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Preface

These are lecture notes for the course Advanced complexr analysis which I held
in Vienna in Fall 2016 and 2017 (three semester hours). I am grateful to Gerald
Teschl, who based his Advanced complex analysis course on these notes in Fall 2019,
for corrections and suggestions that improved the presentation.

We follow quite closely the presentation of [I11]. In the following the primary
sources for the single chapters are briefly indicated.
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NOTATION v

Notation

A domain is a nonempty open subset U C C. A connected domain is called
a region. We denote by D,(c) = {z € C : |z — ¢| < r} the open disk of radius r
and center ¢. D,(c) denotes the closed disk and dD,.(c) its boundary; if not stated
otherwise, it is always assumed to be oriented counterclockwise. By D we denote
the unit disk D = D;(0), by H := {z € C: Imz > 0} the upper half plane. The
Riemann sphere CU {oo} is denoted by C. We use C* = C\ {0} and C: =C\ {a},
for a € C, as well as D* := D\ {0} and D}(a) := D,(a) \ {a}. If V is a relatively
compact open subset of U we write V € U.

Let U C C be a domain. If K C U is compact and f is continuous on K, i.e.,
f € C(K), then we write |f|x := sup,cg |f(2)|. By H(U) we denote the set of
all holomorphic functions f : U — C. And O(K) denotes the set of all f € C(K)
such that f is the restriction to K of a function which is holomorphic on an open
neighborhood of K. By Aut(U) we denote the set of automorphisms of U.

We recall that the Cayley mapping
] 142
1—2’

Z—1 _ .
- R LD H, 2z

h-H—D, z+—
Z+1

is a biholomorphism.

We denote by || := im(v) the image of a curve v : [0,1] — C; it is a compact
subset of C. For a,b € C we write [a, b] for the oriented line segment for a to b, i.e.,
(1—t)a+th, t € [0,1].

Uy, | u means that u,, is a sequence of real valued functions such that w, > u,41
and u, — u pointwise.

Let X be a Riemann surface. Then Ox is the sheaf of germs of holomorphic
functions on X, and Ox . is the ring of germs of holomorphic functions at z € X.
In the case of X = C we just write O = O¢ and O, = O¢, if a € C.






CHAPTER 1
Analytic continuation

1. Covering spaces

A mapping p : X’ — X between topological spaces is a local homeomor-
phism if for each a’ € X’ there is an open neighborhood U’ of a’ in X’ such that
p(U") = U is open and p|y is a homeomorphism onto U.

Let Y be a topological space and let f: Y — X be continuous. A lifting of f
to X’ over p is a continuous mapping f’ : Y — X’ such that po f' = f.

Lemma 1.1 (uniqueness of liftings). Let X, X’ be Hausdorff spaces and let p :
X' — X be a local homeomorphism. Let Y be a connected Hausdorff space. Let
f:Y — X be continuous and assume that f1, fo are liftings of f. If there exists

Yo € Y such that f1(yo) = f2(yo), then f1 = fa.

Proof. Let A={y €Y : fi(y) = f2(y)}. Then yp € A and A is closed, since X’ is
Hausdorff (X’ is Hausdorff if and only if the diagonal A C X’ x X’ is closed, A is
the preimage of A under (f1, f2)). We claim that A is also open. For, let y € A and
a’ = f1(y) = f2(y). There is an open neighborhood U’ of a’ such that p(U’) = U
is open and p|ys is a homeomorphism onto U. Since fi, fo are continuous, there
is a neighborhood V' of y such that f1(V) C U’, fo(V) C U’. For every v € V,
p(f1(v)) = f(v) = p(f2(v)), and thus, since p|y- is injective, f1 = f2 on V. That is
V C A, and A is open. O

A Hausdorff topological space X is an n-dimensional manifold if every point
a € X has an open neighborhood U which is homeomorphic to an open set in R™.

Let X, X’ be manifolds and p : X’ — X a continuous mapping. Then p is called
a covering map, and X’ a covering of X, if every a € X has a neighborhood U
with the following property: p~1(U) is a disjoint union of open sets UJ'» CX' jeld,
such that P|U]', is a homeomorphism onto U for each j € J. Clearly, a covering map
is a local homeomorphism.

Lemma 1.2 (curve lifting property of coverings). Each curve v : [0,1] — X in the
base space of a covering map p: X' — X with v(0) = a can be lifted uniquely to a
curve ' : [0,1] = X' with v/(0) = a’, where @’ € p~!(a).

Proof. By it suffices to show the existence of 7’.

Since [0, 1] is compact, there is a partition 0 = tp < ¢; < --- < t,, = 1 and
open sets U; C X, 1 < j < n, such that v([t;_1,¢;]) € U;, p*(U;) is a disjoint
union of open sets UJ’-k C X/, and p|U}k : UJ’-k — Uj; is a homeomorphism. We show
by induction on j the existence of a lifting 7} on [0,¢;] with 77(0) = a’. There is
nothing to prove for j = 0. Suppose that j > 1 and that 'y;»_l is already constructed.
Set @y :=7j_1(tj—1). Then p(a’_;) =(t;-1) € U; and 2;_, lies in U, for some
k. Setting

N LU R S
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2 1. ANALYTIC CONTINUATION
yields a lifting on [0, ¢;]. d

We mention the following converse without proof.

Theorem 1.3. Let p : X' — X be a local homeomorphism between manifolds.
Then p is a covering map if and only if it has the curve lifting property.

Example 1.4. Let C* := C\ {0}. The mapping exp : C — C* is a covering
map. In fact, U := {z € C: @ < Imz < a+ 27}, for @ € R, is mapped to
expU = C*\ {re"® :r >0}, and exp™ ' (expU) = U, 5 (U + 2min).

For every positive integer n, the mapping C* — C*, z +— 2™, is a covering map.

Exercise 1. Let n be a positive integer. Prove that C* — C*, z + 2™, is a covering
map. Determine the lifting 5 of y(t) = 2™, t € [0, 1], with (0) = 1.

2. The sheaf of germs of holomorphic functions

Let a € C. Consider the set of pairs (U, f), where U C C is an open set
containing a and f € H(U). We define an equivalence relation ~ on this set by
(U, f) ~ (V,g) if there exists an open set W with a € W C U NV such that
flw = glw. An equivalence class is called a germ of a holomorphic function
at a. The equivalence class of (U, f) is denoted by f,; we say that f, is the germ
of f at a. The set of all such germs at a is denoted by O,. The value of the germ
fo € O, is defined by evy(fs) = fa(a) := f(a), where (U, f) is any representative
of f,.

Lemma 2.1. Addition and multiplication of functions induces the structure of com-
mutative ring on Ou. O, is a complex vector space. The non-units of O, form a
mazimal ideal mg = {fo € O4 : fola) =0} in Op. We have O,/m, = C.

Exercise 2. Prove [Lemma 2.1]

Consider the disjoint union O := | |, O4. We introduce a topology on O as
follows. Let f, € O, and let (U, f) be a representative of f,. Set

N, f):={f. €O, : [, is the germ at z € U defined by (U, f)}. (2.1)

We require that the sets N (U, f), where (U, f) runs over all representatives of f,,
form a fundamental system of neighborhoods of f,.

Consider the mapping 7 : O — C given by 7(f,) = a if f, € O,. Then (O, )
is called the sheaf of germs of holomorphic functions on C.

Lemma 2.2. O is a Hausdorff space.

Proof. Let fo € O, g» € Oy, and suppose that f, # gp. Let (U, f), (V,g) be
representatives of f,, gy, respectively.

If a # b, there are neighborhoods U’ C U, V! C V of a, b, respectively, such
that U' NV’ = 0. Then N(U’, f), N(V’,g) are disjoint neighborhoods of f,, gp.

If a=b,let D CUNYV be a disk centered at a. Then N(D, f)NN(D,g) = 0.
Indeed, if h, € N(D, f)NN(D,g), then (U, f) and (V, g) both define the germ h,
at z. So there is a neighborhood W C D of z such that f|w = g|w. By the identity
theorem, f = g on D, in particular, f, = g,, a contradiction. O

Lemma 2.3. 7 : O — C is continuous and a local homeomorphism. Thus O is a
two-dimensional manifold.
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Proof. Let f, € O, and let (U, f) be a representative of f,. Note that 7(N (U, f)) =
U. If V. C C is an open set containing a, then 7(N(U NV, f)) =UNV CV, so
that 7 is continuous. Moreover, (N (U, f)) = U also implies that 7 is open.
The restriction 7|y v, f) is injective and has the inverse z +— f., so 7|yw,s) is a
homeomorphism onto U.

Let f, € Oy and let v : [0,1] — C be a curve with v(0) = a. An analytic
continuation of f, along ~ is a lifting 4 of v over 7 : O — C such that 4(0) = f,.

