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Abstract. The Borel map takes a smooth function to its infinite jet of deriva-

tives (at zero). We study the restriction of this map to ultradifferentiable

classes of Beurling type in a very general setting which encompasses the clas-
sical Denjoy–Carleman and Braun–Meise–Taylor classes. More precisely, we

characterize when the Borel image of one class covers the sequence space of

another class in terms of the two weights that define the classes. We present
two independent solutions to this problem, one by reduction to the Roumieu

case and the other by dualization of the involved Fréchet spaces, a Phragmén–

Lindelöf theorem, and Hörmander’s solution of the ∂-problem.

1. Introduction

The Borel map j∞0 : C∞(R) → CN at 0 is defined by j∞0 f := (f (n)(0))n∈N. We
will study the restriction of j∞0 to ultradifferentiable classes in a general setting
which allows us to treat the classical Denjoy–Carleman and Braun–Meise–Taylor
classes at the same time. Our classes are defined in terms of one-parameter families
M = (M (x))x>0, N = (N (x))x>0, etc., of weight sequences; we call them weight
matrices. In this article, we are mostly interested in classes of Beurling type

E(N)(R) :=
{
f ∈ C∞(R) : ∀j, k, l ∈ N≥1 : sup

x∈[−j,j]

sup
p∈N

|f (p)(x)|

( 1l )
pN

( 1
k )

p

< ∞
}
,

but we shall have to use also results on the Roumieu counterpart

E{N}(R) :=
{
f ∈ C∞(R) : ∀j ∈ N≥1 ∃k, l ∈ N≥1 : sup

x∈[−j,j]

sup
p∈N

|f (p)(x)|
lpN

(k)
p

< ∞
}
.

By definition, the image j∞0 E(N)(R) is contained in the sequence space

Λ(N) :=
{
a = (ap) ∈ CN : ∀k, l ∈ N≥1 : sup

p∈N

|ap|

( 1l )
pN

( 1
k )

p

< ∞
}
;

and likewise j∞0 E{N}(R) ⊆ Λ{N}, where Λ{N} is defined analogously. The goal of
this paper is to find necessary and sufficient conditions for

Λ(M) ⊆ j∞0 E(N)(R), (1.1)

in terms of M and N.
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The Roumieu case is well understood, see our recent article [24]: under some
mild assumptions on M and N, we have Λ{M} ⊆ j∞0 E{N}(R) if and only if

∀x > 0 ∃y > 0 : M (x) ≺SV N (y),

where M (x) ≺SV N (y) means

∃s ∈ N : sup
j≥1

sup
0≤i<j

( M
(x)
j

sjN
(y)
i

) 1
j−i 1

j

∞∑
k=j

N
(y)
k−1

N
(y)
k

< ∞,

a condition introduced by Schmets and Valdivia in [37].
The characterization of (1.1) is considerably more difficult (partly, because the

image of an intersection is, in general, smaller than the intersection of the images).
We solve this problem in two independent ways:

(1) The first method reduces the Beurling to the Roumieu problem, and uses
the solution of the latter. This is a well-known approach which has been
used, in various disguises, in several settings; see e.g. [9], [37], [17], and [26].
The additional parameter (i.e., x in the weight matrix) makes this delicate
reduction quite involved. As a result we prove in Theorem 3.1 that (again
under mild assumptions) (1.1) is equivalent to

∀y > 0 ∃x > 0 : M (x) ≺SV N (y).

(2) The second approach is based on dualization of (1.1) and identification
of the strong duals (Λ(M))′ and E(N)(R)′ with suitable spaces of entire
functions. This strategy has been implemented by [6] (for Braun–Meise–
Taylor classes, following [8] and [10]). In fact, our analysis is based on the
abstract functional-analytic result [6, Corollary 2.3] (which we restate in
Proposition 5.9). It translates the problem to a question about bounded
sets in the mentioned spaces of entire functions, where a Phragmén–Lindelöf
theorem and Hörmander’s solution of the ∂-problem can be brought to
bear. We find in Theorem 5.1 that (under other mild assumptions) (1.1) is
equivalent to

∀y > 0 ∃x > 0 : M (x) ≺L N (y).

The condition M (x) ≺L N (y) means

∃C > 0 ∀s ≥ 0 :
s

π

∫ ∞

−∞

ωN(y)(t)

t2 + s2
dt ≤ ωM(x)(Cs) + C,

where ωM (t) := supk∈N log( tk

Mk
) is the pre-weight function associated with a weight

sequence M . It appears as (2.14’) in Langenbruch’s paper [20] and it is closely
related to the condition appearing in [6], but with a little twist; see Remark 5.2
and Section 6.

Let us briefly describe the structure of the paper. In Section 2, we gather all
relevant notation and conditions concerning weight sequences, functions, and ma-
trices and we introduce the corresponding ultradifferentiable function and sequence
spaces. The solution by reduction (1) is obtained in Section 3. In Section 4, we
identify the duals (Λ(M))′ and E(N)(R)′ with certain weighted spaces of entire func-
tions. This allows us to carry out the solution by dualization (2) in Section 5.
In the final Section 6, we show that our theorems specialize to the known results
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for Denjoy–Carleman and Braun–Meise–Taylor classes; see Theorem 6.2, Supple-
ment 6.3, and Theorem 6.4. In the short appendix, we prove a technical statement
needed in Section 4, namely that the entire functions are dense in an auxiliary
function space. Since the inclusion of the entire functions is continuous, also the
polynomials are dense.

2. Ultradifferentiable classes and weights

Ultradifferentiable classes are weighted classes of smooth functions.

2.1. Weight sequences. We call a sequence of positive real numbers M = (Mk)
a weight sequence, if M0 = 1 and Mk = µ1 · · ·µk, k ≥ 1, for an increasing sequence
0 < µ1 ≤ µ2 ≤ · · · tending to ∞. We call a weight sequence normalized if µ1 ≥ 1
and put µ0 := 1. Let us also set mk := Mk

k! .
That µk is increasing means that Mk is log-convex. Here are some easy conse-

quences of the definition: MjMk ≤ Mj+k, (Mk)
1/k ≤ µk, and (Mk)

1/k → ∞ if and
only if µk → ∞ (cf. [27, Lemma 2.3]).

For a weight sequence M , we define the Denjoy–Carleman class of Beurling type

E(M)(R) :=
{
f ∈ C∞(R) : ∀K ⊂⊂ R ∀r > 0 : ∥f∥MK,r := sup

x∈K,k∈N

|f (k)(x)|
rkMk

< ∞
}
.

It is endowed with the natural projective topology and thus has the structure of a
Fréchet space. If the universal quantifier in front of r is replaced by an existential
quantifier one gets the Denjoy–Carleman class E{M}(R) of Roumieu type.

It is immediate that the restriction of the Borel map j∞0 to E(M)(R) takes values
in the corresponding sequence space

Λ(M) :=
{
λ = (λk)k ∈ CN : ∀r > 0 : ∥λ∥Mr := sup

k∈N

|λk|
rkMk

< ∞
}
,

which again is endowed with its natural Fréchet topology. By the Denjoy-Carleman
theorem, j∞0 |E(M)(R) is injective if and only if∑

k≥1

1

µk
= ∞;

see e.g. [19, Theorem 4.2], [14, Theorem 1.3.8], or [27, Theorem 3.6]. In that case,
the class (and the weight sequence) is called quasianalytic, and non-quasianalytic
otherwise.

We say that M has moderate growth, if

∃C > 0 ∀j, k ∈ N : Mj+k ≤ Cj+kMjMk,

and M is derivation closedness, if

∃C > 0 ∀j ∈ N : Mj+1 ≤ Cj+1Mj .

All these conditions are frequently used in the theory of ultradifferentiable classes;
in [19], non-quasianalyticity is denoted by (M.3)′, derivation closedness by (M.2)′

and moderate growth by (M.2).
Given two weight sequences M and N , we write M ≤ N if Mk ≤ Nk for all

k, and M ≼ N if supk>0

(
Mk

Nk

)1/k
< ∞. We say that M and N are equivalent if

M ≼ N and N ≼ M . Note that both moderate growth and derivation closedness
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are preserved under equivalence. Two weight sequences are equivalent if and only
if they generate the same class. In fact,

E(M)(R) ⊆ E(N)(R) ⇐⇒ M ≼ N ⇐⇒ Λ(M) ⊆ Λ(N).

We shall also need the relation M �N , defined by limk→∞
(
Mk

Nk

)1/k
= 0, which is

equivalent to E{M}(R) ⊆ E(N)(R) as well as Λ{M} ⊆ Λ(N). All this can be found
in [28, Proposition 2.12].

2.2. Weight functions. The second approach to ultradifferentiable classes is
based on weight functions, i.e., increasing continuous functions ω : [0,∞) → [0,∞)
satisfying some additional properties which will be specified shortly. Originally, ω
was used, by Beurling [1] and Björck [2], to impose growth restrictions at infinity
on the Fourier transform of the functions in question. In the modern approach due
to Braun, Meise, and Taylor [7], the derivatives of the functions are controlled by
the Young conjugate of y 7→ φω(y) := ω(ey), that is

φ∗
ω(x) := sup{xy − φω(y) : y ≥ 0}, x ≥ 0.

Assuming that log(t) = o(ω(t)) as t → ∞, which ensures that φ∗
ω(x) is finite for all

x > 0, one defines the Braun–Meise–Taylor class of Beurling type

E(ω)(R) :=
{
f ∈ C∞(R) : ∀K ⊂⊂ R ∀r > 0 : ∥f∥ωK,r := sup

x∈K,k∈N

|f (k)(x)|
eφ

∗
ω(rk)/r

< ∞
}

and endows it with the natural Fréchet topology. Similarly, we have the Fréchet
space

Λ(ω) :=
{
λ = (λk)k ∈ CN : ∀r > 0 : ∥λ∥ωr := sup

k∈N

|λk|
eφ

∗
ω(rk)/r

< ∞
}

and the map j∞0 |E(ω)(R) : E(ω)(R) → Λ(ω). Again there is a Roumieu version of these
classes of functions and sequences, where r is subjected to an existential quantifier;
we refer to [24] for details.

Let us now make precise the relevant regularity properties for ω. We say that
an increasing continuous function ω : [0,∞) → [0,∞) with ω(0) = 0 is a pre-weight
function, if log(t) = o(ω(t)) as t → ∞ (in particular, ω(t) → ∞), and φω is convex.
We call a pre-weight ω a weight function if it also fulfills

ω(2t) = O(ω(t)) as t → ∞. (ω1)

The map j∞0 |E(ω)(R) is injective if and only if∫ ∞

0

ω(t)

1 + t2
dt = ∞;

see e.g. [7], [35, Section 4], or [27, Theorem 11.17]. Then the class and the weight
function ω are called quasianalytic, and non-quasianalytic otherwise. It is straight-
forward to see that non-quasianalyticity implies ω(t) = o(t) as t → ∞.

Two pre-weight functions are called equivalent, written ω ∼ σ, if ω(t) = O(σ(t))
and σ(t) = O(ω(t)) as t → ∞. This is precisely the case if they generate the same
classes. Indeed,

E(ω)(R) ⊆ E(σ)(R) ⇐⇒ Λ(ω) ⊆ Λ(σ) ⇐⇒ σ(t) = O(ω(t)) as t → ∞,

see [28, Corollary 5.17]. For every pre-weight function there is an equivalent pre-
weight function which vanishes on [0, 1].
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Remark 2.1. We will frequently consider the radially symmetric extension C ∋
z 7→ ω(|z|) of a pre-weight function ω. By abuse of notation, we will still write ω(z)
instead of ω(|z|).

