SELECTIONS OF BOUNDED VARIATION
FOR ROOTS OF SMOOTH POLYNOMIALS

ADAM PARUSINSKI AND ARMIN RAINER

ABSTRACT. We prove that the roots of a smooth monic polynomial with
complex-valued coefficients defined on a bounded Lipschitz domain € in R™
admit a parameterization by functions of bounded variation uniformly with
respect to the coefficients. This result is best possible in the sense that discon-
tinuities of the roots are in general unavoidable due to monodromy. We show
that the discontinuity set can be chosen to be a finite union of smooth hyper-
surfaces. On its complement the parameterization of the roots is of optimal
Sobolev class WP for all 1 < p < %, where n is the degree of the polyno-
mial. All discontinuities are jump discontinuities. For all this we require the
coefficients to be of class C*~1:1(Q), where k is a positive integer depending
only on n and m. The order of differentiability k is not optimal. However, in
the case of radicals, i.e., for the solutions of the equation Z" = f, where f is
a complex-valued function and r € R, we obtain optimal uniform bounds.
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1. INTRODUCTION

1.1. The main results. Let 2 C R be an open set and let

Pu(@)(2) = Pu)(2) = 2" +3_a,@) 2", aeq, (L1)
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be a monic polynomial with complex-valued coefficients a = (a1, ...,a,) : Q@ — C™.
The roots of P, form a multi-valued function A : Q ~ C. If a is of Holder class
Cm~11(€), then A is of Sobolev class WhP(Q), for all 1 < p < -, in the sense
of Almgren [2] (see also [16]), and this result is sharp. This follows from the main
result of our recent paper [33]; see [33, Theorem 6].

In this paper we study the existence of regular selections and parameterizations
of the multi-valued function A. The point-image A(x), for x € Q, is the unordered n-
tuple consisting of the roots of P,(x) (with multiplicities). A parameterization of A
is an n-tuple A = (A1,...,\,) of single-valued functions such that A\(x) represents
A(z) for all x € Q. A selection of A(x) is a single-valued function g such that
u(x) € A(z) for all € Q, or equivalently P,(x)(u(z)) = 0.

The main result of [33] states that any continuous selection of the roots of P,,
where @ € C"~11(I,C") and [ is an open bounded interval in R, is of class W1P (1),
for all 1 < p < "5, uniformly with respect to coefficients. This result is optimal.
It is not hard to see that in this one-dimensional case there always exist continuous
parameterizations of the roots (e.g. [23} Ch. II Theorem 5.2]).

As a consequence, any continuous selection g : V- — C of a root of P,, where
a € C"L1(Q,C"), Q is a Lipschitz domain, and V' C 2 is an open subset, is of
class WhP(V), for all 1 < p < -2+ (see Theorem [A.1)). But, for dimension m > 2,
monodromy in general prevents the existence of continuous selections of roots on
Q. So it is natural to ask:

Can the roots of a polynomial (1.1 with coefficients in a differen-
tiability class of sufficiently high order be represented by functions
of bounded variation?

Functions of bounded variation (BV') are integrable functions whose distribu-
tional derivative is a vector-valued finite Radon measure. They form an algebra of
discontinuous functions. Due to their ability to deal with discontinuities they are
widely used in the applied sciences, see e.g. [24].

Our main result gives a positive answer to the above question:

Theorem 1.1. For all integers n,m > 2 there exists an integer k = k(n,m) >
max(n,m) such that the following holds. Let Q@ C R™ be a bounded Lipschitz
domain and let be a monic polynomial with complex-valued coefficients a =
(ai,...,a,) € CF~LL(Q,C).

Then the roots of P, admit a parameterization A = (\1,...,\,) by special func-
tions of bounded variation (SBV ) on 2 such that

(Ml Bv ) < C(n,m,Q) max {1, |la| 1= (q) } max {1, ||a‘|ck—1,1(§)}~ (1.2)

There is a finite collection of C*~1-hypersurfaces Ej in Q such that X is continuous
in the complement of E := Uj E;. Any hypersurface E; is closed in an open subset
of Q but possibly not in Q itself. All discontinuities of A are jump discontinuities.

Note that we do not claim that the discontinuity hypersurfaces E; have finite
(m—1)-dimensional Hausdorff measure (H™~!). Actually we construct an example,
see Example where this is not possible.

If n = 1 then the problem has a trivial solution A = —a;. If n > 2 and m =1,
then the problem was solved in [33]. In both cases the roots admit continuous
parameterizations.
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A function of bounded variation is called special (SBV) if the Cantor part of
its derivative vanishes; for precise definitions and background on BV-functions we
refer to Section [4l

Remark 1.2. The dependence of k on m stems from the use of Sard’s theorem. The
dependence of the constant C' on () originates from the use of Whitney’s extension
theorem (see Section and also from the trivial bound [[A||z1(q) < [Qf[[A]| Lo (q)-
It is well-known that max;<;<, |Xi(z)| < 2max;<j<p |a;(z)|'/7 for all = (cf. [27,
p.56] or [34], (8.1.11)]).

Together with Theorem of Appendix [A] we immediately obtain the following
supplement.

Corollary 1.3. The parameterization \ satisfies

_ Y
”/\”WlP(Q\E) < O(”? m,p, Q) 121?;(” Haj ch—1,1(§) (13)

forall1 <p< 25.

For radicals, i.e., solutions of Z" = f, where we allow r € Ry, we have better
bounds:

Theorem 1.4. Let r € Ryg and m € N>o. Let k € N and a € (0,1] be such that
k+a > max{r,m}. Let Q CR™ be a bounded Lipschitz domain. Let f € C*(Q).
Then there exists a solution A € SBV(Q) of the equation Z" = f such that
1/r
Ay < Clm. k.0 112 (14)

There is a C*-hypersurface E C Q (possibly empty) such that X is continuous on
Q\ E and satisfies VA € LE(Q\ E) for

1 ifr>1,

p={ 00 ifr<1andr—! €N,
Fol1-1

{7‘,{,1}7}1_1 ifr<1andr—! ¢N.

We have
- 1/r
VMl 008 < COm. k.0, ) 7117 . (1.5)
and
/E‘f|1/rdme71 < C’(m’k’a,ﬁ) Hf”gl:a(ﬁ) (16)

All discontinuities are jump discontinuities.

Here L2 (V) denotes the weak Lebesgue space equipped with the quasinorm
Il - |z, (vy and {z} is the fractional part of € R. This result is optimal as follows
from Remark[2.6} in general, VX & LP, even if \ is continuous and f is real analytic,
and A need not have bounded variation if f is only of class C*# whenever £+ 3 < r.

Remark 1.5. In the case that r = n is an integer, a complete parameterization of
the roots of Z™ = f is provided by 8¥\, k =0,...,n — 1, where § = 27/,



4 ADAM PARUSINSKI AND ARMIN RAINER

1.2. Background. The problem of determining the optimal regularity of the roots
of univariate monic polynomials whose coefficients depend smoothly on parameters
has a long and rich history. Its systematic investigation probably started with
Rellich’s work on the perturbation theory of symmetric operators in the 1930s
[40], [T 421 [42] [43], [44], see also his monograph [45]. This line of research culminated
with Kato’s monograph [23]. But the regularity problem of the eigenvalues of
symmetric, Hermitian, and even normal matrices/operators behaves much better
in many aspects than the related problem of choosing regular roots of smooth
families of polynomials; see [38] for a survey of the known results.

The regularity of square roots of non-negative smooth functions was first stud-
ied by Glaeser [22]. The general case of hyperbolic polynomials (i.e. all roots are
real) plays a crucial role for the Cauchy problem for hyperbolic partial differen-
tial equations with multiple characteristics. The central result is this connection
is Bronshtein’s theorem [§]: every continuous choice of the roots of a hyperbolic
monic polynomial of degree n with C™~!-coefficients is locally Lipschitz. Note
that there always is a continuous parameterization of the roots in this case, e.g., by
ordering them increasingly. Variations on this fundamental result (and its proof)
appeared in [20], [511, [1, [25], [5l, [6], [501, [71, [13], (311,

The complex (i.e. not necessarily hyperbolic) counterpart, which is the problem
at the center of this paper, was considered for the first time (for radicals) by Colom-
bini, Jannelli, and Spagnolo [I1]. Motivated by the analysis of certain systems of
pseudo-differential equations Spagnolo [47] asked if the roots of a smooth curve
of monic polynomials admit a parameterization by locally absolutely continuous
functions. This conjecture was proved in our papers [32] and [33] which are based
on the solution for radicals due to Ghisi and Gobbino [2I]. The optimal Sobolev
regularity of the roots, which was already mentioned above, was established in [33]
by elementary methods. Its precursor [32] in which the optimal bounds were still
missing was based on Hironaka’s resolution of singularities. We wish to mention
that absolute continuity of the roots was also shown in [I4] by different methods;
for polynomials of degree n < 3 it is due to [46]. As already pointed out, a curve
I >t P,(t), where I C R is an interval, always admits a continuous parameter-
ization of its roots. Further contributions with partial solutions appeared in [49],
[12], [T0], [35], [36], [37], [39].

The results of this paper complete this analysis and solve Open Problem 3 posed
in [33].

1.3. Idea of the proof. The main difficulty of the problem is to make a good
choice of the discontinuity set of the roots. On the complement of the discontinuity
set the roots are of optimal Sobolev class WP, for all 1 < p < —, by the result of
[33], see also Theorem[A.1] In general, the discontinuity set has infinite codimension
one Hausdorff measure, see Example[2:4] Thus, in order to have bounded variation
it is crucial that the jump height of a selection of a root is integrable (with respect
to H™~1) along its discontinuity set.

