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Abstract. A function f is arc-smooth if the composite f◦c with every smooth

curve c in its domain of definition is smooth. On open sets in smooth manifolds

the arc-smooth functions are precisely the smooth functions by a classical
theorem of Boman. Recently, we extended this result to certain tame closed

sets (namely, Hölder sets and simple fat subanalytic sets). In this paper we

link, in a precise way, the cuspidality of the (boundary of the) set to the loss of
regularity, i.e., how many derivatives of f ◦ c are needed in order to determine

the derivatives of f . We also discuss how flatness of f ◦ c affects flatness of

f . Besides Hölder sets and subanalytic sets we treat sets that are definable in
certain polynomially bounded o-minimal expansions of the real field.

1. Introduction

A real valued function f is called arc-smooth if f ◦ c ∈ C∞ for each C∞-curve
c in the domain of definition of f . By a theorem of Boman [4], the arc-smooth
functions defined on open subsets of Rd (or of smooth manifolds) are precisely the
C∞-functions. In our recent paper [26], arc-smooth functions defined on closed sets
were studied and far-reaching extensions of Boman’s results were obtained:

(1) The arc-smooth functions on Hölder sets in Rd are precisely the restrictions
of the C∞-functions on Rd.

(2) The arc-smooth functions on simple fat closed subanalytic sets in Rd are
precisely the restrictions of the C∞-functions on Rd.

We also found analytic and ultradifferentiable analogs. A precursor for convex fat
sets (even in infinite dimensions) is due to Kriegl [15]: the arc-smooth functions
on convex sets X with non-empty interior X◦ are precisely the functions that are
smooth on X◦ such that the derivatives of all orders on X◦ extend continuously
to X. This is valid for functions between so-called convenient vector spaces, where
the interior and continuity are understood with respect to the c∞-topology (which
coincides with the trace of the Euclidean topology if X ⊆ Rd; cf. Section 2.3). Note
that closed fat convex sets are 1-sets (as defined below), in particular, Hölder sets.

By Hölder sets we mean closed sets that satisfy a uniform cusp property; see
Section 2. Recall that a set X ⊆ Rd is called fat if it is contained in the closure of
its interior: X ⊆ X◦. It is called simple if each x ∈ X has a basis of neighborhoods
U such that U ∩ X◦ is connected for all U ∈ U . In the terminology of [26], the
results (1) and (2) mean that Hölder sets and simple fat closed subanalytic sets are
A∞-admissible (just as open sets). These closed sets may have cusps (e.g. {(x, y) ∈
R2 : x ≥ 0, −x2 ≤ y ≤ x2}) and horns (e.g. {(x, y) ∈ R2 : x ≥ 0, x2 ≤ y ≤ 2x2}).
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2 A. RAINER

The sharpness of the cusps and horns is related to the loss of regularity implicit
in (1) and (2). In fact, to determine the derivatives of order n of an arc-smooth
function f at boundary points of X, derivatives of higher order N of the composites
f ◦ c are needed. In this paper, we will establish an explicit and generally optimal
connection between the cuspidality of the (boundary of the) sets and the discrep-
ancy between N and n. In the process, we shall also see how flatness of f ◦ c affects
flatness of f .

In order to formulate our results, we refine the notion of arc-smooth functions
to arc-differentiable functions.

1.1. Arc-differentiable functions. Let X be a non-empty subset of Rd. We
denote by C∞(R, X) the set of all C∞-curves c : R → Rd with c(R) ⊆ X. For a real
valued function f : X → R on X we consider

f∗C∞(R, X) :=
{
f∗c := f ◦ c : c ∈ C∞(R, X)

}
.

For k ∈ N and β ∈ (0, 1] we define

Ak,β(X) :=
{
f : X → R : f∗C∞(R, X) ⊆ Ck,β(R,R)

}
.

The elements of Ak,β(X) are called arc-differentiable functions (of class Ck,β) or
arc-Ck,β functions on X. Recall that Ck,β(R,R) is the space of k-times continuously
differentiable functions c : R → R such that the k-th derivative c(k) is locally β-
Hölder continuous.

For each β ∈ (0, 1],

A∞(X) :=
{
f : X → R : f∗C∞(R, X) ⊆ C∞(R,R)

}
=
⋂
k∈N

Ak,β(X).

The elements of A∞(X) are the arc-smooth functions on X. It is immediate from
the definition that arc-smooth mappings can be composed: if Xi ⊆ Rdi , i = 1, 2,
f ∈ A∞(X2), and φ = (φ1, . . . , φd2

) : X1 → X2 with φj ∈ A∞(X1), j = 1, . . . , d2,
then f ◦ φ ∈ A∞(X1).

Assume that X ⊆ Rd is a fat closed set so that X = X◦. By definition, Ck,β(X)
is the set of functions f : X → R such that

(1) f |X◦ ∈ Ck(X◦),
(2) all derivatives (f |X◦)(j) : X◦ → Lj(Rd,R), j ≤ k, have continuous exten-

sions f (j) : X → Lj(Rd,R) to X,
(3) f (k) is β-Hölder continuous on compact subsets of X.

By Ck(X) we mean the set of functions f : X → R satisfying (1) and (2), and
C∞(X) :=

⋂
k∈N Ck(X). These definitions also apply to open sets X; in that case

(2) is vacuous. (Note that the definition of C∞(X) differs from the one in [26] but
in most cases treated in this paper they are equivalent; cf. [26, Lemma 1.10].)

Let Y be a subset of X. Let Ak,β
Y (X) (resp. A∞

Y (X)) be the set of all f ∈ Ak,β(X)
(resp. f ∈ A∞(X)) such that for all y ∈ Y and all c ∈ C∞(R, X) with c(0) = y we
have

(f ◦ c)(j)(0) = 0 for j ≤ k (resp. j ∈ N).

Similarly, let Ck,β
Y (X) (resp. C∞

Y (X)) be the set of all f ∈ Ck,β(X) (resp. f ∈ C∞(X))
such that

f (j)|Y = 0 for j ≤ k (resp. j ∈ N).

Then we say that f is k-flat (resp. ∞-flat) on Y .
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The β-Hölder condition can be generalized to an ω-Hölder condition, where ω is
a modulus of continuity, i.e., an increasing subadditive function ω : [0,∞) → [0,∞)

such that limt→0 ω(t) = 0. In that case we write Ak,ω, Ak,ω
Y , Ck,ω, and Ck,ω

Y .

1.2. Main results. If X ⊆ Rd is an open set, then Ak,β(X) = Ck,β(X), by [4,
Theorem 2], Ak,ω(X) = Ck,ω(X), by [8, Théorème 1], and consequently A∞(X) =
C∞(X). We see that on open sets no loss of regularity occurs. Moreover, there
is no gain (or loss) in considering smooth plots p : Re → X ⊆ Rd of arbitrary
dimension e in the definition of Ak,β . We want to point out that the Hölder
condition on the derivative of highest order cannot be omitted without replacement:
f∗C∞(R, X) ⊆ Ck(R,R) does not guarantee f ∈ Ck(X). For instance, the map

f : R2 → R2 given by (x, y) 7→
(
x3−3xy2

x2+y2 , 3x
2y−y3

x2+y2

)
(or (r, θ) 7→ (r, 3θ) in polar

coordinates) is not differentiable at the origin, but f ◦ c is C1 for each C1-curve
c : R → R2; cf. [16, Example 3.3].

Let α ∈ (0, 1]. By an α-set we mean a closed fat set X ⊆ Rd such that X◦ has
the uniform α-cusp property. If X is compact, then this is equivalent to the fact
that X has α-Hölder boundary. A Hölder set is an α-set for some α ∈ (0, 1]. For
precise definitions see Section 2.2.

Note that α measures the ‘cuspidality’ of an α-set. We associate two integers
with α which measure the mentioned loss of regularity of arc-smooth functions on
α-sets:

p(α) :=

⌈
2

α

⌉
and q(α) :=

⌈
1

α

⌉
,(1.1)

where ⌈x⌉ is the least integer greater or equal x.

Theorem A. Let X ⊆ Rd be an α-set. Then:

(1) For all β ∈ (0, 1] and n ∈ N we have

Anp(α),β(X) ⊆ Cn, αβ
2q(α) (X).

More generally, if ω is a modulus of continuity, then

Anp(α),ω(X) ⊆ Cn,ω̃(X),

where ω̃(t) = ω(t
α

2q(α) ).

(2) If Y is any subset of X, then Anp(α),ω
Y (X) ⊆ Cn,ω̃

Y (X).

Note that ω̃, being the composite of two moduli of continuity, is again a modulus
of continuity. The loss of derivatives expressed by p(α) is essentially best possible,
see Lemma 3.2 and Example 5.1. In the Lipschitz case, where α = 1, p(α) = 2,

and q(α) = 1, also the degradation of the Hölder index β to β
2 is optimal, see

Example 5.4. There are many examples, where the degradation α
2q(α) can actually

be replaced by 1
2q(α) . We do not know whether in general the worse factor α

2q(α) is

really necessary or just an artefact of our proof; see Remark 4.2.
The supplement (2) is particularly interesting for Y = ∂X. The reason it is true

is that all boundary points x of an α-set X can be reached by C∞-curves in X that
vanish of finite order (at most p(α)) at x. See Example 6.7 for an interesting set
of finite cuspidality with a boundary point at which all C∞-curves in the set must
vanish to infinite order and hence cannot discriminate points of flatness.

Theorem A implies the following corollary the first part of which was also ob-
tained in [26].
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Corollary B. Let X ⊆ Rd be a Hölder set (and Y any subset of X). The elements
of A∞(X) (of A∞

Y (X)) are precisely the restrictions to X of C∞-functions on Rd

(that vanish to infinite order on Y ).

In the second part of the paper, we will extend our results to subanalytic sets
and, more generally, to sets that are definable in certain polynomially bounded o-
minimal expansions of the real field. These families of sets also admit horns which
are not possible for Hölder sets. The assumption that the o-minimal structure is
polynomially bounded is essential, since on an infinitely flat cusp X there are func-
tions f ∈ A∞(X) that are not of class C1, see [26, Example 10.4] and Example 5.1.

An important requirement of the proof is that the sets under consideration are
uniformly polynomially cuspidal (UPC); cf. [21]. Recall that a closed subset X ⊆ Rd

is UPC if there exist positive constants M,m and a positive integer N such that for
each x ∈ X there is a polynomial curve hx : R → Rd of degree at most N satisfying

(1) hx(0) = x,
(2) dist(hx(t),Rd \X) ≥Mtm for all x ∈ X and t ∈ [0, 1].

Note that (2) implies hx((0, 1]) ⊆ X◦. We may assume that m is a positive integer.
We call the reciprocal α = 1

m a UPC-index of X. It is again a measure for the
‘cuspidality’ of X.

Let X ⊆ Rd be a fat compact definable set, that means definable with respect to
a fixed polynomially bounded o-minimal expansion of the real field. We shall see
that if X admits smooth rectilinearization (defined in Section 6.6), then X is UPC
and we have the following theorem.

Theorem C. Let X ⊆ Rd be a simple fat compact definable set admitting smooth
rectilinearization and let α be a UPC-index of X. Let n ∈ N≥1 and β ∈ (0, 1]. Then

for each f ∈ Anp(α),β(X) (resp. f ∈ Anp(α),β
Y (X) where Y is any subset of X) the

Fréchet derivatives f (p), p ≤ n, are globally bounded on X◦ and for p ≤ n− 1 they
extend continuously to ∂X (and vanish on Y ). The statement remains true if β is
replaced by an arbitrary modulus of continuity ω.

Being definable in an polynomially bounded o-minimal structure, X is m-regular
for some m ∈ N≥1 and, consequently, f ∈ Cn−1, 1

m (X).
As a consequence of Theorem C we obtain

Corollary D. Let X ⊆ Rd be a simple fat compact definable set admitting smooth
rectilinearization (and Y any subset of X). The elements of A∞(X) (of A∞

Y (X))
are precisely the restrictions to X of C∞-functions on Rd (that vanish to infinite
order on Y ).

In particular, Theorem C and Corollary D hold for each simple fat compact
X ⊆ Rd that is subanalytic or definable in a structure RQ, where Q is a suitable
quasianalytic class; cf. [3, 28]. It is easy to see (cf. [26, Example 10.5]) that the
assumption that X be simple cannot be omitted; note that Hölder sets are simple by
definition. We do not know if the assumption of smooth rectifiability is necessary.

As a by-product of our proofs we obtain a result (Corollary 6.6) on weakly flat
functions on closed UPC sets (not necessarily simple or definable) in the spirit of
[29].

