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Abstract. Hyperbolic polynomials are monic real-rooted polynomials. By

Bronshtein’s theorem, the increasingly ordered roots of a hyperbolic polyno-
mial of degree d with Cd−1,1 coefficients are locally Lipschitz and this solution

map “coefficients-to-roots” is bounded. We prove continuity of the solution

map from hyperbolic polynomials of degree d with Cd coefficients to their in-
creasingly ordered roots with respect to the Cd structure on the source space

and the Sobolev W 1,q structure, for all 1 ≤ q < ∞, on the target space. Con-

tinuity fails for q = ∞. As a consequence, we obtain continuity of the local
surface area of the roots.
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1. Introduction

Determining the optimal regularity of the roots of polynomials whose coefficients
depend smoothly on parameters is a much studied problem with a long history. It
has important applications in various fields such as partial differential equations
and perturbation theory.

In this paper, we focus on the class of monic hyperbolic polynomials for which
the regularity problem has a special flavor; the general case is treated in [11]. A
monic real polynomial of degree d is called hyperbolic if all its d roots (counted with
multiplicities) are real. By Bronshtein’s theorem [3], any continuous system of the
roots of a Cd−1,1 family of hyperbolic polynomials of degree d is actually locally
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Lipschitz continuous (i.e. C0,1); in general, this is optimal. There are uniform
bounds for the Lipschitz constants of the roots in terms of the Cd−1,1 norms of the
coefficients (see Theorem 4.1).

Thus we have a bounded solution map that takes hyperbolic polynomials of
degree d with Cd−1,1 coefficients to C0,1 systems of their roots. This will be made
precise below.

The purpose of this paper is to investigate the continuity of the solution map.

1.1. Hyperbolic polynomials and the solution map. A monic polynomial of
degree d,

Pa(Z) = Zd +

d∑
j=1

ajZ
d−j ∈ R[Z],

is called hyperbolic if all its d roots are real. In the following, we will identify the
polynomial Pa with its coefficient vector a = (a1, . . . , ad) ∈ Rd. Then the set of all
hyperbolic polynomials of degree d is the image of the map σ = (σ1, . . . , σd) : Rd →
Rd, where

σj(x1, . . . , xd) = (−1)j
∑

i1<···<ij

xi1 · · ·xij

is the j-th elementary symmetric function (up to sign). It is a closed semialgebraic
subset of Rd which we equip with the trace topology. We denote this space by
Hyp(d) and call it the space of hyperbolic polynomials of degree d.

For a ∈ Hyp(d), let λ↑1(a) ≤ · · · ≤ λ↑d(a) denote the increasingly ordered roots of
Pa. Then

λ↑ = (λ↑1, . . . , λ
↑
d) : Hyp(d) → Rd

is a continuous map, see [1, Lemma 4.1].
Let U ⊆ Rm be open. Let Cd−1,1(U,Hyp(d)) denote the set of Cd−1,1 maps

a : U → Rd such that a(U) ⊆ Hyp(d). Thus a ∈ Cd−1,1(U,Hyp(d)) amounts to a
hyperbolic polynomial Pa of degree d whose coefficients are Cd−1,1 functions defined
on U . We equip Cd−1,1(U,Hyp(d)) with the trace topology of the natural Fréchet
topology on Cd−1,1(U,Rd). Note that Cd−1,1(U,Hyp(d)) is a closed nonlinear subset
of Cd−1,1(U,Rd). Then Bronshtein’s theorem (see also Theorem 4.1) implies that
the solution map

(λ↑)∗ : Cd−1,1(U,Hyp(d)) → C0,1(U,Rd), a 7→ λ↑ ◦ a, (1.1)

is well-defined and bounded.

1.2. The main results. We will see in Example 1.5 that the solution map (1.1)
is not continuous.

However, the solution map (λ↑)∗ becomes continuous if we restrict it to
Cd(U,Hyp(d)), carrying the trace topology of the natural Fréchet topology on
Cd(U,Rd), and relax the topology on the target space: for 1 ≤ q < ∞ let
C0,1

q (U,Rd) denote the set C0,1(U,Rd) equipped with the trace topology of the

inclusion C0,1(U,Rd) → W 1,q
loc (U,Rd). See Section 2 for precise definitions of the

function spaces.
The following theorem, which is our main result, solves Open Problem 3.8 in

[12].
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Theorem 1.1. Let U ⊆ Rm be open. The solution map

(λ↑)∗ : Cd(U,Hyp(d)) → C0,1
q (U,Rd), a 7→ λ↑ ◦ a,

is continuous, for all 1 ≤ q <∞.

As a corollary, we find that the solution map on Cd(U,Hyp(d)) is continuous
into the Hölder space C0,α(U,Rd) with its natural topology, for all 0 < α < 1.

Corollary 1.2. Let U ⊆ Rm be open. The solution map

(λ↑)∗ : Cd(U,Hyp(d)) → C0,α(U,Rd), a 7→ λ↑ ◦ a,
is continuous, for all 0 < α < 1.

The essential work for the proof of Theorem 1.1 happens in dimension m = 1 of
the parameter space. The passage from one to several parameters is rather easy.
The following is the main technical result of the paper.

Theorem 1.3. Let I ⊆ R be an open interval. Let an → a in Cd(I,Hyp(d)), i.e.,
for each relatively compact open interval I1 ⋐ I,

∥a− an∥Cd(I1,Rd) → 0 as n→ ∞. (1.2)

Then {λ↑ ◦ an : n ≥ 1} is a bounded set in C0,1(I,Rd) and, for each relatively
compact open interval I0 ⋐ I and each 1 ≤ q <∞,

∥λ↑ ◦ a− λ↑ ◦ an∥W 1,q(I0,Rd) → 0 as n→ ∞. (1.3)

The proof of Theorem 1.3 is based on the dominated convergence theorem. The
domination follows from Bronshtein’s theorem which we recall in Theorem 4.1. We
will show in Theorem 5.1 that, for almost every x ∈ I,

(λ↑ ◦ an)′(x) → (λ↑ ◦ a)′(x) as n→ ∞.

To this end, we will develop a version of Bronshtein’s theorem at a single point, see
Theorem 4.5.

Note that by Egorov’s theorem we may conclude that (λ↑ ◦ an)′ → (λ↑ ◦ a)′
almost uniformly on I as n → ∞, i.e., for each ϵ > 0 there exists a measurable
subset E ⊆ I with |E| < ϵ such that (λ↑ ◦ an)′ → (λ↑ ◦ a)′ uniformly on I \ E. In
general, the convergence is not uniform on the whole interval I; see Example 1.5.

For later reference, we state a simple consequence of Theorem 1.3.

Corollary 1.4. Let I ⊆ R be an open interval and I0 ⋐ I a relatively compact
open subinterval. If an → a in Cd(I,Hyp(d)) as n→ ∞, then∥∥∥(λ↑ ◦ a)′∥2 − ∥(λ↑ ◦ an)′∥2

∥∥
Lq(I0)

→ 0 as n→ ∞,

and

∥(λ↑ ◦ an)′∥Lq(I0,Rd) → ∥(λ↑ ◦ a)′∥Lq(I0,Rd) as n→ ∞,

for all 1 ≤ q <∞.

Proof. Let us set λ := λ↑ ◦ a and λn := λ↑ ◦ an. Then∣∣∥λ′∥Lq(I0,Rd) − ∥λ′n∥Lq(I0,Rd)

∣∣ = ∣∣∥∥∥λ′∥2∥∥Lq(I0)
−

∥∥∥λ′n∥2∥∥Lq(I0)

∣∣
≤

∥∥∥λ′∥2 − ∥λ′n∥2
∥∥
Lq(I0)

≤
∥∥∥λ′ − λ′n∥2

∥∥
Lq(I0)

= ∥λ′ − λ′n∥Lq(I0,Rd)

so that the assertions follow from (1.3). □
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We will interpret the results for hyperbolic polynomials as special versions of
the general theorems of [11] in Section 7.1. In the general case, it is natural to
consider the unordered d-tuple of roots because there is no canonical choice of a
parameterization of the roots by continuous functions. If the parameter space has
dimension ≥ 2, then continuous selections of the roots might not even exist.

As further applications, we deduce local convergence of the surface area of the

graphs of the single roots λ↑j ◦ an, for 1 ≤ j ≤ d, as n → ∞ (see Corollary 7.6)

and an approximation result by hyperbolic polynomials with all roots distinct (see
Corollary 7.8).

1.3. On the optimality of the results. The following example shows that the
solution map (λ↑)∗ is not continuous with respect to the C0,1 topology on the target
space.