2.3. The associated weight function. Let M be a weight sequence. Then

ωM (t) := sup
k∈N

log
( tk

Mk

)
,

is a pre-weight function; cf. [21, Chapitre I] and [19, Section 3.1]. See [33, Theorem
3.1] for necessary and sufficient conditions for ωM being a weight function. For
λ > 0, we set µM (λ) := |{p ∈ N≥1 : µp ≤ λ}|. Then we have the following integral
representation of ωM , cf. e.g. [19, (3.11)] and references therein,

ωM (t) =

∫ t

0

µM (λ)

λ
dλ. (2.1)

If M is normalized, then ωM |[0,1] = 0. And ωM is non-quasianalytic if and only
if M is non-quasianalytic; see [19, Lemma 4.1]. Note that a weight sequence M can
be recovered from ωM by

Mk = sup
t>0

tk

exp(ωM (t))
, k ∈ N. (2.2)

In general, E(M)(R) and E(ωM )(R) may differ, unless M has moderate growth; see
[5] and [28, Section 5].

2.4. Weight matrices. In [28] and [34], Denjoy–Carleman and Braun–Meise–
Taylor classes were understood as special cases of ultradifferentiable classes defined
by weight matrices. A weight matrix is a one-parameter family of weight sequences
M = (M (x))x>0 such that M (x) ≤ M (y) if x ≤ y and, for all x > 0,

(m
(x)
j )1/j → ∞ as j → ∞. (2.3)

We call M normalized if all M (x) ∈ M are normalized.
We define the classes of Beurling type

E(M)(R) :=
{
f ∈ C∞(R) : ∀K ⊂⊂ R ∀r, x > 0 : ∥f∥M

(x)

K,r < ∞
}
,

and

Λ(M) :=
{
λ = (λk)k ∈ CN : ∀r, x > 0 : ∥λ∥M

(x)

r < ∞
}
,

and endow both spaces with their natural Fréchet topology. Note that, by our
assumption (2.3), each class E(M)(R) contains all real analytic functions on R (cf.
[28, Section 4.1]).

If all M (x) ∈ M are non-quasianalytic, we call M non-quasianalytic. Non-
quasianalyticity of M is equivalent to the existence of bump functions in E(M)(R);
see [35, Proposition 4.7] or [27, Theorem 11.16].

Any weight sequenceM induces a weight matrixM = (M (x))x>0 withM (x) = M
for all x > 0. Then, obviously, E(M)(R) = E(M)(R) and Λ(M)(R) = Λ(M)(R).
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2.5. Weight matrices associated with pre-weight functions. To a pre-weight
function ω (vanishing on [0, 1]) such that ω(t) = o(t) as t → ∞, we assign the
normalized weight matrix Ω = (W (x))x>0 defined by

W
(x)
k := exp

( 1

x
φ∗
ω(xk)

)
. (2.4)

If ω is actually a weight function, then

E(ω)(R) ∼= E(Ω)(R) and Λ(ω) ∼= Λ(Ω) (2.5)

as locally convex spaces; see [28] and [34]. Let us remark that here ω(t) = o(t) as
t → ∞ is assumed so that Ω satisfies our standard assumption (2.3).

Let us collect some useful properties of Ω.

Lemma 2.2. The weight matrix Ω = (W (x))x>0 satisfies:

(1) ϑ(x) ≤ ϑ(y) if x ≤ y, where ϑ
(x)
k :=

W
(x)
k

W
(x)
k−1

.

(2) W
(x)
j+k ≤ W

(2x)
j W

(2x)
k for all x > 0 and j, k ∈ N.

(3) ω ∼ ωW (x) for each x > 0. More precisely,

∀x > 0 ∃Dx > 0 : xωW (x) ≤ ω ≤ 2xωW (x) +Dx. (2.6)

(4) (w
(x)
k )1/k → ∞ for all x > 0 if and only if ω(t) = o(t) as t → ∞.

(5) ω is non-quasianalytic if and only if each W (x) is non-quasianalytic, i.e.,
if and only if Ω is non-quasianalytic.

(6) If ω is a weight function, then

∀h ≥ 1 ∃A ≥ 1 ∀x > 0 ∃D ≥ 1 ∀j ∈ N : hjW
(x)
j ≤ DW

(Ax)
j , (2.7)

which is crucial to have (2.5).

Proof. Cf. [28, Section 5] and [29, Section 2.5]. For (3) see also [34, Theorem 4.0.3,
Lemma 5.1.3] and [16, Lemma 2.5]. □

2.6. Order relations of weight matrices. For two weight matrices M and N, we
write M(≼)N if for all y there exists x such that M (x) ≼ N (y). By [28, Proposition
4.6(1)],

E(M)(R) ⊆ E(N)(R) ⇐⇒ Λ(M) ⊆ Λ(N) ⇐⇒ M(≼)N.

If M(≼)N and N(≼)M hold simultaneously, then we say that M and N are equiv-
alent. This is the case if and only if E(M)(R) = E(N)(R) as well as Λ(M) = Λ(N) (as
sets and, in turn, also as locally convex vector spaces).

Remark 2.3. Typically, for each notion of Beurling type there is a related version
of Roumieu type. Since in this paper we are principally concerned with the Beurling
case, we will only mention the former without emphasizing every time that it is the
Beurling version.

If M is a weight sequence and N a weight matrix, then M �N (x) for all x > 0
if and only if E{M}(R) ⊆ E(N)(R); see [28, Proposition 4.6(2)].
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2.7. Moderate growth and derivation closedness. For weight sequences
M,N , consider

mg(M,N) := sup
j+k≥1

(Mj+k

NjNk

) 1
j+k ∈ (0,∞]

and

dc(M,N) := sup
j∈N

(
Mj+1

Nj

) 1
j+1

∈ (0,∞].

A weight matrix M = (M (x))x>0 is said to have moderate growth if

∀y > 0 ∃x > 0 : mg(M (x),M (y)) < ∞, (M(mg))

and to be derivation closed if

∀y > 0 ∃x > 0 : dc(M (x),M (y)) < ∞. (M(dc))

Note that moderate growth, derivation closedness, and non-quasianalyticity are
preserved under equivalence.

Derivation closedness allows for absorption of log-terms in associated weight
functions:

Lemma 2.4. Let M (k), for 1 ≤ k ≤ l + 1, be weight sequences such that
dc(M (k),M (k+1)) < ∞ for all 1 ≤ k ≤ l. Then there exists C > 0 such that

ωM(l+1)(t) + log(1 + tl) ≤ ωM(1)(Ct) + C, t ≥ 0.

Proof. An iterated application of [4, Lemma 2] yields the result. □

2.8. Absorbing exponential growth. Inspired by (2.7) (cf. [28, Section 4.1]),
we say that a weight matrix M absorbs exponential growth if

∀y, h > 0 ∃x,A > 0 ∀k ∈ N : hkM
(x)
k ≤ AM

(y)
k . (M(L))

The weight matrix Ω associated with a weight function always has this property,
by Lemma 2.2.

The following lemma states that for any weight matrix M we may find an equiv-
alent weight matrix with the property (M(L)). For the sake of completeness, we
mention that an analogous statement holds true in the Roumieu setting as well.

Lemma 2.5. Let M be a (normalized) weight matrix. Then there exists an equiv-
alent (normalized) weight matrix N that satisfies (M(L)). Actually, we can choose
N such that for all k ∈ N≥1 there exist Ak and Bk such that for all j ∈ N

Ak

( 1

2k

)j

M
( 1
k )

j ≤ N
( 1
k )

j ≤ Bk

( 1

2k

)j

M
( 1
k )

j . (2.8)

Consequently, for all t ≥ 0,

ωM(1/k)(2kt)− log(Bk) ≤ ωN(1/k)(t) ≤ ωM(1/k)(2kt)− log(Ak). (2.9)

Proof. We will construct normalized weight sequences N ( 1
k ), indexed by k ∈ N≥1,

satisfying (2.8) and N ( 1
k+1 ) ≤ N ( 1

k ) for all k. If we set N (x) := N ( 1
k ) for 1

k+1 < x ≤
1
k , then (2.8) implies that M and N are equivalent. Moreover, (2.9) follows from
(2.8) and the definition of the associated weight function. To see that N fulfills
(M(L)), fix y and h and choose k, n ∈ N such that h ≤ 2k and 1

n ≤ y. By (2.8),

hjN
( 1
k+n )

j ≤ Bk+n

( 1

2n

)j

M
( 1
k+n )

j ≤ Bk+n

( 1

2n

)j

M
( 1
n )

j ≤ Bk+n

An
N

( 1
n )

j ≤ Bk+n

An
N

(y)
j ,
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for all j.

Let us now construct the sequences N ( 1
k ). In the following, we work with µ

(x)
j =

M
(x)
j

M
(x)
j−1

and ν
(x)
j =

N
(x)
j

N
(x)
j−1

. Choose j0 ∈ N minimal such that µ
(1)
j ≥ 2 for all j ≥ j0.

Set

ν
(1)
j := 1 for j ≤ j0, ν

(1)
j :=

1

2
µ
(1)
j for j > j0,

and N
(1)
j := ν

(1)
0 ν

(1)
1 · · · ν(1)j , for j ∈ N. Thus N (1) is clearly log-convex and satisfies

(2.8) for k = 1.

Now assume we have found sequences N ( 1
l ) such that (2.8) and N ( 1

l ) ≤ N ( 1
l−1 )

is satisfied for l ≤ k. Then we construct N ( 1
k+1 ) as follows. Choose j0 such that

µ
( 1
k+1 )

j ≥ 2k+1 for all j ≥ j0. By (2.8) and the pointwise order of M, for j ≥ j0,

( 1

2k+1

)j−j0
µ
( 1
k+1 )

j0+1 · · ·µ( 1
k+1 )

j =
( 1

2k+1

)j−j0 M
( 1
k+1 )

j

M
( 1
k+1 )

j0

≤ 2(k+1)j0

M
( 1
k+1 )

j0

( 1

2k

)j

M
( 1
k )

j

≤ 2(k+1)j0

AkM
( 1
k+1 )

j0

N
( 1
k )

j

=
2(k+1)j0N

( 1
k )

j0

AkM
( 1
k+1 )

j0

ν
( 1
k )

j0+1 · · · ν
( 1
k )

j =: Bkν
( 1
k )

j0+1 · · · ν
( 1
k )

j .

Since µ
( 1
k+1 )

j → ∞ as j → ∞, there exists j1 > j0 such that( 1

2k+1

)j1−j0
µ
( 1
k+1 )

j0+1 · · ·µ( 1
k+1 )

j1
≥ Bk.

Now set

ν
( 1
k+1 )

j = 1 for j ≤ j1, ν
( 1
k+1 )

j =
1

2k+1
µ
( 1
k+1 )

j for j > j1.

Then (2.8) is immediate. Combining the last two estimates, we also get N ( 1
k+1 ) ≤

N ( 1
k ). This ends the proof. □

Corollary 2.6. For any weight matrix M there is an equivalent weight matrix N

such that {∥ · ∥N(1/k)

[−k,k],1 : k ∈ N≥1} (resp. {∥ · ∥N(1/k)

1 : k ∈ N≥1}) is a fundamental

system of seminorms for E(M)(R) (resp. Λ(M)).

2.9. Strong (ω1) condition. Let us write M ≺sω1 N if and only if

∃C > 0 ∀t ≥ 0 : ωM (2t) ≤ ωN (t) + C, (sω1)

and say that M and N satisfy the strong (ω1) condition.
Then another immediate consequence of Lemma 2.5 is the following.

Corollary 2.7. Up to equivalence, we can assume that a weight matrix M satisfies

∀x > 0 ∃y > 0 : M (x) ≺sω1
M (y). (2.10)
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Remark 2.8. In analogy to (ω1), one is led to the following condition:

∀x > 0 ∃y > 0 : ωM(x)(2t) = O(ωM(y)(t)) as t → ∞; (2.11)

see [35] and [18]. But (2.10) is stronger than (2.11). Cf. the results from [18, Section
3] and the citations therein as well as Remark 5.2.

3. Reduction to the Roumieu case

The goal of this section is to prove the following theorem.