1.3. Invariance under diffeomorphisms. Let X ⊆ Rd be a closed fat set. Sup-
pose that φ : U → V is a C∞-diffeomorphism between open sets U, V ⊆ Rd with
X ⊆ U . Then Y := φ(X) is a closed fat set. Fix k ∈ N and β ∈ (0, 1].
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Now f ∈ Ak,β(Y ) if and only if f ◦ φ ∈ Ak,β(X). Indeed, if c ∈ C∞(R, Y ) and
f ◦ φ ∈ Ak,β(X), then φ−1 ◦ c ∈ C∞(R, X) and f ◦ c = f ◦ φ ◦ φ−1 ◦ c is of class

Ck,β . We also see easily that f ∈ Ak,β
φ(Z)(Y ) if and only if f ◦ φ ∈ Ak,β

Z (X), where

Z is any subset of X.
Moreover, f ∈ Ck,β(Y ) if and only if f ◦ φ ∈ Ck,β(X) and, more generally,

f ∈ Ck,β
φ(Z)(Y ) if and only if f ◦ φ ∈ Ck,β

Z (X). For, suppose that f ∈ Ck,β(Y ). Then

f |Y ◦ ∈ Ck(Y ◦) and φ|X◦ : X◦ → Y ◦ is C∞. Thus f ◦ φ|X◦ ∈ Ck(X◦) and its
derivatives up to order k can be computed by Faà di Bruno’s formula. In view
of this formula we see that f ◦ φ|X◦ and all its derivatives up to order k extend
continuously to ∂X, since this it true for f and φ and their respective derivatives.
Similarly, one checks that the k-th order derivative of f ◦φ satisfies a local β-Hölder
condition on X.

Clearly, invariance of Ck,β on closed fat sets holds even with respect to Ck,β-
diffeomorphisms. And we have invariance of

Ak,β(X) :=
{
f : X → R : f∗Ck,β(R, X) ⊆ Ck,β(R,R)

}
under Ck,β-diffeomorphisms. Indeed, the composite of Ck,β-maps is Ck,β , provided
that k ≥ 1; cf. [6, 6.2] or [20, Theorem 2.7]. The inclusions Ak,β(X) ⊆ Ak,β(X) and

A∞(X) :=
⋂

k∈N Ak,β(X) ⊆ A∞(X) are evident. Note that
√· ̸∈ A0,1([0,∞)), but√· ∈ A0,1([0,∞)), by Glaeser’s inequality (see (5.1)), but in general it is not clear if

the inclusions are strict. However, as a consequence of Corollary B and Corollary D
we have A∞(X) = A∞(X) for simple fat compact definable sets admitting smooth
rectilinearization or Hölder sets.

All this is also true if β is replaced by a general modulus of continuity ω.
Since all notions are local, we see that our results continue to hold if the set X

in question is replaced by a set that is locally diffeomorphic to X.

1.4. Related results connecting analytic properties of functions with the
geometry of their domain. The influence of the geometric properties of the
boundary of a domain on the analytic aspects of functions on that domain is well-
known. We want to mention some closely related results. In [5], the Sobolev–
Gagliardo–Nirenberg inequalities and Markov type inequalities are shown to be
valid on compact subanalytic domains if the inequalities are equipped with a suit-
able parameter which measures the cuspidality of the domain. Markov type in-
equalities play an important role in approximation theory and differential analysis,
since they are intimately connected to the Whitney extension property (WEP), i.e.,
the existence of a continuous linear extension operator of C∞ Whitney jets; cf.
[21, 22, 25, 5, 9]. UPC sets X ⊆ Rd satisfy the Markov inequality (see [21]): there
exist positive constants C, r such that for all polynomials p : Rd → R we have

(MI) sup
x∈X

|∇p(x)| ≤ C(deg p)r sup
x∈X

|p(x)|.

A compact set X ⊆ Rd has WEP if and only if a weaker inequality of Markov
type holds (see [9, Theorem 4.6] and (6.6)). All sets in our results fulfil WEP, in
particular, they form examples of Whitney manifold germs as introduced in [18];
see also [27] for a related concept.

1.5. Outline of the paper. In Section 2, we define Hölder sets and collect some
relevant properties. Theorem A and Corollary B will be proved in the Sections 3
and 4. While Theorem 3.4 deals with the continuous extension of derivatives of
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arc-differentiable functions to the boundary of a Hölder set, Theorem 4.1 addresses
their Hölder continuity. In Section 5, we explore the optimality and limitations of
Theorem A and show in particular that the loss of derivatives and degradation of
the Hölder index expressed by the integers p(α) and q(α) is generally best possible.
Section 6 is devoted to the study of arc-differentiable functions on definable set, in
particular, to the proofs of Theorem C and Corollary D.

1.6. Notation. We use N = {0, 1, 2, . . .} and N≥k = {k, k + 1, k + 2, . . .}. Let
e1, e2, . . . , ed be the standard unit vectors of Rd. We endow Rd with the Euclidean

norm |x| =
(∑d

i=1 x
2
i

)1/2
. The open ball in Rd with center x and radius r > 0 is

denoted by B(x, r) = {y ∈ Rd : |x− y| < r}. For a function f : U → R defined on
an open subset U of Rd let f (k)(x)(v1, . . . , vk) be the k-th order Fréchet derivative
at x ∈ U evaluated at the vectors v1, . . . , vk ∈ Rd. Then f (k)(x) is an element of
the space Lk(Rd,R) of k-linear mappings Rd × · · · ×Rd → R which we endow with
the operator norm ∥ · ∥Lk(Rd,R). We write dkvf(x) := ∂kt |t=0f(x+ tv) for the k-fold
directional derivative of f at x in direction v. We will make use of the standard
multi-index notation.

2. Hölder sets

In this section we review the uniform cusp property and Hölder sets.

2.1. Truncated α-cusps. Let us consider Rd = Rd−1 × R with the Euclidean
coordinates x = (x1, . . . , xd) = (x≤d−1, xd) = (x′, xd). Let α ∈ (0, 1] and r, h > 0.
The set

Γα
d (r, h) :=

{
(x′, xd) ∈ Rd−1 × R : |x′| < r, h

( |x′|
r

)α
< xd < h

}
is a truncated open α-cusp of radius r and height h.

Note that Γα
d (r, h) is the union of the images of all curves c(t) = (tx′, tαh),

t ∈ (0, 1), with |x′| < r. We could replace the (d − 1)-dimensional ball {|x′| < r}
by an open polyhedron P ⊆ Rd−1 containing the origin and consider the union
Πα

d (P, h) of the images of all curves c(t) = (tx′, tαh), t ∈ (0, 1), with x′ ∈ P . Then
there are radii r1 < r2 such that

(2.1) Γα
d (r1, h) ⊆ Πα

d (P, h) ⊆ Γα
d (r2, h).

2.2. Uniform cusp property and α-sets. Let α ∈ (0, 1]. We say that an open
set U ⊆ Rd has the uniform α-cusp property if for every x ∈ ∂U there exist ϵ > 0, a
truncated open α-cusp Γ = Γα

d (r, h), and an orthogonal linear map A ∈ O(d) such

that y +AΓ ⊆ U for all y ∈ U ∩B(x, ϵ).
Note that, by (2.1), we can equivalently replace Γα

d (r, h) by Πα
d (P, h), where P

is a polyhedron P ⊆ Rd−1 containing the origin.
By an α-set we mean a closed fat set X ⊆ Rd such that X◦ has the uniform

α-cusp property. Let H α(Rd) denote the collection of all α-sets in Rd. We say
that X ⊆ Rd is a Hölder set if it is an α-set for some α ∈ (0, 1] and denote by
H (Rd) the collection of all Hölder sets in Rd. The elements of H 1(Rd) we also
call Lipschitz sets in Rd.

Note that H 1(Rd) ⊊ H α(Rd) ⊊ H β(Rd) ⊊ H (Rd) if 1 > α > β > 0 (since

α > β if and only if Γα
d (r, h) ⊋ Γβ

d (r, h)).
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Remark 2.1. A bounded open set U ⊆ Rd has the uniform α-cusp property if and
only if U has α-Hölder boundary ; see [7, Theorem 6.9, p. 116] and [11, Theorem
1.2.2.2]. That means the following. At each point p ∈ ∂U there is an orthogonal
system of coordinates (x′, xd) and an α-Hölder function a = a(x′) such that in a
neighborhood of p the boundary of U is given by {xd = a(x′)} and the set U is of
the form {xd > a(x′)}.

The boundary of an α-set with α < 1 can be quite irregular. The Hausdorff
dimension dimHX of a compact X ∈ H α(Rd) is not larger than d− α, but there
are examples X ∈ H α(Rd) with dimHX = d− α. See [7, Theorem 6.10, p. 116].

Example 2.2. (1) The closure of a truncated open α-cusp Γα
d (r, h) or of Πα

d (P, h)
is an α-set.

(2) Let C ⊆ [0, 1] be the ternary Cantor set and let f : [0, 1] → R be defined
by f(x) := dist(x,C)α. Then the set X = {(x, y) ∈ R2 : −1 ≤ x ≤ 2, f(x) ≤ y ≤
2 if x ∈ [0, 1], 0 ≤ y ≤ 2 if x ̸∈ [0, 1]} is an α-set.

(3) Convex closed fat sets X ⊆ Rd are 1-sets.
(4) The horn-like set X = {(x, y) ∈ R2 : x ≥ 0, x2 ≤ y ≤ 2x2} is not a Hölder

set, but X is the image of the 1
2 -set {(x, y) ∈ R2 : x ≥ 0, |y| ≤ 1

2x
2} under the

diffeomorphism (x, y) 7→ (x, y + 3
2x

2) of R2.

(5) The set X = {(x, y) ∈ R2 : x ≥ 0, x3/2 ≤ y ≤ 2x3/2} is not a Hölder set
and there is no smooth diffeomorphism of R2 which maps X to a Hölder set. But
X is subanalytic. The same is true if the exponent 3/2 is replaced by any positive
rational number r that is neither an integer nor the reciprocal of an integer (in
which case we can argue as in (4)). Indeed, let r = p/q be such a rational number,
where p and q are coprime positive integers. We may assume that p > q; otherwise
we interchange the roles of x and y. Suppose for contradiction that there is a C∞-
diffeomorphism f : R2 → R2 that maps a Hölder set onto X. We may assume
without loss of generality that f(0) = 0 and that [0, ϵ) × {0}, for some small ϵ > 0,
is contained in that Hölder set. Then f(t, 0) =: (x(t), y(t)) is a C∞-curve in R2

such that (x(t), y(t)) ∈ X for t ∈ [0, ϵ). Let n be the unique integer such that
n < p/q < n + 1. Then y(k)(0) = 0 for all 0 ≤ k ≤ n. In fact, y(0) = 0, since
f(0) = 0, and if we already know that y(k)(0) = 0 for all 0 ≤ k ≤ ℓ − 1 < n, then
y(t) = 1

ℓ!y
(ℓ)(s)tℓ for some s ∈ (0, t), so that (x(t), y(t)) ∈ X for t ∈ [0, ϵ) implies

x(t)ℓ

tℓ
x(t)p/q−ℓ ≤ y(ℓ)(s)

ℓ!
≤ 2

x(t)ℓ

tℓ
x(t)p/q−ℓ, 0 ≤ t < ϵ.

Letting t → 0 we may conclude that y(ℓ)(0) = 0 if ℓ ≤ n, because x(t)/t → x′(0).
On the other hand, for ℓ = n + 1 we get that y(n+1)(t) (thus also ∂n+1

1 f(t, 0)) is
unbounded near t = 0, a contradiction.

(6) The flat cusp X = {(x, y) ∈ R2 : x ≥ 0, |y| ≤ e−1/x2} is not a Hölder set.

2.3. Some properties of Hölder sets. Let X ⊆ Rd. The c∞-topology on X is
the final topology with respect to all C∞-curves c : R → Rd satisfying c(R) ⊆ X.
The c∞-topology on Rd coincides with the usual topology; cf. [16, Theorem 4.11].

Proposition 2.3 ([26, Proposition 3.6]). The c∞-topology on each Hölder set X ∈
H (Rd) coincides with the trace topology from Rd.

Recall that a set X ⊆ Rd is called p-regular, where p ∈ R≥1, if each x ∈ X has
a compact neighborhood K in X and there is a constant D > 0 such that any two
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points y1, y2 ∈ K can be joined by a rectifiable path γ contained in K of length

ℓ(γ) ≤ D|y1 − y2|1/p.

Proposition 2.4 ([26, Proposition 3.8]). Each X ∈ H α(Rd) is 1
α -regular.