The proof of Theorem is based on the radical case solved in Theorem and
on formulas for the roots of the universal polynomial P,, a € C™, which were found
in [32]. Interestingly, the method of [32] seems to be better suited for the control
of the discontinuities and integrability along them than a more elementary method
of [33].
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1.3.1. The radical case. Consider the equation Z™ = f, where f is a smooth
complex-valued function. We choose the discontinuities of the solutions along the
preimage of a regular value of the sign sgn(f) = f/|f| : @\ f~1(0) — St of f. The
result of Ghisi and Gobbino [2I] which we recall in Theorem together with the
coarea formula and Sard’s theorem empowers us to show that

/ |fIYmdH™ T <00 for H-ae. y € ST
sen(f)~1 ()

It is then not hard to complete the proof of Theorem using the observation
that any parameterization of the solutions of Z™ = f is continuous (and zero) on
the zero set of f, and hence a BV-parameterization on Q \ f~1(0) extends to a
BV-parameterization on {2 with unchanged total variation.

1.3.2. The general case. The formulas for the roots of the universal polynomial P,,
a € C™, which we recall in detail in Section [ express the roots as finite sums of
functions analytic in radicals of local coordinates on a resolution space (a blowing
up of C™). We choose parameterizations of the involved radicals, using Theorem 1.4
and show that in this way we obtain S BV -parameterizations of these summands.
But then a new difficulty arises which comes from the fact that these summands
are defined only locally on the resolution space. (Actually, they cannot be defined
neither globally nor canonically.) We solve this problem by cutting and pasting
these locally defined summands which introduces new discontinuities. In order to
stay in the class SBV we must ascertain integrability of the new jumps along these
discontinuities. This is again based on a consequence of Ghisi and Gobbino’s result
for radicals and the coarea formula, see Lemma [7.4]

1.4. Open problems. The uniform bound in is not scale-invariant. Nor is the
degree of differentiability k sharp (in contrast, it is sharp in and ) These
deficiencies stem from the method of proof involving resolution of singularities. Are
there better bounds with lower differentiability requirements?

The method of our proof is local. This forces us to deal with the global mon-
odromy by cutting and pasting the local choices of the roots. It introduces addi-
tional discontinuities some of which are perhaps not necessary. It would be inter-
esting to have a global understanding of the monodromy and the discontinuities it
necessitates.

1.5. Structure of the paper. In Section [2[ we investigate the discontinuities of
radicals caused by monodromy and show in Example 2.4]that their codimension one
Hausdorff measure is in general infinite. The main analytic ingredient for the proofs
of Theorem and Theorem which allows us to control the integrability of the
jump height of the roots along their discontinuity sets is developed in Section [3} it
is presented in greater generality, see Theorem [3.3] since it might be of independent
interest. In Section [4] we recall the required background on functions of bounded
variation. The proof of Theorem is completed in Section The remaining
sections are dedicated to the proof of Theorem We recall the formulas for the
roots of the universal polynomial in Section [6] In Section [7] we prove Theorem
modulo the local Proposition [7.2] which is then shown in Section [§] In Appendix [A]
we refine a result from [33] on the Sobolev regularity of continuous roots.
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Notation. We use N := {0,1,2,...}, N5,;, :=={n € N:n > m}, N5, := Ny, U
{m}, N; := Ny, and similarly, R, , Ry, etc. For r € R, let [r] be its integer
part and {r} :=r — |r| its fractional part.

For a € R and b € R™, we denote by a ® b the £ x m matrix (aibj)ffllyjzl. By
B.(z) = {y € R™ : |z — y| < r} we mean the open ball with center z and radius
r. The open unit ball in C™ is denoted by B, the unit sphere in R™ by S™~!. By
V(.#) we denote the zero set of an ideal .#.

For a positive measure p and a py-measurable set F, let pL E denote the restric-
tion of p to E, i.e., (uL E)(F) = u(F N E). The m-dimensional Lebesgue measure
is denoted by £™; we also use L™(E) = |E| and dL™ = dz. We write f, f dx for
the average |E|~* [ g fdr. By H¢ we mean the d-dimensional Hausdorff measure.

For a mapping f : X — Y between metric spaces X, Y and « € (0, 1], we set

Hold,, x (f) := sup A(f (1), f(z2)) and  Lipy(f) := Holdy x (f).

x1,x2€X d(l’l,{EQ)a
T1#£T2

Then f is said to be a-Holder (or Lipschitz) if Hold,, x (f) < oo (or Lipx (f) < o0).

Let Q C R™ be open. We denote by C*®(2) the space of complex-valued C*-
functions on 2 such that 97 f is locally a-Holder for all |y| = k. If © is bounded, then
C*2(Q) is the subspace of functions f such that 37 f has a continuous extension
to Q for all 0 < |y| < k and Hold, (87 f) < oo for all |y| = k. Then C*2(Q) is a
Banach space with the norm

[Flone = swp 1077(@)] + sup Holda.a(@" ).
IvI<k,z€Q lvI=k

This norm makes also sense for Q@ = R™. If f = (f1,...,fn) : & = C" is a
vector-valued function, then we put

||f||ck,a(§) = 1?%}(71 ”fz”cka(ﬁ)

For real-valued functions f and g we write f < g if f < Cg for some universal
constant C.

2. DISCONTINUITY DUE TO MONODROMY

In this section we investigate the first difficulty of the problem: discontinuities
of the roots caused by the local monodromy. This difficulty is already present for
radicals of smooth functions. Thus we concentrate on the solutions of

A (2.1)

where r > 1 is a real number and f is a complex-valued smooth not identically equal
to zero function defined in some open subset {2 of R™. Let us explain what we mean
by a solution of for r ¢ Z. Firstly, any solution should vanish on the zero set
of f. On the set Qg := Q\ f~1(0), Equation can be given an equivalent form
Z = exp(r~!log f). Thus, by definition, a continuous function A(z) is a solution
of if there is a branch of logarithm log f such that A = exp(r~!log f). Here
by log f we mean a function defined on €y, not necessarily continuous, such that
exp(log f) = f. For r irrational, if exp(r—!log f) is continuous then so is log f.
Note also that, if A is a solution of then so are Aexp(2wik/r), k € Z. In
particular, for r irrational, if there is a continuous r-th root of f, then there are
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infinitely many of them. If r = a/b with a,b being two relatively prime integers,
then Z = exp(r~!log f) can be written equivalently as Z% = f°.
Consider the sign function of f defined by

sen(f): Qo — S, sgn(f) = |§|
The existence of a continuous selection of f1/" depends on the image Im(m; (sgn f))
of the induced homomorphism of the fundamental groups m(sgn f) : m(Q0) —
71(S') = Z (here we suppose for simplicity that €y is connected). More precisely,
a continuous selection of /7 exists if and only if

(2.2)

(1) Im(mi(sgn f)) CnZ,if r =n > 1 is an integer,

(2) Im(mi(sgn f)) C aZ, if r = a/b with a, b being two relatively prime integers.
(Indeed, the equation Z¢ = f* admits a continuous solution if and only if
the equation Z% = f has one. For instance, if A* = f° then (A f*)® = f,
for the integers k, [ such that ak + bl = 1.)

(3) Im(mi(sgn f)) = 0, that is 7 (sgn f) is zero, if r is irrational.

If the above stated conditions are not satisfied, then every solution of has to
be discontinuous. We will see in Proposition [2.2] that in this case the discontinuity
set can be chosen to be a smooth hypersurface provided that f is differentiable of
sufficiently high order. But, in general, as shows Example the H™~'-measure
of the discontinuity set is infinite! Off its discontinuity set every solution of is
of Sobolev class WP for all 1 < p < -7 which follows from a result of Ghisi and
Gobbino [21] which we recall in Section

We shall use a version of Sard’s theorem which we recall for convenience.

2.1. Sard’s theorem. The following extension of Sard’s theorem to Sobolev spaces
is due to [I7]; see also [20] for a different proof.

Theorem 2.1 (Sard’s theorem). Let Q@ C R™ be open. Let f : Q — R’ be a
Wm_Hl’p-function, where p > m > £. Then the set of critical values of f has

loc
L -measure zero.

In the case m = ¢ the result follows from a theorem of Varberg and the fact
that a WP self-mapping of R™ satisfies the Luzin N-property if p > m; cf. the
discussion in [I7), Section 5].

In particular, the conclusion holds for each f € C™~%1(Q,R?), where m > /.
See also [4] and [30].

2.2. On the discontinuity set of radicals. The roots of the equation Z" = x,
z € C, n € N>y do not admit a continuous choice in any neighborhood of the origin.
However, the roots can be chosen continuously on any set C \ R, v, where v € S*.
The next proposition generalizes this fact.

Proposition 2.2. Let r € Ry, m € N>y, and k € N>, 1. Let Q@ C R™ be open
and let f € CH1(Q). Then there exist a C*-hypersurface E C Q (possibly empty)
and a continuous function X : Q\ E — C such that \" = f.

Proof. Let Qo :=Q\ f71(0). Clearly sgn(f) : Qo — S! is a C*'-mapping.

If sgn(f) (o) # S* define E := () and choose v € S*\sgn(f)(Q0). If sgn(f)(Qo) =
S!, then there exists a regular value v € S! of sgn(f), by Sard’s theorem (cf.
Theorem , and the set E := sgn(f)~!(v) is a C*-hypersurface.
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In either case define A := /" = exp(r—'log f), where the logarithm is under-
stood to have its branch cut along the ray Rv. Then X is continuous (even C*1)
on Qo \ E and satisfies A" = f. Clearly, A extends continuously by 0 to the zero set
of f. O

Remark 2.3. Note that F is closed in {2y but not necessarily in 2.