Example 1.5. Let g(x) := x2 and gn(x) := x2 + 1/n2, n ≥ 1. Then, for all k ∈ N
and each bounded open interval I ⊆ R, ∥g − gn∥Ck(I) = 1/n2 → 0 as n → ∞. Let

f and fn be the positive square roots of g and gn, respectively: f(x) := |x| and
fn(x) :=

√
x2 + 1/n2. Then, for each bounded open interval I ⊆ R containing 0,

|f − fn|C0,1(I) ≥ sup
0<x∈I

∣∣∣ (f(x)− fn(x))− (f(0)− fn(0))

x

∣∣∣
= sup

0<x∈I

∣∣∣x−
√
x2 + 1

n2 + 1
n

x

∣∣∣ ≥ ∣∣∣ 1
n −

√
1
n2 + 1

n2 + 1
n

1
n

∣∣∣ = 2−
√
2,

for large enough n. Observe that

f ′n(x) =
x√

x2 + 1
n2

tends pointwise to f ′(x) = sgn(x) for all x ̸= 0 but not uniformly on any neighbor-
hood of 0:

f ′n(± 1
n ) = ± 1√

2
.

This also violates the first conclusion of Corollary 1.4 for q = ∞.

Notice that the example also shows that not every continuous (thus C0,1) sys-
tem of the roots of g is the limit of a continuous system of the roots of gn: each
continuous system of the roots of gn tends to ±|x|, none to ±x.

Remark 1.6. We do not know if the continuity results in Theorem 1.1, Corol-
lary 1.2, Theorem 1.3, and Corollary 1.4 still hold for the solution map (λ↑)∗ on
Cd−1,1(U,Hyp(d)) (instead of Cd(U,Hyp(d))).

In the proof of Theorem 1.3, we need the convergence of the coefficient vectors
in Cd only on the accumulation points of the preimage under a of the discriminant
locus. If this preimage is the union of an open set and a set of measure zero, then for
(1.3) it is enough that an tends to a in Cd−1,1. Thus, for a potential counterexample
a has to meet the discriminant locus in a Cantor-like set with positive measure.

1.4. Structure of the paper. We fix notation and recall facts on function spaces
in Section 2 and provide the necessary background on hyperbolic polynomials in
Section 3. In Section 4, we prove a version of Bronshtein’s theorem at a single point
(Theorem 4.5). It provides bounds for the derivative of the roots that are crucial
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for the proof of Theorem 1.3 which is carried out in Section 5. Then Theorem 1.1
and Corollary 1.2 are deduced in Section 6. The last Section 7 is dedicated to
applications.

Notation. The m-dimensional Lebesgue measure in Rm is denoted by Lm. If not
stated otherwise, ‘measurable’ means ‘Lebesgue measurable’ and ‘almost every-
where’ means ‘almost everywhere with respect to Lebesgue measure’. For measur-
able E ⊆ Rm, we usually write |E| = Lm(E). We shall also use the k-dimensional
Hausdorff measure Hk.

For 1 ≤ p ≤ ∞, ∥x∥p denotes the p-norm of x ∈ Rd. If f : E → Rd, for
measurable E ⊆ Rm, is a measurable map, then we set

∥f∥Lp(E,Rd) :=
∥∥∥f∥2∥∥Lp(E)

.

For us a set is countable if it is either finite or has the cardinality of N.

2. Function spaces

Let us fix notation and recall background on the function spaces used in this
paper.

2.1. Hölder–Lipschitz spaces. Let U ⊆ Rm be open and k ∈ N. Then Ck(U)
is the space of k-times continuously differentiable real valued functions with its
natural Fréchet topology. If U is bounded, then Ck(U) denotes the space of all
f ∈ Ck(U) such that each ∂αf , 0 ≤ |α| ≤ k, has a continuous extension to the
closure U . Endowed with the norm

∥f∥Ck(U) := max
|α|≤k

sup
x∈U

|∂αf(x)|

it is a Banach space. For 0 < γ ≤ 1, we consider the Hölder–Lipschitz seminorm

|f |C0,γ(U) := sup
x,y∈U, x ̸=y

|f(x)− f(y)|
∥x− y∥γ2

.

For k ∈ N and 0 < γ ≤ 1, we have the Banach space

Ck,γ(U) := {f ∈ Ck(U) : ∥f∥Ck,γ(U) <∞},

where

∥f∥Ck,γ(U) := ∥f∥Ck(U) + max
|α|=k

|∂αf |C0,γ(U).

We write Ck,γ(U) for the space of Ck functions on U that belong to Ck,γ(V ) for
each relatively compact open V ⋐ U , with its natural Fréchet topology.

2.2. Lebesgue spaces. Let U ⊆ Rm be open and 1 ≤ p ≤ ∞. We denote by
Lp(U) the Lebesgue space with respect to the m-dimensional Lebesgue measure
Lm, and ∥ · ∥Lp(U) is the corresponding Lp-norm. For Lebesgue measurable sets
E ⊆ Rn we also write |E| = Lm(E). We remark that for continuous functions
f : U → R we have (and use interchangeably) ∥f∥L∞(U) = ∥f∥C0(U).
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2.3. Sobolev spaces. For k ∈ N and 1 ≤ q ≤ ∞, we consider the Sobolev space

W k,q(U) := {f ∈ Lq(U) : ∂αf ∈ Lq(U) for |α| ≤ k},
where ∂αf are distributional derivatives. Endowed with the norm

∥f∥Wk,q(U) :=
∑
|α|≤k

∥∂αf∥Lq(U)

it is a Banach space. We will also use

W k,q
loc (U) := {f ∈ Lq

loc(U) : ∂αf ∈ Lq
loc(U) for |α| ≤ k}

with its natural topology.

2.4. A result on composition. In the following proposition we use the norm

∥f∥Ck(U,Rℓ) := max
0≤j≤k

sup
x∈U

∥djf(x)∥Lj(Rm,Rℓ)

on the space Ck(U,Rℓ) := (Ck(U,R))ℓ, where U ⊆ Rm and Lj(Rm,Rℓ) is the space
of j-linear maps with j arguments in Rm and values in Rℓ.

Proposition 2.1. Let U ⊆ Rm and V ⊆ Rℓ be open, bounded, and convex. Let
ψ ∈ Ck+1(V ,Rp). Then ψ∗ : Ck(U, V ) → Ck(U,Rp), ψ∗(φ) := ψ◦φ, is well-defined
and continuous. More precisely, for φ1, φ2 in a bounded subset B of Ck(U, V ),

∥ψ∗(φ1)− ψ∗(φ2)∥Ck(U,Rp) ≤ C ∥ψ∥Ck+1(V ,Rp)∥φ1 − φ2∥Ck(U,Rℓ),

where C = C(k,B).

This result must be well-known; a short proof can be found in [11, Appendix
A.2].

3. Hyperbolic polynomials

In this section, we recall basic facts on hyperbolic polynomials that will be used
below. Proofs can be found in [12] or in [7].

3.1. Tschirnhausen form. We say that a monic polynomial

Pa(Z) = Zd +

d∑
j=1

ajZ
d−j

is in Tschirnhausen form if a1 = 0. Every polynomial Pa can be put in Tschirn-
hausen form by the substitution (called Tschirnhausen transformation)

Pã(Z) = Pa(Z − a1

d ) = Zd +

d∑
j=2

ãjZ
d−j .

For clarity, we consistently equip the coefficients of polynomials in Tschirnhausen
form with a ‘tilde’. Note that

ãj =

j∑
i=0

Ciaia
j−i
1 , 2 ≤ j ≤ d, (3.1)

where the Ci are universal constants and a0 = 1. For a polynomial Pã in Tschirn-
hausen form we have

−2ã2 = λ↑1(ã)
2 + · · ·+ λ↑d(ã)

2.
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Consequently, for a hyperbolic polynomial Pã in Tschirnhausen form,

ã2 ≤ 0.

Lemma 3.1 ([12, Lemma 2.4]). The coefficients of a hyperbolic polynomial Pã in
Tschirnhausen form satisfy

|ãj |1/j ≤
√
2 |ã2|1/2, j = 1, . . . , d.

As a consequence, ã = (0, ã2, ã3, . . . , ãd) = 0 if and only if ã2 = 0.

Definition 3.2. Let HypT (d) denote the space of monic hyperbolic polynomials of
degree d in Tschirnhausen form and Hyp0T (d) the compact subspace of polynomials
Pã with ã2 = −1, i.e.,

HypT (d) = {ã ∈ Hyp(d) : ã1 = 0},
Hyp0T (d) = {ã ∈ HypT (d) : ã2 = −1}.

3.2. Splitting. Let us recall a simple consequence of the inverse function theorem.

Lemma 3.3 (E.g. [12, Lemma 2.5]). Let Pa = PbPc, where Pb and Pc are monic
real polynomials without common (complex) root. Then we have P = Pb(P )Pc(P )

for analytic mappings P 7→ b(P ) ∈ RdegPb and P 7→ c(P ) ∈ RdegPc , defined for P
near Pa in RdegPa , with the given initial values.