Proposition 2.5 ([26, Proposition 3.9]). Each X ∈ H (Rd) is simple.

3. Continuous extension of derivatives to the boundary of α-sets

We start with the proof of Theorem A. Let X ⊆ Rd be an α-set and Y any
subset of X (possibly the empty set). In this section, we will show that

Anp(α),ω
Y (X) ⊆ Cn

Y (X),

for each n ∈ N≥1 and each modulus of continuity ω. Then it is easy to complete
the proof of Corollary B in Section 3.4.

3.1. Computing derivatives. We recall a simple formula for the derivatives of
composite functions which will be useful below. We will use the abbreviation
f (j)(x)(vj) = f (j)(x)(v, . . . , v).

Lemma 3.1. Let 1 ≤ b ≤ a be integers. Fix x ∈ Rd and v = (v′, vd) ∈ Rd and
consider c(t) = x+ (tav′, tbvd), for t in a neighborhood of 0 ∈ R. Let f be of class
Ca in a neighborhood of the image of c. Then:

1

k!
(f ◦ c)(k)(0) =


1
j!f

(j)(x)((0, vd)j) if k = jb < a,

f ′(x)((v′, 0)) if k = a ̸∈ bN,
f ′(x)((v′, 0)) + 1

j!f
(j)(x)((0, vd)j) if k = jb = a.

For all other k < a we have (f ◦ c)(k)(0) = 0.

Proof. If y ∈ Rd and γ(t) = x+ try, then

1

(rj)!
(f ◦ γ)(rj)(0) =

1

j!
f (j)(x)(yj)

and (f ◦ γ)(k)(0) = 0 if k ̸∈ rN. From this the lemma follows easily. □

3.2. The integer p(α). Let α ∈ (0, 1]. We define (cf. (1.1))

p(α) :=

⌈
2

α

⌉
=

{
2 if α = 1,

p if α ∈
[
2
p ,

2
p−1

)
, p ∈ N≥3.

The expedience of p(α) and its optimality is expressed in the next lemma.

Lemma 3.2. Let (v′, vd) ∈ Γα
d (r, h). Then:

(1) (tp(α)v′, t2vd) ∈ Γα
d (r, h) whenever 0 < |t| ≤ 1.

(2) Among all pairs of positive integers (a, b) with (tav′, tbvd) ∈ Γα
d (r, h) for

arbitrary (v′, vd) ∈ Γα
d (r, h) whenever 0 < |t| ≤ 1 the pair (p(α), 2) is

minimal in the sense that

p(α) = max{p(α), 2} ≤ max{a, b} = a.
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Proof. That (tav′, tbvd) ∈ Γα
d (r, h) for arbitrary (v′, vd) ∈ Γα

d (r, h) whenever 0 <
|t| ≤ 1 is equivalent to

|t|aα ≤ tb for all 0 < |t| ≤ 1.

This is in turn equivalent to

(3.1) b ∈ 2N≥1 and aα ≥ b.

Taking b = 2 we may infer (1). Moreover, (3.1) implies a ≥ b
α ≥ 2

α and thus
a ≥ p(α), that is (2). □

3.3. Derivatives of arc-differentiable functions. We first show that arc-
differentiable functions have arc-differentiable derivatives and minimize the involved
loss of regularity.

Proposition 3.3. Let α ∈ (0, 1], k ≥ p(α) an integer, and ω a modulus of con-
tinuity. Let X ∈ H α(Rd) and f ∈ Ak,ω(X). Then f |X◦ is of class Ck,ω and its
derivative (f |X◦)′ extends uniquely to a mapping f ′ : X → L(Rd,R) which belongs
to Ak−p(α),ω(X,L(Rd,R)), i.e.,

(f ′)∗C∞(R, X) ⊆ Ck−p(α),ω(R, L(Rd,R)).

If Z is any subset of X and f ∈ Ak,ω
Z (X), then f ′ ∈ Ak−p(α),ω

Z (X,L(Rd,R)).

Proof. That f |X◦ is of class Ck,ω is well-known; see [4, Theorem 2] and [8, Théorème
1].

Let us first show that an extension f ′ ∈ Ak−p(α),ω(X,L(Rd,R)) of (f |X◦)′ is
unique: Suppose that f ′2 ∈ Ak−p(α),ω(X,L(Rd,R)) is another extension. Let x0 ∈
∂X and take a C∞-curve R ∋ s 7→ x(s) in X such that x(s) ∈ X◦ for 0 < |s| ≤ 1
and x(0) = x0. Then

f ′(x0) = lim
s→0

f ′(x(s)) = lim
s→0

f ′2(x(s)) = f ′2(x0),

since both f ′ ◦ x and f ′2 ◦ x are continuous.
For the existence we observe that, since X is an α-set and the statement is

local and invariant under an orthogonal change of coordinates, it suffices to show
that (f |Y ∩X◦)′ extends uniquely to a mapping f ′ : Y → L(Rd,R) which belongs to
Ak−p(α),ω(Y, L(Rd,R)), where Y is an open subset of X with the following property:
There is a truncated open α-cusp Γ = Γα

d (r, h) such that for all y ∈ Y we have
y + Γ ⊆ X◦.

Let p = p(α), x ∈ Y , and v = (v′, vd) ∈ Γ. Set u = (v′, 0) and w = (0, vd) and
note that w ∈ Γ. The curves

cx,v(t) := x+ (tpv′, t2vd) and ℓx,w = x+ t2w

both lie in X◦ for 0 < |t| < 1 and cx,v(0) = ℓx,w(0) = x; see Lemma 3.2. Note that
cx,v(t) = ℓx,w(t) + tpu. Since f ∈ Ak,ω(X), the composites f ◦ cx,v and f ◦ ℓx,w are
of class Ck,ω.

We will define f ′(x) on points x ∈ (∂X) ∩ Y in two steps.
Step 1. Let v ∈ Γ be fixed. For x ∈ Y set

f ′(x)(v) :=

{
1
p! (f ◦ cx,v)(p)(0) + 1

2 (f ◦ ℓx,w)(2)(0) if p ̸∈ 2N,
1
p! (f ◦ cx,v)(p)(0) − 1

p! (f ◦ ℓx,w)(p)(0) + 1
2 (f ◦ ℓx,w)(2)(0) if p ∈ 2N.

(3.2)
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This definition becomes a correct statement if x ∈ X◦, by Lemma 3.1. Indeed,
1
j!f

(j)(x)(wj) = 1
(2j)! (f ◦ ℓx,w)(2j)(0) and f ′(x)(u) = 1

p! (f ◦ cx,v)(p)(0), if p ̸∈ 2N.

Otherwise, p = 2q and so

f ′(x)(u) =
1

p!
(f ◦ cx,v)(p)(0) − 1

q!
f (q)(x)(wq)

=
1

p!
(f ◦ cx,v)(p)(0) − 1

p!
(f ◦ ℓx,w)(p)(0).

We claim that

(3.3) f ′(·)(v) : Y → R maps C∞-curves to Ck−p,ω-curves.

Let R ∋ s 7→ x(s) be a C∞-curve in Y . Then (s, t) 7→ cx(s),v(t) and (s, t) 7→ ℓx(s),w(t)

are C∞-mappings defined on the open strip {(s, t) ∈ R2 : |t| < 1} with values in X.
Thus the composites (s, t) 7→ f(cx(s),v(t)) and (s, t) 7→ f(ℓx(s),w(t)) are of class Ck,ω,

by [4, Theorem 2] and [8, Théorème 1]. So, in particular, s 7→ ∂jt |t=0f(cx(s),v(t))

and (s, t) 7→ ∂jt |t=0f(ℓx(s),w(t)) are of class Ck−j,ω for all j ≤ k. In view of (3.2) we

find that s 7→ f ′(x(s))(v) is of class Ck−p,ω, and the claim is proved.
Let x0 ∈ (∂X) ∩ Y and let s 7→ x(s) be any C∞-curve in Y such that x(s) ∈ X◦

for 0 < |s| ≤ 1 and x(0) = x0. Then s 7→ f ′(x(s))(v) is continuous, by (3.3), and
hence

f ′(x0)(v) = lim
s→0

f ′(x(s))(v).

Step 2. Now let v ∈ Rd be arbitrary. Since Γ is open, there exist ϵ > 0 and
ξ ∈ Γ such that ϵv + ξ ∈ Γ. For all x ∈ X◦ ∩ Y , we have

(3.4) f ′(x)(v) =
f ′(x)(ϵv + ξ) − f ′(x)(ξ)

ϵ
,

and the right-hand side of (3.4) extends to points x ∈ (∂X)∩ Y and satisfies (3.3),
by the arguments in Step 1.

Thus for x0 ∈ (∂X) ∩ Y we define

f ′(x0)(v) := lim
s→0

f ′(x(s))(v),

where s 7→ x(s) is a C∞-curve in Y with x(0) = x0 and x(s) ∈ X◦ for 0 < |s| ≤ 1.
The last paragraph of Step 1 implies that the definition does not depend on the
choice of the curve x. We also see that f ′(x0) is linear as the pointwise limit of
f ′(x(s)) ∈ L(Rd,R).

Let us finally show that f ′ : Y → L(Rd,R) belongs to Ak−p,ω(Y, L(Rd,R)). Let
x : R → Y be a C∞-curve and v ∈ Rd. It suffices to check that s 7→ f ′(x(s))(v)
is of class Ck−p,ω. For v ∈ Γ this follows from (3.3). For general v, f ′(x(s))(v)
is a linear combination of f ′(x(s))(v1) and f ′(x(s))(v2) for vi ∈ Γ which locally is
independent of s.

To show the supplement assume that f ∈ Ak,ω
Z (Y ) and let s 7→ x(s) be a C∞-

curve in Y with x(0) = x0 ∈ Z. We must prove that

(3.5) ∂js |s=0

(
f ′(x(s))(v)

)
= 0 for j ≤ k − p

and all v ∈ Rd. By construction, it suffices to prove it for v ∈ Γ. To this end
consider (as in the paragraph after (3.3)) the Ck,ω-functions (s, t) 7→ f(cx(s),v(t))

and (s, t) 7→ f(ℓx(s),w(t)) defined on the open strip {(s, t) ∈ R2 : |t| < 1}. If
we compose them with any C∞-curve r 7→ (s(r), t(r)) such that s(0) = t(0) = 0,
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we obtain functions that vanish to order k at r = 0, by the assumption on f .
It follows that (s, t) 7→ f(cx(s),v(t)) and (s, t) 7→ f(ℓx(s),w(t)) vanish to order k
at (s, t) = (0, 0) (e.g. in view of the polarization formula [16, (7.13.1)]). Thus,
considering (3.2), we may conclude (3.5). The proof is complete. □

Theorem 3.4. Let α ∈ (0, 1], n ≥ 1 an integer, and ω a modulus of continuity.
For each X ∈ H α(Rd) we have Anp(α),ω(X) ⊆ Cn(X). If Y is any subset of X

then Anp(α),ω
Y (X) ⊆ Cn

Y (X).

Proof. Let f ∈ Anp(α),ω(X). Proposition 3.3 implies by induction that the Fréchet
derivatives (f |X◦)(m), m ≤ n, have unique extensions f (m) : X → Lm(Rd,R) which
satisfy

(3.6) (f (m))∗C∞(R, X) ⊆ C(n−m)p(α),ω(R, Lm(Rd,R)).

Since the c∞-topology of X coincides with the trace topology from Rd, by Proposi-

tion 2.3, we may conclude that f ∈ Cn(X). If f ∈ Anp(α),ω
Y (X), then the supplement

of Proposition 3.3 implies that f (m)|Y = 0 for m ≤ n. □

3.4. Proof of Corollary B. Let X ∈ H (Rd) and f ∈ A∞(X). Theorem 3.4
implies that f |X◦ is smooth and its derivatives of all orders extend continuously
to ∂X. By Proposition 2.4, f defines a Whitney jet of class C∞ on X (cf. [1,
Proposition 2.16] or the proof of [26, Lemma 10.1]) which has a C∞-extension to
Rd, by Whitney’s extension theorem [32]. That, conversely, the restriction to X of
any C∞-function on Rd belongs to A∞(X) is obvious.

If f ∈ A∞
Y (X), then Theorem 3.4 gives f ∈ C∞

Y (X) and thus any C∞-extension
vanishes to infinite order on Y . Conversely, any C∞-function f on Rd that vanishes
to infinite order on Y satisfies (f ◦ c)(j)(0) = 0 for all j ∈ N and all C∞-curves c
with c(0) ∈ Y (by the chain rule).