This means that for each tg € [0, 1] there is a neighborhood I of ¢y in [0, 1], an
open set U C C with v(I) C U, and f € H(U) such that f, = (t) for all t € I.
In fact, let tg € [0,1] and suppose N (U, f) is a neighborhood of F(tp) in @. Then
there is a neighborhood I of ¢ in [0, 1] such that 4(I) C N(U, f). Thus v(I) CU
and (1) = fy()-

Since [0, 1] is compact, this condition is equivalent to the following: there exist
a partition 0 = top < t; < --- < t, = 1, domains U; C C with y([¢;_1,¢;]) C Uj,
and f; € H(U;) such that

(1) fao is the germ of f; at a,
(2) filv, = fj+1lv;, where Vj is the connected component of U; N Uj 1 that
contains y(t;).

— - a\\ . \\ // ~.
./'/ \f-<-* —«—4{ \/ )( 7 \
L ](’/ ‘\’\\ l/ \‘,'i [ \ l\flf” 1 |
A A — LT /
r/ P i \"—/J\/ \ D
o /
- J.‘J" / U /
N N -

Lemma 2.4 (permanence of relations). Let -~y : [0,1] — C be a curve with v(0) = a.
Let fo,9q4 € O and let P be a polynomial in two variables. Suppose that fo, g, can
be continued analytically along v and that P(fa,ga) = 0. Then, if F(t),G(t) denote
the germs at y(t) obtained by analytic continuation of fu, ga, respectively, along =,
we have P(F(t),G(t)) =0 for all0 <t < 1.

Proof. Let D C C be a disk, and let p,¢ € H(D). If there is z € D such that
P(p,,1,) = 0 then P(p,v) = 0 on D, by the identity theorem. Thus the set
{t € [0,1] : P(F(t),G(t)) = 0} is open in [0,1]. Clearly, it is also closed in [0, 1]
and contains 0, thus it is all of [0, 1]. O

Exercise 3. Show that the mapping 7 : © — C does not have the curve lifting
property and hence is not a covering map. Hint: Consider the germ ¢ at 1 of the
function z — 1/z, and show that the curve « : [0,1] — C, v(t) = 1 — ¢, does not

admit a lifting 4 to O with 4(0) = ¢. Use

Exercise 4. Let f € H(C). Show that N(C, f) is the connected component in O
of the germ fy at 0 of f. Hint: Use that an open subset X in the manifold O is
connected if and only if X is pathwise connected.
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3. Integration along curves

Germs of holomorphic functions can be differentiated. We define a mapping
d: O — O as follows. Let f, € O, and let (U, f) be a representative of f,. Then
df, := (f')a is the germ at a of (U, f’), where f’ is the derivative of f.

Proposition 3.1. d: O — O is a covering map.

Proof. Let f, € O, and let (U, f) be a representative of f,. Let D C U be a disk
centered at a. Let F' be a primitive of f on D. We claim that

d"Y(N(D, f)) = |J N(D,F +o). (3.1)
ceC

We clearly have dN(D,F + ¢) = N(D, f). For the other inclusion, let z € D,
g: € O, and dg, = f,. Let (W, g) be a representative of g,, where W C D is a
connected neighborhood of z. Then ¢’ = f near z, hence on W, and consequently,
(g — F) =0 on W. So there is a constant ¢ € C such that ¢ = F + ¢ on W, and
g. € N(D, F + c¢). This shows (3.1). Clearly, the union is disjoint.

Let us prove that d|n(p,F+¢) is @ homeomorphism onto N (D, f) for each ¢ € C.
It suffices to check that d|y(p,ric) is injective, which is obvious because d takes
distinct elements of N (D, F + ¢) to germs at different points of D. O

Let U C C be a domain, f € H(U), and v : [0,1] - U a curve in U. A
primitive of f along ~ is by definition a lifting over d : O — O of the curve
I': [0,1] — O given by I'(t) := fy). It exists, by the [curve lifting property of|
coverings 1.2} since d : O — O is a covering map, by |Proposition 3.1}

If F1, F5 are two primitives of f along <y, then there is a constant ¢ such that
Fi(t) = F(t) + c for all t € [0,1]. This follows from the [uniqueness of liftings 1.1}
since F(0) and F5(0) are both primitives of f in a neighborhood of v(0), and hence
F1(0) = F5(0) + ¢ for some ¢ € C.

Proposition 3.2. Let U C C be a domain, f € H(U), and 7 : [0,1] — U piecewise
Cl. Let F :[0,1] — O be a primitive of f along . Then

/ fdz = F(1)(7(1)) = F(0)((0)).

Proof. We define a mapping G : [0,1] — O as follows. Let t € [0, 1], and let D be
a disk centered at «y(¢) and contained in U. Let h be the primitive of f on D for
which

W (1)) = / o)) (5) ds.

Let G(t) be the germ at «(t) of h, i.e., G(t) := hyy). Then dG(t) = fyr). We
will show that G is a lifting of T', i.e., that G is continuous. This will imply the
assertion: there is a constant ¢ such that F(¢) = G(t) + ¢ for all t € [0, 1], and so

F(1)(+(1)) - F(0)(4(0)) = G(1)((1)) — G(0)(~(0))
1
- / FOY() (s) ds = / fd.

Let us prove that G is continuous. Let tg € [0,1], and let D be a small disk
with center v(¢p). Let h € H(D) be such that (D, h) is a representative of the germ

G(to). Then, by definition, h(y(ty)) = foto F(v(s))7(s)ds. Let € > 0 be such that
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~(t) € D if |t — to| < €. For such ¢,

h(y(t)) — h(y(to)) = /

t
0

Zh0E)ds = [ 166 (s

since ' = f on D. Thus, h(y(t)) = fot f(v(s))7'(s) ds, so that G(t) = h. ) for
|t —to| < e. In particular, G(t) € N(D, h), hence G is continuous. O

If v : [0,1] = U is any curve, i.e., just continuous and not necessarily piecewise
C', we may use this as the definition of f,y fdz: if feH(U) and F:[0,1] = O is
a primitive of f along -, then we define

/ fdz = F(1)(y(1)) = F(0)(7(0)). (3-2)

Corollary 3.3. Let U C C be a domain and f € H(U). If f has a primitive on
U, then for any closed curve v in U,

/fdz:O.
~

Proof. Let h be a primitive of f on U. Then F' : [0,1] — O defined by F(t) := h, )
is a primitive of f along ~. So fv fdz = h(y(1))=h(y(0)) = 0since y(1) = v(0). O

4. The monodromy theorem

Let X be a manifold. Let v; : [0,1] — X, ¢ =0, 1, be curves in X. We say that
vo and ~y; are homotopic if there is a continuous mapping H : [0,1] x [0,1] — X,
H(s,t) = Hy(t) = H'(s), such that Hy = 79 and H; = 7;. The mapping H is
called a homotopy. It defines a one-parameter family of curves v, := Hg in X
which connects vy and v1; we will also write H = {7s}se[0,1]-

Suppose that Hy(0) = H;(0) = a. We say that the homotopy H fixes a if
H(s,0) = a for all s € [0,1]. Provided that also Hy(1) = Hy(1) = b, we say that H
fixes the endpoints if H(s,0) = a and H(s,1) = for all s € [0,1].

Theorem 4.1 (general monodromy theorem). Let X, X’ be manifolds andp : X' —
X a local homeomorphism. Let ' € X' and a = p(a’). Let H : [0,1]> = X be a
homotopy between o and 1 fizing the starting point a = v9(0) = v1(0). Suppose

that each curve v := Hy, s € [0,1], has a lifting v, over p : X' — X which starts
at a’. Then H'(s,t) := ~.(t) is a homotopy between v} and .

Proof. We must show continuity of H’ : [0,1]? — X'. Let I := [0, 1].
Fix (so,to) € I?. Since v, is continuous and hence 7, (I) is compact, we may

choose open sets U/, ...,U}, in X’ and points 0 = 79 < 71 < --- < 7, = 1 such that
p|UJ< =: p; is a homeomorphism onto an open set U; in X and v ([7j, 7j+1]) C Uj,
7=0,1,...,n— 1. We may assume without loss of generality that ¢ is an interior

point of some [7j,, 7j,+1], unless to is 0 or 1.

By the continuity of H, there exists € > 0 such that vs(t) € U; for |s — so| < ¢,
sel, telr,m),and j =0,1,...,n — 1. We will prove that, for |s — so| < e,
sel, ter, 7], and j=0,1,...,n—1,

V() = p; (s (1)) (4.1)
This implies that H’ is continuous at (so,tg), since (sp,%p) is an interior point
(relative to I%) of the set {s € I : |s — so| < €} X [Tjo, Tjo+1]-

We show (4.1) by induction on j. Let j = 0. Fix s € I with |s — 59| < e.
The curves 7, and py* o s are both liftings of v, on the interval [rg, 7], and
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v,(0) = a’ = (py" 0 7,)(0) (because a’ = ~. (0) € Uj). By [uniqueness of liftings|
holds for j = 0.