Let Pã ∈ HypT (d) be such that ã ̸= 0. Then the polynomial

Qa(Z) := |ã2|−d/2Pã(|ã2|1/2Z) = Zd − Zd−2 +

d∑
j=3

|ã2|−j/2ãjZ
d−j

belongs to Hyp0T (d). By Lemma 3.3, we have

Qa = QbQc,

on some open ball B(ã, r) ⊆ Rd such that db := degQb < d, dc := degQc < d, and

bi = ψi(|ã2|−3/2ã3, . . . , |ã2|−d/2ãd), i = 1, . . . ,degQb,

where ψi are real analytic functions; likewise for ci. If Qa is hyperbolic, then also
Qb and Qc are hyperbolic; we restrict our attention to the set B(ã, r) ∩ HypT (d).
If λ1 ≤ · · · ≤ λd are the roots of Qa, then we assume that, on B(ã, r) ∩ HypT (d),
λ1 ≤ · · · ≤ λdb

are the roots of Qb and λdb+1 ≤ · · · ≤ λd are the roots of Qc; this

follows from continuity of the map λ↑ and the simple topology of HypT (d), cf. [12,
Theorem 8.1].

The splitting Qa = QbQc induces a splitting

Pã = PbPc, on B(ã, r),

where

bi = |ã2|i/2ψi(|ã2|−3/2ã3, . . . , |ã2|−d/2ãd), i = 1, . . . ,degPb. (3.2)

The coefficients b̃i of Pb̃, resulting from Pb by the Tschirnhausen transformation,
have an analogous representation.

b̃i = |ã2|i/2ψ̃i(|ã2|−3/2ã3, . . . , |ã2|−d/2ãd), i = 1, . . . ,degPb. (3.3)

Shrinking r > 0 slightly, we may assume that all partial derivatives of ψi and ψ̃i of
all orders are bounded on B(ã, r).
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Furthermore, since the roots of Pã are given by λj := |ã2|1/2 · λj , for 1 ≤ j ≤ d,
we have that, on B(ã, r) ∩ HypT (d), λ1 ≤ · · · ≤ λdb

are the roots of Pb and
λdb+1 ≤ · · · ≤ λd are the roots of Pc.

Lemma 3.4 ([12, Lemma 3.13]). In this situation, we have |b̃2| ≤ 4 |ã2|.

Definition 3.5. For each d ≥ 2 fix the following data. Choose a finite cover of
Hyp0T (d) by balls B1, . . . , Bs such that on each of these balls we have a splitting

Pã = PbPc as above together with analytic functions ψi and ψ̃i, and we fix this
splitting. There exists r ∈ (0, 1) such that for each p ∈ Hyp0T (d) there is 1 ≤ i ≤ s
with B(p, r) ⊆ Bi. We refer to this data as a universal splitting of hyperbolic
polynomials of degree d in Tschirnhausen form and to r as the radius of the splitting.

4. Bronshtein’s theorem and a variant at a single point

We recall Bronshtein’s theorem in Theorem 4.1. We shall need a version at a
single point with a suitable bound for the derivative of the roots. This version is
given in Theorem 4.5.

4.1. Bronshtein’s theorem. The following result is a version of Bronshtein’s the-
orem [3] with uniform bounds due to [7], see also [12, Theorem 3.2].

Theorem 4.1. Let I ⊆ R be an open interval and a ∈ Cd−1,1(I,Hyp(d)). Then any
continuous root λ ∈ C0(I) of Pa is locally Lipschitz and, for any pair of relatively
compact open intervals I0 ⋐ I1 ⋐ I,

|λ|C0,1(I0)
≤ C max

1≤j≤d
∥aj∥1/jCd−1,1(I1)

, (4.1)

with C = C(d) max{δ−1, 1}, where δ := dist(I0,R \ I1).

A multiparameter version follows easily; see [7] and [12, Theorem 3.4].

4.2. Reclusive points. For the formulation of Theorem 4.5 we introduce the no-
tion of reclusive points.

Definition 4.2. Let I ⊆ R be an open interval and ã ∈ Cd−1,1(I,HypT (d)); recall
that this means ã ∈ Cd−1,1(I,Rd) and ã(I) ⊆ HypT (d). Let x0 ∈ I be such that
ã2(x0) ̸= 0. Then Pã splits in a neighborhood of x0. We may assume that it is
a full splitting : if {λ1, . . . , λk} are the distinct roots of Pã(x0) with multiplicities
{m1, . . . ,mk} then

Pã = Pb1Pb2 · · ·Pbk on a neighborhood of x0, (4.2)

where degPbj = mj and Pbj(x0)(Z) = (Z − λj)
mj , for all 1 ≤ j ≤ k. So, after

Tschirnhausen transformation bj ; b̃j , b̃j,2(x0) = 0 for all 1 ≤ j ≤ k.
We say that x0 ∈ I is reclusive for ã if

• x0 is an isolated point of the zero set Zã2
of ã2

• or x0 ̸∈ Zã2
and x0 is an isolated point of Zb̃j,2

for some j ∈ {1 . . . , k}.

Note that x0 is an isolated point of Zb̃j,2
if and only if x0 is an isolated point of

Ebj := {x : all roots of Pbj(x) coincide}.
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Lemma 4.3. Let I ⊆ R be an open interval and ã ∈ Cd−1,1(I,HypT (d)). Let
x0 ∈ I be such that ã2(x0) ̸= 0 and assume that x0 is not reclusive for ã. If

Pã = PbPc is any splitting near x0, then x0 is not reclusive for b̃ and c̃ (which
result from b and c by the Tschirnhausen transformation).

Proof. After possibly reordering the factors in (4.2), we may assume that, on a
neighborhood of x0,

Pb = Pb1 · · ·Pbj and Pc = Pbj+1 · · ·Pbk .

The Tschirnhausen transformation b ; b̃ effects a shift on all roots of Pb by
b1/degPb and retains the splitting

Pb̃ = Pb̂1
· · ·Pb̂j

.

It follows that Eb̂i
= Ebi for all 1 ≤ i ≤ j. Suppose for contradiction that x0 is

reclusive for b̃. If x0 is an isolated point of Zb̃2
, then j = 1 and hence x0 is reclusive

for ã. If b̃2(x0) ̸= 0 and there is i ∈ {1, . . . , j} such that x0 is an isolated point
of Eb̂i

= Ebi , then again x0 is reclusive for ã. Since we assumed that x0 is not
reclusive for ã, the assertion follows. □

Lemma 4.4. Let I ⊆ R be an open interval and ã ∈ Cd−1,1(I,HypT (d)). The set
of all x0 ∈ I that are reclusive for ã is countable.

Proof. Let λ := λ↑ ◦ ã. Then λ is a curve in {x ∈ Rd : x1 ≤ x2 ≤ · · · ≤ xd}. For
1 ≤ i < d, let ℓi(x) := xi+1 − xi. If x0 ∈ I is reclusive for ã, then there exist
1 ≤ i1 < · · · < ik < d such that x0 is an isolated point of {x ∈ I : ℓij (λ(x)) =
0 for all 1 ≤ j ≤ k}. The set of isolated points of the latter set is countable. The
statement follows. □

4.3. A version of Bronshtein’s theorem at a single point. For x0 ∈ R and
r > 0, let I(x0, r) denote the open interval centered at x0 with radius r,

I(x0, r) := {x ∈ R : |x− x0| < r}.

Its closure is denoted by I(x0, r).

Theorem 4.5. Let x0 ∈ R and δ > 0. Let ã ∈ Cd−1,1(I(x0, δ),HypT (d)). Assume
that x0 is not reclusive for ã. Let λ ∈ C0(I(x0, δ)) be a continuous root of Pã and
assume that λ′(x0) exists. Then

|λ′(x0)| ≤ C(d)A(δ),

where

A(δ) := 6max{A1(δ), A2(δ)}, (4.3)

A1(δ) := max
{
δ−1|ã2(x0)|1/2, |ã′2|

1/2

C0,1(I(x0,δ))

}
,

A2(δ) := max
2≤j≤d

{
|ã(d−1)

j |C0,1(I(x0,δ))
· ∥ã2∥(d−j)/2

L∞(I(x0,δ))

}1/d
.

The proof follows the general strategy of the proof of Theorem 4.1 in [7] and [12],
but some modifications are required. Before we prove Theorem 4.5 let us recall two
important tools.
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4.4. Local Glaeser inequality. Glaeser’s inequality [5] gives Bronshtein’s the-
orem in the simplest nontrivial case: for nonnegative C1 functions f on R with
f ′′ ∈ L∞(R) we have

f ′(x)2 ≤ 2 f(x)∥f ′′∥L∞(R), x ∈ R.
We need a local version.

Lemma 4.6 ([12, Lemma 3.14]). Let I ⊆ R be an open bounded interval. Let
f ∈ C1,1(I) satisfy f ≥ 0 or f ≤ 0 on I. Let M > 0 and assume that x0 ∈ I,
f(x0) ̸= 0, and I0 := I(x0,M

−1|f(x0)|1/2) ⊆ I. Then

|f ′(x0)| ≤ (M +M−1|f ′|C0,1(I0)
)|f(x0)|1/2.

If additionally |f ′|C0,1(I0)
≤M2, then

|f ′(x0)| ≤ 2M |f(x0)|1/2.
Note that if f(x0) = 0 also f ′(x0) = 0.