The following example shows that in general we cannot choose the radicals of a
smooth function with compact support in R™ in such a way that its discontinuity
set has finite H™!-measure.

Example 2.4. There exists a C>®°-function f : R? — C with compact support such
that the discontinuity set Sy of any function A : R? — C with A2 = f satisfies
H(S)) =

Proof. Consider a collection D = {Dy}32, of pairwise disjoint open disks Dy, =
{z €C:|z—pi| < £}. The total area of this collection is

o0 o0 3
| Dl :Z% = %
k=1 k=1

We may assume that the disks Dy, are distributed such that |J;—, Dy is bounded.
In fact, the entire collection D fits in the rectangle R = (0,4) x (0,2). To see this
let D, ;= {Dy, € D:2""1 < k < 2"}, for n € N;. Any disk in D, fits in a square
of side-length 27"%2; there are 2"~ ! such disks. Subdivide the rectangle R by the
vertical lines x = Z =127 3*2 n € N,, which provides a family of open disjoint
rectangles {R,}°2; of dimensions 27"%2 x 2. Let us decompose each R, into a
collection C,, of 2"~ ! pairwise disjoint squares. By distributing the disks in D,, to
the squares in C,, we achieve |J;—, Dy C R.
Let h: R — [0,1] be a C*°-function such that h(z) =0 if z < 1/4 and h(x) =

if x > 1. Then the C*-function hy : C — [0, 1] given by

hi(z):=1— h(lc2|z — pk|2)

vanishes outside of Dy, and equals 1 on D} := {z € C: |z — pi| < 5} We claim
that the function f : C — C defined by

th )= _p’“ (2.3)

is C°. Indeed, the sum consists of at most one term at any point z. Set ¢ (z) :=
27K (2 — pr), Hy := sup,cg i<y |h(®(t)], and for a € N? with |a| = ¢ consider

sup |0%(hgeg)(2)] = sup |0%(hicr)(2)]
zeC z€Dy,

< s 3 (§) 10 mia o ao)

z€Dy, B<a
< CyHy k*o—k,

The right-hand side is summable and thus the series in converges uniformly
in each derivative and hence represents an element f € C>°(C).

Let A : C — C be any function satisfying A?> = f. On the set D;, we thus have
A(2)? = 27%(2 — py). For each r € (0, (2k)™!) there exists g, € {z : |z — pi| = 7}
such that A restricted to {z : |z — pg| = r} is discontinuous at g,.. The set Sy :=
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{g- : 7 € (0,(2k)™1)} is a subset of the discontinuity set Sy of X. If S is a subset of
R? such that ¢ : z — |2| maps S onto (0, R), then

R=%'((0,R)) < H'((5)) < H'(S5),

since ¢ is Lipschitz with Lipg2(¢) = 1. Therefore, for all n > 1,

n

" 1
L(Sy) > HY( L:J ;ﬁ

since any two sets Si and Sy have positive distance if k£ # ¢. This implies the
assertion. O

2.3. The regularity of continuous radicals. The regularity of continuous radi-
cals is fully understood thanks to a result of Ghisi and Gobbino [2I] which we recall
next.

Theorem 2.5. Letk € N, a € (0,1], andr = k+«. Let I C R be an open bounded
interval. Let X\ : I — R be continuous and assume that there exists f € C**(I,R)
such that

A" = [f]. (2.4)
Let p be defined by 1/p+ 1/r = 1. Then we have X' € LP (I) and

. 1/r r
||/\/||p,w71 < O(k) max{(HoldaJ(f(k))) / |I|1/p7 ||f/H};/oo(1)}a (2~5)

where C(k) is a constant that depends only on k.

For an open set Q@ C R™, LP () denotes the weak Lebesgue space of functions
f:Q — R such that

1 fllpw.e = £z, ) == ig}g (r (ﬁm({x eQ:|f(x)] > r}))l/p) < 0.

Remark 2.6. The result of Theorem is optimal in the following sense:

e In general \' ¢ LP(I) even if f € C¥(I), e.g., f(t) =t.

e The assumption f € C*(I,R) cannot be relaxed to f € C*#(I,R), for
any # < a. Indeed, there exists a non-negative function f contained in
CkB(I,R)NC>(I) for all 3 < «a such that any real solution A of has
unbounded variation on I; see [2I, Example 4.4].

By a standard argument based on Fubini’s theorem, also the following result for
several variables was obtained in [21] (compare with Theorem [A.T]).

Theorem 2.7. Let k € Ny, a € (0,1], andr = k+a. Let f : Q@ = R be a
CF_function defined on an open set & C R™. Let A : Q — R be any continuous

function satisfying (2.4). Then, for every relatively compact subset V' € ), we have
Ve LP(V,R™), where 1/p+1/r =1, and

19Nl < Com, e, 2, V) max { (HSldaa(F9) M 91 0}
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3. GENERIC INTEGRABILITY ALONG LEVEL SETS

The results of this section show that

/ |fIYTdH™ ! <00 for Hl-ae y e ST
sgn(f) = (y)

if f:R™ D Q — Cisofclass C* and k4« > r. This is the main ingredient needed
in the proof of Theorem [I.4]in Section [ It can be understood as a complement of
Sard’s theorem for the sign function.

We believe that the results of this section are of independent interest and thus
we formulate them in greater generality for maps f : R™ D Q — R‘*!. Then

I

|f]

We will investigate the level sets of the sign sgn(f) and the norm |f|. The proofs
are based on Theorem 2.7 and the coarea formula.

sen(f): Q\ f71(0) =S sgn(f) =

3.1. The coarea formula. We will use the following version of the coarea formula
due to [28, Theorem 1.1], see also [19].
Recall that a function f is a precise representative of f € Li . (Q) if

f(z) = lim f(y) dy
rl0 B, (z)
at all points = where this limit exists. In the following we say that f € L (€, RY)
is precisely represented if each of the component functions of f is a precise repre-
sentative. (In fact f~!(y) will depend on the representative of f.)

Theorem 3.1 (Coarea formula). Suppose thatm > £ > 1. Let Q2 C R™ be open and
let f € VVéf(Q R?) be precisely represented, where either p > £ orp > £ = 1. Then

f~1(y) is countably H™* rectifiable for almost all y € R®, and for all measurable
ECQ,

/ Tof ()| dir = / H BN [ (y)) dy
E R¢

Recall that |J; f(x)]| is the square root of the sum of squares of the determinants
of the £ x £ minors of the Jacobian of f.

The following change of variables formula is an easy consequence of the coarea
formula.

Corollary 3.2. If f is as in Theorem and g : Q — [0, 00] is measurable, then

[ s@nste |dx—// gdHm dy

We will apply these results only to continuous functions f which evidently are
precisely represented.

3.2. Extension from Lipschitz domains. It will be sometimes helpful to as-
sume that functions are defined on R™ instead of on open subsets ) and have
compact support. If 2 is a bounded Lipschitz domain, then this is possible thanks
to Whitney’s extension theorem.
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Let Q C R™ be a bounded Lipschitz domain and let f € C*<(Q2). By Whitney’s
extension theorem, f admits a C*“-extension f to R™ such that
I £llcke@m < C 1l gy (3.1)

for some constant C' = C(m, k,a, Q) (cf. [48] Theorem 4, p.177] and [9, Theorem
2.64]). Let © := J,cq Bi1(x) be the open 1-neighborhood of 2. By multiplying f

with a suitable cut-off function we may assume that supp( f) C Qq, and that
1l < COME @) [1flone @ (3.2)

Clearly, these observations generalize to vector-valued functions.
3.3. Level sets of the sign.

Theorem 3.3. Let k € Ny, a € (0,1], and set s = k+ «a. Let Q@ C R™ be a
bounded Lipschitz domain and f € Ck “( R“l), where m > ¢ > 1. Then there is
a constant C' = C(m, 4, k,a, Q) such that for each small € > 0

s qH™ — l/s
w({yests [ itz Ol g ) < 63)
en(f)~(y)
Proof. Let f = (f1,..., for1) € CP(Q,R*1). Without loss of generality we may

assume f # 0. For convenience set g := sgn(f) = f/|f| : @\ f~1(0) — S*. Then,
forall j=1,....4+1landalli=1,...,m,

0; = 9 Zif Dife = |digi| <200 +1) 10 fi|
9= 7] |f|3 KTk 951 = 1<hen [f]

and Ty
8@(‘fj|1/8) = |f]|2 1J/S

Let h = (g1,-..,g¢) consist of the first £ components of g. Then

¢ 9i [k \*
|Jeh| < C(m, f)( max |5zgg|> < C(m,?) <1<Ilrcl<;z(+1 | |f|k|>

1<z<m 1<i<m

and consequently

l/s |81fk| ¢ . 1/s ¢
[FI751eh] < Cm, £) (1;@12%11 |f\1—1/3) <Cm s (15%2@11 |6Z(|fk| )’) '
I<i<m i<i<m

(3.4)

By Theorem (applied to an extension of f as in Section and by (3.4), we
may conclude that

/ F@)[ | eh()| da < Cm, 0k, 0, Q) L F125 . o (3.5)
0 (@)

By the coarea formula (Corollary ,
[ @ de= [ [ e ta o)
Q\f~1(0) R¢ Jh=1(y)
Then and (| . ) entail

/ [t dy < O k0 ) I ()
[(-1,1]* /=1 (y)
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It follows that, for all small enough € > 0,

Hy e[-1,1)": /hl(

> a1} <

k.o (O

Y CFr2(Q)
which entails the statement of the lemma, since g~ (z1,...,2011) € A~ (21,...,2¢)
for all z = (z1,...,2041) € S&. O

Corollary 3.4. In the setting of Theorem[3.3,

/ |15 dH™ " < 00,  for H'-a.e. y €S, (3.8)
sgn(f) = (y)

and for every relatively compact open K € Q\ f~1(0),
H™ (K Nsgn(f) ' (y)) <oo, for H'-ae. y €S- (3.9)

Proof. Tt is clear that (3.3]) implies (3.8). Let K € Q\ f~1(0) be open and rela-
tively compact. By the coarea formula, where h is the map defined in the proof of

Theorem [3.3]
/ Hm—f(Kmh—l(y))dyz/ | Joh(z)| da (3.10)
R¢ K

which is finite, since |f| > 6 > 0 on K. So there is a subset A = Ay ;¢ C R’ with
IR\ A| = 0 such that H™*(K Nh~'(y)) < oo for all y € A. This entails (3.9). O

3.4. Level sets of the norm. The result of this section will not be needed in this
paper but we think it is interesting in its own right.