4. Hölder continuity of arc-differentiable functions on α-sets

In this section we prove

Theorem 4.1. Let α, β ∈ (0, 1] and X ∈ H α(Rd). Then

(4.1) A0,β(X) ⊆ C0, αβ
2q(α) (X).

More generally, if ω is a modulus of continuity then

(4.2) A0,ω(X) ⊆ C0,ω̃(X),

where ω̃(t) = ω(t
α

2q(α) ).

Theorems 3.4 and 4.1 imply Theorem A, since f (n) ∈ A0,ω(X,Ln(Rd,R)) in view
of (3.6). The proof of Theorem 4.1 requires several steps and will fill the rest of
the section. We shall give full details for β ∈ (0, 1] and comment briefly on the case
that ω is a general modulus of continuity.

Recall (cf. (1.1)) that the integer q(α) is defined by

q(α) :=

⌈
1

α

⌉
=

{
1 if α = 1,

q if α ∈
[
1
q ,

1
q−1

)
, q ∈ N≥2.

Evidently, p(α) ≤ 2q(α) and p( 1
n ) = 2q( 1

n ) for n ∈ N≥1.
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Step 0. We will make repeated use of variants of the General Curve Lemma 12.2
in [16]. Let us recall it and fix notation.

Let sn ≥ 0 be a sequence of real numbers with
∑

n sn < ∞. Consider the
sequences

(4.3) rn =
∑
k<n

(
2

k2
+ 2sk

)
and tn =

1

2
(rn + rn+1).

as well as the intervals

(4.4) In :=

[
− 1

n2
− sn,

1

n2
+ sn

]
and Jn := [−sn, sn].

Note that the intervals tn + In = [rn, rn+1] have pairwise disjoint interior and the
sequences rn and tn have a common finite limit.

rn−1 rn rn+1

tn−1 + In−1 tn + In· · · · · ·

Let cn ∈ C∞(R,Rd) be a sequence of C∞-curves that converges fast to 0, i.e.,
for each k ∈ N the sequence nkcn is bounded in C∞(R,Rd). The following fact
[16, 12.3] (an easy consequence of the Markov inequality on [−1, 1]) will be useful:
If cn are polynomials of uniformly bounded degree, then cn converges fast to 0 in
C∞(R,Rd) provided that the sequence n 7→ supt∈[−1,1] |cn(t)| converges fast to 0.

Let h : R → [0, 1] be a C∞-function with h|{t≤−1} = 0 and h|{t≥0} = 1. Then

(4.5) hn(t) := h(n2(sn + t))h(n2(sn − t))

has support in In and equals 1 on Jn. It follows that

(4.6) c(t) =
∑
n

hn(t− tn)cn(t− tn)

defines a curve c ∈ C∞(R,Rd) such that c(t+ tn) = cn(t) for |t| ≤ sn and all n.

Indeed, at most one summand is non-zero for each t ∈ R. Since |h(j)n (t)| ≤ n2jHj

with Hj := maxt∈R |h(j)(t)| , we have

n2 sup
t∈R

|∂kt (hn(t− tn)cn(t− tn))| = n2 sup
t∈In

|∂kt (hn(t)cn(t))|

≤ n2
k∑

j=0

(
k

j

)
n2jHj sup

t∈In

|c(k−j)
n (t)| ≤

 k∑
j=0

(
k

j

)
n2j+2Hj

 sup
t∈In, i≤k

|c(i)n (t)|.

Since the right-hand side is bounded in n, as cn converges fast to 0, c is smooth.

Step 1. Halfspaces and quadrants. Suppose that X is a quadrant

X = {x ∈ Rd : xj ≥ 0, j = i, . . . , d}, for some i = 1, . . . , d;

this includes the cases of a halfspace (i = d) and a ‘full’ quadrant (i = 1). In any

case α = 1 and q(1) = 1. We will show that A0,β(X) ⊆ C0, β2 (X).
Let f ∈ A0,β(X). Suppose for contradiction that f is not locally γ-Hölder near

0 ∈ X with γ = β
2 . Note that 0 is the most singular point in X; at points in

the interior of X we already know that f is even locally β-Hölder and all other
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boundary points can be treated in a way similar to 0. Then there are sequences an
and bn in X such that

|an| ≤ 4−n, |bn| ≤ 4−n, and
|f(an) − f(bn)|

|an − bn|γ
≥ n2n for all n.(4.7)

We work with quadratic Bézier curves. Let zn ∈ X be the point with coordi-
nates zn,j := min{an,j , bn,j}, j = 1, . . . , d, and consider the quadratic Bézier curve
associated with the triple (an, zn, bn),

Bn(t) = zn + (1 − t)2(an − zn) + t2(bn − zn), t ∈ R.
Then Bn is a parabola through the points Bn(0) = an and Bn(1) = bn tangent
in an to the line through an and zn and in bn to the line through zn and bn. If
zn = an, then the image of Bn is the halfline an + t2(bn − an); similarly, if zn = bn.
In any case, Bn(t) is contained in X for all t ∈ R, by the definition of zn.

Set s2n := 2n|an − bn| and cn(t) := Bn( t
sn

). Then the sequence of C∞-curves cn
is contained in X and converges fast to 0. Indeed, the cn are quadratic polynomials
and

(4.8) max{|an − zn|, |bn − zn|} ≤ |an − bn| =
s2n
2n

from which the claim follows easily.
We may conclude that the C∞-curve c defined in (4.6) lies in X, because each

cn does and multiplication by hn acts pointwise as a homothety with center 0 and
positive ratio. Since c(t + tn) = cn(t) for t ∈ [−sn, sn], we have, in view of (4.7)
and as β = 2γ and 2γn ≤ 2n,

1

sβn
|(f ◦ c)(tn + sn) − (f ◦ c)(tn)| ≥ |f(bn) − f(an)|

2n|an − bn|γ
≥ n,(4.9)

contradicting f ∈ A0,β(X).
Let us briefly indicate how to modify the arguments if f ∈ A0,ω(X), where ω is a

modulus of continuity. For contradiction we may suppose that there are sequences
an and bn in X with |an| ≤ 4−n, |bn| ≤ 4−n and

|f(an) − f(bn)| ≥ n2nω(|an − bn|1/2)

for all n. With the same choices as above we find a C∞-curve c in X such that

1

ω(sn)
|(f ◦ c)(tn + sn) − (f ◦ c)(tn)| ≥ |f(bn) − f(an)|

2nω(|an − bn|1/2)
≥ n,

since ω(sn) = ω(2n/2|an − bn|1/2) ≤ 2nω(|an − bn|1/2) as ω is increasing and sub-
additive.

Step 2. Simplicial and cubical cusps. Let q ∈ N≥1. Consider the unbounded
simplicial cusp

Sq = {(x1, . . . , xd) ∈ Rd : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xd−1 ≤ xqd, xd ≥ 0}.
There is the homeomorphism φ : S1 → Sq given by

φ(x1, . . . , xd) = (xq1, . . . , x
q
d−1, xd)

and Sq is the union of the curves (tqx′, t), t ∈ [0,∞), where x′ ∈ {0 ≤ x1 ≤ x2 ≤
· · · ≤ xd−1 ≤ 1}. Note that S1 is the image of the quadrant {x ∈ Rd : xj ≥ 0, j =
1, . . . , d} under a linear isomorphism. If a, b are two different points in Sq, we may
consider the points φ−1(a) and φ−1(b) in S1. By Step 1, there is a quadratic curve
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B : R → S1 with B(0) = φ−1(a) and B(1) = φ−1(b). Thus the smooth curve φ ◦B
lies entirely in Sq and satisfies (φ ◦B)(0) = a and (φ ◦B)(1) = b.

Actually, Sq is not a Hölder set, since the uniform cusp property fails at the tip.
But for technical reasons it is convenient to transit this intermediate step. Let us
show that

(4.10) A0,β(Sq) ⊆ C0, β
2q (Sq).

Let f ∈ A0,β(Sq). Suppose for contradiction that f is not locally γ-Hölder near

0 ∈ Sq with γ = β
2q ; as in Step 1 it is enough to consider the most singular point.

Then there are sequences an and bn in Sq satisfying (4.7). Let φ ◦ Bn : R → Sq

be the smooth curve satisfying (φ ◦ Bn)(0) = an and (φ ◦ Bn)(0) = bn that was
constructed at the beginning of Step 2.

Set s2qn := 2n|an − bn| and cn(t) := φ(Bn( t
sn

)). The sequence of curves cn is
clearly contained in Sq. It converges fast to 0. Indeed, cn is a polynomial of degree
2q, so it suffices to check that supt∈[−1,1] |cn(t)| tends fast to 0. Let ãn := φ−1(an)

and b̃n := φ−1(bn). Then ãn,j = a
1/q
n,j and b̃n,j = b

1/q
n,j for j ≤ d − 1 as well as

ãn,d = an,d and b̃n,d = bn,d. Up to a linear isomorphism we may suppose that

ãn and b̃n lie in the quadrant {x ∈ Rd : xj ≥ 0, j = 1, . . . , d} so that Bn(t) is
the quadratic Bézier curve from Step 1 with associated control point z̃n. We may
conclude that

max{|ãn − z̃n|, |b̃n − z̃n|} ≤ |ãn − b̃n| ≤
√
d |an − bn|1/q =

√
d
s2n

2n/q

as in (4.8), since

|ãn − b̃n|2 =

d−1∑
j=1

|a1/qn,j − b
1/q
n,j |2 + |an,d − bn,d|2

≤
d−1∑
j=1

|an,j − bn,j |2/q + |an,d − bn,d|2/q ≤ d |an − bn|2/q.

It follows that the maximum of |Bn( t
sn

)| on [−1, 1] converges fast to 0 and hence

all the more that of |φ(Bn( t
sn

))|.
With the sequences rn and tn and the functions hn from Step 0 we construct

a smooth curve c in the following way. First note that, if χ : R → [0, 1] and
z = (z1, . . . , zd) : R → Sq, then the weighted homothety with center 0 and ratio χ,

χ♢z := (χqz1, χ
qz2, . . . , χ

qzd−1, χzd),

also takes values in Sq. So

c(t) =
∑
n

(hn♢cn)(t− tn)

defines a curve c : R → Sq of class C∞, by a calculation similar to the one at the end
of Step 0, since at most one summand is non-zero for each t ∈ R and the sequence
cn converges fast to 0. In view of c(t + tn) = cn(t) for t ∈ [−sn, sn], we are led to
the contradiction (4.9), since an and bn satisfy (4.7) and as β = 2qγ. Thus (4.10)
is proved.



ARC-SMOOTH FUNCTIONS AND CUSPIDALITY OF SETS 15

For a general modulus of continuity ω and f ∈ A0,ω(Sq) we analogously get

1

ω(sn)
|(f ◦ c)(tn + sn) − (f ◦ c)(tn)| ≥ |f(bn) − f(an)|

2nω(|an − bn|1/(2q))
≥ n.

We may symmetrize the result (4.10) in the following way. Set

Σq :=
⋃
σ∈G

σSq,

where G is the group of isometries of Rd generated by the reflections in the hyper-
planes {xj = 0}, j = 1, . . . , d − 1, and {xj = xk}, 1 ≤ j < k ≤ d − 1. Then Σq

is the union of the curves (tqx′, t), t ∈ [0,∞), where x′ ∈ [−1, 1]d−1. The cubical
cusp Σq belongs to H 1/q(Rd).

Figure 1. The simplicial cusp Sq and the cubical cusp Σq (trun-
cated at {xd = r}).

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090
Wien, Austria

Email address: armin.rainer@univie.ac.at

1

We claim that

(4.11) A0,β(Σq) ⊆ C0, β
2q (Σq).

For, let P be the union of the hyperplanes that separate the chambers σSq, σ ∈ G.
Let f ∈ A0,β(Σq), r > 0, and y1, y2 ∈ Σq∩B(0, r). Now Σq∩B(0, r) is quasiconvex:
There is a rectifiable curve π in Σq ∩ B(0, r) joining y1 and y2 of length ℓ(π) ≤
C |y1−y2|, where the constant C > 0 depends only on q, d, and r. Let p1, p2, . . . be
the points, where π intersects P . We may assume that any two consecutive points
in the list p0 := y1, p1, . . . , pk, pk+1 := y2 belong to the same chamber σSq and no
chamber contains three or more points in the list, by omitting redundant points.
Then k is bounded by a constant that depends only on the number of chambers.
Thus, for some constant D > 0,

|f(y1) − f(y2)| ≤
k∑

j=0

|f(pj) − f(pj+1)|(4.12)

≤
k∑

j=0

D |pj − pj+1|
β
2q

≤ D(k + 1)ℓ(π)
β
2q ≤ DC

β
2q (k + 1) |y1 − y2|

β
2q ,
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because f |σSq ∈ A0,β(σSq) ⊆ C0, β
2q (σSq) by (4.10). Thus (4.11) is proved. For a

general modulus of continuity ω the same argument applies, since ω is assumed to
be increasing and subadditive.