4.5. Interpolation. Let us recall an interpolation inequality for intermediate
derivatives.

Lemma 4.7 ([12, Lemma 3.16]). Let f ∈ Ck,1(I), where I ⊆ R is a bounded open
interval. Then, for 1 ≤ j ≤ k,

|f (j)(x)| ≤ C(k) |I|−j
(
∥f∥L∞(I) + |f (k)|C0,1(I)|I|

k+1
)
, x ∈ I.

4.6. Proof of Theorem 4.5. The rest of the section is devoted to the proof of
Theorem 4.5.

Lemma 4.8. Let x0 ∈ R and δ > 0. Let ã ∈ Cd−1,1(I(x0, δ),HypT (d)) be such
that ã2(x0) ̸= 0. Let A(δ) be defined by (4.3) and, for any A > 0, set

IA(x0) := I(x0, A
−1|ã2(x0)|1/2)

and let IA(x0) denote its closure. Then the following holds:

(1) IA(δ)(x0) ⊆ I(x0, δ).
(2) For all x ∈ IA(δ)(x0),

1

2
≤ ã2(x)

ã2(x0)
≤ 2. (4.4)

(3) For all 2 ≤ j ≤ d, 1 ≤ k ≤ d− 1, and x ∈ IA(δ)(x0),

|ã(k)j (x)| ≤ C(d)A(δ)k |ã2(x0)|(j−k)/2. (4.5)

(4) For all 2 ≤ j ≤ d,

|ã(d−1)
j |C0,1(IA(δ)(x0))

≤ A(δ)d |ã2(x0)|(j−d)/2. (4.6)

Proof. (1) By definition, A(δ) ≥ A1(δ) ≥ δ−1|ã2(x0)|1/2 and thus

IA(δ)(x0) ⊆ IA1(δ)(x0) ⊆ I(x0, δ).

(2) By Lemma 4.6 and the definition of A1(δ),

|ã′2(x0)| ≤ 2A1(δ) |ã2(x0)|1/2.
Then, for x ∈ I6A1(δ)(x0),

|ã2(x)− ã2(x0)| ≤ |ã′2(x0)||x− x0|+ |ã′2|C0,1(IA1(δ)(x0))
|x− x0|2
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≤ 1

3
|ã2(x0)|+

1

36
|ã2(x0)| ≤

1

2
|ã2(x0)|

which implies (4.4).
(4) By the definition of A2(δ), (4.6) is clear.

(3) By Lemma 3.1 and (4.4), we have |ãj(x)| ≤ (
√
2 |ã2(x)|1/2)j ≤ 2j |ã2(x0)|j/2,

for x ∈ IA(δ)(x0). In conjuction with (4.6), it implies (4.5), by Lemma 4.7. □

Definition 4.9. Let x0 ∈ R and δ > 0. Let ã ∈ Cd−1,1(I(x0, δ),HypT (d)) be such
that ã2(x0) ̸= 0. Let A > 0 be a constant. Let A > 0 be a constant. We say that
(ã, x0, δ, A) is C

d−1,1-admissible if the following holds:

(1) IA(x0) ⊆ I(x0, δ).
(2) For all x ∈ IA(x0),

1

2
≤ ã2(x)

ã2(x0)
≤ 2. (4.7)

(3) For all 2 ≤ j ≤ d, 1 ≤ k ≤ d− 1, and x ∈ IA(x0),

|ã(k)j (x)| ≤ Ak |ã2(x0)|(j−k)/2. (4.8)

(4) For all 2 ≤ j ≤ d,

|ã(d−1)
j |C0,1(IA(x0))

≤ Ad |ã2(x0)|(j−d)/2. (4.9)

Note that Lemma 4.8 shows that (ã, x0, δ, C(d)A(δ)) is Cd−1,1-admissible with
A(δ) defined by (4.3) and C(d) ≥ 1.

Lemma 4.10. Let (ã, x0, δ, A) be Cd−1,1-admissible. Then the functions aj :=

|ã2|−j/2ãj, 2 ≤ j ≤ d, are well-defined on IA(x0) and satisfy

|a(k)j (x)| ≤ C(d)Ak |ã2(x0)|−k/2, 2 ≤ j ≤ d, 1 ≤ k ≤ d− 1, x ∈ IA(x0), (4.10)

|a(d−1)
j |C0,1(IA(x0))

≤ C(d)Ad |ã2(x0)|−d/2, 2 ≤ j ≤ d. (4.11)

Proof. This follows easily; see [7] for details. □

Lemma 4.11. Let x0 ∈ R and A, δ > 0. Let ã ∈ Cd−1,1(I(x0, δ),HypT (d)) be
such that ã2(x0) ̸= 0. Assume that IA(x0) ⊆ I(x0, δ), (4.8) for k ≥ j, 2 ≤ j ≤ d,
and (4.9) hold. Then there is a constant C(d) ≥ 1 such that (ã, x0, δ, C(d)A) is
Cd−1,1-admissible.

Proof. By (4.8) for j = k = 2, we have |ã′2|C0,1(IA(x0))
≤ A2. By Lemma 4.6,

|ã′2(x0)| ≤ 2A |ã2(x0)|1/2.
Thus we get (4.7), for x ∈ I6A(x0), as in the proof of Lemma 4.8. That (4.8) also
holds for k < j (up to multiplying the right-hand side with a suitable constant
C(d) ≥ 1) follows from Lemma 4.7 applied to f = ãj and k = j − 1, together with
(4.7) and Lemma 3.1. □

Proposition 4.12. Let (ã, x0, δ, A) be C
d−1,1-admissible. There exists δ1 > 0 and

a constant C(d) > 1 such that the following holds. There is a splitting

Pã = PbPc, on I(x0, δ1),

where Pb and Pc are monic hyperbolic polynomials of degree < d with coefficients
in Cd−1,1(I(x0, δ1)). We have, for all 1 ≤ i ≤ degPb,

|b(k)i (x)| ≤ C(d)Ak |ã2(x0)|(i−k)/2, 1 ≤ k ≤ d− 1, x ∈ I(x0, δ1), (4.12)
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|b(d−1)
i |C0,1(I(x0,δ1))

≤ C(d)Ad |ã2(x0)|(i−d)/2. (4.13)

If, after Tschirnhausen transformation, b̃2(x0) ̸= 0, then (b̃, x0, δ1, C(d)A) is
Cd−1,1-admissible. (Analogously, for c̃.)

Proof. Consider the continuous bounded (cf. Lemma 3.1) curve

a := (0,−1, a3, . . . , ad) : IA(x0) → Rd,

where aj := |ã2|−j/2ãj . Then, by (4.10), there exists C1 = C1(d) > 1 such that

∥a′(x)∥2 ≤ C1A |ã2(x0)|−1/2, x ∈ IA(x0).

Let 0 < r < 1 be the radius of the splitting (see Definition 3.5) and define

δ1 :=
|ã2(x0)|1/2 r

C1A
.

Then I(x0, δ1) ⊆ IA(x0) and a(I(x0, δ1)) ⊆ B(a(x0), r). Consequently, we have a
splitting

Pã = PbPc, on I(x0, δ1);

cf. Definition 3.5. The estimates (4.12) and (4.13) follow from (3.2) and
Lemma 4.10; for details see [12, Proposition 3.20].

Suppose that b̃2(x0) ̸= 0 and let us show that (b̃, x0, δ1, C(d)A), for suitable
C(d) > 1, is Cd−1,1-admissible. Set

B :=
2C1A

r
.

Then, by Lemma 3.4,

B−1|b̃2(x0)|1/2 ≤ |ã2(x0)|1/2 r
C1A

= δ1,

whence JB(x0) := I(x0, B
−1|b̃2(x0)|1/2) ⊆ I(x0, δ1). From (4.12) and (4.13),

we easily get the same bounds for b̃i instead of bi (by means of (3.1)). Since

|ã2(x0)|−1 ≤ 4 |b̃2(x0)|−1, by Lemma 3.4, we may replace ã2(x0) by b̃2(x0) in these
estimates if k ≥ i. Now it suffices to invoke Lemma 4.11. □

Proposition 4.13. Let (ã, x0, δ, A) be C
d−1,1-admissible and assume that x0 is not

reclusive for ã. If λ ∈ C0(I(x0, δ)) is a root of Pã and λ′(x0) exists, then

|λ′(x0)| ≤ C(d)A.

Proof. By assumption, ã2(x0) ̸= 0 and hence d ≥ 2. By Proposition 4.12, there
exists δ1 > 0 such that there is a splitting Pã = PbPc on I(x0, δ1). We may assume
that λ is a root of Pb and hence

λ(x) = − b1(x)

degPb
+ µ(x), x ∈ I(x0, δ1), (4.14)

where µ is a continuous root of Pb̃ and µ′(x0) exists (since we assumed that λ′(x0)
exists). By (4.12) for i = k = 1, we have

|b′1(x0)| ≤ C(d)A. (4.15)

By Lemma 4.3, x0 is not reclusive for b̃.
Let us now proceed by induction on d.
In the case d = 2, we have b̃ ≡ 0 and λ(x) = −b1(x) for x ∈ I(x0, δ1) so that

(4.15) gives the assertion.
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Assume that d ≥ 3. If b̃2(x0) ̸= 0, then (b̃, x0, δ1, C(d)A) is Cd−1,1-admissible,
by Proposition 4.12. By the induction hypothesis,

|µ′(x0)| ≤ C(d)A.