Theorem 3.5. Let k € Ny, a € (0,1], and set s = k + . Let & C R™ be a
bounded Lipschitz domain and f € C**(Q,R*1), f £ 0. Then there is a constant
C=C(m,lk,a,Q) such that for all 0 < € < 1 and all small § > 0 we have

[{y € (0,6):y /"W (17 W) 2 € CUFlI gy | < €6

Proof. For § > 0 consider

5
15(8) = / gV 1L (17 () dy.

(Note that |f| is Lipschitz and has a Lipschitz extension to R™, and thus y —
Yy H™ (| f|~(y)) is £L'-measurable.) Then

)
If(6>:// 1Yo drm dy
0 JIfI=1(y)

:// 1M 111 0,8y AH™ ™ dy
R J|f|=1(y)

/ 1F@)[Y4 |V ()| da,
[£171((0,8))

where the last identity holds by the coarea formula (Corollary .
On the set {x : f(x) # 0},

/]

or111] = |52 | < o
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Hence,
P VIA] < Vi mase (£ [0, < v max |72
- 1<i<m ’ = 1<i<m | f|11/s
(381
<vm(l+1)|f] max RE
1<j<e+1
sVmle+ D] max (0:(1517)]
1< <o+t
By Theorem (applied to an extension of f as in Section ,
s 1/s
L 10:05179) do < om0 @)A1
Consequently, we have
I5(8) < Cfll g gy -0 (3.11)

for a constant C = C(m, ¢, k, a, Q).
Set. A = {y € (0.8) : "W (W) = CONFIYL, o) For smal
§ > 0, we have the lower bound

_ 1/s
I5(8) 2 € O NI o | Acsl

which implies the assertion in view of (3.11]). O

Corollary 3.6. In the setting of Theorem [3.5 let A C [0,00) be such that |A N
[0,€)| = € for some € > 0. Then there is a sequence A 3 y; — 0 with

sup (1 P (117 0)) < COm b D11

4. BACKGROUND ON FUNCTIONS OF BOUNDED VARIATION

In this section we recall some facts on functions of bounded variation and fix
notation. We follow the presentation in [3]. In Sections and we prove some
simple statements we shall need later on. They are probably well-known, but we
include proofs, since we could not find them in the literature.

4.1. Functions of bounded variation. Let Q C R™ be open. A real-valued
function f € L'(Q) is a function of bounded variation in € if the distributional
derivative of f is representable by a finite Radon measure in €2, i.e.,

/f(‘?igodac:—/cpdDiﬁ forall p € C°(Q), i=1,...,m,
Q Q

for some R™-valued measure Df = (D1 f,..., Dy, f) in Q. The functions of bounded
variation in € form a vector space denoted by BV (). The Sobolev space W11(£2)
is strictly contained in BV (Q2); for f € WhY(Q), Df =V fL™.

A real-valued function f € Ll _(Q) belongs to BVie.() if f € BV () for every
relatively compact ' € 2. We define BV (2, R?) := BV (Q,R)¢ and BV (Q,C) :=
BV (Q,R?).
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An element f = (f1,..., f¢) € L}(Q,R) belongs to BV (Q,R?) if and only if the

variation
4
Var(f, ) = sup{Z/ij divep;da : o € CX(QR™), [|gllos < 1}
j=1

is finite. Then Var(f,2) coincides with the total variation measure |Df](Q). It is

lower semicontinuous in the Li (Q,R¥) topology, i.e.,

Var(f,Q) < likm inf Var(fx,Q), for fr — fin LfOC(Q,Ré).
—00

The space BV (Q,R*) endowed with the norm ||f||gy := ||f|lz: + |Df|(Q) is a
Banach space.

4.2. Approximate continuity and differentiability of functions of bounded
variation. We say that f € LfOC(Q,]Re) has an approzimate limit at x € ) if there
is z € R? such that

lim |f(y) — 2| dy = 0.

™0 J B, (z)
The approzimate discontinuity set Sy is the set of € {2, where this property does
not hold. For z € 2\ Sy the uniquely determined approximate limit z is denoted
by f(a:) The function f is said to be approzimately continuous at x if v ¢ Sy and
flz) = f(m) (i.e., x is a Lebesgue point of f). The set Sy is an L™-negligible Borel
set and f:Q\ Sy — R’ is a Borel function which coincides £™-a.e. in Q\ Sy with

I
We say that = € Q is an approzimate jump point of f if there exist a* € R and
v € S™1 such that a™ # a~ and

: +

lim o) |f(y) —a™[dy =0,
where B (z,v) := {y € B.(z) : £{y —x,v) > 0}. The triplet (a™,a~,v) is denoted
by (f*(z), f~(z),vs(z)). The set of approximate jump points, denoted by Jy, is
a Borel subset of S¢, the functions f*: Jr — R¢ and vy Jp = S™1 are Borel
functions.

Let z € Q\ Sy. Then f is approzimately differentiable at x if there exists an

£ x m matrix T such that

lim 1f(y) = f(a) = T(y — )|

rl0 B, (z) r

dy = 0.

The matrix 7' is uniquely determined. It is called the approximate differential of
f at x and denoted by Vf(z). The set of approximate differentiability points is
denoted by Dy. It is a Borel set and Vf : Dy — R‘™ is a Borel function.

By the Federer—Vol'pert theorem (cf. [3, Theorem 3.78]), for every f € BV (€, RY)
the set Sy is countably H™ !-rectifiable, H™!(Sy \ J;) = 0, and

Dfodr=((fT—f)evy)H™ L Js.

By the Calderén-Zygmund theorem (cf. [3, Theorem 3.83]), each f € BV (Q,R?) is
approximately differentiable at £™-a.e. point of €2, and the approximate differential
V f is the density of the absolutely continuous part of D f with respect to £™.
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4.3. Decomposition of Df. Let f € BV(Q,R?). The Lebesgue decomposition
provides a decomposition
Df =Df+D*f,
where D f is the absolutely continuous and D?f is the singular part of D f with
respect to L. By defining
Dif:=DfJs, D°f:=D°C(Q\Sy)
we obtain the decomposition
Df =D"f+D’f+ D°f,

noting that D f vanishes on the ™ !-negligible set S¢ \ J; (cf. [3| Lemma 3.76]).
Then D’ f and D¢f are called the jump and the Cantor part of Df, respectively.
We have

Def=VfLm,

Djf = ((f+ — fi) X I/f) ’Hm71 \_Jf.
The Cantor part vanishes on sets which are o-finite with respect to H™~! and on
sets of the form f~!(E), where E C R with H'(E) = 0 (cf. [3, Proposition 3.92]).

(4.1)

4.4. Special functions of bounded variation. A function f € BV (Q,R’) is
said to be a special function of bounded variation if D°f = 0; in this case we write
f € SBV(Q,R). Then SBV(Q,R’) forms a closed subspace of BV (Q,Rf). We
have strict inclusions W1 (€, R?) C SBV(Q,R*) € BV (Q,R?), in fact:

Proposition 4.1 ([3, Proposition 4.4]). Let Q C R™ be open and bounded, and
let K C R™ be closed with H™ (K N Q) < co. Then any function f : & — R
which belongs to L= (Q\ K) N WHL(Q\ K) belongs also to SBV(Q) and satisfies
H™1(SF\K) = 0.

It is not hard to conclude from this proposition that the solutions of Z™ = x
z € C, admit representations in SBV,.; but see Example

)

4.5. The chain rule. Let 2 C R™ be a bounded open set. It is not hard to see
that the composite h = f o g of a function g € BV (Q, R?) and a Lipschitz function
f : R — RF belongs to BV (€2, R¥) and that |Dh| < Lip(f)|Dg|. We shall need a
more precise chain rule. For our purpose it is enough to assume that f is C'; for
the general case see [3, Theorem 3.101].

It is convenient to distinguish between the diffuse part ﬁg = D% + D and
the jump part D7g of Dg, since they behave differently.

Theorem 4.2 ([3, Theorem 3.96]). Let g € BV (Q,RY) and let f € C1(R’,R¥) be
a Lipschitz function satisfying f(0) = 0 if |Q] = co. Then h = f o g belongs to
BV (Q,R*) and

Dh =V {(g9)VgL™ +Vf(3) D°g = V§(3) Dy,
Dih=(f(g") = flg7)) @vgH"™ " L J,
The following product rule is an immediate consequence. For g1, g € BV (),
g=1(91,92), and f(y1,y2) = y1y2, the product g1 g2 belongs to BV (Q2) and
D(g192) = §1Dgs + 2Dy,
DY (g1g2) = (f(g7) = (g7 )y H™ H L .