Theorem 3.1. Let M,N be weight matrices that are ordered with respect to their
quotient sequences, i.e., µ(x) ≤ µ(y) and ν(x) ≤ ν(y) if x ≤ y. Then

Λ(M) ⊆ j∞0 E(N)(R) ⇐⇒ ∀y > 0 ∃x > 0 : M (x) ≺SV N (y). (SV)

We shall see in Lemma 3.3 that both sides of the equivalence (SV) imply M(≼)N
and non-quasianalyticity of N. Recall that M ≺SV N means

∃C, s ∈ N≥1 : sup
j≥1

sup
0≤i<j

( Mj

sjNi

) 1
j−i 1

j

∞∑
k=j

Nk−1

Nk
≤ C. (3.1)

We will deduce Theorem 3.1 from the following result for Denjoy–Carleman
classes of Roumieu type. It is due to [37] under slightly stronger conditions; the
version stated here is a special case of [17, Theorem 3.2].

Theorem 3.2. Let M ≼ N be weight sequences with lim infp→∞ (mp)
1/p

> 0.

Then Λ{M} ⊆ j∞0 D{N}([−1, 1]) if and only if M ≺SV N .

Here D(N)([−1, 1]) (resp. D{N}([−1, 1])) denotes the space of E(N) (resp. E{N})
functions supported in [−1, 1].

3.1. Auxiliary results. We show first that both sides of the equivalence (SV)
imply M(≼)N and non-quasianalyticity of N. Similar results hold in the Roumieu
case; cf. [24].

Lemma 3.3. Let M and N be weight matrices. Both sides of the equivalence (SV)
imply M(≼)N and non-quasianalyticity of N.

Proof. By [36, Lemma 3.2], M (x) ≺SV N (y) implies M (x) ≼ N (y) so that M(≼)N
is clearly a consequence of the right-hand side of (SV).

To see that it also follows from the left-hand side, suppose that M(≼)N is vio-

lated which means that there is y > 0 such that (M
(x)
k /N

(y)
k )1/k is unbounded for

all x > 0. Thus, for all j ∈ N≥1 we find kj ≥ j such that(M (1/j)
kj

N
(y)
kj

)1/kj

≥ j.

Consider the sequence a = (aℓ) with akj = ( 1j )
kjM

(1/j)
kj

and aℓ = 0 otherwise. Then

a ∈ Λ(M), because for given h, z > 0 and j so large that 1
j ≤ min{h, z}, we have

|akj
| = ( 1j )

kjM
(1/j)
kj

≤ hkjM
(z)
kj

. On the other hand, we claim that a /∈ j∞0 E(N)(R).
Indeed, if there is f ∈ E(N)(R) with j∞0 f = a, then N

(y)
kj

≤ akj
= f (kj)(0) ≤

Ah,zh
kjN

(z)
kj

for all h, z > 0 and j; a contradiction for z = y and h = 1/2.
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To infer non-quasianalyticity of N, we distinguish two cases. If M is non-
quasianalytic so is N, since we already know that M(≼)N. If M is quasianalytic,
then the assertion follows either from [30, Theorem 6], which shows that no (proper)
quasianalytic class is contained in the image of the Borel map of any other quasi-
analytic class, or from the observation that M (x) ≺SV N (y) cannot hold if N (y) is
quasianalytic (since then (3.1) is infinite). □

We restate [9, Lemme 16] which is crucial for the reduction.

Lemma 3.4. Let (αj) be a sequence of nonnegative real numbers such that∑∞
j=1 αj < ∞. Let (βj) and (γj) be sequences of positive real numbers such that

limj→∞ βj = 0 = limj→∞ γj, and assume that (γj) is decreasing. Then there exists
an increasing sequence (θj) tending to ∞ such that

(1) θjγj is decreasing,
(2) θjβj → 0,
(3)

∑∞
k=j θkαk ≤ 8θj

∑∞
k=j αk for all j ≥ 1.

3.2. Scheme of proof. The direction ⇒ in (SV) follows from a rather direct
generalization of the proof of [17, Theorem 4.7] which we sketch in Section 3.4.

The more delicate part is the converse implication. Our aim is to reduce its
proof to the Roumieu case, i.e., Theorem 3.2. More specifically, we show that for
any given λ ∈ Λ(M) we find weight sequences R,S such that

(i) λ ∈ Λ{R},
(ii) R ≺SV S,
(iii) E{S}(R) ⊆ E(N)(R).

Then Theorem 3.2 (together with Lemma 3.3) gives the desired conclusion.

3.3. Proof of Theorem 3.1(⇐). We construct the sequencesR,S in several steps.

Step (I). Up to equivalence, we may assume that M and N satisfy the following
conditions:

(a) For all α ∈ N≥1,

N
( 1
α )

j ≥ 2jN
( 1
α+1 )

j , for large enough j. (3.2)

(b) For all y > 0 we have M (y) ≺SV N (y) with C = s = 1 in (3.1).
(c) For all y > 0 we have M (y) ≤ N (y).

Proof. (a) follows from Lemma 2.5.
(b), (c) Fix y > 0. By assumption, there is x = x(y) such that M (x) ≺SV N (y)

and thus M (x) ≼ N (y). We may assume that y 7→ x(y) is increasing and x(y) ≤ y
(by the order of the weight matrices). Then (M (x(y)))y>0 is equivalent to M.
Finally, there exists an increasing function r with r(0) = 0 such that the family M′

with M
′(y)
j := r(y)jM

(x(y))
j satisfies the additional assumption of (b) and (c). This

matrix is not normalized, but we can use an analogous technique as in the proof of
Lemma 2.5 to force this as well.

Note that all constructions yield matrices that are still ordered with respect to
their quotients. □

We assume from now on that M and N satisfy (a),(b), and (c). Fix λ ∈ Λ(M).
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Step (II). There exist a decreasing 0-sequence (εj) and a strictly increasing se-
quence of positive integers (aα) such that

|λj | ≤ ε1 · · · εjM
( 1
α+1 )

j , if aα ≤ j < aα+1. (3.3)

Proof. By definition of Λ(M), the sequence ε(α) := (ε
(α)
j ) defined by

ε
(α)
j := sup

k≥j

( |λk|

M
( 1
α+1 )

k

)1/k

is decreasing and tending to 0 for each α. By the order of M, we also have ε(α) ≤
ε(α+1). We define sequences (aα) and (a′α) of positive integers as follows:

• Set a1 := 1.
• For given aα, we choose a′α and in turn aα+1 such that

ε(α+1)
aα+1

< ε
(α)
a′
α

≤ 1

1 + α
ε(α)aα

.

It is clear that the sequences (aα) and (a′α) are strictly increasing and interlacing.
Finally, define ε = (εj) by

εj := ε
(α)
j for aα ≤ j ≤ a′α, εj := ε

(α)
a′
α

for a′α < j < aα+1.

Then ε is decreasing, tending to 0, and, by construction( |λj |

M
( 1
α+1 )

j

)1/j

≤ εj , if aα ≤ j < aα+1,

which gives (3.3). □

Step (III). There exist an increasing sequence (µ
j
) with µ

j
/j → ∞, and strictly

increasing sequences of integers (bα) and (Cα) such that M j := µ
0
µ
1
· · ·µ

j
satisfies

M ≤ CαM
(1/α), for all α, and

M
(1/α)
j ≤ M j , for all α and j ≤ bα. (3.4)

Proof. Let (aα) be the sequence from Step (II). We define sequences of positive
integers (bα) and (b′α) as follows:

• Set b′1 := 1.
• For given b′α, we choose bα such that

bα > max{aα, b′α} and µ
( 1
α+1 )

j ≥ αj, for j ≥ bα. (3.5)

• For given bα, we choose b′α+1 > bα minimal to ensure

µ
( 1
α+1 )

b′α+1
> µ

( 1
α )

bα
.

Note that (bα) and (b′α) are strictly increasing, interlacing, and µ
( 1
α+1 )

j ≤ µ
( 1
α )

bα
for

all j ≤ b′α+1 − 1. Finally, set

µ
j
:= µ

( 1
α )

j , for b′α ≤ j ≤ bα, µ
j
:= µ

( 1
α )

bα
, for bα < j < b′α+1, (3.6)

and µ
0
:= 1. By construction, µ

j
is increasing, µ

j
/j → ∞, and (3.4) holds. For

fixed α, one has µ
j
≤ µ

(1/α)
j for all j ≥ b′α which yields M ≤ CαM

(1/α) for
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some positive constant Cα. Clearly, we may assume that Cα are integers, strictly
increasing in α. □

Step (IV). There exist an increasing sequence (νj) tending to ∞, strictly increas-
ing sequences of positive integers (cα) and (dα), and an increasing sequence (Dα)
tending to ∞ such that N j := ν0ν1 · · · νj satisfies N ≤ DαN

(1/α), for all α,

N
(1/α)
j ≤ N j , for all α and j ≤ dα, (3.7)

and there is a constant D ≥ 1 such that, for all α and cα ≤ j < cα+1,∑
k≥j

1

νk
≤ 2

∑
k≥j

1

ν
( 1
α+2 )

k

, (3.8)

Cα+3N
( 1
α+3 )

i ≤ D2j−iN i, for all 0 ≤ i < j, (3.9)

where Cα are the constants from Step (III).

Proof. We define sequences (cα) and (dα) of positive integers as follows:

• Set c1 := 1 and d0 := 0.
• For given cα, we choose dα ≥ Cα+4 + dα−1 such that∑

k>dα

1

ν
( 1
α+1 )

k

≤ 1

2

∑
k>cα

1

ν
( 1
α )

k

, (3.10)

N
( 1
α+2 )

j ≥ 2jN
( 1
α+3 )

j , for j ≥ dα. (3.11)

• For given dα, we choose cα+1 > dα minimal such that

ν
( 1
α+1 )

cα+1 > ν
( 1
α )

dα
. (3.12)

Then (cα) and (dα) are strictly increasing and interlacing. Set

νj := ν
( 1
α )

j , cα ≤ j ≤ dα, νj := ν
( 1
α )

dα
, dα < j < cα+1, (3.13)

and ν0 := 1. Completely analogous to Step (III), we may conclude that N ≤
DαN

(1/α) and (3.7).
Let us show (3.9). It clearly suffices to show the claim for α ≥ 3 (the finitely

many remaining values can be controlled by possibly enlarging D). So let α ≥ 3,
cα ≤ j < cα+1, and 0 ≤ i < j. Our construction yields j ≥ cα > dα−1 ≥ Cα+3, and
therefore

Cα+3N
( 1
α+3 )

0 = Cα+3 ≤ 2dα−1 ≤ 2j = 2jN0

which finishes the case i = 0. So let 1 ≤ i < j. There is β ≤ α such that
cβ ≤ i < cβ+1. If β ≥ 2, then dβ−1 ≤ i ≤ dβ+1. By (3.7) and (3.11),

N i

N
( 1
α+3 )

i

≥ N
( 1
β+1 )

i

N
( 1
α+3 )

i

≥ N
( 1
β+1 )

i

N
( 1
β+2 )

i

≥ 2i.

Since 2j ≥ dα−1 ≥ Cα+3, (3.9) follows. It remains to consider 1 ≤ i ≤ d1, in which

case N
( 1
α+3 )

i ≤ N
(1)
i = N i is clear and 2j−i ≥ 2dα−1−d1 ≥ Cα+3. Thus (3.9) is

proved.



THE BOREL MAP IN THE MIXED BEURLING SETTING 13

Let us now prove (3.8). First assume cα ≤ j ≤ dα. Then∑
k≥j

1

νk
=

dα∑
k=j

1

ν
( 1
α )

k

+
∑
i≥1

(cα+i − dα+i−1 − 1

ν
( 1
α+i−1 )

dα+i−1

+

dα+i∑
k=cα+i

1

ν
( 1
α+i )

k

)
.

By the minimal choice of cα+i (see (3.12)),

cα+i − dα+i−1 − 1

ν
( 1
α+i−1 )

dα+i−1

≤
cα+i−1∑

k=dα+i−1+1

1

ν
( 1
α+i )

k

, (3.14)

whence ∑
k≥j

1

νk
≤

dα∑
k=j

1

ν
( 1
α+1 )

k

+
∑
i≥1

dα+i∑
k=dα+i−1+1

1

ν
( 1
α+i )

k

=

dα+1∑
k=j

1

ν
( 1
α+1 )

k

+
∑
i≥2

dα+i∑
k=dα+i−1+1

1

ν
( 1
α+i )

k

.