Suppose that has been proved for all 0 < j < k. For fixed s, the curves
! and p; ' o s are both liftings of v, on the interval [r4, 7441]. By [Lemma 1.1} it
is enough to prove

v (k) :pgl(’ys(m)) for |[s —so| <€, s €1 (4.2)
By induction hypothesis, (4.1) for j = k — 1 and t = 71 gives
Vi(te) = pity (s(Tk))  for s —so| <€ s€T. (4.3)

In particular, for s = sg,

Pi (50 (1)) = 720 () = P21 (950 (7h)),

since 7., (k) € Uj_; NU}. Thus, s = p;*, (vs(7k)) and s = p; ' (vs(7%)) are both
liftings of s — ~5(7x), for |s — 59| < €, s € I, and they coincide for s = sy9. By
Lemma 1.1} pi ', (vs(7%)) = pi ' (7s(7x)) for all |s — so| < €, s € I, which together

with (4.3)) implies (4.2) and hence (4.1)) for j = k. O

Corollary 4.2. Let X, X' be manifolds and p : X' — X a local homeomorphism.
Leta' € X', a=p(a’), and b € X. Let H : [0,1]> — X be a homotopy between g
and v1 fizing a = v(0) = 71(0) and b = v(1) = v1(1). Suppose that each curve
vs := Hs, s € [0,1], has a lifting v, over p: X' — X which starts at a’. Then the
endpoints of v, and vy coincide, and v.(1) is independent of s.

Proof. By [Theorem 4.1} the mapping s — ~.(1) is continuous. Thus it is a lifting
of the constant curve s — v5(1) = b, and so it is itself constant, by O

Theorem 4.3 (classical monodromy theorem). Let vo,71 be curves in C with the
same endpoints a = v0(0) = v1(0), b = y0(1) = 71(1), and let H = {ys}scio,1) be a
homotopy between vy and 1 fizing the endpoints. Let f, € O, and suppose that f,
can be continued analytically along s for all s € [0,1]. Then analytic continuation
of fa along vo and 1 result in the same germ at b.

Proof. Apply [Corollary 4.2]to 7 : O — C. O

Next we will derive several applications of the monodromy theorem.

Theorem 4.4 (homotopy form of Cauchy’s theorem). Let U C C be a domain.
Let vo,71 : [0,1] = U be curves in U with the same endpoints, a = v9(0) = 71(0)
and b =7(1) = 71(1). Suppose that there is a homotopy between o, y1 in U fixing
the endpoints. Then, for each f € H(U),

fdz= fdz.

Yo 71

Proof. Let H : [0,1]> — U be a homotopy between 7o, 71 in U fixing the endpoints.
Then K : [0,1]> — O, where K,(t) is the germ at H(t) of (U, f) is a homotopy
between Ky and K fixing the endpoints f, and f,. Let F, be the germ at a of
some primitive of f in a neighborhood of a. Since d : O — O is a covering map, by
[Proposition 3.1} K, has a lifting K’ : [0,1] — O over d such that K’(0) = F,, for
all s € [0,1]. By |Corollary 4.2, K(1) = K7(1), and hence

fdz = Kj(1)(10(1)) = K5(0)(70(0) = K1 (1) (1 (1)) = K1(0)(11(0)) = / fdz,
O

since K(0)(70(0)) = K1(0)(71(0)) = Fa(a) and yo(1) = 71 (1) = b.
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It is not hard to show that any curve « : [0,1] — U is homotopic in U to a
piecewise Cl-curve 4 : [0,1] — U (by a homotopy fixing the endpoints). So, by
Theorem 4.4] it is no loss of generality to assume that 7 is piecewise C, if one
deals with path integrals fv f dz of holomorphic functions f.

A pathwise connected Hausdorff space X is said to be simply connected if
for any two curves g, 71 in X with the same endpoints there is a homotopy in X
between vy and v fixing the endpoints. If ¢ is homotopic in X to a constant curve
v (i.e., a point), we say that 7o is null-homotopic in X.

Corollary 4.5. If U C C is a simply connected domain, then for each f € H(U)
and each closed curve v in U,
/ fdz=0.
~

Proof. Apply the homotopy form of Cauchy’s theorem 4.4]to a homotopy between
~ and the constant closed curve v(0). O

We will now show that continuous mappings f : ¥ — X, where Y is simply
connected, admit liftings over covering maps p : X’ — X. In the proof we will
use concatenation of curves: if v; : [0,1] — X, i = 1,2, are curves such that
’yl(l) = ’}/Q(O), then

71 (21) ift €10,1/2],

Y1 2(t) = {72(27& -1) ifte[1/2,1].

defines a curve y1 - ¥2 : [0,1] = X. (In homotopy theory this notation preferred in
contrast to ;1 + 2 used in homology theory.)

The property of being homotopic defines an equivalence relation on the set
of all closed curves v : [0,1] — X with fixed endpoint v(0) = (1) = a. The
concatenation of curves defines a binary operation on the set of equivalence classes
which turns it into a group m;(X,a). This group is called the first homotopy
group or fundamental group of X with base point a. One can show that the
fundamental group is independent of the base point if X is pathwise connected;
then one simply writes 71 (X). Note that X is simply connected if and only if
m1(X) is trivial.

Exercise 5. Show that concatenation of curves defines a binary operation on the
set of all homotopy classes and turns it into a group m (X, a).

Theorem 4.6 (existence of liftings). Let X, X’ be manifolds and p : X' — X a
covering map. LetY be a connected simply connected manifold. Let o' € X' and
a = p(a’). Suppose that f: Y — X is continuous and f(yo) = a for some yp € Y.
Then f has a lifting f' 1Y — X' such that f'(yo) = d.

Proof. Let yo,y € Y and let v : [0,1] = Y be a curve from yy to y. Then = fo~y
is a curve in X starting at a which admits a lifting p’ to X’ with p/(0) = o/, by the
[curve lifting property of coverings 1.2 We define

f'y) = p'(1).

Let us prove that f’(y) is independent of 7. Set ¢ = v and let v, be another curve
in Y from yg to y. Since Y is simply connected there is a homotopy H between g
and 7 fixing the endpoints. Then fo H is a homotopy between p and pp := fovy;
fixing the endpoints. If u is the lifting of py to X’ with p}(0) = o/, then p' and
w4 have the same endpoints, by Thus f’(y) is independent of ~.
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Clearly, f’ satisfies po f’ = f. It remains to show that f’ is continuous. Let
y1 € Y and let 1 be a curve in Y from yg to y;. With the notation as above, let 1 =
flyr), ) = f(y1) = i (1) and let U’, U, V be pathwise connected neighborhoods
of x|, x1, y1, respectively, such that p|pr : U’ — U is a homeomorphism and
f(V) CU. For each y € V choose a curve A in V from y; to y. Then 3 - A =: v is
a curve from yg to y in Y and f oy = uy - (f o A). The lifting of f o~y starting at
a'is i - (plyt © foA), and f'(y) = (i - (plg! © f o N)(1) = ply/ (f(y)) € U’. Thus
f/(V) C U’ so that f’ is continuous. O

Corollary 4.7 (holomorphic liftings). Let U, U’ C C be domains and letp : U' — U
be a holomorphic covering map. Suppose that V C C is a simply connected region
and let f:V — U be holomorphic. Then f has a holomorphic lifting over p.

Proof. [Theorem 4.6]implies that that f admits a lifting f' : V' — U’. We claim that
f"is holomorphic. Let w € V and z = f(w) € U. Let D be an open neighborhood of
zin U and D’ an open neighborhood of 2z’ = f'(w) in U’ such that p|p/ : D' — D is
a homeomorphism, and hence a biholomorphism. Then (f")~Y(D’) = f~Y(D) := B
is an open neighborhood of w in V. Since f'|p = p|5} o f|p is holomorphic, the
assertion follows. O

Theorem 4.8 (branches of the logarithm). Let U C C be a simply connected
domain. Let n > 2 be an integer. If f € H(U) is nowhere-vanishing in U, then
there exist g,h € H(U) such that e = f and h"™ = f.

Proof. This follows from [Corollary 4.7 and [Example 1.4] O

Theorem 4.9 (primitives). Let U C C be a simply connected domain. Any f €
H(U) has a primitive on U.

Proof. We give two proofs. First, fix zg € U and define
F(z):= [ f(QdC, zeUl,

Yz

where 7, is any path in U from zg to z; this is well-defined since fv fdz =0 for every

closed curve v in U, by [Corollary 4.5] Let ¢ € U and r > 0 such that D,.(¢) C U.
Then

= =t IORRIGES ICLS

1 / f(Q)d¢ — f(e) asz—cg,
[e.2]

zZ—C

that is, F'(c) = f(c).

Alternatively: Consider the mapping ¢ : U — O which sends z to the germ
of (U, f) at z. By [Theorem 4.6} ¢ has a lifting ® : U — O over the covering map
d: O — O (cf. [Proposition 3.1). Define F': U — C by setting F'(z) := ®(2)(z). We
must show that F' € H(U); then since d o ® = ¢ we have F/ = f on U. Let zg € U
and let (V,G) be a representative of ®(zp). That @ is continuous means that, for
z in a neighborhood W of zp, ®(z) is the germ at z of (V,G). Thus, Flw = G|w.
This implies that F' € H(U). O

Remark 4.10. implies If every f € H(U) has a primi-

tive then for every non-vanishing f € H(U) there are g, h € H(U) such that e9 = f
and h"™ = f. Indeed, suppose that f is non-vanishing in U. If the existence of g is
established, then h := e9/" is as required. Since f'/f € H(U), there is g € H(U)
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with ¢’ = f’/f. Adding a constant to g we may achieve that e9(¢) = f(c) for some
c € U. Then (fe™9) =0 and thus fe 9 = const = 1. Consequently, 9 = f.