(4.2)

(4.3)
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If g €¢ WHP(Q,RY), f : R® — R* is Lipschitz, and f o g € LP(Q,R), then
foge WhP(Q,R?) and the chain rule reduces to

V(fog)(x)=Vf(g(x)) Vg(z) fora.e ze€l (4.4)
e.g. [62] Theorem 2.1.11].

4.6. Extension to zero sets. The pointwise variation of a function f : I — R’
on an open interval I = (a,b), for a < b € Ry is defined by

n—1
pVar(f,I):= sup{z [fiv) = fE)] n>2,a<t; < - <ty < b}.
i=1

For open 2 C R one sets

pVar(f,Q) := " pVar(f, 1),
I

where I runs through all connected components of 2. The essential variation
eVar(f,Q) :=inf { pVar(g, Q) : g = f L'-ae. in Q}
coincides with the variation Var(f,Q) if f is in L{ _(Q); see [3, Theorem 3.27].

loc

Lemma 4.3. Let Qg C 2 C R be bounded open subsets. Let f : Q — C be a function
in Li .(Q) such that flo, has bounded (resp. pointwise) variation and f vanishes
and is continuous at all points of Q\ Qo. Then f has bounded (resp. pointwise)

variation on Q and Var(f,Qp) = Var(f,Q) (resp. pVar(f, Qo) = pVar(f,Q)).

Proof. We prove first the statement about the pointwise variation. Let I = (a,b)
be a connected component of Q and let {J;}, be the collection of all components
of €y contained in I. Suppose a < t; < -+ < t, < b and let ¢ > 0. We have
a subdivision into a finite number m of maximal chains ¢; < ;41 < -+ < 45
contained in some Ji and the remaining ¢, € Q\ Qo. If ¢; < t;41 <--- < t;yjis a
chain contained in Ji = (ag, bx), there exist ¢, and t;-:_j such that ap <t; <t; <
e <ty < t;:_j < by and |f(t; )] < €/(2m) and |f(tj'+])| < ¢/(2m). Thus,

n—1
D I (tin) = f(t)] <Y pVar(f, Jy) + e
=1 k

and consequently pVar(f,I) < >, pVar(f,Ji). This implies pVar(f,Qo) =
pVar(f, Q).
Suppose that Var(f, Qg) < co. Then

Var(f, Qo) = inf{pVar(g, Q) : g = f L -a.e. in Qp}

and there exists g coinciding £'-a.e. with f in Qg such that pVar(g,Qp) < oco.
If we extend such g by 0 on Q \ Qq, then pVar(g,Qy) = pVar(g,Q) by the first
part. (For the proof of the first part it is enough that, if tg € Q \ Qq, then for
all € > 0 there is 6 > 0 such that |f(t)| < € for Ll-a.e. t with |t — to| < §.) This
implies Var(f,€Qo) > Var(f,Q). The opposite inequality is trivial. The proof is
complete. O

The lemma implies a similar result for functions in several variables. If 2 C R™
is an open set and v € S~ !, we denote by ), the orthogonal projection of Q onto
the hyperplane orthogonal to v. For each y € ), we have the section Qy := {t €
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R:y+tve Q). If fis a function defined on Q, then f := f(y + tv) is a function
defined on €.

Proposition 4.4. Let Qg C Q C R™ be bounded open subsets. Let f :Q — C be a
function such that flq, has bounded variation and f vanishes and is continuous at
all points of Q\Qo. Then f has bounded variation on Q and Var(f,Qy) = Var(f,).

Proof. Since flq, € BV (), [3, Remark 3.104] implies that there exist m linearly
independent vectors v; such that fi € BV(QSy) for L™ 1a.e. y € Qo and

/ DfY
Qo, v

»Vq

(Qp,)dy < oo, fori=1,...,m.

By Lemma each such f;* extends by 0 to a function f;* € BV(Q,?) with
IDfy () = [Dfy (7). Since f* =0 for all y € Q, \ Qo,,, we have

/ |Df;’1|(95’)dy:/ IDf, (') dy < oo, fori=1,...,m.

v 0,v;

Thus f € BV(Q), again by [3, Remark 3.104]. The identity Var(f, Qo) = Var(f, )
follows from [3, Theorem 3.103]. O

4.7. A sufficient condition for bounded variation. Let us recall a version of
the Gauss—Green theorem which is a special case of the result given in [I8], p. 314].

Theorem 4.5 (Gauss—Green theorem). Let Q C R™ be a bounded open set with
H™L(O) < co. Assume that there is a closed set E C R™ such that 9Q\ E is a
Cl-hypersurface and H™~*(E) = 0. Then for each f € C1(Q,R™),

/Qdivfdx - —/89<f, va) dH™ L,

where vq is the inner unit normal to ).
The following consequence will be used several times.

Proposition 4.6. Let Qg C R™ be an open set and let E be a closed C'-
hypersurface in Qq. Let f = (f1,..., fo) € L'(Qo,R?) be such that f € WL (Qo\E),
fis Ct on Qo \ E and extends together with its partial derivatives continuously to
FE from both sides, and

/ |f|dH™ ! < 0.
E

Then f € BV (9, RY) and

Var(f, o) < C(m,0) (/

Qo\E

|Vf|da:+2/E \f|d%m*1).

Proof. Let ¢ € C°(Q9,R™)* with [|¢|lc < 1. There exists a open relatively
compact subset {1, € €y which contains supp ¢ and has smooth boundary such
that H™~1(9Q, N E) = 0. Let C be the set of connected components of the open
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set Q, \ E. Then, by the Gauss-Green theorem [4.5] for each j =1,...,¢,

> / £ divp; da
C

fj div (pj dr = /Q fj div (pj dr =

Qo cec
=S (- [nde- [ ptemann)
Cee c ac

— [ haie- 3 [ gtemann
Qe cec”9C

— [ nede - [ ptemannt,
Qo Cec’oCNE

where v is the inner unit normal to C. The statement follows. O

5. PROOF OF THEOREM [L4]
Let > 0 and m € N>9. Let k € N and «a € (0, 1] be such that
k+ a > max{r,m}.

Let © C R™ be a bounded Lipschitz domain and let f € C*%(Q). By Section
we may assume that f has compact support contained in 2. Let

r=0+0
be the unique representation of r, where £ € N and 8 € (0, 1]. Consider the equation
Z" = f. (5.1)

In order to single out some trivial cases we make the following distinction.

Case 1: £/ =0, 1/6 € N. In this case fY/8 is a solution of in the same
differentiability class as f.

Case 2: / =0,1/8 ¢N. Then 1/8 > 1 and fl1/8). X is a solution of ,
provided that A solves for r = 1/{1/B}. The factor fLl'/#] is in the
differentiability class of f. Since {1/5} € (0, 1), the existence and regularity
of X\ is covered by the next case.

Case 3: r > 1 or equivalently £ € N, 8 € (0,1].

Henceforth we restrict to the Case 3.

Let Qo := Q\ f71(0), and consider the sign map sgn(f) defined in (2.2). By
Proposition for each regular value y € S! of sgn(f) the set E := sgn(f)~!(y) is
a closed C*-hypersurface of Qy (possibly empty) and there is a continuous function
A:Q\ E — C such that \" = f; note that ) is of class C* on Qg \ E. If we write

f =u+iv, then, as in (3.4),

< (9 )+ 19 (o))

By Theorem we may conclude that VA € LP (Qp \ E,C™) with

w

VAl =

IV L 00\m) < Clmak, 0, Q) 11 g (5.2)

where p = r/(r — 1). Here we use the fact that C*(Q) is continuously embedded
in C%%(Q), as Q is quasiconvex; cf. [I5, Proposition 3.7].
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There exists y € S! which is a regular value of sgn(f) and such that E =
sgn(f)~1(y) satisfies

1/r m—1 1/r
11 an =t < Ol 0, ) L (53)
H™ YK NE)<oo, forevery relatively compact K € €. (5.4)

Here we apply Theorem [3.3] and Corollary using s := k + « > r and the
continuous inclusion of C**(Q) in C*#(Q).
Then Proposition implies that A € BV () and

Var(A, Q) < C(m) (/

IVA| da + 2/ T d%m—l)
Qo\E E

1/r

< C(m k0, Q) |1

by and . By Proposition we may conclude that A € BV(Q2) and we
obtain the uniform bound (L.4), since || A1 (o) < 9 ||f||1L/;(Q)

By construction, Sy = Jy, = E. To see that the Cantor part DA vanishes
consider the disjoint union Q = (Q \ E) U E U f~1(0). Now A is of class W11
in Qo \ B, E is o-finite with respect to H™~!, and \ is continuous on the set
£71(0) = A71(0). Thus D€\ is zero on each of these sets, by [3, Proposition 3.92].
The proof of Theorem is complete. [l

6. FORMULAS FOR THE ROOTS

6.1. Idea of the proof of Theorem The main idea of the proof of Theo-
rem [T.1] lies in the reduction to the radical case using the formulas for the roots of
the universal polynomial P,, a € C", given in [32] Theorem 1.6]. These formulas
express the roots of P, as finite sums of functions analytic in the radicals of local
coordinates on a resolution space (i.e. a blowing-up of C™), see [32] and Theorem
below. Thus using the radical case we may choose a parameterization of every such
locally defined summand, by choosing a parameterization of the radicals, but then
a new difficulty arises. It comes from the fact that these summands can be defined
only locally on the resolution space. Therefore we have to cut and paste them, in-
troducing new discontinuities and taking care of the integrability of the new jumps.
This step will be done in Section [7.4]

Remark 6.1. This local decomposition of the roots into finitely many summands
is obtained in [32] by a repeated “splitting” of P,, a procedure that reflects how
the roots are regrouped in clusters. The summands of Equation represent the
arithmetic means of such clusters.