Using (3.10), we find ∑
k≥dα+i−1+1

1

ν
( 1
α+i )

k

≤ 1

2i−1

∑
k≥dα+1

1

ν
( 1
α+1 )

k

from which it is easy to conclude∑
k≥j

1

νk
≤ 2

∑
k≥j

1

ν
( 1
α+1 )

k

, (3.15)

in particular, (3.8). If dα < j < cα+1, then, using (3.15) for j = cα+1, we find

∑
k≥j

1

νk
=

cα+1−1∑
k=j

1

ν
( 1
α )

dα

+
∑

k≥cα+1

1

νk
≤

cα+1−1∑
k=j

1

ν
( 1
α+2 )

k

+2
∑

k≥cα+1

1

ν
( 1
α+2 )

k

≤ 2
∑
k≥j

1

ν
( 1
α+2 )

k

.

Thus (3.8) is proved. □

Step (V). There exist weight sequences R,S such that (rj)
1/j → ∞ and

(i) λ ∈ Λ{R},
(ii) R ≺SV S,
(iii) E{S}(R) ⊆ E(N)(R).

Proof. For the construction of R, we apply Lemma 3.4 to

αj := 0, βj := max
{
εj ,

j

(M j)
1/j

}
, γj :=

1

µ
j

.

This yields an increasing sequence (θj) tending to ∞ such that θjγj is decreasing

and θjβj → 0. We can assume θ0 = 1. Since θjγj ≤ θjβj (as (M j)
1/j ≤ µ

j
), also

θjγj → 0. Then

Rj :=

j∏
i=0

µ
j

θj
=

M j

θ0θ1 · · · θj
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is a weight sequence (not necessarily normalized). We have (rj)
1/j → ∞, since

j

(Rj)1/j
=

j(θ1 · · · θj)1/j

(M j)
1/j

≤ jθj
(M j)

1/j
≤ θjβj .

By (3.3), (3.4), and (3.5),

|λj | ≤ ε1 · · · εjM
( 1
α+1 )

j ≤ ε1θ1 · · · εjθjRj .

Since εjθj ≤ βjθj → 0, we get λ ∈ Λ{R}. This finishes the proof of (i).
To obtain S we apply Lemma 3.4 to

α′
j = γ′

j :=
1

νj
, β′

j := max
{ 1√

θ⌊j/2⌋
,
1

νj

}
,

where ⌊j/2⌋ denotes the integer part of j/2. We obtain an increasing sequence (θ′j)
tending to ∞ such that θ′jγ

′
j is decreasing, θ′jβ

′
j → 0, and

∞∑
k=j

θ′k
νk

≤ 8θ′j

∞∑
k=j

1

νk
, for all j. (3.16)

Let θ′0 := 1. Then

Sj := Aj

j∏
i=0

νj
θ′j

= Aj
N j

θ′0θ
′
1 · · · θ′j

is a weight sequence. Here A is a constant chosen such that A ≥ max{1, θ′
1

ν1
} and

θ′i
θi

≤ A, (3.17)

θ′j

(θi+1 · · · θj)
1

j−i

≤ A, if 0 ≤ i < j. (3.18)

That (3.17) and (3.18) are possible is seen as follows. It is easy to see that the
choice of β′

j enables (3.17). For 0 ≤ i < ⌊j/2⌋, we have

(θi+1 · · · θj)
1

j−i ≥ (θ⌊j/2⌋ · · · θj)
1

j−i ≥ (θ⌊j/2⌋)
j−⌊j/2⌋

j−i ≥
√

θ⌊j/2⌋,

since θj is increasing. If ⌊j/2⌋ ≤ i ≤ j − 1, then (θi+1 · · · θj)1/(j−i) ≥ θi+1 ≥ θ⌊j/2⌋.
The choice of β′

j shows that the left-hand side of (3.18) is bounded.
Let us now show that R ≺SV S. Fix 0 ≤ i < j. There is α such that cα ≤ j <

cα+1. We have (with σk = Sk/Sk−1)
∞∑
k=j

1

σk

(3.16)

≤ 8

A
θ′j

∞∑
k=j

1

νk

(3.8)

≤ 16

A
θ′j

∞∑
k=j

1

ν
( 1
α+2 )

k

≤ 16

A
θ′j

∞∑
k=j

1

ν
( 1
α+3 )

k

(I)
b

≤ 16

A
jθ′j

(N
( 1
α+3 )

i

M
( 1
α+3 )

j

) 1
j−i

(III)
≤ 16

A
jθ′j

(Cα+3N
( 1
α+3 )

i

M j

) 1
j−i

(3.9)

≤ 32D

A
jθ′j

( N i

M j

) 1
j−i

=
32D

A
jθ′j

( θ′1 · · · θ′iSi

Aiθ1 · · · θjRj

) 1
j−i

(3.17)

≤ 32D

A
jθ′j

( Si

θi+1 · · · θjRj

) 1
j−i

(3.18)

≤ 32Dj
( Si

Rj

) 1
j−i

,

which finishes the proof of (ii).
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For (iii) observe that, by Step (IV),

Sj

N
(1/α)
j

=
Aj

θ′1 · · · θ′j

N j

N
(1/α)
j

≤ Dα
Aj

θ′1 · · · θ′j
.

We conclude that S �N (1/α) for all α, since θ′j → ∞. □

Step (VI). There exists f ∈ E(N)(R) such that j∞0 f = λ.

Proof. By Step (V) and [36, Lemma 3.2], Theorem 3.2 can be applied to R and
S. Thus there exists f ∈ E{S}(R) with j∞0 f = λ. By (V)iii, we know that f ∈
E(N)(R). □

3.4. Proof of Theorem 3.1(⇒). Since Λ(M) ⊆ j∞0 E(N)(R) implies that N is non-
quasianalytic, by Lemma 3.3, and so there exist E(N)(R)-cutoff functions, e.g. by
[27, Corollary 3.2 and Theorem 11.16], we have Λ(M) ⊆ j∞0 D(N)([−1, 1]).

Now we follow the ideas of [37, Proposition 4.3 and Theorem 4.4]. Let Em,k be

D(N)([−1, 1]) endowed with the norm ∥f∥m,k := ∥f∥N
( 1
k

)

[−1,1], 1
m

and let Fm,k be its

completion. As in [37, Proposition 4.3], one sees that, for all m, k, there exists a
continuous linear right inverse Tm,k : Λ(M) → Fm,k of j∞0 |Fm,k

. Then for every
m ∈ N≥1 we can find s ∈ N≥1 and C > 0 such that

∥Tm,1(a)∥m,1 ≤ C∥a∥s, a ∈ Λ(M),

where ∥ · ∥s := ∥ · ∥M
( 1
s
)

1
s

. The proof of [37, Theorem 4.4], applied to the sequences

M ( 1
s ) and N ( 1

m ), yields M ( 1
s ) ≺SV N ( 1

m ). This ends the proof of Theorem 3.1.

4. The duals of E(M)(R) and Λ(M)

In this section, we identify the duals of E(M)(R) and Λ(M) with weighted spaces
of entire functions. This will be of crucial importance in the proof of the second
main result, i.e., Theorem 5.1.

4.1. Weighted spaces of entire functions. Let g : C → [0,∞) be a continuous
function with lim|z|→∞ g(z) = ∞. We define the Banach space

Ag :=
{
f ∈ H(C) : ∥f∥Ag

:= sup
z∈C

|f(z)|
eg(z)

< ∞
}
.

Given an increasing sequence of continuous functions G = (gk)k of the mentioned
type, we define

AG :=
⋃
k∈N

Agk ,

and endow it with the natural inductive limit topology. Sometimes we need to work
with L2 weights. To this end, we set

A2
g :=

{
f ∈ H(C) : ∥f∥A2

g
:=

(∫
C
|f(z)|2e−g(z) dλ(z)

)1/2

< ∞
}
,

where λ denotes the Lebesgue measure in C, and define the corresponding inductive
limit A2

G analogously.
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Lemma 4.1. Let g : C → [0,∞) be a continuous function with lim|z|→∞ g(z) = ∞.
Then

∥f∥A2
2g+log(1+|z|4)

≤ 3π∥f∥Ag
, f ∈ Ag,

in particular, Ag ↪→ A2
2g+log(1+|z|4).

Let h : C → [0,∞) be another continuous function and assume there exists K > 0
such that

g(z + u) ≤ h(z) +K, z, u ∈ C, |u| ≤ 1. (4.1)

Then
∥f∥Ah

2

≤ eK∥f∥A2
g
, f ∈ A2

g,

in particular, A2
g ↪→ Ah

2
.

Proof. For f ∈ Ag,

∥f∥2A2
2g+log(1+|z|4)

=

∫
C
|f(z)|2e−2g(z)−log(1+|z|4) dλ(z) ≤ ∥f∥2Ag

∫
C

dλ(z)

1 + |z|4

implies the first statement. For the second claim, we observe that an entire function
f fulfills f(z) = 1

π

∫
|u|≤1

f(z+u) dλ(u) for each z ∈ C, which follows from Cauchy’s

integral formula and switching to polar coordinates. Thus,

f(z)2 =
1

π

∫
|u|≤1

f(z + u)2eg(z+u)−g(z+u) dλ(u),

and therefore

|f(z)|2 ≤ 1

π
eh(z)+K

∫
C
|f(z + u)|2e−g(z+u) dλ(u)

which gives the desired result. □

Remark 4.2. The proof shows that log(1 + |z|4) can be replaced by any function
ρ such that e−ρ ∈ L1(C); of course, the constant has to be adjusted accordingly.

Let us now show that, under some mild constraints on the family G, the corre-
sponding inductive limit is regular.

Proposition 4.3. Let G = (gk)k be an increasing family of continuous functions
gk : C → [0,∞) tending to infinity as |z| → ∞ such that for all k

lim
|z|→∞

gk+1(z)− gk(z) = ∞. (4.2)

Then AG is regular, complete, ultrabornological, reflexive, and webbed.

Proof. We will show that the connecting mappings are compact. Then the state-
ments follow from [23, Satz 25.19, 25.20, 24.23, and Bemerkung 24.36].

Take p := gk and q := gk+1. We show that the inclusion Ap ↪→ Aq is compact.
Let (fj) be a bounded sequence in Ap, i.e., there exists D > 0 such that

|fj(z)| ≤ Dep(z), z ∈ C, for all j.

Then this family of entire functions is locally uniformly bounded. Thus, by Montel’s
theorem, there exists a subsequence (fjk) that converges uniformly on compact

subsets to f ∈ H(C). Clearly, |f(z)| ≤ Dep(z) for all z ∈ C. Let us show that (fjk)
converges to f in Aq. Let ε > 0. Choose R > 0 such that

ep(z)−q(z) <
ε

2D
, |z| > R,
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where we use (4.2), and let k0 be such that

|fjk(z)− f(z)| < ε, k ≥ k0, |z| ≤ R.

It follows that ∥fjk − f∥Aq < ε for k ≥ k0. □

4.2. The spaces AΩ+
M

and AΩM
. Given a weight matrix M = (M (x))x>0, we

consider the sequences of functions

Ω+
M :=

(
z 7→ k| Im z|+ ωM(1/k)(kz)

)
k
,

ΩM :=
(
z 7→ ωM(1/k)(kz)

)
k
,

and the associated spaces AΩ+
M

and AΩM
.

If the weight matrix is clear from the context, we also write ω(k)(z) := ωM(1/k)(z).
Note that ω(k) ≤ ω(l) if k ≤ l by the definition of associated weight functions. Let
us now see that Proposition 4.3 is applicable to AΩ+

M
and AΩM

.

Let l > k > 0. Then (2.1) implies for all t ≥ 0

ω(l)(lt)−ω(k)(kt) ≥ ω(k)(lt)−ω(k)(kt) =

∫ lt

kt

µM(1/k)(λ)

λ
dλ ≥ µM(1/k)(kt) log(l/k).

So for all l > k > 0 we get that ω(l)(lz) − ω(k)(kz) → ∞ as |z| → ∞ and thus we
are able to infer the following corollary from Proposition 4.3.

Corollary 4.4. AΩ+
M

and AΩM
are regular, complete, ultrabornological, reflexive,

and webbed.