CHAPTER 2
Calculus of residues

5. The winding number

Usually, one defines the index or winding number of a closed path v in C by
the path integral
1 d¢
ind =— —, eC . 5.1
()= 5 [ 25 2eCAh (51)
Then ind, is an integer valued function ind, : C\ |y| — Z that is constant in each

connected component of C\ |y| and 0 in the unbounded component of C \ |vy]; cf.
[12] Theorem 12.2].

Here we give a different definition of the index which is more in the spirit of the
previous chapter, and show then that it can be computed by the integral in .

Let v : [0,1] — C be a closed curve in C, and let z € C\ |y|. Recall that
C s C::=C\{z}, ( = z+¢°, is a covering map; cf. Let 4 be a
lifting of v over this covering map. We define the index or winding number of
v at z by

1
= 5—(7(1) =3(0)). (5.2)

It is easy to see that the index is independent of the choice of the lifting 4. Moreover,
it is clear from ([5.2)) that ind,(z) € Z.

Proposition 5.1. The indez is given by formula (5.1)).

ind, () :

Proof. Let n : C; — O be the mapping which assigns to w the germ at w of the
function ¢ — 1/(¢ — z). Consider T' := 5o~ and let T' be a lifting of I over
d:O — O. Fix w = ~(t), t € [0,1], and let F,, be the germ T'(¢). Let (D, F) be
a representative of F,, on some disk centered at w. Then F'({) = 1/({ — z) for
¢ € D, and thus d/d¢((¢ — z)e F(©) =0 for ¢ € D.

Let 71 (t) be the value at v(t) of the germ I'(t). For s sufficiently close to t,

((s) — 2)e" 1) = (y(s) — z)e” FOED,

Since ¢ = (¢ —2)e ¥ is constant on D, s+ (y(s) — 2)e~71() is locally constant,
hence constant on [0,1]. Let ¢ € C be such that e¢ = (y(t) — 2)e”"®) for all
t € [0,1]. Then t + 7(t) := y1(t) + c is a lifting of v over { — z + €. Then,

dg
(=2

by (B.2). 0

2riind, (2) = 3(1) = 3(0) = T(1)(7(1)) = T(0)(+(0)) = /

Exercise 6. Use the lhomotopy form of Cauchy’s theorem 4.4] to conclude that
ind,, (2) = ind,, (2), if 71, 72 are closed homotopic curves in C}.

11
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6. The homology form of Cauchy’s theorem

We consider formal sums v; + - - - + 7, of curves in C and define

[ ttem [y | se o

n

Such formal sums of curves are called chains. (More formally, chains can be defined
as formal sums vy +- - - 4y, of linear functionals v;(f) = f%_ fdzfor f e C(U, |l
cf. [13} 10.34].)

Chains are considered identical if they yield the same path integral for all
functions f. Thus two chains are identical if one is obtained from the other by per-
mutation of curves, subdivision of curves, fusion of sub-curves, reparameterization
of curves, cancellation of opposite curves. Chains can be added and remains
valid for arbitrary chains. If identical chains are added, we denote the sum as a
multiple. By allowing a(—v) = —a~, every chain can be written as a finite linear
combination

Y=aiy1+ -+ anYn,

where a; € Z, all ~; are different, and no two ~; are opposite. We allow zero
coefficients, in particular, the zero chain 0. Clearly, a chain can be represented as
a sum of paths in many ways.

For a formal sum vy = 41+ - -+, of paths ; we set |y| = J._, || and [0] = 0.
Note that |y| depends on the representation of v (due to cancellation of opposite
curves). We will consider chains contained in a given domain U C C. This means
that the chains have a representation by paths in U and only such representations
are considered.

A chain is called a cycle if it can be represented as a sum of closed curves. For
a cycle v and a point z ¢ || the index of z with respect to v is defined by

1 d
Y

Clearly,
indy, 4+, (2) = ind,, (2) +ind,,(2), ind_,(z) = —ind, (). (6.3)

A cycle v in a domain U C C is said to be homologous to zero with respect
to U if ind,(z) = 0 for all z € C\ U; we write 7y ~y 0. Two cycles vy, 72 in U are
homologous in U, in symbols 71 ~y 72, if y1 — 2 ~y 0. By (6.3)),

Y~y Y2 & indy, (2) =ind,,(z) for all z ¢ U.

This defines an equivalence relation on the set of cycles in U. The set of equivalence
classes, called homology classes, forms an additive group, the homology group.
If v ~y 0 then v~y 0 for all U’ D U.

Lemma 6.1. If f € H(U) then

e -iw) |,
g:UxU—=C, g(zw):= z—w (6.4)
f'(z) z=w

s continuous.

Proof. We need to check continuity at points on the diagonal z = w. Fix a € U and
e > 0. Since f’ is continuous, there is a disk D,.(a) C U such that |f'(¢) — f'(a)| < €



6. THE HOMOLOGY FORM OF CAUCHY’S THEOREM 13

if ( € D.(a). If z,w € D,(a), z # w, then ((t) := (1 — t)z + tw € D,(a), t € [0,1],
and

ote) — g(o,0) = [PEZL o] =| [t - rian ar <
Thus g is continuous at (a, a). 0

Theorem 6.2 (homology form of Cauchy’s theorem). Let U C C be a domain and
let f € H(U).

(1) If v is a cycle that is homologous to zero in U, then

/ fdz=0, (6.5)

. L[ Q)
(2) If v1 and v2 are homologous cycles in U, then
fdz= / fdz. (6.7)
71 Y2
Proof. (1) Consider the continuous function g in (6.4)), and define
h(z) := 2%” g(z,w)dw, zeU.

8!
For each w € U we have g(-,w) € H(U), since the singularity at z = w is removable
by Riemann’s theorem on removable singularities. Thus h € H(U).

Our goal is to show that h(z) = 0 for z € U \ |y| which is equivalent to
(by (6-2)). Set Uy :={z € C\ 7] : ind,(z) = 0} and define

1
hi(z) == — de, z € Uys.
211 LWz

Since hq(z) = h(z) for z € UNUj, there exists a function ¢ € H(U UU;) such that
¢l = h and ¢|y, = hy. Since v is homologous to zero in U, the set U; contains
C\U, so UUU; = C and ¢ is entire. By definition U; also contains the unbounded
connected component of the complement of || on which ind., vanishes. Thus

lim ¢(z) = lm hy(z) =0.
—o0

|z|—o0 |2l
By Liouville’s theorem, ¢ = 0 and hence h = 0. We proved .

Let us deduce (6.5) from (6.6). Fix a € U\ || and set F(2) := (z — a) f(2).
Then, as F(a) =0,

: /Wfdz B ;m[Y ) e = ind, (@) F(a) =0

211 zZ—a

(2) Apply (6.5) to v =1 — 2. O

Remark 6.3. Note that if 77, 72 are homotopic closed curves in a domain U, then
71, 72 are homologous in U. The converse is false; see [12] 26.2].

Exercise 7. Let f be holomorphic in a neighborhood of the disk Dg(a). Prove
that for each r € (0, R) there is a constant C' > 0 such that

£z (D, (a)) < ClfllL2(Dr(a))
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whete [z = sup.cy [f(2)] and [ £ z2w) = (fy [f(2)? dwdy)!/2. Conclude
that a sequence (f,,) € H(U) which is a Cauchy sequence with respect to the norm
| - |2y converges uniformly on compact subsets of U to a holomorphic function.

7. Laurent series

We loosely follow the presentation in [§].
By a Laurent series we mean a (formal) series

oo

fE)= > an(z—o)" (7.1)

n=—oo

To discuss convergence of Laurent series, we must first agree on the meaning of
the convergence of a doubly infinite series > > «,, a, € C. We say that such
a series converges if both > ° j«a, and Y.~ a_, converge. In this case we set

o0 oo oo
E o, = E oy, + E A_p.
n=-—0o0 n=0 n=1
Exercise 8. Prove that 02 «, converges to a complex number « if and only

if for each € > 0 there is N € Nsq such that [0, oy, —a| < eif k,£ > N.
A set of the form
Ay ro(€) == Dyy(€) \ Dyy(c), 0< 11 <71y <00, (7.2)

is called an annulus centered at c¢. In particular, Ag(c) = C\ {c} = C:. We
denote by A,, ,(c) the closure of A,, ., (c).