6.2. Tower of smooth principalizations and formulas for the roots. Let

n
Pu(Z)=2"+) a; 2", (6.1)
j=1
where a; € C. We defined in [32] the generalized discriminant ideals Z, C Cla] =
Clay,...,an], £ = 2,...,n, that, in particular, satisfy the following properties. For
each £ the zero set V() of 9y is exactly the set of those a for which P, has at most
¢ — 1 distinct roots and therefore V(Z,—1) C V(Z). The top ideal 2, is principal
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and generated by a power of the discriminant of P,. The other discriminant ideals
are not principal.

For the ideals 2y, £ = 2,...,n, we constructed in [32] a tower of smooth princi-
palizations
My =C" &% My &2 My &2 780 M, (6.2)

where each 04— is the composition of blowing-ups with smooth centers and for
every og = 091 00320 --- 00y y_1 the ideal o (%) is principal. We write 0, ¢ =
O¢4+1,60 00y n—1. Such a tower of smooth principalizations exists by the classical
results of resolution of singularities.

By construction each p € M, comes with a privileged system of local analytic
coordinates on M, at p. It is obtained as follows (see Definition . The map
oy is itself a blowing-up of an ideal % C Cla] such that V(%) = V(Z2,). We fix
such an ideal J#; as well as a system of its generators J# = (hy,...,h), where
h; € Cla]. The pull-back o} (%) is principal, so it is generated in a neighborhood
of p by one of the h; o oy. We denote this h; simply by h. Also, in order to simplify
the notation, we use the same symbol for a polynomial on C™ and its pull-back to
M, (in particular, we will write h instead of h; o o¢) if no confusion is possible.

Similarly, o (Z) is principal and we fix a polynomial f € C[a] that generates
0;(Z) at p. Let E = V(0;(Z)). There is a neighborhood U of p in M,, and
a coordinate system yi,...,y, on U, such that y; = P;/h®, P, € Cla], s € N,
ENnU ={y1--yr, =0} and such that on U

T T
f = unit - H Y, h=unit- Hylm, (6.3)
i=1 i=1

with n; > 0 and m; > 0. Here by a unit we mean an analytic function defined and
nowhere vanishing on U.

Remark 6.2. The choice of h, f, and P; is not unique, but f and h are well defined
at p up to a local analytic unit. Similarly, y;, for ¢ < r, are defined by their zero
sets up to a unit. These zero sets, that is the components of the exceptional divisor
of oy, are well-defined.

Definition 6.3. By a chain C = (pq, fo, he, P, S¢,7¢) for p, € M, we mean the
points pg := oy 0(pr), £ =1,...,n, and the local data (fe, he, Pei, Se,7¢) for p;. We
complete this data for £ =1 by putting fi =h;1 =1, P1; =a;, and sy =r; =0.

We pull back the polynomial P, onto M, via oy,
Por()(2)=Z"+ (aioar)Z"".

i=1

The roots of Py (4) are the pull-backs of the roots of P,.

Theorem 6.4 ([32, Theorem 1.6]). We may associate with every chain C =
(e, fo, hey Pu, Se,7¢) convergent power series g, integers qo > 1, and positive
exponents oy € iN>o, such that the following holds. The roots of Pyx(q) in a
neighborhood of p, are given by

Z Ay ppoony, (6.4)
=
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where Ay € Q and

1 1
PYe = f;lqﬁf (y[/lqlv cee 7yg7/7‘ieay€,7“z+17 cee 7y€,n)- (65)
The meaning of the radicals in (6.5) is explained in [32], Remark 1.7]. There are
neighborhoods U of p,, satisfying oy ¢—1(Ue) C Up—1, and their branched covers
T : Uy — Uy, given by the formulas

t ifi <y,
A =T 6.6
v, {ti if i >+ 1, (6:6)

such that ¢, can be interpreted as an analytic function on ng. Since
024_11,@(][[1(0)) C f[Jrll(O)7 the composite y;; © 0¢41,¢, for ¢ < 7y, is a normal cross-
ingsin yer1,1,-+,Yer1,ry, and therefore, we may suppose that o¢41 ¢ 0741 factors
through 74, changing qg41 if necessary. Thus we obtain a sequence of branched
covers 7; making the following diagram commutative.

~ J1,2 ~ 53,2 ~ 54,3 E?‘Lfl,nfz ~ ETL,TLfl ~

ul u2 Z/[S e Z/{nfl un
01,2 03,2 04,3 On—1,n—2 On,n—1

U Uo Us e Un_1 Uy

Then Theorem says that the roots of P (,), where 6, = 0, 0 T;,, are combina-

tions of analytic functions on U,, that are pull-backs of such ;.

Definition 6.5. By an extended chain E = (pe, fo, he, P iy Se,7e,Ue) for p, € My,
we mean a chain C = (py, f¢, he, Poi, Se,7¢) and a system of neighborhoods U, of
pe¢ as above. The y,; = Pp;/h)’, i = 1,...,n, are called a privileged system of
coordinates on Uy.

By (6.3), we may express ¢, of (6.5) as follows
&7 (2 1/d 1/4
Y = hz“/)é (yz,/1q£7 o ayz,ézzv Yorp+1y-- -, y@,n)7 (67)

where &y, € q%N>0 and ¢y is a positive integer possibly much bigger than g.

7. PROOF OoF THEOREM [L.1]

We assume that the coefficients a;, 7 = 1,...,n, have compact support in R™
and that the image of a is contained in the closed unit ball B C C". The general
case will be reduced to this case in Section We assume also that the a; are of
class C*~1! with k = k(n,m) defined in Section

In the following we shall be dealing with multi-valued functions arising from
complex radicals, their composition with single-valued functions, and their addition
and multiplication.

7.1. In one blow-up chart. We will use the notation of Section [6} Let (U, y) be
a chart on My with a privileged system of coordinates y; = P;/h®. We may assume
that y(U) coincides with the open unit ball B in C™.

Let a : R™ — C™ be sufficiently differentiable with compact support. We dis-
tinguish between the chart map y and the composite map y = (y R ,gn) given
by

P;

h:=hoa, P,:=Poa, Y, ::yioa:?.
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The map y is defined and continuous on the set {x € R™ : h(x) # 0}. Consider the
open subset

Qo =y '(B)={z e R™: |y(z)| <1, h(z) # 0} = a " (Vp), (7.1)
where Vy = {a € C" : |y(a)| < 1, h(a) # 0}. The image of the multi-valued map
1/‘5 = ( 1/‘7,...,y1/q,yr+1,...,y ) 1 Qp ~ C™,

where ¢ € N, is contained in B. Since h = unit - ]_[Z Ly for my > 0 on U
(see (6.3)), we have |h| < |y;| for all 1 < < r. Let Y € C'(B) and consider the
multi-valued function (cf. (6.7))

additionally we define ¢(z) := 0 if h(z) = 0.

(Cn:Ml )V() Z/{C MZ
T REN
@ @ Yi=7% y
R™ > O, IR cr

Remark 7.1. The functions h and P, are defined on R™ and have compact support,
but their supports need not be contained in .

Proposition 7.2. Let k € Ny be a multiple of § satisfying k > max{%s,m} for
the numbers q,s,& associated with the chart U and ¢ (see ) Suppose that
a € C=LYR™ B). There exists a finite collection of C*~'-hypersurfaces E; C R™
and a parameterization ¢ of p on Qg such that ¢ € SBV (Qy), ¢ is continuous on

QO \ Uz Ei, and
k k
I6lmvian < C (19l +1) (IRIZE, +Z 1P ), (7.2)

with C > 0 depending only on m, k, &, q, s, ||hllze, |[{]lct, and |2,z for
1<j<r.

Proof. This follows from Proposition which will be proved in the next section.
O

Convention 7.3. We will consistently write ¢ for a parameterization of the multi-
valued function ¢. Then ¢ is an ordered tuple of single-valued complex functions.

Proposition Proposition and Formula (6.4) give a parameterization of
the roots by functions of bounded variation on the set corresponding to one chart.

Our next step is to cut and paste such local roots. For this we use the following
lemma.

Lemma 7.4. Let u € CY(B) have values in the interval [b,c]. Suppose that a €
Ck=LYR™ B), where k > max{ ~,m} Consider the function uoy : Qo — R.
There is a constant C > 0 which depends only on n, m, k, ||h||Le, and |Vul| L
such that for all small € > 0 we have

& m— - 1/k = 1/k
{remd: /( L 1 (RN o+ D IR ) | < e
woy)~+(r j=1
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Proof. We have, on g,

|B[* [V (uoy)|
. VP, ; |Vh|
< 1-1/k|y|G—s/k | J a—1/k =
< [Va(y)| max ly, /4| B ol )
By Theorem [2.7]
/ IBJd |Vuoy|d;z:<0(|h||gkk11+ZH 150 (7.3)
Qo

for a constant C' as specified in the assertion. By the coarea formula (Corollary [3.2)),

[ oweveeplao= [ [t anen -t
Qo - b J(uoy)~1(r)

and the assertion follows as at the end of the proof of Theorem O

7.2. Choice of neighborhoods. In what follows we fix a finite family of extended
chains

CV = {E;} = {(pje, [i0s Pjos Py 8j.0,m5.0,Uj.0) } (7.4)

such that o, }(B) C U Ui n. Such a family exists by compactness of o;,(B).
Since oy -1 (Uj ) C Z/Ij’g 1 for all ¢, we have

CLB) < e (7.5)

for all levels £. We will denote by C(CV, m) any constant which depends only on
the family CV and m.