In what follows, unless mentioned otherwise, we assume that all weight sequences
and matrices are normalized.

4.3. The dual of E(M)(R). Let us recall a result of [38]. For this we need the
Fourier transform of a distribution T ∈ E(R)′,

T̂ (z) := T (x 7→ eixz).

For a weight sequence M , set

λM (t) :=
∑
j≥0

tj

Mj
, t ≥ 0.

One immediately infers (cf. [19, Proposition 4.5(a) ⇒ (b)])

eωM (t) ≤ λM (t) ≤ 2eωM (2t), t ≥ 0. (4.3)

Theorem 4.5 ([38, Theorem 2.8]). Let M be a weight sequence. Then, for

E(M)(R) :=
{
f ∈ C∞(R) : ∀K ⊂⊂ R, ∀m ∈ N, ∀r > 0 : ∥f∥MK,m,r < ∞

}
,

where

∥f∥MK,m,r := sup
j∈N, 0≤k≤m,x∈K

|f (j+k)(x)|
rjMj

, (4.4)

endowed with its natural Fréchet topology, we have

E(M)(R)′ ∼= AΓM
,

where
ΓM :=

(
z 7→ k log(1 + |z|) + log(λM (k|z|)) + k| Im z|

)
k
,

and the isomorphism (of locally convex spaces) is realized by the Fourier transform.
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For a weight matrix M, we set

E(M)(R) :=
⋂
x>0

E(M(x))(R).

Note that E(M)(R) = E(M)(R) (resp., E(M)(R) = E(M)(R)), if M (resp., M) is
derivation closed.

Proposition 4.6. Let M be derivation closed. Then, as locally convex spaces,

AΓM
∼= AΩ+

M
,

where

ΓM :=
(
z 7→ k log(1 + |z|) + log(λM(1/k)(k|z|)) + k| Im z|

)
k
.

Proof. Using Lemma 2.4 together with (4.3), one easily checks that the respective
inductive systems are equivalent and thus the topologies coincide. □

We are ready to identify the dual of E(M)(R).

Theorem 4.7. Let M be derivation closed. Then E(M)(R)′ ∼= AΩ+
M
.

Proof. We have E(M)(R)′ ∼= E(M)(R)′, since M is derivation closed. First we show⋃
k∈N≥1

E(M(1/k))(R)′ ∼= E(M)(R)′,

where the union on the left carries the locally convex inductive limit topology and
the isomorphism is given by the restriction map which we denote by R. Observe

that, for k ≤ l, we have a continuous inclusion E(M(1/k))(R)′ ↪→ E(M(1/l))(R)′, and
the locally convex inductive limit exists.

The map R is surjective, since we can extend each continuous functional on

E(M)(R) to some E(M(1/k))(R), by the Hahn–Banach theorem. By Lemma A.1, this
extension is unique and thus R is also injective.

Let us now show continuity in both directions. Continuity of R follows from

continuity of its restriction to any fixed E(M(1/k))(R)′ which is clear. Since E(M)(R)
is a Fréchet–Schwartz space (see the proof of Proposition 5.10), the dual E(M)(R)′ is
bornological (cf. [23, Satz 24.23]). Thus it suffices to show that R−1 maps bounded
sets to bounded sets. Now

Un :=
{
f ∈ E(M)(R) : pn(f) := ∥f∥M

(1/n)

[−n,n],1/n ≤ 1
n

}
, n ∈ N≥1,

is a fundamental system of 0-neighborhoods in E(M)(R), and the polars U◦
n form a

fundamental system of bounded sets in E(M)(R)′ (cf. [23, Lemma 25.5]). If T ∈ U◦
n,

then

|T (f)| ≤ npn(f), f ∈ E(M)(R),

and, by the Hahn–Banach theorem, T extends to E(M(1/n))(R) and satisfies this

estimate for all f ∈ E(M(1/n))(R). So R−1(U◦
n) is bounded in E(M(1/n))(R)′, therefore

R−1 is continuous.
By Theorem 4.5, E(M(1/k))(R)′ ∼= AΓ

M(1/k)
so that Proposition 4.6 yields the

desired result. □
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4.4. The dual of Λ(M).

Theorem 4.8. Let M be a weight matrix. Then (Λ(M))′ ∼= AΩM
, and this isomor-

phism is realized by

S̃ : (Λ(M))′ → AΩM
, T 7→ S̃(T ) :=

(
z 7→

∑
j≥0

T (ej)z
j
)
,

with ej denoting the j-th unit vector.

Since z 7→ iz is an automorphism of C, the map S(T ) := (z 7→
∑

j≥0 T (ej)i
jzj)

realizes the isomorphism (Λ(M))′ ∼= AΩM
, too.

Proof. First observe that for any sequence b = (bj)j satisfying

∃A,B, k > 0 ∀j ∈ N : |bj | ≤ ABj 1

M
(1/k)
j

, (4.5)

the map

Tb(a) :=
∑
j≥0

ajbj , a = (aj)j ∈ Λ(M), (4.6)

is an element of (Λ(M))′. Actually, every T ∈ (Λ(M))′ has the form (4.6). Indeed,

T (a1e1 + · · ·+ anen) = a1T (e1) + · · ·+ anT (en)

and since a1e1 + · · · + anen → a in Λ(M) as n → ∞, the statement follows with
bj = T (ej).

If b satisfies (4.5), then

fb(z) := S̃(Tb)(z) =
∑
j≥0

bjz
j

defines an element in AΩM
. Indeed,

|fb(z)| ≤ A
∑
j≥0

(B|z|)j

M
(1/k)
j

≤ A sup
k∈N

(2B|z|)k

M
(1/k)
k

∑
j≥0

1

2j
= 2Aeω

(k)(2Bz).

Conversely, if f ∈ AΩM
, then, by the Cauchy estimates and (2.2),

|f (j)(0)|
j!

≤ A inf
r>0

eω
(k)(kr)

rj
= Akj

1

M
(1/k)
j

.

So S̃ : (Λ(M))′ → AΩM
is a linear isomorphism.

Next we show continuity of S̃−1. To this end, it is enough to show that S̃−1|Ak

is continuous, where Ak := Aω(k)(kz). A typical 0-neighborhood in (Λ(M))′ is of the

form U = {T : T (C) ≤ r} for some bounded set C ⊆ Λ(M) and r > 0. Let D > 0

be such that |aj | ≤ D 1
(2k)j M

( 1
k )

j for all j ∈ N and all a = (aj)j ∈ C. Then S̃−1

maps the Ak-ball of radius
r
2D into U .

For the continuity of S̃ we observe that (Λ(M))′ is ultrabornological, since Λ(M)

is a Fréchet–Schwartz space (cf. [23, Satz 24.23]). Indeed, the Fréchet space Λ(M) is
nuclear (by the Grothendieck-Pietsch criterion, cf. [23, 28.15]) and hence a Schwartz
space (cf. [23, Corollary 28.5]). On the other hand, AΩM

is webbed. So the assertion
follows from the open mapping theorem (cf. [23, Satz 24.30]). □
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5. Proof by dualization

This section builds on the techniques developed in [6] for Braun–Meise–Taylor
classes. Let us first introduce some notation. For a (normalized) non-quasianalytic
pre-weight function ω, we set

Pω(x+ iy) :=
|y|
π

∫ ∞

−∞

ω(t)

(t− x)2 + y2
dt, x, y ∈ R, y ̸= 0

Pω(x) := ω(x), x ∈ R,
(5.1)

the harmonic extension of ω to the open upper and lower half plane (and subhar-
monic extension to C). A detailed exposition of its main features is presented in
Section 5.2. Pω is closely related to the concave weight function (cf. [6, Definition
3.1(b)])

κω(r) :=

∫ ∞

1

ω(rt)

t2
dt = r

∫ ∞

r

ω(t)

t2
dt. (5.2)

In fact,

1

π
κω(r) ≤ Pω(ir) ≤

4

π
κω(r), r > 0, (5.3)

by [6, Lemma 3.3]. It was proved in [6] that, for a non-quasianalytic weight function
ω and another weight function σ, the inclusion

Λ(σ) ⊆ j∞0 E(ω)(R),

holds if and only if

κω(r) = O(σ(r)) as r → ∞. (5.4)

Note that (5.4) is also equivalent to Λ{σ} ⊆ j∞0 E{ω}(R); cf. Theorem 6.4, [6], and
[24] as well as [31], [32], and [26] for the more general mixed Whitney extension
problem.

When M is a non-quasianalytic weight sequence, we also write PM instead of
PωM

and κM instead of κωM
. The crucial mixed condition for weight sequences

M,N in this section is M ≺L N defined by

∃C > 0 ∀s ≥ 0 : PN (is) ≤ ωM (Cs) + C. (5.5)

This condition appears in [20, (2.14’)].
Let us now formulate the main result of this section.

Theorem 5.1. Let M,N be weight matrices, N derivation closed. Then

Λ(M) ⊆ j∞0 E(N)(R) ⇐⇒ ∀y > 0 ∃x > 0 : M (x) ≺L N (y). (L)

Remark 5.2. Similarly to Remark 2.8, note that in (5.5) on the right-hand side
the constant C appears in the argument of ωM (not in front). This subtle difference
will become important later on; it stems from the fact that we aim for results for
classes defined by (a family of) weight sequences instead of (associated) weight
functions. Even though (5.3) implies κN ∼ PN , generally we cannot replace PN by
κN in (5.5).
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5.1. Auxiliary results. We saw in Lemma 3.3 that the left-hand side of (L) entails
M(≼)N and non-quasianalyticity of N. This is also true for the right-hand side.

Lemma 5.3. Let M and N be weight matrices. The right-hand side of (L) entails
M(≼)N and non-quasianalyticity of N.

Proof. Non-quasianalyticity is immediate, since ωN(y) is non-quasianalytic if and
only if so is N (y); see [19, Lemma 4.1].

Fix y > 0. There is x > 0 such that M (x) ≺L N (y), i.e., there is C > 0 such that

ωN(y)(s) ≤ PN(y)(is) ≤ ωM(x)(Cs) + C, s > 0,

where the first inequality will be justified later in (5.6). By (2.2), we conclude

N
(y)
k = sup

t>0

tk

eωN(y) (t)
≥ sup

t>0

tk

eωM(x) (Ct)+C
= e−CC−kM

(x)
k .

This shows M(≼)N. □

5.2. Properties of Pω, the (sub-)harmonic extension of ω. In this section we
assume, without further mentioning, that ω has the following properties:

• ω : [0,∞) → [0,∞) is increasing and continuous.
• log(t) = O(ω(t)) as t → ∞.
• φω = ω ◦ exp is convex.

•
∫∞
0

ω(t)
1+t2 dt < ∞.

So ω may be any non-quasianalytic pre-weight function, in particular, ωM for a
non-quasianalytic weight sequence M . Recall our convention ω(z) := ω(|z|) for
z ∈ C.

The harmonic extension Pω, defined in (5.1), will play a crucial role as a weight
for a weighted space of entire functions. Let us list some obvious properties:

(1) Pω(z) ≥ 0 for all z ∈ C,
(2) Pω is symmetric relative to the real and imaginary axis,
(3) σ ≤ ω implies Pσ ≤ Pω,
(4) Pσ+ω = Pσ + Pω,
(5) Pt7→ω(nt)(z) = Pω(nz).

Remark 5.4. For an increasing sequence of functions ωj converging to ω uni-
formly on compact subsets of R, we get directly from the definition that Pωj → Pω

uniformly on compact subsets of C.

The following proposition is well-known.

Proposition 5.5. Pω is continuous on C, harmonic in the open upper and lower
half plane, and subharmonic on C.

Proof. That Pω is continuous on C and harmonic in the open upper and lower
half plane is clear. For the subharmonicity, note first that ω is subharmonic on C;
indeed, ω(z) = φω(log |z|) and φω is increasing and convex.

Next we show that
Pω(z) ≥ ω(z), z ∈ C. (5.6)

In fact, ξ+ iη 7→ Pω(e
ξ+iη) is harmonic on the horizontal strip {0 < η < π}, convex

in ξ, and thus concave and symmetric relative to π
2 in η (cf. the arguments in [8, p.