Thus the statement for λ′(x0) follows from (4.14) and (4.15).

If b̃2(x0) = 0, then x0 (being not reclusive for b̃) is an accumulation point of Zb̃2
.

It follows that µ′(x0) = 0 and the assertion again follows. □

Proof of Theorem 4.5. Let x0 ∈ R and δ > 0. Let ã ∈ Cd−1,1(I(x0, δ),HypT (d)).
Assume that x0 is not reclusive for ã. Let λ ∈ C0(I(x0, δ)) be a continuous root of
Pã and assume that λ′(x0) exists.

If ã2(x0) ̸= 0, then (ã, x0, δ, C(d)A(δ)) is C
d−1,1-admissible with A(δ) defined by

(4.3) and C(d) ≥ 1, in view of Lemma 4.8. Then Proposition 4.13 yields

|λ′(x0)| ≤ C(d)A(δ).

If ã2(x0) = 0, then x0 (being not reclusive for ã) is an accumulation point of Zã2
.

Hence λ′(x0) = 0 and the assertion is trivially true. □

5. Proof of Theorem 1.3

Let I ⊆ R be an open interval. Let an → a in Cd(I,Hyp(d)), i.e., for each
relatively compact open interval I1 ⋐ I,

∥a− an∥Cd(I1,Rd) → 0 as n→ ∞.

It follows from Theorem 4.1 that the set {λ↑◦an : n ≥ 1} is bounded in C0,1(I,Rd).
We must show that, for each relatively compact open interval I0 ⋐ I and each
1 ≤ q <∞,

∥λ↑ ◦ a− λ↑ ◦ an∥W 1,q(I0,Rd) → 0 as n→ ∞.

5.1. Strategy of the proof. The proof that

∥(λ↑ ◦ a)′ − (λ↑ ◦ an)′∥Lq(I0,Rd) → 0 as n→ ∞ (5.1)

is based on the dominated convergence theorem. We check its assumptions in two
steps:

Step 1: The sequence (λ↑ ◦ an)′ is dominated almost everywhere on I0 by a
nonnegative Lq function. This part follows easily from the uniform bound
(4.1).

Step 2: The sequence (λ↑ ◦ an)′ converges to (λ↑ ◦ a)′ pointwise almost ev-
erywhere in I0 as n→ ∞. This is the new part of the proof.

Finally, the proof is completed by

Step 3: The sequence λ↑◦an converges to λ↑◦a with respect to the L∞ norm
on I0 as n→ ∞.

Step 1. Fix I0 ⋐ I1 ⋐ I. By assumption of Theorem 1.3, {an|I1 : n ≥ 1} is a
bounded subset of Cd−1,1(I1,Rd). By Theorem 4.1, the derivative of λ↑ ◦ an exists
almost everywhere in I0 and satisfies

∥(λ↑ ◦ an)′∥L∞(I0,Rd) ≤ C sup
n≥1

max
1≤j≤d

∥an,j∥1/jCd−1,1(I1)
=: B <∞.

In particular, the sequence (λ↑ ◦ an)′ is dominated almost everywhere on I0 by the
constant B, which evidently is a Lq function on I0 for every 1 ≤ q <∞.
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Step 2. We will prove the following result.

Theorem 5.1. Let I ⊆ R be an open interval. Let an → a in Cd(I,Hyp(d)) as
n→ ∞. Then, for almost every x ∈ I,

(λ↑ ◦ an)′(x) → (λ↑ ◦ a)′(x) as n→ ∞.

As a consequence, the dominated convergence theorem yields that (5.1) holds,
for each relatively compact open interval I0 ⋐ I and each 1 ≤ q <∞.

Step 3. The map λ↑ : Hyp(d) → Rd is continuous (cf. [1, Lemma 4.1]). Hence
λ↑(an(x)) → λ↑(a(x)) for each x ∈ I0 as n→ ∞. Fix x0 ∈ I0 and 1 ≤ j ≤ d. Then,
for all x ∈ I0,

|λ↑j (a(x))− λ↑j (an(x))|

=
∣∣∣λ↑j (a(x0))− λ↑j (an(x0)) +

∫ x

x0

(λ↑j ◦ a)
′(t)− (λ↑j ◦ an)

′(t) dt
∣∣∣

≤ |λ↑j (a(x0))− λ↑j (an(x0))|+ ∥(λ↑j ◦ a)
′ − (λ↑j ◦ an)

′∥L1(I0).

Thus, in view of (5.1), we find

∥λ↑ ◦ a− λ↑ ◦ an∥L∞(I0,Rd) → 0 as n→ ∞. (5.2)

This ends the proof of Theorem 1.3, assuming the validity of Theorem 5.1.
The rest of the section is devoted to the proof of Theorem 5.1.

5.2. On the zero set of ã2. For a function f : I → R, we denote by Zf := {x ∈
I : f(x) = 0} its zero set and by acc(Zf ) the set of accumulation points of Zf .

Lemma 5.2. Let I ⊆ R be a bounded open interval. Let ãn → ã in Cd(I,HypT (d))
as n→ ∞. Then, for almost every x0 ∈ Zã2

,

(λ↑ ◦ ãn)′(x0) → 0 as n→ ∞.

Proof. Fix x0 ∈ acc(Zã2
). By Lemma 3.1, x0 ∈ acc(Zãj

), for all 2 ≤ j ≤ d. Thus

ã
(k)
j (x0) = 0 for all 2 ≤ j ≤ d and 0 ≤ k ≤ d, by Rolle’s theorem. Let ϵ > 0 be

fixed. By continuity, there exists δ > 0 such that I(x0, δ) ⋐ I and

∥ãj∥Cd(I(x0,δ))
≤ ϵj

2
, 2 ≤ j ≤ d.

By the assumption, there exists n0 ≥ 1 such that, for n ≥ n0,

∥ãj − ãn,j∥Cd(I(x0,δ))
≤ ϵj

2
, 2 ≤ j ≤ d,

and

|ãn,2(x0)| ≤ δ2ϵ2.

In particular, for n ≥ n0 and 2 ≤ j ≤ d,

∥ãn,j∥Cd(I(x0,δ))
≤ ∥ãj∥Cd(I(x0,δ))

+ ∥ãj − ãn,j∥Cd(I(x0,δ))
≤ ϵj .

If x0 is not reclusive for ãn and (λ↑◦ãn)′(x0) exists, then we may apply Theorem 4.5
to ãn and conclude

|(λ↑ ◦ an)′(x0)| ≤ C(d) ϵ.

By Lemma 4.4, the set {x0 ∈ I : ∃n ≥ 1 such that x0 is reclusive for ãn} has
measure zero. Since also Zã2

\acc(Zã2
) has measure zero, the assertion follows. □
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5.3. Admissible data. At points x0 with ã2(x0) ̸= 0 we have a splitting of Pã

and we may use induction on the degree. The following definition is a preparation
for the induction argument.

Definition 5.3. Let I1 ⊆ R be an open bounded interval and I0 ⋐ I1 a relatively
compact open subinterval. Let ã ∈ Cd(I1,HypT (d)). Let A > 0 be a constant. Set

IA,ã(x0) := I(x0, A
−1|ã2(x0)|1/2).

We say that (ã, I1, I0, A) is Cd-admissible if, for every x0 ∈ I0 \ {x : ã2(x) = 0},
the following holds:

(1) IA,ã(x0) ⊆ I1.
(2) For all x ∈ IA,ã(x0),

1

2
≤ ã2(x)

ã2(x0)
≤ 2. (5.3)

(3) For all 2 ≤ j ≤ d, 1 ≤ k ≤ d, and x ∈ IA,ã(x0),

|ã(k)j (x)| ≤ Ak |ã2(x0)|(j−k)/2. (5.4)

Note that if we take I1 := I(x0, δ), let I0 shrink to the point x0, assume ã2(x0) ̸=
0, and use Cd−1,1 regularity instead of Cd, we recover the notion from Definition 4.9.

Lemma 5.4. Let I1 ⊆ R be a bounded open interval and I0 ⋐ I1 a relatively
compact open subinterval. Let ãn → ã in Cd(I1,HypT (d)) as n→ ∞. Set

A := 6max{A1, A2}, (5.5)

where, using ã0,j = ãj for convenience and δ := dist(I0,R \ I1),

A1 := sup
n≥0

max
{
δ−1∥ãn,2∥1/2L∞(I1)

, |ã′n,2|
1/2

C0,1(I1)

}
,

A2 := sup
n≥0

max
2≤j≤d

{
|ã(d−1)

n,j |C0,1(I1)
· ∥ãn,2∥(d−j)/2

L∞(I1)

}1/d
.