7.3. Definition of k(n,m). Let E = (py, fe, he, Py, Se,70,Ue) be an extended chain
and let ¢, and &, be as specified in (6.7). Let kg € Ny be the smallest common
multiple of the integers ¢y which satisfies

2
kg > max ﬂ.
4 Qyp
Let CV = {E;} = {(®j.e; fi.e, hje, Pjei, Sje,7j0,Uje)} be the finite family of ex-
tended chains fixed in Section [7.2] Then we set

k = k(n,m) := max {kg,,m}.
j

7.4. Cutting and pasting. Let ¢ be fixed. For each j = 1,..., N (here N is
the number of extended chains in the family CV) we have a chart (U} ¢,y;,¢) with a
privileged system of coordinates, as in Section[7.1] and we consider the multi-valued
functions

) aje 1/q5.e 1/dj.e ) . 0.
e =hyg wﬂf(aei""’ygeizQgerg+1""’yﬂva”>'QM’OMC’

where ;00 C R™ is the open set defined in (7.1)). Then

Qo :=R™\a? UQMO (7.6)
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By Proposition[7.2} there is a parameterization ¢; ¢ of ¢; ¢ in SBV (Q;,,0) such that

1/k 1/k
”d’j,l”BV(Qj,z,o) < C(Cvam) (”ﬁj,éHC/k—l,l + Z ”Bj,é,i”C/kfl,l)'
1=1

(By (7.2)), the constant actually also depends on the Lebesgue measure of the sup-
port of a. This dependence only comes from the L!'-part in the BV-norm (cf.
Proposition [8.3]) and we will not write it.)

For each nonempty subset J C {1,..., N} set Q0 := ﬂjeJ Q0.

Lemma 7.5. We may shrink the sets Q;00, 7 = 1,...,N, in such a way that
(7.6) still holds and ¢;¢1q,,, € SBV(Q4,0) whenever j € J and J C {1,...,N}.
Moreover,

1/k 1/k
H¢j,€ 1QJ,£,O||BV(Q£,0) <C(V,m) 1maX (”h’] e”c/k—l,l + Z HBj,e,i”c/fc—l,l)-
i=1

Proof. We will use Lemma in each Q0 for the functions u = |- | and u =
lyieo y;el\ whenever U; ¢ NU; ¢ # 0.

RN

Vigo ————Uy Ujo<——Vji0
92,5,0\ Ui e NU; ¢ /Qy,z,()
l'| |'l
[0,1) [0,1)

So we apply Lemma [7.4] a finite number of times and hence obtain a real number
r < 1 close to 1 such that

s m— 1/k 1/k
o et <oev.m) (||@j,@||c/k,u+2|| Py,
uoy r

for all j and all u as specified above. By Sard’s theorem (Theorem , we may
also assume that for all j and all u as considered in the proof the sets (uogj Z)_l(r)

are C*~Lhypersurfaces. Replacing the ;0 by the open subsets
{r eR™: |gj’é(x)| <, hj,(z) #0}
the assertion of the lemma follows (cf. [3] Theorem 3.77]). O

The map

N 1)k+1
= Z Z Z b0 la,,, (7.7)
k=1

|J|=kjeJ
is a parameterization of the multi-valued function

N k+1

o= TS S0,

k=1 |J|=k jE€J
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which belongs to SBV () and verifies

k - k
el 5vi@n0) < CEVm) max (I el s+ D IPplln). (78)
=1

ma.
<JSN

In the definition of ¢y all ;,, j € J, are equal as multi-valued functions on 240
and hence their arithmetic mean should be interpreted as the same multi-valued
function.

Let us extend ¢, by 0 to the set a=1(V(Z,)) = R™\ Q0. Then ¢, is continuous at
all points of R™\ € o; furthermore, ¢y has compact support. By PropositionM we
may conclude that ¢, has bounded variation on R™ and ||¢¢|| v (rm) = [|9¢| BV (24.0)
is bounded by (7.8). We have S;, = Jy, and the Cantor part of D¢, vanishes in
Q0. The Cantor part of D¢y also vanishes in R™ \ €0, by [3l Proposition 3.92],
since ¢, vanishes and is continuous on this set. Thus ¢, € SBV(R™).

Now we can use Theorem that gives a parameterization A : R — C" of the
roots of P,, where a € C*¥~L1(R™ B), as a finite sum of the above constructed ¢
and therefore it belongs to SBV (R™) and satisfies

n
IMBvn < CEV,m) max max (1l + D IR calldln ). (7.9)
i=1

1<<n 1<5<N

Remark 7.6. Actually, to get an everywhere defined parameterization A of the
roots of P, a modification of the parameterizations ¢, defined in is necessary
on their discontinuity sets which are £™-negligible.

Their values on these sets can be chosen arbitrarily, with the only condition that
they should satisty P,(Z) = H;-lzl(Z— A;), since the membership in SBV (R™) and
the bound for [|¢¢|| gy (rm) are not affected by this modification.

7.5. Gelleral Case. Let 2 € R™ be a bounded Lipschitz domain and let a €
Ck=11(Q,C"). By Whitney’s extension theorem, a admits a C*~11-extension a to
R™ with compact support in the open 1-neighborhood €27 of € such that

lall g1,y < Clm, k, Q) llallgr-ra @y (7.10)

see Section for more details. Let us first prove Theorem for a.

We may suppose that the discriminant of Py, is not identically equal to zero.

In general, the image a(R™) is not necessarily contained in the closed unit ball
B C C". To reduce to this case we use an R, action on the coefficient vector
@€ C" Forn>0andacC" wedefine nxa € C" by (n*a); =n'a;. Then X is a
root of P, if and only if 7\ is a root of Py.a.

Fix p > max{1, ||a||z~}. Then ||p~!*a|r~ < 1. By applied to P,-1,; the
roots of P; admit a parameterization A : R”™ — C" in SBV (R™) such that

n
1/k 1/k
Ck—1,1 + § ||~P’7€,i Ck—l,l))
i=1

Nl n < pCln.m) max max. ([l

where for a polynomial g € C[a] we set g(z) := g(p~"' * a(x)). (The dependence of
the constant on the cover CV is subsumed under its dependence on n.)
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By Section [7.2|and by the regularity of the composition of C*~!!-maps (cf. [I5]
Theorem 4.3]), we conclude that

/K - /K
H>‘||BV(R’") S C(nvm) féléagxn 1%52(]\] (Hh],f”ckal(@) + ; ||P]1£a1||ck—1,1(ﬁ)>
X max{l, ||&||Loo}(1 + ||El||ck71,1)

= C(n,m) max{1, [|al|pe} (1 + || cr-1.1)

for a different constant C(n,m).

The proof of Theorem for coefficients a € C*~11(Q, C™) defined on an arbi-
trary bounded Lipschitz domain now follows in view of : we obtain that the
roots of P, admit a parameterization A : Q@ — C™ in SBV(Q2) such that

M Bv@) < C(n,m, Q) max{1, |lal|z=@)} (1 + lallcr-11(q))-

The statement about the discontinuity set of A follows from the construction. To
finish the proof of Theorem[I.1] we just need to complete the proof of Proposition[7.2]
which is done in the next section.

8. A LOCAL COMPUTATION

In this section we complete the proof of Proposition by showing a slightly
more general Proposition [8.3] First we fix the setup and the notation that we use
throughout this section.

Setup 8.1. Let m and n be integers > 2. Let ¢,5s € Ny and o € ¢"!N,. Let
2
k € N be a multiple of ¢ satisfying k£ > max {—S,m}. (8.1)
@

Then k/q € N; and ka € Ny. Let h,P; € C*LYR™), j = 1,...,n, and set
yj := Pj/h®. Put y := (y1,...,yn) and consider the bounded open subset of R™,

Qo :={z e R™ : |y(z)| < 1, h(z) # 0}.
We assume that, on g,
|h| Sly;| forall j=1,...,7 (8.2)

This implies that no P;, j = 1,...,7, vanishes on Q. Let y'/4 denote the multi-
valued function

yl/q = (yi/q7 cey y}/q, Yr+1s--- 7yn) : QO ~ Cn; (83)

it takes values in the open unit ball B = {z € C" : |z| < 1} in C". Let ¢ € C*(B)
and consider the multi-valued function

o= h Py ) = R,y Yeas ) Qo ~ G (8.4)

additionally we define ¢(z) := 0 if h(z) = 0.
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8.1. Continuous parameterization of ¢. The multi-valued function ¢ in (8.4)
has a continuous parameterization in the complement of a finite union of C*~1-
hypersurfaces.

Lemma 8.2. For each 1 < j < r, there is a C*~-hypersurfaces E; C Qg such that
the multi-valued function yjl./ ? has a continuous parameterization on Qo \ E;. There
exists a C*~-hypersurface Ey C R™ such that h® has a continuous parameteriza-
tion on R™ \ Ey. There is a continuous parameterization of ¢ on Qg \ U;:o E;.
Every parameterization of ¢ extends continuously to the zero set of h. (Here
can be replaced by the weaker condition k > m.)

Proof. Each y; = P;j/h® is of class C*~ 1! on Q. By Proposition there exists
a C*~Lhypersurface E; C g such that the multi-valued function yjl-/ 1
1 < j <r, has a continuous parameterization on Qo \ E;. (If r < j < n then y; is
a single-valued continuous function on €y.) Likewise the multi-valued function h®
has a continuous parameterization on R™ \ E,, where Ey is a C*~!-hypersurface
in R™. Now any parameterization of ¢ extends continuously to h~1(0) because
¥(y'/9) is bounded. O

, where

8.2. Parameterization of ¢ with bounded variation. Now we are ready to
show that ¢ admits a parameterization of bounded variation.