Lemma 7.1. Suppose that f(z) =Y .o a,(z —c)" converges at z1 # ¢ and at

29 # ¢ with |z1 —c| < |29 —c|. Then f(z) converges normally on A, s,(c) whenever
|21 —¢| < 81 <83 < 22—l

Proof. If f(z2) converges then Y~ o an(z2 —c)™ converges and hence > a,(z —
)™ converges normally on Dy, (c) whenever sy < |25 — ¢| (by Abel’s lemma). If
f(z1) converges then so does > oo a_,(21 —¢)™™. For z € A, 5, (c), we have
0 < |21 —¢l < s1 < |z—¢| and hence |z — ¢|™' < s7' < |21 — ¢[~!. Thus
oo L a—n(z —¢)™™ converges normally for |z —c| > s1. O
Corollary 7.2 (annulus of convergence). Let f(z) = > .- an(z —¢)". There
are unique numbers ri,r9 € [0,00] such that f(z) converges absolutely for all z €
Ay, vy (€) and diverges for z & Ay, (c). If 11 < s1 < sy < 1o then f(z) converges
normally on As, s,(c).

Proof. Follows from (]

The function defined by a Laurent series on its annulus of convergence is holo-
morphic, since it is the uniform limit on compact subsets of a sequence of holomor-
phic functions. We will now prove the converse: any holomorphic function on an
annulus is given by a Laurent series that converges on that annulus.

We start by proving that there is at most one such expansion.

Lemma 7.3 (uniqueness of the Laurent expansion). Let 0 <71 < ro < oco. If the
Laurent series Y - an(z — )™ converges to a function f(z) on Ay, r,(c), then

n—=—oo
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for every r € (r1,72) and each n € Z,

o ! 1O e

"~ 2mi aD,(c) (( —c)"tt

In particular, the a, are uniquely determined by f.

Proof. Since the series converges uniformly on dD,.(c),

f(€) o .
/(;Dr(c) (€ —c)ktt dC:/az)r( Z an( )" dC

C) n=—oo

- f: an/@ (¢ — )" "1 d¢ = 2miay,. O

n=—oo D (c)

Theorem 7.4 (existence of the Laurent expansion). Let 0 < r; < 19 < oco. If
[ € H(Ar, +,(c)) then f has a unique Laurent expansion f(z) = - an(z—c)"

n=—oo

which converges absolutely, and normally on 251732(0) whenever r1 < 81 < 89 < To.

Proof. The cycle 0Dy, (c) — 0D, (¢) is homologous to 0 in A,, ,,(c). By Cauchy’s

formula (6.6)),
_ L SO .1 piol
ﬂ”%@mwﬂ%%wuﬂ

for z € As, 5,(c). For the second integral, observe that

11 1 1l =\
C—z__z—cl—(C—c)/(z—c)__z—cz:o(z—c)

n=

converges uniformly on 9Dy, (¢) because |((—c)/(z—c)| = s1/|z—¢| < 1. Therefore,

- O 4 = (-9
/';Dﬁ(c) ¢~z = /BDsl(C) &) Z (z — )l ¢

n=0

B f(©) m
- Zo (/apsl(a (¢ —c)mtt dg) (=™

m<

Similarly for the first integral, cf. [12] Theorem 12.1]. This implies the statement
in view of Corollaty 7.2 0

Corollary 7.5. Let 0 < 1y < 13 < 00 and f € H(Ay, r,(c)). There exists a
holomorphic function f+ on D,,(c) and a holomorphic function f~ on C\ D,, (c)
such that

F)=fT)+7(2), 7€ Apnlo) (7.3)

This decomposition is unique if we require that f~(z) — 0 as |z| = oc.

Proof. Let f(2)=>.""___a,(z —c)™ be the Laurent expansion of f and set

() ::Zan(z—c)" and [ (2) ::Zan(z—c)".
n>0 n<0

Then holds, and f~(z) — 0 as |z| = co. Let f(2) = fi(z) + f2(z) be another
such decomposition. Consider the function h defined by h(z) = f*(z) — fi(z) if
|z —c| <re and h(z) = fa(z) — f(2) if |z —¢| > r1. Then h € H(C) and h(z) = 0
as |z| = oco. By Liouville’s theorem, h = 0. O

Let U be a domain and ¢ € U. A function f € H(U \ {c}) is said to have an
isolated singularity at c. There are precisely three alternatives:
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(1) The singularity c of f is called removable if f has a holomorphic exten-
sion to ¢, i.e., there is a holomorphic function f : U — C with f|U\{C} =f.
By Riemann’s theorem on removable singularities, this is the case if and
only if f is bounded near c.

(2) The singularity ¢ of f is called a pole of order m if there are complex

numbers ay, . .., G, where m > 0 and a,, # 0, such that
m an
f(2) ; oo

has a removable singularity at c¢. Note that f has a pole at ¢ if and only
if |f(2)] = 00 as z — ¢

(3) Singularities that are neither removable nor poles are called essential
singularities. For instance, f(z) = exp(1l/z) has an essential singularity
at 0. The |big Picard theorem 27.2| says that the f assumes all values in
C except possibly one in any neighborhood of an essential singularity.

Theorem 7.6 (classification of singularities via Laurent series). If f € H(D}(c)),
where D¥(c) := D,(c) \ {c}, then f has a unique Laurent series expansion f(z) =
ST an(z — )™ on D}(c). There are three alternatives:

(1) an =0 for alln < 0.
(2) an =0 for alln < k <0 and ay # 0.
(3) Neither (1) nor (2) applies.

They correspond precisely to the following cases:

(1) ¢ is a removable singularity of f.
(2%) ¢ is a pole of order —k.
(3’) c is an essential singularity.

Proof. (1) = (1’) The power series f(z) = >.°° jan(z — ¢)"™ converges on D,(c)
and represents a holomorphic function on D,.(c).

1) = gl) If f is the holomorphic extension of f to ¢ then f has a power series

expansion f(z) = Yo% bu(z — ¢)™ on D,(c). By the funiqueness of the Laurent|
expansion 7.3, a,, = b, for n > 0 and a,, = 0 for n < 0.

(2) & (2’) The statement is immediate since the equivalence of (1) and (1) is
already established.

(3) & (3’) These are the only remaining possibilities. O

Let ¢ be an isolated singularity of f. Let f(z) = Y7 an(z — €)™ be the

n=—oo

Laurent expansion of f at c. If f Z 0, we define the order of f at ¢ by
ord.(f) ;= inf{n : a,, # 0}.
We also set orde(0) := co. We call X' a,(z — ¢)" the principal part of f at

n=-—oo
¢; note that it defines a function which is holomorphic in C%, cf.

If ¢ is a pole of f of order k, then we have

a, = lim #(i)k—m(z —o)*f(z), n>—k
n_zﬁc(k‘—kn)' dz ’ ’
Example 7.7. (1) The Laurent series expansion of f(z) = z/(z — 1) about 1 is
given by
z 1+(2—1) 1

f(z) z—1 z—1 zfl+
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(2) The function f(z) = z7'(z — 1)~ is holomorphic in C\ {0, 1}. It has two
Laurent series expansions about 0. Namely, for 0 < |z| < 1,

1 1 1 1
- —_Z_ e [
z2(z—1) z 1—=z z T
and for |z| > 1,
Lo 111 11
2(z—1) z 21—zl 22 23

Exercise 9. The function f(z) = 627(z + 1)7*(z — 2)~! is holomorphic in C\
{0,—1,2}. It has three Laurent expansions about 0. Compute them.

Let U C C be a domain such that U 2 {z € C : |z| > R} for some R > 0.
For f € H(U) let us consider f : {z € C: 0 < |z < 1/R} — C defined by
f(z):= f(1/z). We say that

(1) f has a removable singularity at oo if f has a removable singularity
at 0.

(2) f has a pole of order k at oo if f has a pole of order k at 0.

(3) f has a essential singularity at oo if f has a essential singularity at 0.

The Laurent expansion of f about 0, f () =307 anz", yields a series expansion
which converges for |z| > R,

FO =1/ =Y = Y aen

n=—oo n=—oo

It is called the Laurent expansion of f about co. By f has
removable singularity at oo if and only if its Laurent series has no positive powers
of z with nonzero coefficients. Furthermore, f has a pole (resp. essential singularity)
at oo if and only if the Laurent series has only a finite number of (resp. infinitely
many) positive powers of z with nonzero coeflicients.

Proposition 7.8. An entire function f has a pole at infinity if and only if f is a
non-constant polynomial. It has a removable singularity at oo if and only if it is
constant.

Proof. Since f is entire,
f(z) = Z anz" (7.4)
n=0

for all z € C. Hence f(z) = oo ganz " for all z € C\ {0}. Since the Laurent
expansion is unique, this is the only possible Laurent expansion of f about 0, and
S0 is the Laurent expansion of f about co. The assertions follow from the
observations made above. O

Let U C C be a domain, and let A be a discrete subset of U: by this we
mean that A is closed in U and has no accumulation point in U. Recall that a
function f € H(U \ A) is said to be meromorphic in U if f has either a removable
singularity or a pole at each point of A.

Let f be meromorphic on a domain U such that U D {z € C : |z| > R} for some
R > 0. We say that f is meromorphic at oo if f(z) = f(1/z) is meromorphic
on D;/x(0), or equivalently, f has a removable singularity or a pole at oo and no
poles in {z € C: |z| > R’} for some R’ > R. We will see in [Proposition 31.2| that
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the meromorphic functions on the Riemann sphere C=Cu {oo} are precisely the
rational functions. A rational function is a quotient of polynomials.