Then (ã, I1, I0, A) and (ãn, I1, I0, A), for n ≥ 1, are Cd-admissible.

Proof. This is an easy consequence of [12, Lemma 3.23]. □

5.4. Towards a simultaneous splitting. Our next goal is to show that, if
(ã, I1, I0, A) and (ãn, I1, I0, A), for n ≥ 1, are Cd-admissible and (5.6) holds, then
Pã and Pãn , for n large enough, admit a simultaneous splitting; see Definition 5.5.

Let I1 ⊆ R be a bounded open interval and I0 ⋐ I1 a relatively compact open
subinterval. Let ãn → ã in Cd(I1,HypT (d)), i.e.,

∥ã− ãn∥Cd(I1,Rd) → 0 as n→ ∞. (5.6)

Assume that (ã, I1, I0, A) and (ãn, I1, I0, A), for n ≥ 1, are Cd-admissible for some
A > 0.

Fix x0 ∈ I0 \ {x : ã2(x) = 0}. By (5.6), there is n0 ≥ 1 such that

||ã2(x0)|1/2 − |ãn,2(x0)|1/2| <
1

2
|ã2(x0)|1/2, n ≥ n0,

and hence
1

2
<

|ãn,2(x0)|1/2

|ã2(x0)|1/2
< 2, n ≥ n0. (5.7)

So, for n ≥ n0,
I2A,ã(x0) ⊆ IA,ãn

(x0) ⊆ I2A/3,ã(x0). (5.8)
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For simplicity, we henceforth write

IC(x0) := IC,ã(x0) = I(x0, C
−1|ã2(x0)|1/2),

for C > 0. Since (ãn, I1, I0, A), for n ≥ 1, is Cd-admissible and thanks to (5.8) we
see that, for n ≥ n0,

I2A(x0) ⊆ I1, (5.9)

1

2
≤ ãn,2(x)

ãn,2(x0)
≤ 2, t ∈ I2A(x0), (5.10)

|ã(k)n,j(x)| ≤ Ak |ãn,2(x0)|(j−k)/2, 2 ≤ j ≤ d, 1 ≤ k ≤ d, x ∈ I2A(x0). (5.11)

Consider the Cd curves

a := (0,−1, a3, . . . , ad) : I2A(x0) → Rd,

an := (0,−1, an,3, . . . , an,d) : I2A(x0) → Rd, n ≥ n0,

where aj := |ã2|−j/2ãj and an,j := |ãn,2|−j/2ãn,j . Then, by [12, Lemma 3.18]
which is a variant of Lemma 4.10, there is a constant C1 = C1(d) > 1 such that,
for x ∈ I2A(x0),

∥a′(x)∥2 ≤ C1A |ã2(x0)|−1/2 and ∥a′n(x)∥2 ≤ C1A |ãn,2(x0)|−1/2.

Let 0 < r < 1 be the radius of the splitting (see Definition 3.5) and define

J1 := I4C1A/r(x0) = I(x0,
r

4C1A
|ã2(x0)|1/2).

Then a(J1) ⊆ B(a(x0), r/4) and an(J1) ⊆ B(an(x0), r/2), using (5.7). By (5.6),
there is n1 ≥ n0 such that

∥a(x0)− an(x0)∥2 <
r

4
, n ≥ n1. (5.12)

Consequently, B(an(x0), r/2) is contained in B(a(x0), 3r/4), for n ≥ n1.
In view of Definition 3.5, we have splittings on J1,

Pã = PbPc and Pãn
= PbnPcn , n ≥ n1, (5.13)

with the following properties:

(1) db := degPb = degPbn , for all n ≥ n1, and db < d.
(2) There exist bounded analytic functions ψ1, . . . , ψdb

with bounded partial
derivatives of all orders such that, for x ∈ J1 and 1 ≤ i ≤ db,

bi(x) = |ã2(x)|i/2 ψi(a(x)),

bn,i(x) = |ãn,2(x)|i/2 ψi(an(x)), n ≥ n1.

The same is true for the second factors Pc and Pcn .

Definition 5.5. We say that the family {Pã} ∪ {Pãn
}n≥n1

has a simultaneous
splitting on J1 if (5.13) and the properties (1) and (2) are satisfied.

Note that, applying the Tschirnhausen transformation to Pb and Pbn , we find

bounded analytic functions ψ̃1, . . . , ψ̃db
with bounded partial derivatives of all or-

ders such that, for x ∈ J1 and 1 ≤ i ≤ db,

b̃i(x) = |ã2(x)|i/2 ψ̃i(a(x)),

b̃n,i(x) = |ãn,2(x)|i/2 ψ̃i(an(x)), n ≥ n1.

That follows from (3.1).
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Lemma 5.6. We have bn → b and b̃n → b̃ in Cd(J1,Rdb) as n→ ∞.

Proof. By (5.3) and (5.10), |ã2|1/2, |ãn,2|1/2 ∈ Cd(J1) and a, an ∈ Cd(J1,Rd), for
n ≥ n0, and the assertion follows from Proposition 2.1. □

Summarizing, we have the following proposition.

Proposition 5.7. Let I1 ⊆ R be a bounded open interval and I0 ⋐ I1 a relatively
compact open subinterval. Let ãn → ã in Cd(I1,HypT (d)) as n→ ∞. Assume that
(ã, I1, I0, A) and (ãn, I1, I0, A), for n ≥ 1, are Cd-admissible for some A > 0. Let
x0 ∈ I0 \ {x : ã2(x) = 0}. Then the following holds:

(1) There exist an interval J1 containing x0 and n0 ≥ 1 such that the family
{Pã} ∪ {Pãn

}n≥n0
has a simultaneous splitting (5.13) on J1.

(2) For the factors in the simultaneous splitting (5.13), bn → b and b̃n → b̃ in
Cd(J1,Rdb) as n→ ∞.

(3) There exist a relatively compact open subinterval J0 ⋐ J1 containing x0 and

C = C(d) > 1 such that (b̃, J1, J0, CA) and (b̃n, J1, J0, CA), for n ≥ n0,
are Cd-admissible.

(2) and (3) also hold for b, bn, b̃, b̃n replaced by c, cn, c̃, c̃n.

Proof. (1) This was proved above.
(2) Lemma 5.6.
(3) follows from [12, Proposition 3.20]; one may take J0 := I8C1A/r(x0). □

5.5. The induction argument.

Proposition 5.8. Let I1 ⊆ R be a bounded open interval and I0 ⋐ I1 a relatively
compact open subinterval. Let ãn → ã in Cd(I1,HypT (d)) as n → ∞. Assume
that (ã, I1, I0, A) and (ãn, I1, I0, A), for n ≥ 1, are Cd-admissible for some A > 0.
Then, for almost every x ∈ I0,

(λ↑ ◦ ãn)′(x) → (λ↑ ◦ ã)′(x) as n→ ∞. (5.14)

Proof. We proceed by induction on d. The base case is trivial, since Z is the unique
polynomial in Tschirnhausen form of degree 1. Let us assume that d ≥ 2 and the
statement is true for monic hyperbolic polynomials of degree ≤ d− 1.

By Lemma 5.2, it is enough to show that (5.14) holds for almost every x ∈
I0 such that ã2(x) ̸= 0. Fix x0 ∈ I0 \ {x : ã2(x) = 0}. By Proposition 5.7,
there exist intervals J1 ⋑ J0 ∋ x0, n0 ≥ 1, and C = C(d) > 1 such that the

family {Pã} ∪ {Pãn}n≥n0 has a simultaneous splitting (5.13) on J1, (b̃, J1, J0, CA)

and (b̃n, J1, J0, CA), for n ≥ n0, are C
d-admissible, and bn → b and b̃n → b̃ in

Cd(J1,Rdb) as n→ ∞.
We may assume that, for x ∈ J1,

µ(x) := (λ↑1(ã(x)), λ
↑
2(ã(x)), . . . , λ

↑
db
(ã(x)))

is the increasingly ordered root vector of Pb(x) and, for n ≥ n0,

µn(x) := (λ↑1(ãn(x)), λ
↑
2(ãn(x)), . . . , λ

↑
db
(ãn(x)))

is the increasingly ordered root vector of Pbn(x); see Definition 3.5. Then

µ(x) + 1
bc
(b1(x), . . . , b1(x)) and µn(x) +

1
bc
(bn,1(x), . . . , bn,1(x))
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are the corresponding root vectors for Pb̃(x) and Pb̃n(x)
, respectively. By induction

hypothesis and since b′n,1(x) → b′1(x) as n→ ∞, we have

µ′
n(x) → µ′(x) as n→ ∞,

for almost every x ∈ J0.
Treating the second factors Pc and Pcn analogously, we conclude that (5.14)

holds for almost every x ∈ J0.
The set I0 \ {x : ã2(x) = 0} can be covered by the open intervals J0 and this

cover admits a countable subcover. This ends the proof. □

5.6. Proof of Theorem 5.1. Let I ⊆ R be an open interval. Let an → a in
Cd(I,Hyp(d)) as n → ∞. The Tschirnhausen transformation effects a shift of
λ↑ ◦ a by 1

d (a1, . . . , a1) and λ↑ ◦ an by 1
d (an,1, . . . , an,1). The new coefficients are

polynomials in the old ones, see (3.1). Hence we may assume that the polynomials
are all in Tschirnhausen form (by Proposition 2.1). Then Theorem 5.1 follows from
Lemma 5.4 and Proposition 5.8.