In the next step, we shall need the result for truncated cubical cusps

Σq(r) := Σq ∩ {x ∈ Rd : xd ≤ r}, r > 0.

That is

(4.13) A0,β(Σq(r)) ⊆ C0, β
2q (Σq(r)).

To see this let f ∈ A0,β(Σq(r)). It suffices to show that each point of Σq(r) has a

neighborhood U in Σq(r) such that f is β
2q -Hölder on U . Observe that near each

of its points the set Σq(r) is diffeomorphic to an open subset of one of the sets X
already treated; note that the affine hyperplane {xd = r} meets each boundary face
of Σq transversally. Using a smooth cut-off function we may assume that there is

f̃ ∈ A0,β(X) with f̃ |U = f |U so that f is β
2q -Hölder on U (cf. Section 1.3). The

reasoning for a general modulus of continuity is the same.

Step 3. The general case. Let α, β ∈ (0, 1] and X ∈ H α(Rd). Our goal is to
show the inclusion (4.1) (and (4.2)).

Let q := q(α) ∈ N≥1, i.e., α ∈ [ 1q ,
1

q−1 ) if q ≥ 2 or α = 1 if q = 1. In any case,

X ∈ H 1/q(Rd), since H α(Rd) ⊆ H 1/q(Rd).
We will need the truncated cusps Σq(r) and

Sq(r) := Sq ∩ {x ∈ Rd : xd ≤ r}
as well as their translates

Σq(y, r) := y + Σq(r) and Sq(y, r) := y + Sq(r).

First observe that there is a universal constant c > 0 such that for sufficiently
small r1, r2 > 0 we have that

(4.14) |y1 − y2| < cmin{rq1, rq2} implies Sq(y1, r1) ∩ Sq(y2, r2) ̸= ∅.
Indeed, suppose that r1 ≤ r2 and initially y1 = y2 = 0 so that Sq(r1) = Sq(y1, r1) ⊆
Sq(y2, r2) = Sq(r2). Then we take any direction v ∈ Sd−1 and move Sq(r1) in
direction v as long as Sq(tv, r1) = tv + Sq(r1), t > 0, and Sq(r2) have a common
point. Let tv be the supremum of such t. A lower bound for infv∈Sd−1 tv is the
minimal distance of a vertex of the simplicial cusp Sq(r1) to its opposite facet (the
only facet that does not contain the vertex as a boundary point). If r1 is sufficiently
small, then the vertex with the minimal distance δ to its opposite facet is r1ed. In
the case q = 1, it is now easy to conclude (4.14). Suppose that q > 1. We clearly
have δ ≤ rq1. The point p in the opposite facet that realizes the distance has the
form pqded−1 + pded so that

δ =

√
p2qd + (r1 − pd)2.

This implies δ ≥ r1 − pd and thus pd ≥ r1
2 , since otherwise r1

2 < δ ≤ rq1, a

contradiction for r1 <
1
2 . Consequently, δ ≥ pqd ≥ ( r1

2 )q and (4.14) follows. Note
that clearly also the symmetric cusps Σq(yi, ri) have the property (4.14).
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0

r1ed

p = pqded−1 + pdedδ

r1

rq1

Now let f ∈ A0,β(X). We will show that each z ∈ X has a neighborhood on
which f is γ-Hölder with

γ =
αβ

2q
.

We may assume without loss of generality that z = 0. Since X ∈ H 1/q(Rd), we
may suppose that (after an affine transformation)

(4.15) for all y ∈ X ∩B(0, ϵ) we have Σq(y, 1) ⊆ X

provided that ϵ > 0 is sufficiently small. We know from (4.13) that f is γ′-Hölder
on Σq(y, 1), where

γ′ :=
γ

α
=

β

2q
,

thus in particular on the subsets

Σn(y) := Σq(y, 4−n), n ∈ N.

Let Hn(y) be the γ′-Hölder constant of f on Σn(y), i.e.,

Hn(y) = sup
a̸=b∈Σn(y)

|f(a) − f(b)|
|a− b|γ′ .

Let c > 0 be the constant from (4.14) and set

Hn := sup
{
Hn(y) : y ∈ X ∩B(0, c 4−(n+2)q)

}
∈ [0,∞]

for all large integers n (so that c 4−(n+2)q is smaller than the ϵ in (4.15)). We shall
distinguish the following two cases:

(i) There exists n such that Hn <∞.
(ii) Hn = ∞ for all n.

Case (i). By assumption there is some integer n such that Hn < ∞. Fix this n.
Taking 0 < ϵ1 ≤ c 4−(n+2)q small enough, we may assume that in a neighborhood of
B(0, ϵ1) the set X is the epigraph {xd ≥ ψ(x′)} of an α-Hölder function ψ, where
x′ = (x1, . . . , xd−1) ranges over some convex open set in Rd−1; see Remark 2.1.
Since ψ is uniformly continuous, we may assume that supx′,y′ |ψ(x′) − ψ(y′)| ≤
4−(n+1) if we shrink ϵ if necessary. Thus, for each y ∈ X ∩ B(0, ϵ1) the cubical
cusp Σn(y) is contained in X, by (4.15), and, having height 4−n, has non-empty
intersection with

K :=

{
x : xd > sup

x′
ψ(x′) + 4−(n+1)

}
.

We know that f is β-Hölder on K, say with Hölder constant H, since K is relatively
compact in the interior of X. Let u = (u′, ud) and v = (v′, vd) be any two different
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points in X ∩B(0, ϵ1). Then we find ũ ∈ Σn(u) ∩K and ṽ ∈ Σn(v) ∩K such that
ũ′ and ṽ′ lie on the line segment [u′, v′], ũd = ṽd, and

|ud − ũd| ≤ C |u′ − ũ′|α and |vd − ṽd| ≤ C |v′ − ṽ′|α.
Consequently,

|u− ũ|2 = |u′ − ũ′|2 + |ud − ũd|2 ≤ C2
1 |u′ − ũ′|2α

and analogously

|v − ṽ|2 ≤ C2
1 |v′ − ṽ′|2α.

Since |ũ− ṽ| = |ũ′ − ṽ′|, we conclude

|f(u) − f(v)| ≤ |f(u) − f(ũ)| + |f(ũ) − f(ṽ)| + |f(ṽ) − f(v)|
≤ Hn|u− ũ|γ′

+H|ũ− ṽ|β +Hn|v − ṽ|γ′

≤ HnC
γ′

1 |u′ − ũ′|αγ′
+H|ũ′ − ṽ′|β +HnC

γ′

1 |v′ − ṽ′|αγ′

≤ C2 |u′ − v′|γ

≤ C2 |u− v|γ .
Since u and v were arbitrary, we proved that f is γ-Hölder on X ∩ B(0, ϵ1). So
Case (i) is done.

Case (ii). In this case, we prove that f is even γ′-Hölder in a neighborhood of
0 ∈ X. By assumption, for each sufficiently large n there is a sequence (ynm)m ⊆
X ∩B(0, c 4−(n+2)q) such that {Hn(ynm) : m ∈ N} is unbounded.

Let Hσ
n (ynm) denote the γ′-Hölder constant of f on σSq(ynm, 4

−n), where σ ∈ G.
The argument surrounding (4.12) shows that

Hn(ynm) ≤ const ·
∑
σ∈G

Hσ
n (ynm).

SinceG is finite, we may pass to a subsequence ofm and assume thatHσn
n (ynm) → ∞

as m→ ∞ for some σn ∈ G. Passing to a subsequence of m again, we may suppose
that Hσn

n (ynm) > m2m for all m ∈ N. In particular, the diagonal sequence yn := ynn
satisfies yn ∈ X ∩ B(0, c 4−(n+2)q) and Hσn

n (yn) > n2n for all sufficiently large n,
say n ≥ N . Using the finiteness of G again, we find τ ∈ G and a strictly increasing
subsequence nk ≥ N of n such that σnk

= τ . Thus Hτ
nk

(ynk
) > nk2nk for all k. We

may assume without loss of generality that τ = id. For all n ≥ N we set

Sn := Sq(yn, 4
−n).

So there exist ank
̸= bnk

∈ Snk
such that

|f(ank
) − f(bnk

)| ≥ nk2nk |ank
− bnk

|γ′
for all k.(4.16)

Since

|yn − yn+1| ≤ |yn| + |yn+1| ≤ c 4−(n+2)q + c 4−(n+3)q ≤ c

2
4−(n+1)q,

there exists un ∈ Sn∩Sn+1 for all n ≥ N , by (4.14). For each n in the complement
of the sequence (nk) in N≥N let an := un−1 and bn := un; we may assume that
un−1 ̸= un. Then an ̸= bn ∈ Sn for all n ≥ N .

Set s2qn = 2n|an − bn|. By Step 2, for each n ≥ N there exists a C∞-curve cn
such that

• cn(0) = an, cn(sn) = bn,
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• cn converges fast to 0, and
• cn|[0,sn] is contained in Sn and cn|In is contained in X, by (4.15), where

In = [− 1
n2 − sn,

1
n2 + sn]; cf. (4.4).

Let rn and tn be the sequences from (4.3) and hn the function defined in (4.5).
Note that, if χ : R → [0, 1] and z, w : R → Sq(y, r), then also χ♢z + (1 − χ)♢w
takes values in Sq(y, r). Indeed, up to a translation we may assume that y = 0.
Then

0 ≤ χqz1 + (1 − χ)qw1,

χqzj + (1 − χ)qwj ≤ χqzj+1 + (1 − χ)qwj+1, j = 1, · · · , d− 2,

χqzd−1 + (1 − χ)qwd−1 ≤ χqzqd + (1 − χ)qwq
d ≤ (χzd + (1 − χ)wd)q,

χzd + (1 − χ)wd ≤ χr + (1 − χ)r = r.

We set

An(t) := (hn♢cn)(t− tn),

Bn(t) := (1 − hn)♢
(
un−11(rn,tn] + un1[tn,rn+1]

)
(t− tn),

where 1A is the characteristic function of the set A, and

c(t) :=
∑
n

(An(t) +Bn(t)).

By the above observations and a calculation similar to the one at the end of Step 0,
we see that c is a C∞-curve in X; hereby we use that un converges fast to 0 and hn
has support in In and equals 1 on [−sn, sn]. Since c(t+ tn) = cn(t) for t ∈ [−sn, sn]
and β = 2qγ′, we have, in view of (4.16),

1

sβnk

|(f ◦ c)(tnk
+ snk

) − (f ◦ c)(tnk
)| ≥ |f(bnk

) − f(ank
)|

2nk |bnk
− ank

|γ′ ≥ nk,

contradicting f ∈ A0,β(X). Thus (4.1) is proved.
If ω is a general modulus of continuity, then these arguments also give a proof

of (4.2): it suffices to replace the moduli t 7→ tγ and t 7→ tγ
′

by ω̃(t) := ω(t
α
2q ) and

ω̃′(t) := ω(t
1
2q ), respectively. The proof of Theorem 4.1 is complete.

Remark 4.2. We do not know if α
2q(α) in the statement of Theorem 4.1 and

Theorem A can be replaced by 1
2q(α) as in the special cases of cusps. The factor

α stems from Case (i) in Step 3, but it is possible that it is just an artefact of the
proof.

5. On the optimality of the results

Let us discuss the optimality and limitations of Theorem A. The reader’s atten-
tion is also drawn to Example 6.7 and the examples in [26, Section 10], especially
Example 10.4.

5.1. Loss of derivatives. By Theorem A, any function f ∈ Anp(α),ω(X) on an
α-set X possesses n continuous Fréchet derivatives on X. Example 5.1 shows that
the integer p(α) is optimal in the following sense: if p′ < p(α) is another integer,

then not every function f ∈ Anp′,ω(X) has n continuous Fréchet derivatives on X.
Actually, for the set X in Example 5.1 we find Anp(α)−3,1(X) ̸⊆ Cn(X) for suitable
α and n.
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Example 5.1. Fix α ∈ (0, 1) and set

X :=
{

(x, y) ∈ R2 : x ≥ 0, |y| ≤ x1/α
}
∈ H α(R2).

For n ∈ N consider the function fn : X → R defined by

fn(x, y) :=

{
yn+1

x if x ̸= 0,

0 if x = 0.