8. The residue theorem

Let U C C be a domain and let A C U be a discrete subset. Let f € H(U \ A)
and let a € A. Choose r > 0 such that D,(a) CU and D,(a) N A = {a}. Then f
has a Laurent expansion

flz)= Z en(z—a)", 0<|z—al<r
The number c_1 is called the residue of f at a, we write res(f;a) :=c_1. If ais a
pole of order m of f, then
. 1 d\m—1
res(f;a) = lim 7)< ) (z—a)"f(2).

z=a (m —1)! dz

Theorem 8.1 (residue theorem). Let U C C be a domain and let A C U be a
discrete subset. Let v be a cycle in U\ A that is homologous to zero in U. Then,
for any f € H(U \ A), the set {a € A :ind,(a) # 0} is finite and

erifyfdz = Zres(f;a) ind, (a). (8.1)

acA

Proof. Set B := {a € A : ind,(a) # 0}. Let V be any connected component of
C\ |7|. If V is unbounded or if V N (C\ U) # 0, then ind, vanishes on V, since
~ is homologous to zero in U and since ind, is locally constant. Since A has no
accumulation point in U, B must be finite.

Let aq,...,a, be the points of B and let g1, ..., g, be the principal parts of f
at ai,...,a,. The function f — Z?:l g; has removable singularities at ay,...,a,
and thus application of the [homology form of Cauchy’s theorem 6.2| on the domain

U\ (A\ B) gives
Lfdzi[/gjdz.

(Note that + is homologous to zero with respect to U \ (A \ B) since ind,(z) = 0 for
all zin C\ (U\ (A\ B)) =(C\U)U (A\ B) by assumption and by the definition
of B.) We have g;(z) = Z;iioo ¢jn(z —a;)" on C; , and the series converges

aj;’

uniformly on |v|, whence

—1

/gj dz = Z cj’n/(z—aj)"dz:2m'cj’,1indy(aj).
v

n=-—oo v
Here we use that only the summand for n = —1 is non-zero, by [Corollary 3.3] since
(# — a;)™ has a primitive (2 — a;)"*!/(n + 1) on C; if n # —1. This implies
B 0
Theorem 8.2 (argument principle). Let f be meromorphic in U with zeros a; and

poles by, and let v be a cycle which is homologous to zero in U and does not pass
through any of the zeros or poles. Then

L rr . .
i [y 7 dz = ;mdv(aj) — ;1nd7(bk), (8.2)

where multiple zeros or poles are repeated according to their order.
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Proof. Suppose that ¢ is a zero of order m of f, i.e., f(z) = (z — ¢)"g(z), where g
is holomorphic and nowhere vanishing in a neighborhood of ¢. Thus,

fG) _m g
fz) z2—c  g(z)’

i.e., f'/f has a simple pole with residue m at ¢. The same arguments show that if

f has a pole of order m at ¢, then f’/f has a simple pole with residue —m at ¢. So

(8.2) follows from (8.1]). O

Exercise 10. Prove: Let f be meromorphic in U with zeros a; and poles by, and
let v be a cycle which is homologous to zero in U and does not pass through any
of the zeros or poles. Then

E)
2mi [, f(2) dz—zj:mdv(a])a] Zk:md“/(bk)bk,

where multiple zeros or poles are repeated according to their order.

Theorem 8.3 (Rouché’s theorem). Let U C C be a domain and f,g € H(U).
Suppose that D,.(c) CU and

1F(2) =9(2)| <[f(2) +1g(2)|, 2z € IDr(c). (8.3)
Then
#(zeros of f in D,(c)) = #(zeros of g in Dy(c)) (8.4)

where the zeros are counted with their multiplicity.

Proof. The condition (8.3]) implies that f and g cannot vanish on dD,.(¢). Moreover,
f(2)/g(z) cannot take a value in (—o0, 0] for z € 9D,.(c); otherwise

f&) 1] = _L 41 ‘f
9(2) 9(2)
which contradicts (8.3). It follows that ¢f(z) 4+ (1 — t)g(z) # 0 for each t € [0,1]
and z € 0D, (c).

Consider the curve of holomorphic functions f;(z) = tf(z)+(1—t)g(2), t € [0, 1],
and the path integral

\ +1

1 fi(z)
21 Jop, () fi(2)
Then I(t) is a continuous function of ¢ € [0,1] and I(t) = #(zeros of f; in D,(c))
by the argument principle. This implies (8.4)). O

I(t) = dz, teo,1].

Example 8.4. Let us determine the number of zeros of f(z) = 27+ 523 — 2 —2in
D. Set g(z) = 52%. Then for |z| =1,

[f(2) —g()| =" — 2 — 2| <4 <|f(2)| +|g()]-

Rouché’s theorem implies that f and g have the same number of zeros in D, namely
three.

Exercise 11. Deduce the fundamental theorem of algebra from Rouché’s theorem:
any polynomial P(z) = 2™ + a, 12"~ + -+ + ap has n roots counted with their
multiplicities.

Theorem 8.5 (Hurwitz’ theorem). Let U C C be a region and let fi. be a sequence
of non-vanishing holomorphic functions on U. If fi converges uniformly on compact
subsets of U to a function f, then either f is non-vanishing or f = 0.
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Proof. Assume that f # 0 and f(c) = 0 for some ¢ € U. There is r > 0 such that
D,(c) CU and f is non-zero on D,(c) \ {c}. By the Jargument principle 8.2
1 f'(z)
21 Jop, (o) f(2)

dz = ord.(f) # 0, (8.5)

and for all k,
1 fi(2)
27 Jop, (¢) fr(2)
This leads to a contradiction, since the integrals in tend to the integral in
as k — oo, because fr — f and f; — f’ uniformly on D, (c). O

dz = 0. (8.6)

9. Evaluation of integrals

The calculus of residues provides a method of computing a wide range of inte-
grals. Let us describe three standard classes of integrals.

Example 9.1. Consider an integral of the form

27
I= R(cost,sint) dt,
0

where R(x,%) is a rational function without a pole on the circle 2% + y? = 1. If we
set z = e, then

eit +€7it 1 1 ) eit _ efit 1 1
ost = S LY et L,
2 2 z

[ A )
=Y [LR(5(+2) (- 2)))

where the sum is over all poles in D of the function in the square brackets.

and thus

For instance, for a > 1,

27 .
dt 24
— =2 _—
/0 a+sint Wzres,ﬂ%—?aiz—l
The function on the right-hand side has two simple poles p; := —ia+1iva? — 1 and
po = —ia — 1v/a? — 1, but only the first pole lies in D. Its residue is
2i . 2i 1

lim (z — ————— = lim = .
z—)pl( p1) 22+ 2aiz—1  z29p1 2z —po a? —1

/2” a  2n
o a-+sint a2 _—1
Example 9.2. Let R(z) = P(x)/Q(z), where P, ) are polynomials in one variable

such that deg @ > deg P + 2 and () does not vanish on R. Let o € R>o. We claim
that

Therefore,

/ R(x)e"* dx = 2mi Z res(R(2)e'**; a).

Ima>0
The integral ffooo R(z)e™® dx converges absolutely, since deg @ > deg P + 2. Let
y(t) = pet, t € [0, 7], where p > 0. By the [residue theorem 8.1}

/ ’ R(x)e™® dx + / R(z)e"*dz =2mi »  res(R(2)e"*;a).

- v Ima>0
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provided that p is large enough. If z = pe’, then there is a constant A > 0 such that
|R(2)| < M/p? for large p, since deg Q > deg P +2. Moreover, |e!**| = e~Im= < 1
for z € |y|. Thus |fv R(z2)e"**dz| < Mn/p — 0 as p — oo.

Example 9.3. Let R(z) = P(x)/Q(z), where P, ) are polynomials in one variable
such that deg Q > deg P + 2, @ does not vanish on R, and @ has a zero of order
at most 1 at 0. Let 0 < o < 1. We want to compute the integral

/ x*R(z)dx.
0
The set U := C\ Rx¢ is simply connected, so there is a unique branch of the
logarithm ¢ in U, i.e., g € H(U) and e9*) = 2 (cf. [Theorem 4.8)), such that
g(x +iy) = logz, forx>0asy— 0.
Consequently,
g(z —iy) = logz +2mi, forz>0asy—0".

Let v = Ly + C1 + Ly + C3 be the path in the figure: Li, Ly are segments of the
lines Imz = €, Imz = —e¢, and C}, Cs are segments of the circles |z| = p, |z| = 4,
where p > §, respectively.

If p is sufficiently large and ¢ sufficiently small, then

/ eI R(2) dz = 2mi } | ves(e™ R(2); ).
i

acU
We have |e®9(2)| = e@1o8 |2l = |2]@, Since Q has a zero of order at most 1 at 0, there
is a constant M > 0 such that |R(z)| < M/|2| near 0. Thus | [, eI R(2) dz| <

2M 7™ — 0 as 6 — 0. Since deg @ > deg P + 2, we have |R(z2)| < N/|z|? for large
|z| and some constant N > 0, and hence |fc1 e R(2)dz| < 2N7mp*~! — 0 as
p — oo. For fixed ¢ and p,

, p
/ 6@9(2)R(2) dz — (1 — ™) / e log(‘”)R(a:) dr ase—0.
Li+Lo d

It follows that

/0 xaR(x)dx:$ Z res(e®9*) R(z);a).
a€C\R>q
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/°° dv _m
o 1+a22 27

Hint: Integrate 1/(1 + 22) along the closed path formed by the segment [0, R], the
arc Re', t € [0, 7], and the segment [— R, 0].