Proposition 8.3. There exists a finite collection of C*~1-hypersurfaces E; CR™
and a parameterization ¢ of ¢ on Qo such that ¢ € SBV(Qg), ¢ is continuous on

QO \ U] E]7
n
k k
1D6](9) < € (I + D IRIEEL),
j=1

and

k - k
I6llmvian < € (12l +1) (IRIEE L + D IPIEE ), (8.5)
j=1

with C > 0 depending only on m, k, «, q, s, ||hllre, |¥|lc1, and ||Pj|lre for
1<j<r. Wehave Sy = Jy C Uj E; and the Cantor part D¢ vanishes in €.

Proof. First we choose a parameterization ¢ of ¢ and its discontinuity set: By
Theorem there is a closed C*~'-hypersurface Ey in R™ \ h=(0) and h'/*
admits a parameterization in SBV (R™) (recall that h has compact support), again
denoted by h'/*, which is continuous on R™ \ Ep and satisfies

Sy = Jym =Ey and  D¢(hF)=0
and

/ 1Y% dHm < Clm, k) B)YE (8.6)
Ey

Analogously, for each 1 < j < r, there is a closed C*~!-hypersurface E; in R™\
Pj_l(()) and le/ * admits a parameterization in SBV (R™), again denoted by le/ k,
which is continuous on R™ \ E; and satisfies

Sle/k = Jle/k =FE; and DC(P]-I/k) =0
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and

/ |Pj|ME dH™ = < C(m,k) || Pl (8.7)

J

Since ko € Ny (cf. (8.1))),
(h'/F)5 = exp (£ log h)™ = exp (L2 log h) = exp (alogh) = h*

is a parameterization of the multi-valued function A* in SBV(R™) which is con-
tinuous on R™ \ Ey and satisfies

Shrx = Jh«'x = Eo and Dc(h/a) =0.

Similarly, since k/q € Ny, h'/? = (h'/*)F/4 is a parameterization of the multi-
valued function 27 in SBV (R™) which is continuous on R™ \ Ey and satisfies

Shl/q = Jhl/q = EO and Dc(hl/q) =0.

By the same reason le/ 1 = (le/ k)k/ 9 for 1 < j < r, is a parameterization of

the multi-valued function le/ % in SBV(R™) which is continuous on R™ \ E; and
satisfies

e/ pl
SP;/‘? - JP],I/‘? =E; and D (Pj/q) =0.

For 1 < 5 < r, the identity yjl-/ 7 = le/ q/hs/ 9 yields a parameterization in

SBVioc(20) of the multi-valued function yjl-/ ? which is continuous on g \ (EoU E;)
and satisfies

S je=J1a CQN(EUE;) and D(y}/?) =0.
Y Y; J

Then, by Theorem and (4.3) (note that ) admits a Lipschitz C''-extension to
R?"), there is a parameterization ¢ of ¢ in SBViee(€20) which is continuous in 2\ E,
where = [J;_ Ej, and satisfies

S¢:J¢QQQQE and D% =0.

The rest of the proof is devoted to showing that ¢ has bounded variation on €
(not just locally); for this we use the chain rule (4.2) and the product rule (4.3).
Note that on h'/* coincides with its precise representative on R \ Ey; similarly for

le/k, etc. In the following computations we let ¢ = 1 if r +1 < j < n. First of all,

Do = h*D(w(y*/") +w(y"/ ) D(h*)
= h* V(') DY) + oy ) D).
Since ko € N, the map z +— 2zF® is C! and hence, by the chain rule ,
D(h®) = D((h**)%) = ka (h¥/*)ko=1 D(RY/*) = ka h*~Y/* D(R'/*).
Analogously, we find

k
q

hl/q—l/k ﬁ(hl/k) and E(le/Q) — Ep_l/Q71/k 5(le/k)

~ e
D(h/q)_ i
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Altogether,
Do = b V() (P "D/%) + i 1D(B") ) +wly') D)
ks
= h* Vo /gy ( _ 22
0( -~
+ ka1/)(yl/q)ha71/kD(hl/k)

k ~ k o1/q- ~
- V¢(y1/q)(_ ?Syjl_/qhoz—l/kD(hl/k) n ayj1_/q 1k pa—s/k D(le/k))

Vay—s/q—1/k 00 1/ky L Ko —s/qpl/a—1/k 7/ pl/k
By D) 4 D(P, ))j

J
+ kap(y/ )R D(RMF).

Since 1 € C*(B) and k satisfies (8.1]), we have on Qq,

Dol < € (ID(*)|+ > 1D(P; ")),
j=1
where C' is a constant only depending on k, «, ¢, s, ||h]|L=, and ||¢]|c1 (recall that

\yj| < 1).
On the other hand for the jump part, (4.2)) and (4.3)) imply

j m—1
D¢ =T1® Ve yrrm) H L e g/

((h)* () — (h*)~ (2) (M *(2)) i @ € Jue \ Ty,
M(x) = { h(x) ($(y"/9)* () — o (y"/ )~ () if & € Ty \ Jno
(h)+ (@) b1 (@) — (h)~ (@) M)~ (@) i 2 € Ty 1 yyur0)

[DIg| < C Y b H" L (Qo N E)

Jj=0

for some constant C' depending only on |[1)|| L. We may conclude that ¢ € BV ()
and

|D¢|(Q0) < [D|(Q) + | D7 3|(2)

<C(|D(h1/k) 1(Q0) +Z|D PR +Z/

QoﬂE

|h|°‘d7—lm‘1).

By Theorem (or Theorem [A.1) , and (8.7) (using |h|* = |h|'/k|h|o—t/k
and |h|* < |P; |a/(s+1) = |P; |1/k|P |a/ stD=1/k by (8:2), where the second factors
are bounded in both cases, by (8.1)), we obtain

k ! k
1D61(520) < C (IRIEE +STIR I,
j=1

for a constant C' > 0 which depends only on m, k, «, q, s, |hl|L<, |[¥]c:, and
|Pyllie for 1< j < r. Then (B3) follows, since [¢l|1+(any < [Qol [Ial3 0]l O
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APPENDIX A. SOBOLEV REGULARITY OF CONTINUOUS ROOTS

The next theorem is a refinement of [33] Theorem 2] in the case that € is a
Lipschitz domain.

Theorem A.1. Let Q C R™ be a bounded Liiyschitz domain. Let P, be a monic
polynomial ([L.1)) with coefficients a; € C"~11(Q), j=1,...,n. Let A\ € C°(V) be a
root of P, on an open subset V.C Q. Then X belongs to the Sobolev space WP(V)

for every 1 <p < 5. The distributional gradient VX satisfies

IVAllze vy < C(m,m,p, Q) max. sl (A1)

Ccn=11(Q)"
Proof. By [33 Theorem 1], A is absolutely continuous along affine lines parallel to
the coordinate axes (restricted to V). So A possesses the partial derivatives 9; A,
i=1,...,m, which are defined almost everywhere and are measurable.

Set x = (t,y), where t = x1, y = (z2,...,%m), and let V] be the orthogonal
projection of V' on the hyperplane {x; = 0}. For each y € Vi we denote by
VY :={teR: (t,y) € V} the corresponding section of V.

Let )\?, j=1,...,n, be a continuous system of the roots of P,(-,y) on V¥ such
that A(-,y) = A\Y; it exists since A(+,y) can be completed to a continuous system of
the roots of P,(,y) on each connected component of V¥ by [38, Lemma 6.17]. Our
goal is to bound

1OAC, Lo vny = 1) 2o vs)

uniformly with respect to y € V.

Let R=1; x -+ x I, CR™ be an open box containing Q and such that |I;| <
diam(Q) for all¢ = 1,...,m. By Whitney’s extension theorem (cf. Section, the
coefficients a; of P, admit a Cn~ b1 extension a; to R™ such that

(A.2)

max [l

(205 1851y < cna @y

< C(m,n,Q) max ||aj|
1<5<
Let CY denote the set of connected components J of the open subset V¥ C R. For
each J € CY we extend the system of roots A?L}, j=1,...,n, continuously to I,
i.e., we choose continuous functions )\é-”‘], j=1,...,n,on I such that )\é-”J|J =\ls
for all 7 and

Pi(t,y)(Z) = f[(z — (1), tel.

This is possible since )\;’| J has a continuous extension to the endpoints of the
(bounded) interval J, by [26l Lemma 4.3], and can then be extended on the left
and on the right of J by a continuous system of the roots of P;(-,y) after suitable
permutations.

By [33] Theorem 1], for each y € V3, J € CY, and j = 1,...,n, the function )\é-”‘]

is absolutely continuous on I; and ()\;4"])’ € LP(I1), for 1 <p < n/(n—1), with

IS o) < Cln,p, 1)) max. laill (A.3)

cn—1, I(R)
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Let J, Jo € CY be arbitrary. By [32, Lemma 3.6], (A})" as well as (/\é’"]‘))’ belong
LP(J) and we have

ST 20, —Zn ALY, —Zn ALY, .
j=1

Thus,
S IO iy = 3 S IO 2,0 = 32 ST IOZ VI,
Jj=1 Jecv j=1 Jecy j=1
- Z [T I, 4y < Z JOLPY 2
In particular, by ,

19 )y = IO ey < Clnpi 1) max laal L,

and so, by Fubini’s theorem,

/|81)\(:r)\pdx:// |O1A(t, y)|P dt dy
Vv Vi JVvy

P
< ( (n,p, |11]) rgax ||az||cn 11@)) /Vl dy.

Thus, thanks to |I;| < diam(Q),

In

||81)‘||L”(V) < C(nnp’ dlam(ﬂ)) lrgax ||a’l||cn 1 1(?)

view of (A.2]) this implies (A.1]), since the other partial derivatives 9;\, i > 2,

are treated analogously. (I

1
2

3
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6
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