Then fn is smooth on X◦ and extends continuously to ∂X; indeed, |yn+1

x | ≤
x

n+1
α −1 → 0 as x → 0, since n + 1 > α. Similarly, ∂my fn = (n+1)!

(n+1−m)!fn−m ex-

tends continuously to ∂X for all m ≤ n, but ∂n+1
y fn(x, y) = (n + 1)! 1x does not.

Moreover, ∂mx fn(x, y) = (−1)mm! yn+1

xm+1 extends continuously to ∂X for all m ≤ n.

Similarly, one sees that the mixed partial derivatives ∂ℓx∂
m
y fn extend continuously

to ∂X if ℓ + m ≤ n. That means fn ∈ Cn(X) \ Cn+1(X). We also see that fn is
n-flat on {0}.

Let c(t) = (x(t), y(t)) be a C∞-curve in X. Then fn ◦ c is of class C⌊β⌋, where

β = 2(n+1)
α −2 and ⌊β⌋ is the largest integer ≤ β. Consequently, fn ∈ A⌊β⌋−1,1(X).

This is a consequence of the following result [14, Theorem 7]: If φ,ψ : R → R satisfy
ψ ∈ C∞, φψ ∈ C∞, and |φ| ≤ |ψ|γ for some positive constant γ, then φ ∈ C⌊2γ⌋.
Take φ = fn ◦ c and ψ = x.

Now we specify to α = 2
p for some p ∈ N≥3 so that p(α) = p and ⌊β⌋ = (n+1)p−2.

Thus fn ∈ A(n+1)p−3,1(X) ⊆ Anp,1(X). Theorem A yields fn ∈ Cn(X), confirming
what we checked directly above. We also see that A(n+1)p−3,1(X) ̸⊆ Cn+1(X).

Moreover, if there were a positive integer p′ < p such that A(n+1)p′,1(X) ⊆
Cn+1(X), then fn ∈ Anp,1(X) ⊆ A(n+1)p′,1(X) ⊆ Cn+1(X) as soon as n ≥ p′

p−p′ , a

contradiction.

Remark 5.2. Note that Example 5.1 also shows that the partial derivatives of
order n+ 1 of a function f ∈ Anp(α),1(X), where X ∈ H α(Rd), which exist in X◦

(since n+ 1 ≤ np(α)) are in general unbounded at the boundary ∂X.

There are closed fat sets X ⊆ Rd such that each f ∈ A∞(X) has a C∞-extension
to Rd, but the loss of derivatives cannot be expressed by an integer p such that
Anp,1(X) ⊆ Cn(X) for all n:

Example 5.3. Let

K(α) := Γα
2 ( 1

2 , 1) =
{

(x1, x2) ∈ R2 : |x1| ≤ 1
2 , (2|x1|)α ≤ x2 ≤ 1

}
be the truncated closed α-cusp of radius 1

2 and height 1 in dimension 2. Then

X :=
⋃

m∈N≥1

(
me1 +K( 1

m )
)
∪
{

(x1, x2) ∈ Rd : x1 ≥ 0, 1 ≤ x2 ≤ 2
}

is an infinite comb with sharper and sharper teeth. Each f ∈ A∞(X) has a C∞-
extension to R2 which follows from Corollary B, since X ∩ B(0, n) is a Hölder set
for each integer n ≥ 1 and the respective extensions can be glued together by a
partition of unity. On the other hand, we may infer from Example 5.1 that there
is no positive integer p such that Anp,1(X) ⊆ Cn(X) for all n.
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5.2. Degradation of the Hölder index. For a 1-set X, Theorem A yields

A2n,β(X) ⊆ Cn, β2 (X) for all n ∈ N and β ∈ (0, 1]. That division of the Hölder
index by 2 is optimal is seen by the following example.

Example 5.4. Consider the halfspace X := {x ∈ Rd : xd ≥ 0}. The function

f : X → R, x 7→ (xd)n+
1
2 , belongs to Cn, 12 (X), but f (n) is not γ-Hölder near ∂X

for any γ > 1
2 . On the other hand f ∈ A2n,1(X), by Glaeser’s inequality [10,

Lemme I]:

(5.1) u′(t)2 ≤ 2u(t) sup
s∈R

|u′′(s)| if u : R → [0,∞).

To see this it suffices check that un+
1
2 is of class C2n,1 if u ∈ C∞(R, [0,∞)); we

may assume without loss of generality that u has compact support. On the set
U := {t ∈ R : u(t) ̸= 0} we may differentiate indefinitely: for k ≥ 1 we find

∂kt (un+
1
2 ) =

k∑
j=1

∑
α1+···+αj=k

αi>0

Cj,αu
n−j+ 1

2u(α1) · · ·u(αj),

where Cj,α are numerical constants. We claim that for each k ≤ 2n all summands
on the right-hand side extend continuously by 0 to the complement of U . This is
clear for k ≤ n, because then the exponent n− j+ 1

2 is positive. If n < j ≤ k ≤ 2n,
then α1 + · · ·+ αj = k implies that at least 2(j − n) among the αi must equal 1 so
that

un−j+ 1
2u(α1) · · ·u(αj) =

(u′)2(j−n)

uj−n− 1
2

· P = u′ ·
(
u′

u
1
2

)2(j−n)−1

· P,

where P is the product of the remaining factors. By (5.1), u′/u
1
2 is bounded and

u′ vanishes on the complement of U . Thus un+
1
2 is of class C2n. For k = 2n + 1

a similar argument shows that at least 2(j − n) − 1 among the αi must equal 1 so

that all summands are globally bounded on U . That means that v := ∂2kt (un+
1
2 )

is Lipschitz on each connected component of U with uniform Lipschitz constant L.
Since v is zero on the complement of U , it follows that v is Lipschitz on R. Indeed,
if t1 < t2 are not in the same component, take s1 ≤ s2 in [t1, t2] such that si is an
endpoint of the component of ti if ti ∈ U and si = ti otherwise. Thus, v(si) = 0
for i = 1, 2 and

|v(t2)−v(t1)| ≤ |v(t2)−v(s2)|+ |v(s1)−v(t1)| ≤ L(t2−s2)+L(s1−t1) ≤ L(t2−t1).

5.3. Locally finite unions of α-sets. The conclusion of Theorem A can be (par-
tially) extended to locally finite unions of α-sets if the overlaps of the pieces are
not too “thin”. Intersections do in general not preserve the conclusion as is shown
by the infinitely flat cusp [26, Example 10.4].

Theorem 5.5. Let X ⊆ Rd be a locally finite union of α-sets Xj such that:

(⋆) If x ∈ ∂X and x ∈ Xi ∩ Xj, then there exists a non-empty α-set Y such
that x ∈ Y ⊆ Xi ∩Xj.

Then Anp(α),β(X) ⊆ Cn(X) for all β ∈ (0, 1] and n ∈ N. If, additionally,

(⋆⋆) X is m-regular,

then Anp(α),β(X) ⊆ Cn, αβ
2q(α)m (X). Note that β may be replaced by a general modulus

of continuity ω.
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Proof. Let f ∈ Anp(α),β(X). Then f |Xj
∈ Anp(α),β(Xj) for each j. Since Xj is an

α-set, we have f |Xj ∈ Cn(Xj) for each j, by Theorem A. It remains to check that
the derivatives up to order n of f |Xj and f |Xi for j ̸= i coincide at points x ∈ ∂X
which belong to Xj ∩Xi. But that follows from condition (⋆), since the derivatives
are uniquely determined by the restriction f |Y . Note that (⋆) implies that X is
simple.

Fix a ∈ X. By (⋆⋆), there is a compact neighborhood K ⊆ X of a such that any
two points x, y in K can be joined by a rectifiable path c in K with

ℓ(c) ≤ C|x− y|1/m.

There is only a finite number of Xj with K∩Xj ̸= ∅. Let H be the maximum of the

γ := αβ
2q(α) -Hölder constants of f (n)|Xj

; see Theorem A. Then we find a sequence of

points x0 := x, x1, . . . , xk := y on c such that any two consecutive points xi, xi+1

belong to the same Xj and these two are the only points in the sequence that are
contained in Xj . Thus

∥f (n)(x) − f (n)(y)∥Ln(Rd,R) ≤
k−1∑
i=0

∥f (n)(xi) − f (n)(xi+1)∥Ln(Rd,R)

≤ H

k−1∑
i=0

|xi − xi+1|γ ≤ Hk ℓ(c)γ ≤ CγHk |x− y| γ
m .

The reasoning for an arbitrary modulus of continuity is analogous. □

Without an additional condition such as (⋆⋆) we cannot expect that the deriva-
tives of any order satisfy a Hölder condition as is seen by the following example.

Example 5.6. Cf. [26, Example 10.9] and [1, Example 2.18]. Let X be the com-

plement in R2 of the flat cusp {(x, y) ∈ R2 : x > 0, |y| < e−1/x2}. It was observed
in [26, Example 10.9] that A∞(X) = C∞(X). Indeed, we have A2n,β(X) ⊆ Cn(X)
for all n ∈ N and β ∈ (0, 1], by Theorem 5.5, since X is the union of the two 1-sets

X± :=
{

(x, y) ∈ R2 : x > 0, ±y ≥ e−1/x2} ∪ {(x, y) ∈ R2 : x ≤ 0
}
,

and X+ ∩X− = {(x, y) ∈ R2 : x ≤ 0} is also a 1-set.
Consider the function f : X → R defined by

f(x, y) :=


e−1/x if x > 0, y ≥ e−1/x2

,

e−2/x if x > 0, y ≤ −e−1/x2

,

0 if x ≤ 0.

Then f ∈ A∞(X) = C∞(X). But

|f(x, e−1/x2

) − f(x,−e−1/x2

)|
|(x, e−1/x2) − (x,−e−1/x2)|γ =

e−1/x(1 − e−1/x)

2γe−γ/x2 → ∞ as x↘ 0,

that is, f is not γ-Hölder near 0 ∈ X for any γ ∈ (0, 1]. Since ∂nxf(x, e−1/x2

) =

p1( 1
x )e−1/x and ∂nxf(x,−e−1/x2

) = p2( 1
x )e−2/x for polynomials p1, p2 ∈ R[x], we

may likewise conclude that ∂nxf is not γ-Hölder near 0 ∈ X for any γ ∈ (0, 1]. In
particular, f is not the restriction to X of a C∞-function on R2.
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5.4. Other building blocks. One might be tempted to consider smooth curves
defined on R+ := [0,∞) as basic building blocks. Given X ⊆ Rd let C∞(R+, X)
be the set of all curves c : R+ → Rd with c(R+) ⊆ X that have a C∞-extension
c̃ : R → Rd (we do not require c̃(R) ⊆ X) and set

Ak,β
+ (X) :=

{
f : X → R : f∗C∞(R+, X) ⊆ Ck,β(R+,R)

}
.

By definition, Ak,β
+ (R+) = Ck,β(R+) and thus Ak,β

+ (R+) ̸= Ak,β(R+), by Exam-
ple 5.4. The notions are however not too far apart:

Proposition 5.7. Let k ∈ N, β ∈ (0, 1], and X ⊆ Rd arbitrary. Then:

(1) Ak,β
+ (X) ⊆ Ak,β(X) and A2k,β(X) ⊆ Ak, β2

+ (X).

(2) A∞
+ (X) :=

⋂
k∈N Ak,β

+ (X) = A∞(X).

(3) If X ⊆ Rd is open, then Ak,β
+ (X) = Ak,β(X).

Analogous versions hold if β is replaced by a general modulus of continuity.

Proof. (1) Suppose that f ∈ Ak,β
+ (X) and let us show f ∈ Ak,β(X). For any

C∞-curve c in X the curves c+ := c|R+
and c−(t) := c(−t) for t ≥ 0 belong to

C∞(R+, X). Then

(f ◦ c)(t) =

{
(f ◦ c+)(t) if t ≥ 0,

(f ◦ c−)(−t) if t ≤ 0,

is of class Ck,β off 0. To see that f ◦c is of class Ck,β at 0 observe that c1(t) := c(t−1)
for t ≥ 0 belongs to C∞(R+, X) and

(f ◦ c)(t) = (f ◦ c1)(t+ 1) for t ≥ −1.

To prove the second inclusion in (1) we take an arbitrary f ∈ A2k,β(X) and

c ∈ C∞(R+, X) and show that f ◦ c ∈ Ck, β2 (R+,R). For any C∞-curve γ : R → R+

the composite
(f ◦ c) ◦ γ = f ◦ (c ◦ γ)

is of class C2k,β , i.e., f ◦ c ∈ A2k,β(R+). Thus f ◦ c ∈ Ck, β2 (R+), by Theorem A.
(2) is a direct consequence of (1).