198]). So for any fixed ξ the map η 7→ Pω(e
ξ+iη) takes its minimum at η = 0 (and

η = π). Since Pω extends ω, this proves (5.6).
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Now, for x ∈ R and δ > 0,

Pω(x) = ω(x) ≤ 1

2π

∫ 2π

0

ω(x+ δeiθ) dθ ≤ 1

2π

∫ 2π

0

Pω(x+ δeiθ) dθ,

which implies that Pω is subharmonic on C. □

5.3. Consequences of properties of weight sequences for PM . If M,N are
weight sequences such that M ≺sω1

N , then one easily infers the existence of K ≥ 1
such that

ωM (z + w) ≤ ωN (z) + ωN (w) +K, z,w ∈ C. (5.7)

Moreover, if M,N are non-quasianalytic, there is a constant C ≥ 1 such that

PM (z) ≤ PN (z) + C, z ∈ C. (5.8)

Lemma 5.6. Let M and N be weight sequences such that M is non-quasianalytic
and M ≺sω1

N . Then for all ε > 0 there exists K > 0 such that

PM (x+ iy) ≤ ωN (x) + εy +K, x+ iy ∈ C.

Proof. Cf. [7, Lemma 2.2] with the obvious changes. □

Having this we prove the following mixed version of [22, Lemma 1.9].

Lemma 5.7. Let M (i), 1 ≤ i ≤ 3, be non-quasianalytic weight sequences with
M (1) ≺sω1

M (2) ≺sω1
M (3). Then there exists A > 0 such that

PM(1)(z + w) ≤ PM(3)(z) +A, z, w ∈ C, |w| ≤ 1.

Proof. First observe that PM has the following alternative form

PM (x+ iy) =
1

π

∫ ∞

−∞

ωM (|y|t+ x)

t2 + 1
dt, (y ̸= 0). (5.9)

Now take w = u + iv ∈ C with |w| ≤ 1 and z = x + iy ∈ C with y > 1. Then
Im(z + w) = y + v > 0 and, by (5.7),

PM(1)(z + w) =
1

π

∫ ∞

−∞

ωM(1)((y + v)t+ x+ u)

t2 + 1
dt

≤ 1

π

∫ ∞

−∞

ωM(2)(yt+ x) + ωM(2)(vt+ u) +K

t2 + 1
dt

≤ PM(2)(z) +K
1

π

∫ ∞

−∞

ωM(2)(|t|+ 1) + 1

t2 + 1
dt︸ ︷︷ ︸

=:B>1

,

since K ≥ 1 and ωM(2)(vt+u) = ωM(2)(|vt+u|) ≤ ωM(2)(|v||t|+|u|) ≤ ωM(2)(|t|+1).
By (5.8), the choice A = BK+C ′ establishes the claim for y > 1, and by symmetry
for y < −1. If |y| ≤ 1, then Lemma 5.6 and (5.7) yield constants Ki ≥ 1 such that

PM(1)(z + w) ≤ ωM(2)(x+ u) +K1 ≤ ωM(3)(x) +K2,

and (5.6) finishes the proof. □

The effect of derivation closedness on PM is captured in the next lemma.

Lemma 5.8. Let l ∈ N and let M (k), for 1 ≤ k ≤ l + 1, be weight sequences such
that dc(M (k),M (k+1)) < ∞ for all k. Then there exists C > 0 such that

PM(l+1)(z) + log(1 + |z|l) ≤ PM(1)(Cz) + C, z ∈ C.
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Proof. By Lemma 2.4, we have, for some C > 0,

σ(t) := ωM(l+1)(t) + log(1 + tl) ≤ ωM(1)(Ct) + C, t ≥ 0.

It is easy to see that σ is a pre-weight function. By monotonicity and additivity of
Pω in ω, and (5.6) applied to log(1 + tl), we infer

PM(l+1)(z) + log(1 + |z|l) ≤ Pσ(z) ≤ PM(1)(Cz) + C

and are done. □

5.4. Scheme of the proof of Theorem 5.1. The key is the following proposition.

Proposition 5.9 ([6, Corollary 2.3]). Let E,F,G be Fréchet–Schwartz spaces and
let T ∈ L(E,F ) and R ∈ L(G,F ) have dense range. Assume that F ′ endowed with
the initial topology with respect to T t : F ′ → E′ is bornological. Then the following
conditions are equivalent:

(1) R(G) ⊆ T (E).
(2) If B ⊆ F ′ is such that T t(B) is bounded in E′, then Rt(B) is bounded in

G′.

E F G E′ F ′ G′T R T t Rt

Let M(≼)N be weight matrices, N derivation closed and non-quasianalytic. We
will apply Proposition 5.9 to

E(N)(R) Λ(N) Λ(M)j∞0 incl (5.10)

By Theorem 4.7 and Theorem 4.8, we have the following commuting diagram

E(N)(R)′ (Λ(N))′ (Λ(M))′

AΩ+
N

AΩN
AΩM

F

(j∞0 )t

S

inclt

S

incl incl

(5.11)

where the vertical arrows are isomorphisms. This will lead to

Proposition 5.10. Let M(≼)N be weight matrices, N derivation closed and non-
quasianalytic. Then the following conditions are equivalent:

(1) Λ(M) ⊆ j∞0 E(N)(R).
(2) If B ⊆ AΩN

is bounded in AΩ+
N
, then B is bounded in AΩM

.

We will prove Proposition 5.10 in Section 5.5. In Section 5.6 we will make the
connection between condition (2) and the right-hand side of (L), and thus complete
the proof of Theorem 5.1.

5.5. Proof of Proposition 5.10. The proof is based on the following Phragmén–
Lindelöf theorem; cf. [3, Theorem 6.5.4].

Theorem 5.11. Let f be holomorphic in the upper half plane and continuous up
to the boundary. Assume that the zeros of f have no finite limit point, and

lim inf
r→∞

sup|z|=r log |f(z)|
r

< ∞,

∫ ∞

−∞

max(0, log |f(t)|)
1 + t2

dt < ∞. (5.12)
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Then (writing z = x+ iy)

log |f(z)| ≤ y

π

∫ ∞

−∞

log |f(t)|
(t− x)2 + y2

dt+
2y

π
lim
r→∞

1

r

∫ π

0

log |f(reiθ)| sin(θ) dθ.

Every function f ̸≡ 0 in AΩN
, or AΩ+

N
, satisfies the assumptions of Theorem 5.11.

Indeed, since f is entire, its zeros cannot have any finite limit point unless f ≡ 0.
Since all N ∈ N are non-quasianalytic and so ωN (t) = o(t), see Section 2.3, also
the conditions (5.12) are clear.

A direct application of this result yields the following corollary.

Corollary 5.12. Let N be a non-quasianalytic weight sequence. Let f ∈ H(C) be
such that, for some positive integer k,

log |f(z)| = o(|z|) as |z| → ∞ and log |f(x)| ≤ ωN (kx), x ∈ R.

Then

|f(z)| ≤ ePN (kz), z ∈ C.

Proof of Proposition 5.10. We have to verify the assumptions of Proposition 5.9
with the choices of (5.10).

We saw in the proof of Theorem 4.8 that Λ(N) and Λ(M) are Fréchet–Schwartz
spaces. For E(N)(R), this is a consequence of the compactness of the inclusions

EN
( 1
k+1

)
, 1
k+1 (K) ↪→ EN( 1

k
), 1k (K) for compact intervals K ⊆ R (cf. [11, §22, Satz

3.1]); here EM,a(K) denotes the normed space of all functions f ∈ C∞(K) such
that ∥f∥MK,a < ∞.

Both maps in (5.10) have dense range, since the finite sequences are dense in
Λ(N).

Next we prove that (Λ(N))′ endowed with the initial topology with respect to
(j∞0 )t : (Λ(N))′ → E(N)(R)′ is bornological. By (5.11), this amounts to showing
that

AΩN
endowed with the trace topology of AΩ+

N
is bornological. (5.13)

To prove (5.13), we set

ω(k)(z) := ω
N( 1

k
)(z), Ak := Ak| Im z|+ω(k)(kz).

For every k ∈ N≥1, there exists l > k such that Ak ↪→ Al is compact; cf. Section 4.2.
Thus, by [6, Proposition 2.6(2) ⇔ (3)], (5.13) holds if and only if⋃

k∈N≥1

Y
Ak

k = AΩN

A
Ω
+
N , where Yk := AΩN

∩Ak. (5.14)

The inclusion
⋃

k∈N≥1
Y

Ak

k ⊆ AΩN

A
Ω
+
N is clear and we are left to prove the converse.

To this end, we will show the two inclusions

AΩN

A
Ω
+
N ⊆ APN

⊆
⋃

k∈N≥1

Yk
Ak

, (5.15)

where we put P (k) := Pω(k) and PN :=
(
z 7→ P (k)(kz)

)
k
.

Let us start with the first inclusion in (5.15). By (5.6) and Lemma 5.6 (and
Corollary 2.7), for each k ∈ N≥1 there exist l ∈ N≥1 and A > 0 such that

ω(k)(z) ≤ P (k)(z) ≤ ω(l)(z) + | Im z|+A, z ∈ C. (5.16)
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This shows AΩN
⊆ APN

⊆ AΩ+
N
. Thus it suffices to show that APN

is closed

in AΩ+
N
, i.e., APN

∩ Ak is closed in Ak for all k (cf. [11, §25, Satz 1.2]). So let

f ∈ APN
∩Ak

Ak
. Then there is a sequence fj ∈ APN

∩ Ak converging to f in Ak.
Clearly, there exists C > 0 such that

|fj(z)| ≤ Cek| Im z|+ω(k)(kz), z ∈ C, j ∈ N.

Since fj ∈ APN
, there exist Cj > 0 and kj such that

|fj(z)| ≤ Cje
P (kj)(kjz), z ∈ C,

consequently, log |fj(z)| = o(|z|) as |z| → ∞. Now Corollary 5.12 implies that all
fj are contained and uniformly bounded in some step of APN

. This shows that
f ∈ APN

, and we are done.
It remains to prove the second inclusion in (5.15). To this end, we use [39,

Theorem 1] which states the following: Let (φj)j be an increasing sequence of sub-
harmonic functions on C converging to some subharmonic function φ, and assume
that e−φ1 is locally integrable on C. Then any function in A2

φ can be approximated

in L2
φ(z)+log(1+|z|2) by a sequence in

⋃
k∈N≥1

A2
φk(z)+log(1+|z|2).

Let f ∈ APN
. By Lemma 4.1, there exists k ∈ N≥1 such that f ∈ A2

φ, where

φ(z) := 2P (k)(kz) + log(1 + |z|4). For this k, we introduce the function ωj by

ωj(t) := 2ω(k)(kt), |t| ≤ j, ωj(t) := aj log |t|+ bj , |t| ≥ j,

where aj , bj ∈ R are chosen such that ωj is continuous, increasing, and t 7→ ωj(e
t)

is convex. Then
(
φj(z) := Pωj

(z) + log(1 + |z|4)
)
j
is an increasing sequence of

subharmonic functions converging to φ; cf. Remark 5.4. Thus there is a sequence
(fj)j such that fj ∈ A2

φj(z)+log(1+|z|2) and fj → f in A2
φ(z)+log(1+|z|2). By (5.16)

and Lemma 2.4, there exist s ∈ N≥1 and K ≥ 1 such that

φ(z) + log(1 + |z|2) ≤ 2ω(l)(kz) + 2k| Im z|+ log(1 + |z|4) + log(1 + |z|2) + 2A

≤ 2ω(s)(sz) + 2s| Im z|+K

for all z ∈ C so that A2
φ(z)+log(1+|z|2) ↪→ A2

2ω(s)(sz)+2s| Im z|. By Lemma 5.7 and

(5.16), there exist t ∈ N≥1 and L ≥ 1 such that

2ω(s)(s(z + u)) + 2s| Im(z + u)| ≤ 2ω(t)(tz) + 2t| Im z|+ L, z, u ∈ C, |u| ≤ 1.