Exercise 12. Show that

Exercise 13. Show that the function z — 7 cot(nz) is meromorphic in C with a
simple pole with residue 1 at each integer n.

Exercise 14. Let f(z) = P(z)/Q(z) be a rational function such that deg@ >
deg P + 2. Let ay,...,a,, be its poles, all of them of order 1, and b4, ...,b,, the
respective residues, and assume that a; € Z for all ¢ = 1,...,m. Let ~, be the
counter-clockwise oriented boundary of the square with vertices (n + 1/2)(£1 £ i),
where n is a positive integer. Prove that there exist positive constants C, K > 0
independent of n such that |7 cot(nz)| < C on |y,| and |f(2)] < K|z|72 if |2] is
sufficiently large. Conclude that

lim f(z)mcot(rz)dz =0,

and that

nl;ngo i flk)=— ibm cot(ma;).
i=1

k=—n

Note that lim,, /0 zzl:fn f(k) exists, since |f(z)| < K|z|72 for large |z|, and
hence the last identity is equivalent to

Z flk) =~ Z b;m cot(ma;).

k=—oc0

Exercise 15. Use to show that o, 1/(n? +1) = (14 mcoth(r))/2.



CHAPTER 3
Runge’s theorem and its applications

10. The inhomogeneous Cauchy—Riemann equation

Holomorphic functions are characterized by the Cauchy-Riemann equation
df/0z = 0. We shall now discuss the inhomogeneous equation df/9z = g.

We start with a Cauchy integral formula for C'*-functions. For such functions,
Cauchy’s theorem is a special case of Stokes’ theorem. Let U C C be a bounded
domain such that the boundary QU consists of a finite number of simple closed
Cl-paths. If g € C*(U), then by Stokes’ theorem,

/aUgdC //dgAdC //gcdc+md<Ad< //ydé/\d@, (10.1)

where QU is oriented such that U lies on the left of OU. So if g is also holomorphic
in U, then g- = 0 and hence [, gd( = 0.

Proposition 10.1 (inhomogeneous Cauchy integral formula). Let U C C be a
bounded domain such that the boundary OU consists of a finite number of simple

closed C*-paths. If f € CI(U) then
1
f(z)=— 5 aUC_Z 27”// oc C— dCndC, zeU. (10.2)

The boundary OU is oriented such that U lies on the left of OU.

Proof. For fixed z set U, := {¢ € U : |z — (| > €}, where € > 0 is smaller that
the distance of z to the complement of U. We apply (10.1) to g : Uc — C, ¢g(¢) =

f(¢)/(¢ — 2), and note that U, > ¢ + (¢ — 2)~! is holomorphic,
2£(©) 1 7© 2 |
// 8C C— d¢ A d¢ = 8UC—2d§ ; f(z + eeyidt. (10.3)

Now ¢ +— (¢ — 2)~! is integrable over U, in fact, if ( = & +in = re®?,

JLre=staen = |t aen < /2/ drdyp < oo,

since U — z (being bounded) is contained in a large dlsk DR(O). Together with
the fact that f and 0f/0( are continuous, it implies (10.2) by letting ¢ — 0 in
(110.3). O

In the following
1 = .
dgd?? = _Edc/\dC7 (C :§+Z77)7
denotes the Lebesgue measure in the (-plane C.

Theorem 10.2 (inhomogeneous CR-equation (I)). Let f € CFC), k =
1,2,...,00. Then the function

—i//cg(_ozd’id”:zlm//cg(—ozd““ (10.4)

23
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is in C*(C) and satisfies
ou

9z

Since ¢ — 1/( is integrable on any compact subset of C, u is continuous. If h € R,

h 0,

= f. (10.5)

Proof. We have

u(z+h) —u(z) 1f(—|—z—|—h) flC+2)
A // d&dn
and letting h — 0, we find

du //Clafuzd&d _ //Cciz ag ddn,

and Bu/ Ox is continuous. Slmllarly Ou/dy is continuous and

dy 777[/@4-—2 8 gd

Iterating this procedure we find that u € C*(C). The formulas for u/dz and

Ou/dy give
1
dn
S Aol
and by the inhomogeneous Cauchy integral formula (10.2)) this equals f. O
The discussion of ((10.5)) will be continued in [Theorem 12.2
Exercise 16. Let f € C¥(C). Show that u(z) = —1/m [ f( — 2) dédn tends

to 0 as |z| = oo. Prove that u is the only solutlon of Ou/0z = f Wlth this property.
Hint: All other solutions are of the form u + v, where v is entire.

Exercise 17. Let f € C*(C) and let u be a solution of du/0z = f with compact
support. Let D be a large disk which contains supp u. Prove that

//Df(z)dz/\dZ:O.

Conclude that there are functions f € C*(C) such that no solution u of Ou/dz = f
has compact support. Hint: Use Stokes’ theorem.

Exercise 18. Suppose that f € C’é’o((C) satlsﬁes [l f(z)z"dxdy = 0 for every
integer n > 0. Prove that the solution ) of - has compact support. Hint:
Expand the kernel 1/(¢ — z) into a geometrlc series for ¢ in some disk D containing
supp f and z ¢ D.

Theorem 10.3 (variant of the Cauchy integral formula). Let U C C be a domain,
K C U compact. Let v € C*(U) be 1 on a neighborhood of K. Then for every

feHU), we have
:_7// 3C C— dfd z € K. (10.6)

Proof. Define ¢ € C°(C) by ¢(z) := (2)f(z) for z € U and ¢(z) :=01if 2 ¢ U.
For z € K,

fz) = // a<< // ag( L & O
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In comparison with the Cauchy integral formula the integration along a
path v has be replaced with integration over C (or actually over supp(¢) \ K) and
the winding number ind. () no longer appears.

11. Runge’s theorem

Let U C C be a domain and let K C U be compact. For continuous functions
f on K, we use the notation

[flxc = sup [ f(2)].
zEK

We define a topology on H(U) by taking as a fundamental system of neighborhoods
of f € H(U) the sets

{geHWU) :|f —g|lx <€}, K CU compact, ¢ > 0. (11.1)

This topology is metrizable, namely it is defined by the metric

oo

_ -n ‘f_g|Kn
d(f,9) =2 T gl [eeHO): (11.2)

n=1

where K, is a compact exhaustion of U (i.e. K,, are compact subsets of U with
K,_1 C intK, for all n and U = (J,,»; K»). It makes H(U) a complete metric
space. This topology is called the topology of compact convergence, since a
sequence f, of functions in H(U) converges in H(U) if and only if f, converges
uniformly on any compact set in U. Sometimes it is also called the compact open
topology.

Exercise 19. Show that d defined by (11.2)) is a metric on H(U) and that (H(U), d)
is a complete metric space. Prove that a sequence in H(U) converges uniformly on
every compact subset of U if and only if it converges for the metric d.

Exercise 20. Prove that the mapping f +— f’ from H(U) to itself is continuous.

Let K C C be compact. Let O(K) denote the set of all f € C'(K) such that
there exists an open neighborhood U of K and F € H(U) with F|x = f. We
consider O(K) as a subspace of the Banach space C(K); in general it is not closed.

If K is a compact subset of a domain U C C, then we denote by px : H(U) —
O(K) the restriction mapping px(f) = f|xk-

Theorem 11.1 (Runge’s theorem (I)). Let U C C be a domain and let K C U be
compact. The following are equivalent:

(1) Ewery function which is holomorphic in a neighborhood of K can be ap-
prozimated uniformly on K by functions in H(U), i.e., px (H(U)) is dense
in O(K).

(2) No connected component of U \ K is relatively compact in U.

(3) For each a € U\ K there exists f € H(U) with |f(a)| > |f|k-

We begin with an easy observation which we will use several times. Occasion-
ally, we will write V € U if we mean that V' is an open relatively compact subset
of a domain U.

Lemma 11.2. Let U C C be a domain and let K C U be compact. Suppose that V'
is a connected component of U\ K which is relatively compact in U. Then OV C K.
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Proof. Suppose that a € 9V and a € K. Since V is relatively compact in U, we
have a € U \ K. There is r > 0 such that D = D,(a) C U\ K. Since DNV # (),
DUV is connected and DUV C U\ K. This implies D C V and thus a ¢ V. O

Proof of Runge’s theorem (I). (1) = (2) Suppose that U \ K has a connected com-
ponent V' which is relatively compact in U. Let z9 € V and f(z) = 1/(z — 20).
Then f is holomorphic in a neighborhood of K. If there is a sequence f,, € H(U)
which converges to f|x uniformly on K, then by the maximum principle and since

9V C K, by Lomma 113
|fn - fm‘V: |fn - fm|8V < |fn - fm‘K

So fn|v converges to a function g € H(V) uniformly on V. On the other hand,
(z — z0) fn(2) = 1 uniformly for z € OV C K, and consequently, (z — zo) fn(2) = 1
for z € V, again by the maximum principle. Thus (z — 29)g(z) = 1 for z € V, a
contradiction.