(3) In view of (1), it suffices to show Ak,β(X) ⊆ Ak,β
+ (X). If X is open, then

Ak,β(X) = Ck,β(X) so that the desired inclusion follows from the fact that the
composite of a Ck,β-function with a C∞-curve is a Ck,β-function. □

6. Arc-differentiable functions on definable sets

In this section, we will study arc-differentiable functions on sets that are definable
in polynomially bounded o-minimal expansions of the real field. We shall prove
Theorem C and Corollary D.

6.1. Polynomially bounded o-minimal expansions of the real field. We
recall the definition of an o-minimal structure over the real (ordered) field and
some background; cf. [31] and [30].

A structure S = (Sd)d≥1 over the real (ordered) field (R,+, ·) is a sequence,
where each Sd is a collection of subsets of Rd, such that for all d, d′ ≥ 1:

• Sd is a boolean algebra with respect to the usual set-theoretic operations.
• Sd contains all semialgebraic subsets of Rd.
• If X ∈ Sd and X ′ ∈ Sd′ , then X ×X ′ ∈ Sd+d′ .
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• If d ≥ d′ and X ∈ Sd, then π(X) ∈ Sd′ , where π : Rd → Rd′
is the

projection on the first d′ coordinates.

A subset X ⊆ Rd is said to be definable in the structure S if X ∈ Sd. A map
f : X → Rd′

is called definable in S if its graph is definable. A structure S is
called o-minimal if

• the boundary of every set in S1 is finite.

A structure S is called polynomially bounded if for every function f : R → R
that is definable in S there exists N ∈ N such that f(t) = O(tN ) as t → ∞. An
o-minimal structure S either is polynomially bounded or the exponential function
exp : R → R is definable in S (see [19]).

Here are a few examples of o-minimal structures relevant for this paper:

(1) The collection of all semialgebraic sets in Rd for d ≥ 1 is a polynomially
bounded o-minimal structure.

(2) The family of globally subanalytic sets in Rd for d ≥ 1 is a polyno-
mially bounded o-minimal structure. It is the smallest structure over
(R,+, ·) containing all restricted analytic functions f : Rd → R, i.e.,
f |[−1,1]d is analytic and f = 0 outside [−1, 1]d. It is denoted by Ran :=
(R,+, ·, (f)f restricted analytic).

(3) The expansion RR
an := (Ran, (x

r)r∈R) of Ran by all real powers xr : R → R,
t 7→ tr if t > 0 and t 7→ 0 if t ≤ 0, is a polynomially bounded o-minimal
structure.

(4) The expansion Ran,exp := (Ran, exp) of Ran by the unrestricted exponential
function exp : R → R is an o-minimal structure which is not polynomially
bounded.

In this paper, we will be concerned only with polynomially bounded o-minimal
structures. In fact, if the exponential function is definable, then infinitely flat cusps
are definable and on such arc-differentiable functions need not be of class C1; see
[26, Example 10.4].

From now on we suppose that S is an arbitrary polynomially bounded o-minimal
structure over the real field. If we say that a set or a map is definable, we mean
definable in S (unless stated otherwise).

6.2.  Lojasiewicz inequality. Cf. [31, 4.14]. Let f, g : X → R be continuous
definable functions on a compact definable set X such that f−1(0) ⊆ g−1(0). Then
there exist constants N,C > 0 such that

(6.1) |g(x)|N ≤ C|f(x)|, x ∈ X.

6.3. Whitney regularity. Cf. [31, 4.15]. Let X ⊆ Rd be a compact connected
definable set. There exist r, C > 0 and a definable map γ : X2 × [0, 1] → X such
that, for all x, y ∈ X, [0, 1] ∋ t 7→ γ(x, y, t) ∈ X is a rectifiable path from x to y of
length ≤ C|x− y|r.

6.4. Quasiconvex decomposition. Any definable set X ⊆ Rd can be decom-
posed into a finite disjoint union X =

⋃
j Xj of M -quasiconvex sets Xj , where

M depends only on the dimension d; see [17, Theorem 1.2]. Here a set Y ⊆ Rd is
called M -quasiconvex if any two points y1, y2 ∈ Y can be joined in Y by a piecewise
smooth path of length at most M |y1−y2|. (Note that for this result the underlying
o-minimal structure need not necessarily be polynomially bounded.)
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Lemma 6.1. Let X ⊆ Rd be a fat closed definable set. Let x ∈ ∂X and suppose
there is a basis of neighborhoods U of x such that U ∩ X◦ is connected for all
U ∈ U . For all U ∈ U and any two points y, z ∈ U ∩X◦, there exists a rectifiable
path γ in X◦ from y to z of length

ℓ(γ) ≤ C diam(U).

Proof. We only sketch the argument; details can be found in the proof of [26,
Lemma 5.9]. There is a finite disjoint decomposition of X◦ into M -quasiconvex
sets Aj . Fix U ∈ U and y, z ∈ U ∩X◦. There is a path σ : [0, 1] → U ∩X◦ with
σ(0) = y and σ(1) = z. We find a finite partition 0 = t0 < t1 < · · · < th−1 < th = 1
of [0, 1] such that the points zi := σ(ti) have the following properties: If ϵ > 0 is such
that the balls Bi = B(zi, ϵ) are contained in U∩X◦, then for each 0 ≤ i ≤ h−1 there
is a piece Aji which intersects Bi and Bi+1, and all pieces in the list Aj0 , Aj1 , . . .
are different. Using that the sets Aj are M -quasiconvex, it is now easy to find a
rectifiable path γ in X◦ from y to z of length at most C diam(U), where C depends
only on M and the number of pieces Aj . □

6.5. Uniformly polynomially cuspidal sets. Recall the definition of a closed
UPC set X ⊆ Rd from the introduction: there exist positive constants M,m and a
positive integer N such that for each x ∈ X there is a polynomial curve hx : R → Rd

of degree at most N satisfying

(1) hx(0) = x,
(2) dist(hx(t),Rd \X) ≥Mtm for all x ∈ X and t ∈ [0, 1].

In particular, hx((0, 1]) ⊆ X◦. Note that a UPC set is necessarily fat. All Hölder
sets X ∈ H (Rd) are UPC, which is an easy consequence of the definition. O-
minimal structures that are not polynomially bounded contain sets (e.g. infinitely
flat cusps) that are not UPC. Also polynomially bounded o-minimal structures may

contain fat sets that are not UPC. For instance, X = {(x, y) ∈ R2 : 0 ≤ x
√
2 ≤ y ≤

x
√
2 + x2} is definable in RR

an, but every C∞-curve in X through the origin must
vanish to infinite order (see Example 6.7). It was shown in [23] that a compact
subset X of R2 definable in some polynomially bounded o-minimal structure is
UPC if and only if it is fat and for each x ∈ X, each r > 0, and each connected
component S of X◦ ∩B(x, r) with x ∈ S there is a polynomial curve c : (0, 1) → S
such that c(t) → x as t→ 0.

On the other hand there are lots of examples of UPC sets in Rd (besides Hölder
sets):

• Fat compact subanalytic sets; cf. [21, Corollary 6.6].
• Fat compact sets definable in RQ, the o-minimal expansion of the real field

by restricted functions in a suitable quasianalytic class Q; cf. [23].
• Fat compact sets definable in a certain substructure of the structure gen-

erated by generalized power series; cf. [24].

6.6. Smooth rectilinearization. Let X ⊆ Rd be a fat compact definable set. We
say that X admits smooth rectilinearization if there is a finite number of definable
C∞-maps ψj : Rd → Rd such that

ψj((−1, 1)d) ⊆ X◦, for each j, and
⋃
j

ψj([−1, 1]d) = X.
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For instance, if X is subanalytic or definable in RQ, where Q is a suitable quasi-
analytic class, then it admits smooth rectilinearization; cf. [12], [21], [2, 3], and
[28].

Lemma 6.2. Let X ⊆ Rd be a fat compact definable set admitting smooth rectilin-
earization. There is a finite number of definable C∞-maps φj : Rd × R → Rd such
that

φj(I
d × (0, 1]) ⊆ X◦, for each j, and

⋃
j

φj(I
d × {0}) = X,

where Id := [−1, 1]d.

Proof. Compose ψj with (x1, . . . , xd, t) 7→ (x1(1 − t), . . . , xd(1 − t)). □

The following arguments are taken from the proof of [21, Theorem 6.4] and
adapted to the definable setting. For each j, the function

Id × [0, 1] ∋ (y, t) 7→ dist(φj(y, t),Rd \X)

is definable. By the  Lojasiewicz inequality (6.1), there exist L > 0 and m ∈ N≥1

such that

(6.2) dist(φj(y, t),Rd \X) ≥ Ltm, (y, t) ∈ Id × [0, 1].

The constants L, m may be assumed to be independent of j by taking the minimum
and maximum, respectively. Write

φj(y, t) = Tj(y, t) + tm+1Qj(y, t), (y, t) ∈ Rd × R,

where Tj(y, ·) is the Taylor polynomial at 0 of degree m of φj(y, ·). If we choose
δ ∈ (0, 1] such that |tQj(y, t)| ≤ L/2 for all j, y ∈ Id, and t ∈ [0, δ], then

dist(Tj(y, t),Rd \X) ≥ Ltm − L

2
tm =

L

2
tm, (y, t) ∈ Id × [0, δ].

Replacing t by δt, we obtain

dist(Tj(y, δt),Rd \X) ≥Mtm, (y, t) ∈ Id × [0, 1],

where M := 1
2Lδ

m. Clearly,
⋃

j Tj(I
d × {0}) =

⋃
j φj(I

d × {0}) = X. From this it
is easy to conclude

Proposition 6.3. Any fat compact definable set X ⊆ Rd admitting smooth recti-
linearization is UPC.

We recall that the reciprocal α = 1
m of the integer m that appears in (6.2) is

called a UPC-index of X.
The following lemma will be an important tool in the proof of Theorem C.

Lemma 6.4. Let X ⊆ Rd be a fat compact definable set admitting smooth rectilin-
earization and α a UPC-index of X. Let n ∈ N≥1 and ω a modulus of continuity.

For each f ∈ Anp(α),ω(X) the Fréchet derivatives f (k), k ≤ n, are bounded on X◦.

Note that the derivatives of f ∈ Anp(α),ω(X) exist up to order np(α) (by [4,
Theorem 2], [8, Théorème 1]), but f (n+1) need not be globally bounded on X◦ as
seen in Remark 5.2.
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Proof. Let k ≤ n be fixed. For contradiction, suppose that there is a sequence
(xℓ) in X◦ such that {f (k)(xℓ) : ℓ ∈ N} is unbounded. Let φj be the maps from
Lemma 6.2. After passing to a subsequence, we may assume that xℓ ∈ φj0(Id×{0})
for all ℓ and some j0. Choose yℓ ∈ Id such that φj0(yℓ, 0) = xℓ. Since Id is compact,
after repeatedly passing to subsequences we may assume that yℓ converges to y ∈ Id

and that yℓ − y tends fast to 0. The infinite polygon through the points yℓ and y
can be parameterized by a C∞-curve c : R → Id such that c( 1

ℓ ) = yℓ and c(0) = y
(cf. [16, Lemma 2.8]). Then s 7→ φj0(c(s), 0) is a C∞-curve in X through the points
xℓ and x = φj0(y, 0).

Let v ∈ Sd−1 be arbitrary. By Theorem A,

(s, t1, t2) → f
(
φj0(c(s), t1) + t2v

)
is of class Cn for small s ∈ R, t1 ≥ 0, and |t2| ≤ L

2 t
m
1 . Indeed, such (s, t1, t2) range

over an α-set (where α = 1
m ) and the point φj0(c(s), t1) + t2v lies in X, since, by

(6.2),

dist(φj0(c(s), t1) + t2v,Rd \X) ≥ dist(φj0(c(s), t1),Rd \X) − |t2|

≥ Ltm1 − L

2
tm1 =

L

2
tm1 .

But this implies that the directional derivative dkvf(xℓ) is bounded in ℓ. Since v
was arbitrary, f (k)(xℓ) is bounded (e.g. in view of the polarization formula [16,
(7.13.1)]), a contradiction. □

As a by-product we obtain

Proposition 6.5. Let X ⊆ Rd be a fat compact definable set admitting smooth
rectilinearization. The c∞-topology of X coincides with the trace topology of Rd.