Then Lemma 4.1 implies A2
φ(z)+log(1+|z|2) ↪→ Aω(t)(tz)+t| Im z| = At. Thus fj → f

in At. Since Pωj
(z) = O(log |z|) as |z| → ∞, all fj are actually polynomials and

hence contained in Yt. So also the second inclusion in (5.15) is proved. □

5.6. Proof of Theorem 5.1. Let M(≼)N be weight matrices, N derivation closed
and non-quasianalytic; cf. Lemma 5.3. We write ω(k)(z) := ω

N( 1
k

)(z).

We need the following lemma.

Lemma 5.13. Let aj ≥ 1 be a sequence tending to ∞ and k0 a positive integer.
There exist a sequence of polynomials (pj)j and k ∈ N≥k0

such that pj(iaj) =

eP
(k0)(iaj) and

|pj(z)| ≤ CeP
(k)(Dz), z ∈ C, j ≥ 1, (5.17)

with uniform constants C,D > 0.



26 D.N. NENNING, A. RAINER, AND G. SCHINDL

Proof. We follow closely the arguments in the proof of [22, Proposition 2.3]. Let

k1 ≤ k2 be chosen such that N ( 1
k0

) ≺sω1
N ( 1

k1
) ≺sω1

N ( 1
k2

); cf. Corollary 2.7. We
can find positive numbers Aj , Bj , and Rj such that

ωj(t) :=

{
ω(k2)(t), |t| ≤ Rj ,

Aj log |t|+Bj , |t| > Rj ,

is continuous, increasing, t 7→ ωj(e
t) is convex, ωj ≤ ω(k2), and

sup
|z−iaj |≤1

|P (k2)(z)− Pωj
(z)| ≤ 1

j
, for all j; (5.18)

cf. Remark 5.4. Let φ : C → [0, 1] be a C∞-function with support contained in the
unit disc and φ(z) = 1 for |z| ≤ 1

2 . As in [22], we set

uj(z) :=
(
1− z

iaj

)−1

eP
(k0)(iaj) ∂φ(z − iaj).

By Lemma 5.7, there is A > 0 such that, for all j,

P (k0)(iaj) ≤ P (k2)(z) +A, |z − iaj | ≤ 1. (5.19)

Thus, there exists M ≥ 1 such that for all j we have∫
C
|uj(z)|2e−2Pωj

(z)−log(1+|z|2)dλ(z)

=

∫
|z−iaj |≤1

|uj(z)|2e−2Pωj
(z)−log(1+|z|2)dλ(z) ≤ M.

Since ∂uj = 0, we infer from [13, Theorem 4.4.2] the existence of vj ∈ C∞(C) with
∂vj = uj such that ∫

C
|vj(z)|2e−2Pωj

(z)−3 log(1+|z|2) dλ(z) ≤ M.

Then

pj(z) := φ(z − iaj)e
P (k0)(iaj) −

(
1− z

iaj

)
vj(z)

is entire and pj(iaj) = eP
(k0)(iaj).

We claim that there exists M ′ > 0 such that, for all j,∫
C
|pj(z)|2e−2Pωj

(z)−4 log(1+|z|2)dλ(z) ≤ M ′. (5.20)

Indeed, by (5.19) and (5.18),∫
C
|φ(z − iaj)|2e2P

(k0)(iaj)e−2Pωj
(z)−4 log(1+|z|2)dλ(z)

≤e2A
∫
|z−iaj |≤1

e2(P
(k2)(z)−Pωj

(z))−4 log(1+|z|2)dλ(z)

≤e2A
∫
|z−iaj |≤1

e
2
j −4 log(1+|z|2)dλ(z),

which is bounded in j. And, since |1− z
iaj

|2 ≤ 2(1 + |z|2),∫
C

∣∣∣1− z

iaj

∣∣∣2|vj(z)|2e−2Pωj
(z)−4 log(1+|z|2)dλ(z)
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≤ 2

∫
C
|vj(z)|2e−2Pωj

(z)−3 log(1+|z|2)dλ(z) ≤ 2M.

This yields (5.20). Since 2Pωj
+ 4 log(1 + |z|2) = O(log(1 + |z|2)) as |z| → ∞, we

infer that pj is actually a polynomial.

Let us show (5.17). Recall that Pωj ≤ P (k2). By Lemma 5.8, we find k3 ∈ N≥1

and K > 0 such that

P (k2)(z) + log(1 + |z|2) ≤ P (k3)(k3z) +K, z ∈ C.

Together with (5.20) this yields that (pj)j is bounded in A2
2P (k3)(k3z)

. Take integers

k4 ≤ k5 such that N ( 1
k3

) ≺sω1
N ( 1

k4
) ≺sω1

N ( 1
k5

). By Lemma 5.7, there is K1 > 0
such that

2P (k3)(k3(z + w)) ≤ 2P (k5)(k5z) +K1, z, w ∈ C, |w| ≤ 1.

Combining this with Lemma 4.1, we find that (pj)j is bounded in AP (k5)(k5z)
, which

shows (5.17) and thus finishes the proof. □

Proof of Theorem 5.1. By Proposition 5.10, we need to show that the following
conditions are equivalent:

(1) ∀y > 0 ∃x > 0 : M (x) ≺L N (y).
(2) If B ⊆ AΩN

is bounded in AΩ+
N
, then B is bounded in AΩM

.

(1) ⇒ (2) Let B ⊆ AΩN
be bounded in A+

ΩN
. So there exist C > 0 and k ∈ N≥1

such that

|f(z)| ≤ Cek| Im z|+ω(k)(kz), z ∈ C, f ∈ B,

where we again use the notation ω(k)(z) := ω
N( 1

k
)(z). Since B ⊆ AΩN

, we have

|f(z)| ≤ Cfe
ω(kf )(kfz), z ∈ C,

which yields log |f(z)| = o(|z|) as |z| → ∞. Then Corollary 5.12 implies

|f(z)| ≤ CeP
(k)(kz), z ∈ C, f ∈ B,

where P (k) := Pω(k) . By (1) (and the arguments after (5.6)), there exist l ∈ N≥1

and K > 0 such that

P (k)(kz) ≤ P (k)(ik|z|) ≤ ω
M( 1

l
)(lz) +K, z ∈ C.

This shows that B is bounded in AΩM
.

(2) ⇒ (1) We argue by contradiction. Suppose that there exist k0 ∈ N≥1 and a
sequence of real numbers aj ≥ 1 tending to infinity such that for all j

P (k0)(iaj) ≥ ω
M

( 1
j
)(jaj) + j. (5.21)

By Lemma 5.13, there is a sequence of polynomials (pj)j and k ∈ N≥k0
such that

pj(iaj) = eP
(k0)(iaj). This gives the desired contradiction: The sequence (pj)j is

contained in AΩN
, since log(|z|) = o(ω(k)(z)) as |z| → ∞. By (5.17) and Lemma 5.6

(in view of Corollary 2.7), (pj)j is bounded in AΩ+
N
. But, by (5.21), for every fixed

l ∈ N≥1 and j ≥ l, we have

pj(iaj) = exp
(
P (k0)(iaj)

)
≥ ej exp

(
ω
M

( 1
j
)(jaj)

)
≥ ej exp

(
ω
M( 1

l
)(laj)

)
.

Thus (pj)j is unbounded in every step of the inductive limit defining AΩM
and

hence in AΩM
, the limit being regular due to Corollary 4.4. □
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5.7. Theorem 5.1 without derivation closedness. If we do not require deriva-
tion closedness in Theorem 5.1 for N, we still can infer some information on the
image of the Borel map, but for a (in general) smaller class. Let us be more

precise. For a weight matrix N = (N ( 1
k ))k∈N≥1

, we may consider the matrix

N(dc) = (N
( 1
k )

(dc))k∈N≥1
consisting of “shifted” sequences:

(N
( 1
k )

(dc))j := N
( 1
k )

j−k for j ≥ k, (N
( 1
k )

(dc))j := 1 for j < k.

Then N(dc) is easily seen to be derivation closed, and N
( 1
k )

(dc) ≤ N ( 1
k ) for all k. (For a

single weight sequence N , we may still perform this construction with N ( 1
k ) := N

for all k which leads to a derivation closed matrix N(dc) such that E(N(dc)) ⊆ E(N).)
We get the following version of Theorem 5.1.

Theorem 5.14. Let M,N be weight matrices. Then

Λ(M) ⊆ j∞0 E(N(dc))(R)
⇐⇒ ∀y > 0 ∀n ∈ N ∃x,C > 0 ∀t ≥ 0 : PN(y)(it) + log(1 + tn) ≤ ωM(x)(Ct) + C.

Proof. Observe that

ω
N( 1

n
)(t) + log(1 + tn)− C ≤ ω

N
( 1
n

)

(dc)

(t) ≤ ω
N( 1

n
)(t) + log(1 + tn) + C.

These inequalities transfer also to the respective harmonic extensions. And this
immediately yields the result via an application of Theorem 5.1. □

6. Comparison and conclusions

Let us apply our results to Denjoy–Carleman and Braun–Meise–Taylor classes
and compare them with the known classical extension results.

6.1. Denjoy–Carleman classes. Taking M = (M) and N = (N) in Theorem 3.1,
we recover the Beurling result of [37] (see also [17]).

Remark 6.1. It might be irritating that N = (N) clearly fails (3.2), which was
used in the proof of Theorem 3.1 in a crucial way, but Lemma 2.5 associates with N
an equivalent weight matrix with the desired properties (which consists of infinitely
many different weight sequences that are however all equivalent to N).

Let us now discuss Theorem 5.1 in this special setting. Let M,N be weight
sequences, and N in addition derivation closed, such that (mk)

1/k and (nk)
1/k tend

to ∞. Let M = (M (x))x>0, N = (N (y))y>0 be the weight matrices equivalent to
M , N , respectively, provided by Lemma 2.5. Thus, for each k ∈ N≥1 there are
constants Ak, Bk > 0 such that, for all t ≥ 0,

ωM (2kt)− log(Bk) ≤ ω
M( 1

k
)(t) ≤ ωM (2kt)− log(Ak),

ωN (2kt)− log(Bk) ≤ ω
N( 1

k
)(t) ≤ ωN (2kt)− log(Ak),

and consequently,

PN (2kt)− log(Bk) ≤ P
N( 1

k
)(t) ≤ PN (2kt)− log(Ak).

This now shows that the right-hand side of (L) reduces to

∃C > 0 ∀t ≥ 0 : PN (it) ≤ ωM (Ct) + C,

i.e., M ≺L N .
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In this case, Theorem 5.1 specializes to a version of [20, Theorem 2.3] (see also
the remarks before Corollary 2.4 in said paper). Incorporating the Roumieu case
(see [37] and [17]) and the implications of Theorem 3.1, we conclude

Theorem 6.2. Let M,N weight sequences, N derivation closed, with (mk)
1/k → ∞

and (nk)
1/k → ∞. Then the following are equivalent:

(1) Λ(M) ⊆ j∞0 E(N)(R).
(2) Λ{M} ⊆ j∞0 E{N}(R).
(3) M ≺L N .
(4) M ≺SV N .

If M has moderate growth, then the conditions are also equivalent to

(5) There is C > 0 such that κN (s) = O(ωM (Cs)) as s → ∞.

In fact, that (3) implies (5) follows from (5.3). And, for (5) ⇒ (3) note that
moderate growth of M is equivalent to

∃H ≥ 1 ∀t ≥ 0 : 2ωM (t) ≤ ωM (Ht) +H,

see [19, Proposition 3.6], which allows to “move constant factors in front of ωM to
its argument”.

Finally, we want to make the connection to the condition M ≺γ1 N defined by

sup
j≥1

µj

j

∑
k≥j

1

νk
< +∞.