This also completes the proof of Theorem 1.3.

Remark 5.9. We need Cd convergence in Lemma 5.2. For all other arguments, it
would be enough to work in the class Cd−1,1.

6. Proofs of Theorem 1.1 and Corollary 1.2

6.1. A multiparameter version. The following theorem is a multiparameter ver-
sion of Theorem 1.3.

Theorem 6.1. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)), i.e., for each
relatively compact open subset U1 ⋐ U ,

∥a− an∥Cd(U1,Rd) → 0 as n→ ∞.

Then {λ↑ ◦ an : n ≥ 1} is a bounded set in C0,1(U,Rd) and, for each relatively
compact open subset U0 ⋐ U and each 1 ≤ q <∞,

∥λ↑ ◦ a− λ↑ ◦ an∥W 1,q(U0,Rd) → 0 as n→ ∞.

Proof. Let us assume that U0 is an open box U0 = I1 × · · · × Im parallel to the
coordinate axes. Set λ := λ↑ ◦ a and λn := λ↑ ◦ an. Let x = (x1, x

′) and for
x′ ∈ U ′

0 = I2 × · · · × Im consider

An(x
′) :=

∫
I1

∥∂1λ(x1, x′)− ∂1λn(x1, x
′)∥q2 dx1.

Then An(x
′) → 0 as n→ ∞, by Theorem 1.3. The boundedness of {λn : n ≥ 1} in

C0,1(U,Rd) is a consequence of Bronshtein’s theorem. It implies that |∂1λ− ∂1λn|
is dominated on U0 by an integrable function. By Fubini’s theorem,∫

U0

∥∂1λ(x)− ∂1λn(x)∥q2 dx =

∫
U ′

0

An(x
′) dx′.

By the dominated convergence theorem, we conclude that∫
U0

∥∂1λ(x)− ∂1λn(x)∥q2 dx→ 0 as n→ ∞.

In an analogous way, one sees that ∥∂jλ− ∂jλn∥Lq(U0,Rd) → 0 as n → ∞, for each
1 ≤ j ≤ m.
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We may conclude that ∥λ− λn∥L∞(U0,Rd) → 0 as n→ ∞ from the fact that this
is true component-wise (see Step 3 in Section 5.1).

For general U0, we observe that there are finitely many open boxes, relatively
compact in U , that cover U0. □

6.2. Proof of Theorem 1.1. It is clear that Theorem 6.1 implies Theorem 1.1
because Cd(U,Hyp(d)) is first-countable.

6.3. Proof of Corollary 1.2. Corollary 1.2 is an immediate consequence of the
following corollary of Theorem 6.1.

Corollary 6.2. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
Then, for each relatively compact open set U0 ⋐ U and each 0 < α < 1,

∥λ↑ ◦ a− λ↑ ◦ an∥C0,α(U0,Rd) → 0 as n→ ∞.

Proof. Again we may assume that U0 is a box (and hence has Lipschitz boundary).
Then the assertion follows from Theorem 6.1 and Morrey’s inequality,

∥λ↑ ◦ a− λ↑ ◦ an∥C0,α(U0,Rd) ≤ C ∥λ↑ ◦ a− λ↑ ◦ an∥W 1,q(U0,Rd),

where α = 1−m/q, q > m, and C = C(m, q, U0). □

7. Applications

7.1. Relation to the results for general polynomials. The case of general
complex (not necessarily hyperbolic) polynomials is treated in [11] which builds on
the results of [8, 9]. The crucial difference is that in general there is no canonical
choice of a continuous ordered d-tuple of the complex roots. Even worse, if the
parameter space is at least two-dimensional, then a parameterization of the roots
by continuous functions might not exist; but see [10]. Therefore the continuity
results in [11] are formulated in terms of the unordered d-tuple of the roots.

Let us compare the results obtained in this paper with the ones of [11]. To this
end, we investigate the metric space Ad(R) of unordered d-tuples of real numbers.

For x = (x1, . . . , xd) ∈ Rd, let [x] = [x1, . . . , xd] be the corresponding unordered
d-tuple, i.e., the orbit through x of the action of the symmetric group Sd on Rd by
permutation of the coordinates.

The set Ad(R) := {[x] : x ∈ Rd} with the distance

d([x], [y]) := min
σ∈Sd

1√
d
∥x− σy∥2

is a complete metric space.
For x ∈ Rd, let x↑ ∈ Rd be the representative of the equivalence class [x] with

increasingly ordered coordinates. Clearly, x↑ only depends on [x] and thus we have
an injective map ( )↑ : Ad(R) → Rd. It is a right-inverse of [ ] : Rd → Ad(R).

Lemma 7.1. We have

d([x], [y]) =
1√
d
∥x↑ − y↑∥2, x, y ∈ Rd.

In particular, ( )↑ : Ad(R) → Rd and [ ] : Rd → Ad(R) are Lipschitz maps.
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Proof. Evidently,

d([x], [y]) = d([x↑], [y↑]) = min
σ∈Sd

1√
d
∥x↑ − σy↑∥2 ≤ 1√

d
∥x↑ − y↑∥2.

Thus the assertion will follow from ∥x↑−y↑∥2 ≤ ∥x↑−y∥2, for x, y ∈ Rd. For d = 2,
this is equivalent to (x1 − y1)

2 + (x2 − y2)
2 ≤ (x1 − y2)

2 + (x2 − y1)
2 whenever

x1 ≤ x2 and y1 ≤ y2. By a simple computation, it is further equivalent to the true
statement (x2 − x1)(y2 − y1) ≥ 0. The general case follows from the fact that any
permutation is a finite composite of transpositions. □

By Lemma 7.1, the map ( )↑ : Ad(R) → Rd satisfies the conditions of an Almgren
embedding (as defined in [11] following [2] and [4]). Thus Theorem 1.3 can be
interpreted as a special version of the general theorem [11, Theorem 1.1] with the
important difference that (1.3) holds for each 1 ≤ q <∞, while in the general result
the corresponding fact is valid only for 1 ≤ q < d/(d− 1).

In this spirit, also other results of [11] have stronger versions in the hyperbolic
case. With regard to [11, Theorem 1.3], consider the locally absolutely continuous

curves Λ := [λ↑ ◦ a] and Λn := [λ↑ ◦ an] in Ad(R). Let |Λ̇|, |Λ̇n| denote their
metric speed and Eq,I0(Λ), Eq,I0(Λn) their q-energy on I0, respectively. (See [11] for
definitions.)

Theorem 7.2. Let I ⊆ R be an open interval. Let an → a in Cd(I,Hyp(d)) as
n→ ∞. Then, for each relatively compact open interval I0 ⋐ I,

∥d(Λ,Λn)∥L∞(I0) → 0 as n→ ∞, (7.1)∥∥|Λ̇| − |Λ̇n|
∥∥
Lq(I0)

→ 0 as n→ ∞, (7.2)∣∣Eq,I0(Λ)− Eq,I0(Λn)
∣∣ → 0 as n→ ∞, (7.3)

for each 1 ≤ q <∞.

Proof. First, (7.1) is a consequence of (5.2) and Lemma 7.1. By [11, Lemma 11.1],

|Λ̇|(x) = 1√
d
∥(λ↑ ◦ a)′(x)∥2 and |Λ̇n|(x) =

1√
d
∥(λ↑ ◦ an)′(x)∥2

for almost every x ∈ I. Thus, (7.2) and (7.3) follow from Corollary 1.4. □

7.2. Continuity of the area of the solution map. Let us first expand Corol-
lary 1.4.

Corollary 7.3. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
Let R ∈ R[X1, . . . , Xdm] be any real polynomial in the d ·m variables X1, . . . , Xdm.
Set λ := λ↑ ◦ a and λn := λ↑ ◦ an, for n ≥ 1. Then, for each relatively compact
open subset U0 ⋐ U and each 1 ≤ q <∞,∥∥∥R((∂iλj)1≤i≤m

1≤j≤d

)
−R

(
(∂iλn,j)1≤i≤m

1≤j≤d

)∥∥∥
Lq(U0)

→ 0 as n→ ∞,

and consequently,∥∥∥R((∂iλn,j)1≤i≤m
1≤j≤d

)∥∥∥
Lq(U0)

→
∥∥∥R((∂iλj)1≤i≤m

1≤j≤d

)∥∥∥
Lq(U0)

as n→ ∞.
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Proof. It is enough to show the assertion for monomials R. Let us proceed by
induction on the degree ℓ of the monomial R. For ℓ = 1, the assertion follows from
Theorem 6.1:

∥∂iλj − ∂iλn,j∥Lq(U0) ≤ ∥∂iλ− ∂iλn∥Lq(U0,Rd).

