(xz,D) =
Z\a|§m ao(z)D® be a linear partial differential operator with £ -coefficients.
Then

WF)u € WF,) PuU Char P, uc?D.
If P is elliptic, then WF (,,y u = WF ) Pu.

Proof. Let L be the sequence defined in the proof of Theorem We may proceed
as in the proof of Theorem which is based on [, Theorem 4.5] and obtain a
function A : [0,00) — [0, 00) such that w(t) = o(h(t)) as t — oo. Then Lemma
provides a ‘weight’ function o such that w(t) = o(o(t)) and o(t) = o(h(t)) as
t — oo. As in the proof of Theorem we conclude that a,|r € B{7H(K).
Since o is equivalent to a concave ‘weight’ function, we may apply (the proof of)

Theorem [7.1(2) and Theorem O

Remark 7.8. We remark that formally o is not a weight function, since it is not
clear that t — o(e') is convex (see (I.5))). But this is not needed in this context,
since the properties of o suffice to guarantee that the associated weight matrix
satisfies and (7.2); cf. [42, Section 3.1].

In contrast, the proof of Proposition depends crucially on ; see [39,
Proposition 3] and [23, Lemmas 2.5 & 3.6]. Therefore, we cannot use Lemma
in the proof of Theorem [£.7]

Let G®, s > 1, be the Gevrey sequence defined by G} := k!®. It is immediate
from Theorem [T.1] that

WFg:}u € WF{gs} PuUChar P, ueD',
if P has E{G"}_coefficients, and from Theorem that
WF(Gs)u QWF(Gs)PuUCharP, u € D/,
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if P has £(G")-coefficients. Now Theorem follows easily in view of Proposi-
tion [5.6|(3).

Remark 7.9. If we modify the proof of Theorem following the lines of [16],
then we obtain (|7.3)) for distributions u € D'(2, C¥), where P is a square matrix of
partial differential operators with ultradifferentiable coefficients.

7.3. Holmgren’s uniqueness theorem. Kawai [41] and Hérmander [I8] sepa-
rately showed that the elliptic regularity theorem can be used to prove Holmgren’s
uniqueness theorem [I7]. This scheme of proof was applied by the first author [16]
to extend Holmgren’s uniqueness theorem to operators with coefficients in quasi-
analytic Roumieu classes defined by regular weight sequences of moderate growth.
The only other ingredient necessary for the proof was an appropriate version of
Theorem [E.151
The same proof gives the following.

Theorem 7.10. Let M be a quasianalytic R-semiregular weight matriz that satisfies
and . Let P be a linear partial differential operator with coefficients in
EMNNQ). If X is a C'-hypersurface in Q that is non-characteristic at o and
u € D'(Q) a solution of Pu = 0 that vanishes on one side of X near g, then u =0
in a full neighborhood of xq.

In particular, this theorem applies to operators with £} -coefficients for concave
quasianalytic weight functions w. (Note that the Beurling version of the theorem
follows trivially but is of no interest, since we always have ™) C E{W}). In
Section we give an example of a concave weight function wy such that £{wo}
is not included in £{®}. Hence Theorem applies to a wider class of operators
than the quasianalytic Holmgren theorem given in [I6] (in fact a class E{M} with
regular M of moderate growth is contained in some Gevrey class, see [30]).

Therefore we can also extend the quasianalytic versions given in [I6] of the
generalizations and applications of the analytic Holmgren theorem given by Bony
[9], Hérmander [19], Sjéstrand [44] and Zachmanoglou [48]; in fact, the assumption
guarantees that the classes are stable by solving ordinary differential equations
(with parameters), see [36].

7.4. Quasianalytic classes transversal to all Gevrey classes. We give here
examples of quasianalytic classes that are not contained in £1®}, but satisfy many
of the regularity properties discussed before. More precisely:

(1) We will construct a quasianalytic strongly log-convex weight sequence Q
which is derivation-closed and satisfies qi/k — 0o such that £{Q} ¢ 2GS

(2) We will show that wq is a weight function equivalent to a concave quasi-
analytic weight function and {we} ¢E {6}

Note that Q cannot be of moderate growth (cf. [30]).

We are going to define Q by Qp = 1 and Qi = k! H§:1 pj for k > 1 and a
suitable sequence p = (pi )k to be constructed. In order to define p accordingly we
need three more auxiliary sequences («;);, (8;); € N and (7;); € R which will be
chosen iteratively. Let oy = 71 = 1. If a; and 75, j > 1, are already chosen, we
pick ; € N such that

Bj > e ay, (7.25)
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and set )
01 = w and  Tjpq = e (7.26)
Clearly, a1 < 1 < ag < 2 < az < ---. We define
)y, ifkeAji={keN:a; <k<p},
Pl = ek, lfk’EBJ = {kENlﬁjSk‘<Oéj+1}.
By construction, py is increasing and hence Q is strongly log-convex. We also have
pr. — 0o and hence q;/k — 00, by the arguments in [35, p. 104]. The sequence Q is
derivation-closed, since p;, < eF for all k.
In order to see that Q is quasianalytic we have to show that

oo

Zk;kzizz (7.27)

-
k=1 j=0kEA; =1 7 ke4;

diverges. Recall that, if v is the Euler constant, we have

“L 1
Z% =logp+v+¢p
k=1

and €, — 0 for p = co. Thus, for j > 2,

1 B;—1
Z = log (ozj — 1) +éep—1—€a;—1-

kEA,

By (7.25)), log (zij) > 1, for j > 2, which implies that ((7.27) diverges.
Finally, we note that £1Q} C £{®} if and only if there exists s > 0 such that

k

k
sup < 00

k>1 k°

However, by (7.26)),
1/ou+1 Ve et aji1 — 1
ez ()" oo (55 1) (2572 4)

o
keB; It =g,

and hence qééf{“ /a3, is unbounded for all s. This ends the proof of (1).

The function wq(t) = supy log(t*/Qy) satisfies wq|jo,1) = 0, since QO =@ =1
Furthermore, cf. [29, Chapitre I], wq is increasing and satisfies and .
The arguments in the proof of the implication (4) = (5) in [8] Lemma 12] show
that also holds (in fact, wq(t) = o(t) as t — oo). By [23, Lemma 3.4], w
is equivalent to a concave weight function. Hence wq is a weight function that is
equivalent to a concave weight function. By [24] Lemma 4.1], wq is quasianalytic,
since Q is quasianalytic. We have £{«e} ¢ £} since BIQ}H(K) C Blwe}(K) for
any compact set K C R"”.
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