Note that M ≺γ1 M is the condition (γ1) in [25] and (M.3) in [19]. If M is a weight
sequence, then M ≺γ1

M and M ≺SV M are equivalent (see [37, Theorem 3.6] and
[17, Theorem 5.2]), but in the mixed setting they fall apart, in general. For weight
sequences M,N such that M ≤ CN for some C ≥ 1 we have that M ≺γ1

N implies
M ≺SV N . If additionally M has moderate growth, then M ≺γ1

N if and only if
M ≺SV N since these conditions persist if M (or N) is replaced by an equivalent
weight sequence and since M has moderate growth if and only if µk ≤ C1(Mk)

1/k

(see e.g. [29, Lemma 2.2]). Thus, under this additional requirement on M , if
Mk ≤ CNk, then also µk ≤ C2νk. Invoking [31, Lemma 5.7], we see that, under
these circumstances, M ≺γ1

N implies κN (s) = O(ωM (s)) as s → ∞ as well.
So we have the following supplement.

Supplement 6.3. In the setting of Theorem 6.2, if M has moderate growth and
M ≤ CN , then the conditions (1)–(5) are further equivalent to each of the following
conditions:

(6) M ≺γ1
N .

(7) κN (s) = O(ωM (s)) as s → ∞.

Clearly, (5) and (7) are equivalent if ωM is a weight function, but in general it
is just a pre-weight function.

6.2. Braun–Meise–Taylor classes. Let Σ = (S(x))x>0 and Ω = (W (x))x>0

be the matrices associated with the weight functions σ and ω, respectively. By
Lemma 2.2, the basic assumptions in Theorem 5.1 hold for the choices M = Σ,
N = Ω, provided that ω(t) = o(t) and σ(t) = o(t) as t → ∞. By (2.5),

Λ(σ) ∼= Λ(Σ), E(Ω)(R) ∼= E(ω)(R).
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In this case, the right-hand side of (L), i.e., for all y > 0 there is x > 0 with
S(x) ≺L W (y) which amounts to

PW (y)(is) ≤ ωS(x)(Cs) + C, s ≥ 0, (6.1)

is equivalent to (5.4), i.e., κω(t) = O(σ(t)) as t → ∞. Indeed, by Lemma 2.2, we
have ω ∼ ωW (x) , σ ∼ ωS(x) and thus, by definition, κω ∼ κW (x) and Pω ∼ PW (x)

for all x > 0, whence one implication follows from (5.3). Conversely, let y > 0 be
given. Then, for all x > 0,

PW (y)(is)
(5.3)

≤ 4

π
κW (y)(s)

(2.6)

≤ 4

yπ
κω(s) ≤

4C

yπ
(σ(s) + 1)

(2.6)

≤ 4C

yπ
(2xωS(x)(s) +Dx + 1),

and (6.1) follows if we put x := yπ
8C .

In this case, Theorem 5.1 specializes to [6, Theorem 3.6]. Incorporating also the
Roumieu part [6, Theorem 3.7] (see also [24, Section 5]) and the implications of
Theorem 3.1, we find

Theorem 6.4. Let ω, σ be weight functions satisfying ω(t) = o(t), σ(t) = o(t) as
t → ∞ and let Ω = (W (x))x>0, Σ = (S(x))x>0 be the associated weight matrices.
Then the following conditions are equivalent:

(1) Λ(σ) ⊆ j∞0 E(ω)(R).
(2) Λ{σ} ⊆ j∞0 E{ω}(R).
(3) κω(t) = O(σ(t)) as t → ∞.
(4) For all y > 0 there is x > 0 such that S(x) ≺SV W (y).
(5) For all y > 0 there is x > 0 such that S(x) ≺L W (y).
(6) There are x, y > 0 such that κW (y)(t) = O(ωS(x)(t)) as t → ∞.

Note that any of the six conditions implies that ω is non-quasianalytic; cf.
Lemma 5.3.

Appendix A. Density of entire functions

The following lemma is probably well-known, but we include a proof for the con-
venience of the reader. The proof closely follows the arguments in [15, Proposition
3.2] and [12, Proposition 3.2].

Lemma A.1. Let M be a weight sequence with (mj)
1/j → ∞. Let f ∈ E(M)(R),

and Ik := [−k, k]. Then there exists a sequence of entire functions fj such that
∥f − fj∥MIk,m,r → 0 for all m ∈ N and r > 0; see (4.4) for the definition of the
seminorm.

Proof. Let χ ∈ C∞(R) be a function with compact support and 0 ≤ χ ≤ 1. Suppose

that χ is 1 on [−k − 1, k + 1] and 0 outside [−k − 2, k + 2]. Set Ej(z) :=
√

j
π e

−jz2

and fj := Ej ∗ χf . Then fj is entire. It is easily seen by induction on p that

f
(p)
j (x) = Ej ∗ χf (p)(x) +

p∑
ν=1

E
(p−ν)
j ∗ χ′f (ν−1)(x).
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This yields

|(f − fj)
(p)(x)| ≤ |f (p)(x)− Ej ∗ χf (p)(x)|+

p∑
ν=1

|E(p−ν)
j ∗ χ′f (ν−1)(x)|.

For |x| ≤ k, we find (see [12, (3.5)])

|f (p)(x)− Ej ∗ χf (p)(x)| ≤ C0√
j

(
sup

|ξ|≤k+1

|f (p+1)(ξ)|+ 2 sup
|ξ|≤k+2

|f (p)(ξ)|
)
,

for some absolute constant C0. Moreover, (see [12, (3.6) and (3.7)])

|E(p−ν)
j ∗ χ′f (ν−1)(x)| ≤ D sup

|ξ|≤k+2

|f (ν−1)(ξ)| sup
|y|≥1

|E(p−ν)
j (y)|

≤ D sup
|ξ|≤k+2

|f (ν−1)(ξ)|(C1(p− ν))p−ν

√
j

π
e−C2j

for some constant D depending on χ and absolute constants C1, C2 > 0. Since
(mp)

1/p → ∞, there is a constant C3 such that (C1(p+ l))p+l ≤ C3(
r
2 )

pMp for all
p ∈ N and 0 ≤ l ≤ m. Altogether, we find, for |x| ≤ k, p ∈ N, and 0 ≤ l ≤ m,

|(f − fj)
(p+l)(x)| ≤ 3C0√

j
∥f∥MIk+2,m+1,rr

pMp

+D

√
j

π
e−C2j∥f∥MIk+2,m,r/2

(
C3

p∑
ν=1

( r2 )
p−1Mν−1Mp−ν + C4

p+l∑
ν=p+1

( r2 )
pMp

)
≤ ∥f∥MIk+2,m+1,rr

pMp

(3C0√
j
+DC5

√
j

π
e−C2j

)
for absolute constants C4, C5. This implies ∥f − fj∥MIk,m,r → 0 as j → ∞. □

References

[1] A. Beurling, Quasi-analyticity and general distributions, Lecture notes, AMS Summer Insti-

tute, Stanford, 1961.
[2] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6

(1966), 351–407 (1966).

[3] R. P. Boas, Entire functions, Academic Press, 1954.
[4] C. Boiti, D. Jornet, A. Oliaro, and G. Schindl, Nuclear global spaces of ultradifferentiable

functions in the matrix weighted setting, Banach J. of Math. Anal. 15 (2021), no. 1, art. no.
14.

[5] J. Bonet, R. Meise, and S. N. Melikhov, A comparison of two different ways to define classes

of ultradifferentiable functions, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 424–444.
[6] J. Bonet, R. Meise, and B. A. Taylor, On the range of the Borel map for classes of non-

quasianalytic functions, North-Holland Mathematics Studies - Progress in Functional Anal-
ysis 170 (1992), 97–111.

[7] R. W. Braun, R. Meise, and B. A. Taylor, Ultradifferentiable functions and Fourier analysis,
Results Math. 17 (1990), no. 3-4, 206–237.

[8] L. Carleson, On universal moment problems, Math. Scand. 9 (1961), 197–206.
[9] J. Chaumat and A.-M. Chollet, Surjectivité de l’application restriction à un compact dans
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[23] R. Meise and D. Vogt, Einführung in die Funktionalanalysis, Friedr. Vieweg und Sohn Ver-

lagsgesellschaft mbH, Braunschweig/Wiesbaden, 1992.

[24] D. N. Nenning, A. Rainer, and G. Schindl, On optimal solutions of the Borel problem in the
Roumieu case, 2021, available online at https://arxiv.org/abs/2112.08463.pdf, to appear

in: Bull. Belg. Math. Soc. - Simon Stevin.
[25] H.-J. Petzsche, On E. Borel’s theorem, Math. Ann. 282 (1988), no. 2, 299–313.

[26] A. Rainer, On the extension of Whitney ultrajets of Beurling type, Results Math. (2021),

Article Number 36, https://doi.org/10.1007/s00025-021-01347-z.
[27] , Ultradifferentiable extension theorems: a survey, Expositiones Mathematicae (2021),

https://doi.org/10.1016/j.exmath.2021.12.001.

[28] A. Rainer and G. Schindl, Composition in ultradifferentiable classes, Studia Math. 224
(2014), no. 2, 97–131.

[29] , Extension of Whitney jets of controlled growth, Math. Nachr. 290 (2017), no. 14–15,

2356–2374.
[30] , On the Borel mapping in the quasianalytic setting, Math. Scand. 121 (2017), no. 2,

293–310.
[31] , On the extension of Whitney ultrajets, Studia Math. 245 (2019), no. 3, 255–287.

[32] , On the extension of Whitney ultrajets, II, Studia Math. 250 (2020), no. 3, 283–295.

[33] G. Schindl, On subadditivity-like conditions for associated weight functions, Bull. Belg. Math.
Soc. Simon Stevin, 28 (2022), no. 3, 399–427.

[34] , Exponential laws for classes of Denjoy-Carleman-differentiable mappings, 2014,

PhD Thesis, Universität Wien, available online at http://othes.univie.ac.at/32755/1/

2014-01-26_0304518.pdf.

[35] , Characterization of ultradifferentiable test functions defined by weight matrices in

terms of their Fourier transform, Note di Matematica 36 (2016), no. 2, 1–35.
[36] , On the maximal extension in the mixed ultradifferentiable weight sequence setting,

Studia Math. 263 (2022), no. 2, 209–240.
[37] J. Schmets and M. Valdivia, On certain extension theorems in the mixed Borel setting, J.

Math. Anal. Appl. 297 (2003), 384–403.

[38] B. A. Taylor, Analytically uniform spaces of infinitely differentiable functions, Comm. Pure
and Appl. Math. 26 (1971), 39–51.

[39] , On weighted polynomial approximation of entire functions, Pac. J. Math. 36 (1971),

523–539.

https://arxiv.org/abs/2112.08463.pdf
http://othes.univie.ac.at/32755/1/2014-01-26_0304518.pdf
http://othes.univie.ac.at/32755/1/2014-01-26_0304518.pdf


THE BOREL MAP IN THE MIXED BEURLING SETTING 33

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090

Wien, Austria.

Email address: david.nicolas.nenning@univie.ac.at
Email address: armin.rainer@univie.ac.at

Email address: gerhard.schindl@univie.ac.at


	1. Introduction
	2. Ultradifferentiable classes and weights
	2.1. Weight sequences
	2.2. Weight functions
	2.3. The associated weight function
	2.4. Weight matrices
	2.5. Weight matrices associated with pre-weight functions
	2.6. Order relations of weight matrices
	2.7. Moderate growth and derivation closedness
	2.8. Absorbing exponential growth
	2.9. Strong (1) condition

	3. Reduction to the Roumieu case
	3.1. Auxiliary results
	3.2. Scheme of proof
	3.3. Proof of thm:mainthm1()
	3.4. Proof of thm:mainthm1()

	4. The duals of E(M)(R) and (M)
	4.1. Weighted spaces of entire functions
	4.2. The spaces AM+ and AM
	4.3. The dual of E(M)(R)
	4.4. The dual of (M)

	5. Proof by dualization
	5.1. Auxiliary results
	5.2. Properties of P, the (sub-)harmonic extension of  
	5.3. Consequences of properties of weight sequences for PM
	5.4. Scheme of the proof of thm:mainthm2
	5.5. Proof of lem:toshow
	5.6. Proof of thm:mainthm2
	5.7. Theorem 5.1 without derivation closedness

	6. Comparison and conclusions
	6.1. Denjoy–Carleman classes
	6.2. Braun–Meise–Taylor classes

	Appendix A. Density of entire functions
	References