Proof. Let A be a c∞-closed subset of X and let A be the closure of A in Rd.
We have to show that A ⊆ A. Let x ∈ A and xℓ a sequence in A with xℓ → x.
If we find a C∞-curve in X through a subsequence of xℓ and through x, we have
x ∈ A and are done. Since X admits smooth rectilinearization, there exists a C∞-
map ψ : Rd → Rd and an infinite subsequence of xℓ, again denoted by xℓ, which is
contained in ψ([−1, 1]d). Choose yℓ ∈ [−1, 1]d such that ψ(yℓ) = xℓ. As in the proof
of Lemma 6.4 we may pass to a fast converging subsequence yℓ → y ∈ [−1, 1]d and
find a C∞-curve c in [−1, 1]d which passes through this subsequence and y. Then
ψ ◦ c is a C∞-curve in X through the corresponding xℓ = ψ(yℓ) and x = ψ(y). □

6.7. Proof of Theorem C. Let X ⊆ Rd be a simple fat compact definable set
admitting smooth rectilinearization and let α be a UPC-index for X. Let n be a
positive integer and ω a modulus of continuity. Let f ∈ Anp(α),ω(X). Then the
Fréchet derivatives f (k) exist and are continuous on X◦ for all k ≤ np(α), by [4,
Theorem 2], [8, Théorème 1], and they are globally bounded on X◦ for all k ≤ n,
by Lemma 6.4. It remains to show that for all k ≤ n− 1 they extend continuously
to ∂X.

Fix x ∈ ∂X. By Proposition 6.3, there exist m,N ∈ N≥1 with α = 1
m , M > 0,

and a polynomial curve hx : R → Rd of degree at most N such that

(1) hx(0) = x,
(2) dist(hx(t),Rd \X) ≥Mtm for all t ∈ (0, 1].
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Then hx(t)− x vanishes to finite order. So there is a positive integer j = j(x) such

that hx(t) − x = tj h̃x(t), where h̃x(0) ̸= 0. Set v1 := h̃x(0)

|h̃x(0)|
∈ Sd−1. Choose d− 1

directions v2, . . . , vd ∈ Sd−1 such that v1, v2, . . . , vd are linearly independent and
consider the map Ψx,v : Rd → Rd defined by

(6.3) Ψx,v(t1, t2, . . . , td) := hx(t1) + t2v2 + · · · + tdvd.

The restriction of Ψx,v to

(6.4) Y :=
{

(t1, . . . , td) ∈ Rd : t1 ∈ (0, δ), |tj | < M
2(d−1) t

m
1 for 2 ≤ j ≤ d

}
,

for small δ > 0, is a diffeomorphism onto the open subset Hx,v := Ψx,v(Y ) of X◦

and it extends to a homeomorphism between Y ∪ {0} and Hx,v ∪ {x}. Indeed,

dist(Ψx,v(t),Rd \X) ≥ dist(hx(t1),Rd \X) − |t2| − · · · − |td|

> Mtm1 − M

2
tm1 =

M

2
tm1 > 0,

for t ∈ Y . This also shows that Ψx,v(Y ) ⊆ X. Since f is of class Cn in X◦, we have

(6.5) ∂j2t2 · · · ∂jdtd (f ◦ Ψx,v)(t) = dj2v2 · · · djdvdf(Ψx,v(t)),

for all t ∈ Y and 0 ≤ j2 + · · ·+ jd ≤ n; actually even up to order np(α) but we will
not need this. The function f ◦Ψx,v|Y belongs to Anp(α),ω(Y ) and hence to Cn(Y ),

by Theorem A, as Y is an α-set. It follows that the left-hand side of (6.5) extends
continuously to t = 0 for all 0 ≤ j2 + · · · + jd ≤ n. So the directional derivatives
dj2v2 · · · djdvdf , 0 ≤ j2 + · · · + jd ≤ n, extend continuously from Hx,v to x.

If we perturb the directions v2, . . . , vd a little such that v1, v2, . . . , vd remain
linearly independent and take the intersection Hx of the corresponding sets Hx,v,

then Hx still is an open subset of X◦ with hx(t) ∈ Hx for small t > 0 and x ∈ Hx.
So the directional derivatives dj2w2

· · · djdwd
f , 0 ≤ j2+· · ·+jd ≤ n, extend continuously

from Hx to x for all w2, . . . , wd near v2, . . . , vd. Thus the Fréchet derivatives f (k),
for k ≤ n, extend continuously from Hx to x (in view of the polarization formula
[16, (7.13.1)]).

For each x ∈ ∂X we define

f (k)(x) := lim
Hx∋y→x

f (k)(y), k ≤ n.

It remains to prove that the so defined extension of f (k) to ∂X is continuous at ∂X
if k ≤ n− 1. To this end fix x ∈ ∂X and let (xj) and (yj) be two sequences in X◦

converging to x. By Lemma 6.1, for each ϵ > 0 there exists j0 ∈ N such that for all
j ≥ j0 the points xj and yj can be joined by a rectifiable path γj in X◦ of length
ℓ(γj) ≤ ϵ. Thus

∥f (k)(xj) − f (k)(yj)∥Lk(Rd,R) ≤
(

sup
z∈γj

∥f (k+1)(z)∥Lk+1(Rd,R)

)
ℓ(γj)

tends to 0 as j → ∞ if k ≤ n − 1, since f (k+1) is globally bounded on X◦, by
Lemma 6.4. If we assume that the sequence (xj) lies in Hx, we obtain

f (k)(x) = lim
X◦∋y→x

f (k)(y), k ≤ n− 1.

Finally, suppose that ∂X ∋ xj → x. Choose yj ∈ Hxj
∩B(xj , j

−1). Then
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∥f (k)(x) − f (k)(xj)∥Lk(Rd,R)

≤ ∥f (k)(x) − f (k)(yj)∥Lk(Rd,R) + ∥f (k)(xj) − f (k)(yj)∥Lk(Rd,R)

tends to 0 as j → ∞. Thus f (k) extends continuously to x.

Now suppose that Z is any non-empty subset of X and f ∈ Anp(α),ω
Z (X). Fix

x ∈ Z. We want to show that f (k)(x) = 0 for all k ≤ n− 1; actually, it is true even
for k = n. The assertion is easy to see if x ∈ X◦. So let us assume that x ∈ ∂X
and let Ψx,v be the map from (6.3) and Y the set from (6.4). Then f ◦ Ψx,v|Y
belongs to Anp(α),ω

{0} (Y ) and thus to Cn
{0}(Y ), by Theorem A. In view of (6.5) and

the perturbation argument shortly after (6.5), we may conclude that f (k)(x) = 0
for k ≤ n. Theorem C is proved.

6.8. Proof of Corollary D. This follows in analogy to the proof of Corollary B
(see Section 3.4) from Theorem C, where we use Whitney regularity 6.3 instead of
Proposition 2.4.

6.9. Weak flatness on UPC sets. Let X ⊆ Rd be a fat closed set and x ∈ X.
Let r ≥ 0. A function f : X → R is called weakly r-flat at x in X if

|f(y)|
|y − x|r → 0 as X ∋ y → x.

It is called weakly ∞-flat at x in X if it is weakly n-flat at x for each n ∈ N.

Corollary 6.6. Let X ⊆ Rd be a closed UPC set (not necessarily simple or defin-
able) and let α be a UPC-index of X. Let x ∈ X. Let n ∈ N and ω a modulus of

continuity. Assume that f ∈ Anp(α),ω(X) ∩ Cn(X) is weakly np(α)
2 -flat at x in X.

Then f is n-flat at x.

Proof. Since X is UPC and α is a UPC-index of X, we find as in the proof of
Theorem C an α-set Y and a map Ψx,v : Rd → Rd such that Ψx,v(Y ) ⊆ X,

Ψx,v(0) = x, and g := f ◦ Ψx,v|Y belongs to Anp(α),ω(Y ). In view of Theorem A,
(6.5), and the perturbation argument shortly after (6.5), it suffices to show that g

actually belongs to Anp(α),ω
{0} (Y ). So we fix c ∈ C∞(R, Y ) with c(0) = 0 and check

that (g ◦ c)(j)(0) = 0 for all j ≤ np(α). The shape of Y imposes that c vanishes to

order at least 2 at 0, i.e., c(t) = t2c̃(t). Since f is weakly r := np(α)
2 -flat at x in X,

also g is weakly r-flat at 0 in Y :

|g(y)|
|y|r =

|f(Ψx,v(y))|
|Ψx,v(y) − x|r

|Ψx,v(y) − x|r
|y|r → 0 as Y ∋ y → 0,

since Ψx,v is locally Lipschitz. Consequently,

|g(c(t))|
|c(t)|r =

|g(c(t))|
|t|2r|c̃(t)|r → 0 as t→ 0,

and we see that g ◦ c is weakly np(α)-flat at 0 in R. It follows that (g ◦ c)(j)(0) = 0
for all j ≤ np(α) and we are done. □

A similar result has been obtained in [29, Satz 1.4]: A Cn-function f defined on a
neighborhood of x in Rd is n-flat at x, if f is weakly np-flat at x in X and X ⊆ Rd

contains a sequence of balls B(xk, rk) such that |xk − x|p/rk → 0. See also [13]. In
the language of [13], the corollary implies that the C∞-Spallek function S∞

X,x of a

closed UPC set X with UPC-index α and x ∈ X satisfies S∞
X,x(n) ≤ np(α).
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6.10. Open problem. Our proof of Theorem C uses that the set X admits smooth
rectilinearization and (as a consequence) is UPC. We do now know if these assump-
tions can be relaxed. There are polynomially bounded o-minimal expansions of the
real field in which sets that lack these properties are definable. For instance, the
set X in Example 6.7 below is definable in the structure RR

an, but it is not UPC
(cf. Section 6.5). Any C∞-curve c in X through the boundary point 0 has to van-
ish to infinite order on c−1(0). It could be an indication that C∞-curves may no
be enough to detect derivatives at some boundary points even though the set has
finite cuspidality. Be that as it may, the C∞-curves certainly do not discriminate
points of flatness: The function f(x, y) = x belongs to A∞

{0}(X) but ∂xf(0) = 1.

Furthermore, the smooth function g(x, y) = e−1/x2

if x ̸= 0 and g(0, y) = 0 is not
analytic near the origin, but, trivially, g ◦ c is analytic for all analytic curves c in
X; so the Bochnak–Siciak theorem fails on X, while it holds on simple fat closed
subanalytic sets and Hölder sets; cf. [26, Theorem 1.16 and Corollary 1.17].

Example 6.7. Let σ > 1 be an irrational number and p > σ an integer. Consider

X := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, xσ ≤ y ≤ xσ + xp}.

Each C∞-curve c : R → X must be infinitely flat on c−1(0). Suppose for contra-
diction that c(0) = 0 and c(t) = (x(t), y(t)) vanishes only to finite order at t = 0.
There exist positive integers k, ℓ such that x(t) = tkx̃(t) and y(t) = tℓỹ(t), where
x̃, ỹ are smooth and either x̃(0) ̸= 0 or ỹ(0) ̸= 0. Then

0 ≤ tσkx̃(t)σ ≤ tℓỹ(t) ≤ tσkx̃(t)σ + tpkx̃(t)p, t ≥ 0.

Several cases must be discussed:

(1) x̃(0) ̸= 0 and σk − ℓ < 0 is impossible, since it would mean that ỹ(t) is
unbounded at 0.

(2) x̃(0) ̸= 0 and σk−ℓ > 0 implies that ỹ(0) = 0. So we may replace ℓ by ℓ+1
and repeat the reasoning. We either end up in case (1) or y(t) vanishes to
infinite order at t = 0. But the latter contradicts x̃(0) ̸= 0. So case (2) is
impossible.

(3) ỹ(0) ̸= 0 and σk − ℓ > 0 is impossible.
(4) ỹ(0) ̸= 0 and σk − ℓ < 0 implies that x̃(0) = 0. As in case (2), we may

replace k by k + 1 and repeat the argument. This leads to case (3) or x(t)
vanishes to infinite order. But then also y(t) vanishes to infinite order at
t = 0, a contradiction.

It seems to be unknown if X satisfies the Markov inequality (MI) (cf. [24, p. 649]),
but it has the Whitney extension property WEP (e.g., by [9, Theorem 3.15]) and
hence admits a weaker inequality of Markov type, by [9, Theorem 4.6]: for all
θ ∈ (0, 1) there exist C, r ≥ 1 such that

(6.6) sup
x∈X

|∇p(x)| ≤ C(deg p)r sup
x∈X

|p(x)|θ sup
x∈K

|p(x)|1−θ

for all real polynomials p, where K ⊆ R2 is any compact set with X ⊆ K◦.
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