If ℓ > 1, then, by Hölder’s inequality,

∥∂i1λj1 · · · ∂iℓλjℓ − ∂i1λn,j1 · · · ∂iℓλn,jℓ∥Lq(U0)

≤ ∥∂i1λj1 · · · ∂iℓλjℓ − ∂i1λj1 · · · ∂iℓ−1
λjℓ−1

· ∂iℓλn,jℓ∥Lq(U0)

+ ∥∂i1λj1 · · · ∂iℓ−1
λjℓ−1

· ∂iℓλn,jℓ − ∂i1λn,j1 · · · ∂iℓλn,jℓ∥Lq(U0)

≤ ∥∂i1λj1 · · · ∂iℓ−1
λjℓ−1

∥L∞(U0)∥∂iℓλjℓ − ∂iℓλn,jℓ∥Lq(U0)

+ ∥∂i1λj1 · · · ∂iℓ−1
λjℓ−1

− ∂i1λn,j1 · · · ∂iℓ−1
λn,jℓ−1

∥Lq(U0)∥∂iℓλn,jℓ∥L∞(U0)

which tends to zero as n → 0, by the induction hypothesis, because the set of
numbers ∥∂i1λj1 · · · ∂iℓ−1

λjℓ−1
∥L∞(U0) is finite and the sequence ∥∂iℓλn,jℓ∥L∞(U0) is

bounded, by Bronshtein’s theorem (see Theorem 4.1). □

Let f : U → Rd be a Lipschitz map, where U ⊆ Rm is open. We recall that |Jf |
denotes the square root of the sum of the squares of the determinants of the k × k
minors with k = min{m, d} of the Jacobian matrix

(∂ifj)1≤i≤m
1≤j≤d

,

which exists almost everywhere, by Rademacher’s theorem.

Corollary 7.4. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
Then, for each relatively compact open subset U0 ⋐ U and each 1 ≤ q <∞,∥∥|J(λ↑ ◦ a)| − |J(λ↑ ◦ an)|

∥∥
Lq(U0)

→ 0 as n→ ∞,

and consequently,∥∥|J(λ↑ ◦ an)|∥∥Lq(U0)
→

∥∥|J(λ↑ ◦ a)|∥∥
Lq(U0)

as n→ ∞.

Proof. LetM1, . . . ,Mp andMn,1, . . . ,Mn,p denote the determinants of all the k×k
minors with k = min{m, d} of the Jacobian matrix of λ↑◦a and λ↑◦an, respectively.
Fix 1 ≤ q <∞. Then∥∥|J(λ↑ ◦ a)| − |J(λ↑ ◦ an)|

∥∥
Lq(U0)

≤ |U0|1/q−1/(2q)
∥∥|J(λ↑ ◦ a)| − |J(λ↑ ◦ an)|

∥∥
L2q(U0)

and∥∥|J(λ↑ ◦ a)| − |J(λ↑ ◦ an)|
∥∥2q
L2q(U0)

=
∥∥(∑M2

i

)1/2 − (∑
M2

n,i

)1/2∥∥2q
L2q(U0)

≤
∥∥∣∣∑M2

i −
∑

M2
n,i

∣∣1/2∥∥2q
L2q(U0)

=
∥∥∑M2

i −
∑

M2
n,i

∥∥q
Lq(U0)

.

Now it suffices to apply Corollary 7.3. □

In view of the area and the coarea formula, the following corollary is an imme-
diate consequence of Corollary 7.4 (for q = 1).

Corollary 7.5. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
Set λ := λ↑ ◦ a and λn := λ↑ ◦ an, for n ≥ 1.
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(1) If m ≤ d, then for each relatively compact open subset U0 ⋐ U ,∫
Rd

H0(U0 ∩ λ−1
n (y)) dHm(y) →

∫
Rd

H0(U0 ∩ λ−1(y)) dHm(y)

as n→ ∞.
(2) If m > d, then for each relatively compact open subset U0 ⋐ U ,∫

Rd

Hm−d(U0 ∩ λ−1
n (y)) dy →

∫
Rd

Hm−d(U0 ∩ λ−1(y)) dy

as n→ ∞.

We can also conclude that the surface area of the graphs of the single roots

λ↑j ◦ an, for 1 ≤ j ≤ d, is locally convergent as n→ ∞.

Corollary 7.6. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
For each 1 ≤ j ≤ d and for each relatively compact open subset U0 ⋐ U , the surface

area of the graph of λn,j := λ↑j ◦ an converges to the surface area of the graph of

λj := λ↑j ◦ a as n → ∞: if λn,j(x) := (x, λn,j(x)) and λj(x) := (x, λj(x)) denote
the corresponding graph mappings, then

Hm(λn,j(U0)) → Hm(λj(U0)) as n→ ∞.

Proof. We have

|Jλj | =
(
1 +

m∑
i=1

(∂iλj)
2
)1/2

and |Jλn,j | =
(
1 +

m∑
i=1

(∂iλn,j)
2
)1/2

.

As in the proof of Corollary 7.4, we have∥∥∥(1 + m∑
i=1

(∂iλj)
2
)1/2

−
(
1 +

m∑
i=1

(∂iλn,j)
2
)1/2∥∥∥2

L2(U0)

≤
∥∥∥∣∣∣ m∑

i=1

(∂iλj)
2 −

m∑
i=1

(∂iλn,j)
2
∣∣∣1/2∥∥∥2

L2(U0)

=
∥∥∥ m∑

i=1

(∂iλj)
2 −

m∑
i=1

(∂iλn,j)
2
∥∥∥
L1(U0)

.

So the assertion follows from Corollary 7.3 and the area formula. □

7.3. Approximation by hyperbolic polynomials with all roots distinct.
We recall a lemma of Wakabayshi [13] which extends an observation of Nuij [6].

Lemma 7.7 ([13, Lemma 2.2]). Let Pa ∈ Hyp(d) and set

Pa,s(Z) := (1 + s ∂
∂Z )d−1Pa(Z), s ∈ R. (7.4)

Then Pa,s ∈ Hyp(d) for all s ∈ R and there are positive constants ci = ci(d),

i = 1, 2, such that, if λ↑1(a, s) ≤ · · · ≤ λ↑d(a, s) denote the increasingly ordered roots
of Pa,s, then

λ↑j (a, s)− λ↑j−1(a, s) ≥ c1|s|, for s ∈ R and 2 ≤ j ≤ d, (7.5)

and
0 < ±(λ↑j (a)− λ↑j (a, s)) ≤ c2|s|, for ± s > 0 and 1 ≤ j ≤ d. (7.6)

In conjunction with our findings, Lemma 7.7 leads to the following approximation
result.
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Corollary 7.8. Let U ⊆ Rm be open and a ∈ Cd(U,Hyp(d)). There exists a
sequence (an)n≥1 ⊆ Cd(U,Hyp(d)) with the following properties:

(1) an → a in Cd(U,Hyp(d)) as n→ ∞.

(2) λ↑1(an(x)) < λ↑2(an(x)) < · · · < λ↑d(an(x)) for all x ∈ U and all n ≥ 1,

(3) λ↑ ◦ an ∈ Cd(U,Rd) for all n ≥ 1,
(4) λ↑ ◦ an → λ↑ ◦ a in C0,1

q (U,Rd), for all 1 ≤ q <∞, as n→ ∞.
(5) For each relatively compact open U0 ⋐ U , consider the zero sets Z =

{(x, y) ∈ U0×R : Pa(x)(y) = 0} and Zn = {(x, y) ∈ U0×R : Pan(x)(y) = 0},
for n ≥ 1. Then limn→∞ Hm(Zn) exists and

lim
n→∞

Hm(Zn) ≥ Hm(Z).

Proof. Let (sn)n≥1 be any positive sequence of reals that tends to 0. Consider the
polynomial Pa(x),sn (defined in (7.4)), where x ∈ U , and let an(x) be its coefficient

vector. Then, by Lemma 7.7, an ∈ Cd(U,Hyp(d)), for n ≥ 1.
(1) This is clear by the definition (7.4) and since sn → 0 as n→ ∞.
(2) follows from (7.5) and the fact that sn > 0 for all n ≥ 1.
(3) For fixed x ∈ U , ∂

∂ZPan(x)(Z) does not vanish at any root of Pan(x), by

(2). So, by the implicit function theorem, the roots of Pan(x) are of class Cd in a
neighborhood of x. This implies (3).

(4) is a consequence of (1) and Theorem 1.1.

(5) For each n ≥ 1, Zn is the union of the graphs of λ↑j ◦ an|U0
, for 1 ≤ j ≤ d,

and these graphs are pairwise disjoint, by (2). Thus, by Corollary 7.6 (using its
notation),

Hm(Zn) =

d∑
j=1

Hm(λn,j(U0)) →
d∑

j=1

Hm(λj(U0)) ≥ Hm(Z) as n→ ∞.

Note that we have only an inequality at the end because there can be multiple
roots. □
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about the continuity of the solution map.
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