(2) = (1) Let E := pg(H(U)). By the Hahn-Banach theorem, E is dense in
O(K) if and only if every bounded linear functional on C(K') which vanishes on F
also vanishes on O(K); see e.g. [13} Theorem 5.19]. By the Riesz representation
theorem (e.g. [I3, Theorem 6.19]), it suffices to show that, if y is a complex Borel
measure on K such that ngd,u = 0 for all g € E, then also fK fdu =0 for all
f € O(K). (A proof which does not use the Riesz representation theorem can be
found in [11].)

Consider the function h € H(C\ K) defined by

_ [ Q)
h(z) : /K e zeC\ K.
(Holomorphy of h can be proved along the lines of [12], Theorem 12.1]: if z € D =
D,(a) CC\ K then |z —a|/|¢ —a| < |z —a|/r <1, and hence the geometric series
Yoo o(z—=a)"/(¢ —a)"t' =1/(¢ — z) converges uniformly on K, for fixed z € D.
By interchanging summation and integration, we see that h is representable by a
power series in D.) If z € C\ U then

h(k)(z):k!/ (Cdl‘(o =0, k>0,
K

_ Z)k+1

by the assumption on u, because ¢ + 1/(¢ — z)**! belongs to H(U). Thus h
vanishes in every connected component of C\ K which intersects C \ U, by the
identity theorem. (Note that we need that all derivatives of h vanish at z € C\ U,
since the intersection of C \ K and C\ U need not be open.) Every bounded
connected component V of C\ K is of this type. For, otherwise V' C U and
OV C K CU (by since V is relatively compact in C), hence V C U.
In this case V is a connected component of U \ K which is relatively compact in
U, a contradiction. That h vanishes also in the unbounded component of C\ K
follows from the fact that, for fixed |z| > sup¢ [C],

N

¢" 1
T —— asN — oo,
n_oz"+ (—=z

uniformly for ¢ € K. Summarizing, we showed that h =0 on C\ K.

Let f € O(K). We must show that fK fdu = 0. Let W be an open neigh-
borhood of K and F € H(W) such that F|x = f. Choose ¢ € C°(W) such that
1) = 1 on a neighborhood Wy of K. By the [variant of the Cauchy integral formulal




| T RUNGE'S THEOREM 27
for z € K

1 (¢ ¢

fe) = -1 [ 2R ey - f LI geay,
w OC WA\Wo 8( ¢(—z2
By Fubini’s theorem,
Q)
£(2) dpz / /. L dganap(z)
/ W\W0 3( C
=- fF(Oh(C) d&dn =0,

because h vanishes on C\ K.

(2) = (3) Let U\ K =, Vo be the decomposition of U \ K into connected
components. By assumption, none of the sets V, is compactly contained in U. Let
a€ U\ K and a € Vg. Set L := KU{a}. Then U\ L =,,.5Va UVs\ {a} is
the decomposition of U \ L into connected components. No component of U \ L is
relatively compact in U. By the implication (2) = (1), the set pr(H(U)) is dense
in O(L). The function ¢ defined by ¢ = 0 on K and ¢(a) = 1 belongs to O(L),
since a ¢ K. There is f € H(U) such that |f — ¢|r < 1/2, and hence

1
F@)> 5 > Ik

(3) = (2) If V is a connected component of U \ K which is relatively compact
in U, then 0V C K, by By the maximum principle, if a € V, then
[f(@)] < 1flov < [flx
for all f € H(U), contradicting (3). O

Let U C C be a domain and K a compact subset of U. Let us define the
H(U)-hull of K by

K=Ky :={zeU:|f(2)| <|flx for all f € H(U)}.
Lemma 11.3 (properties of IA() We have:

(1) dist(K,C\ U) = dist(K,C\ U).
(2) K is contained in the convex hull of K.

(3) K is the union of K and the components of U \ K which are relatively
compact in U.

(4) K is compact and K = K.
(5) C\ K has only finitely many connected components.

Proof. (1) Clearly, dist(K,C \ U) > dist(K,C\ U) since K C K. For ¢ ¢ U the
function z — 1/(z — ¢) belongs to H(U). So if z € K then

1 1
< sup = —
|2 = ¢ 7 zex [z ¢ dist(K, ()

which implies dist(K, C \ U) < dist(K,C \ U).
(2) Let a € C. Then f(z) = e°* belongs to H(U). If z € K then

|e?*] < sup [e™]
weK

or equivalently

ReaRez —Imalmz < sup (ReaRew — Imalmw).
weK
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That means that z is contained in the closed half-plane normal to (Ima,Rea)
which contains K. Since a € C is arbitrary, z lies in the intersection of all closed
half-planes containing K which is precisely the convex hull of K, because K is
compact.

(3) Let V be a connected component of U \ K which is relatively compact in
U. Then 0V C K, by and by the maximum principle

|fl <|flk, forall feHU).

That is, V C K. This shows that the union of K and all such components is
contained in K. Let us denote this union by K.

For the opposite inclusion K CK , note first that U \ K is open since it is a
union of open components of U\ K. Thus K is closed. We claim that K is compact.
To this end let Q € U with K C ). We assert that there are only finitely many
connected components V' of U \ K relatively compact in U and such that V' ¢ Q.
This implies the claim, since K is contained in the finite union of Q and such vV,
and is therefore relatively compact in U. There is a finite family Dy, ..., Dy of open
disks disjoint from K which cover 0f). It suffices to show that every component
V of U\ K which is relatively compact in U and satisfies V Z 2 contains some
disk D;; no two components of U \ K can contain the same disk. Since 0V C K,

by we have Q NV # 0. Moreover, 92 NV # () since otherwise
V=(VNnQ)U(VNU\Q)) would be a partition of V into disjoint nonempty open
sets. Therefore V N D; # ) for some j, so that V' U D is a connected set contained
in U\ K. It follows that D; C V. This shows that K is compact.

No connected component of U \ K is relatively compact in U by the definition
of K. Thus, [Runge’s theorem (I) 11.1/implies that for each a € U \ K there exists
f e H(U) with |f(a)| > |f|z, ie, K C K.

(4) We saw in the proof of (3) that K is compact. That K = K is obvious.

(5) Let D be an open disk which contains K. Since C \ D is connected, there is
precisely one connected component Vj of C\ K containing C\ D. Let V1, Va,... be
the other connected components of C \ K ; they are all contained in D. We assert
that V; ¢ U for j > 1. We have 8V; C K, by [Lemma 11.2} If V; C U then V;
is a connected component of U \ K and V; C U. That means V; is a connected
component of U \ K which is relatively compact in U, contradicting (3).

Suppose that the set {V;};>1 is infinite. By the claim we may choose z; € V;\U.
Since V; € D there is a subsequence again denoted by z; which converges to
some point z € C\ U. Let B be an open disk centered at z and disjoint from K
(which is possible since K is compact and contained in U). Then B is contained in
some connected component of C \ K. But the disk B meets infinitely many Vj, a
contradiction. (]

So for every compact K C U the H(U)-hull K is a compact subset of U con-
taining K for which the hypotheses of Runge’s theorem are satisfied. Consequently,
one may choose an increasing sequence K; of compact sets in U such that K; = K j
and every compact subset of U is contained in some Kj.

The next theorem is a version of Runge’s theorem for two open sets. We need
two topological lemmas.

Lemma 11.4. Let X be a locally compact Hausdorff space, and let K be a con-
nected component of X which is compact. Then K has a fundamental system of
neighborhoods N in X which are both open and closed in X.
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Proof. [11] Ch. 5 §3 Proposition 1]. O

Lemma 11.5. LetY be a locally compact Hausdorff space, X a closed subset of Y,
and K a compact connected component of X. Then there is a fundamental system
of meighborhoods U of K in'Y such that OU N X = ().

Proof. Let €2 be an open relatively compact neighborhood of K in Y. There is a
compact set N C X which is open in X such that K C N C Q, by
Then A := X \ N is closed in X and hence in Y. There exist disjoint open
subsets Up,Us of Y such that N C Uy C Q and A C U,. (This is true since
one of the closed sets we want to separate is compact. Since Y is locally compact
and Hausdorff, we may consider its one-point compactification Y which is compact
Hausdorff and hence normal. So there exist disjoint open subsets Ui, Us of Y such
that Ul contains N and Ug contains the closure A of A. Note that N and A are
disjoint, because A differs from A at most by the added point ‘infinity’ (which is not
contained in any compact subset of Y'). Since Y is open in Y, thesets U; =Y N U,
i = 1,2, are as required.) Then U; N A = () and OU; N N = (). Consequently,
8U1ﬁX=8U1m(NUA):@. O

Theorem 11.6 (Runge’s theorem (II)). Let Uy C Uy be domains in C. The fol-
lowing are equivalent:

(1) Ewery function in H(Uy) can be approzimated by functions in H(Uz) uni-
formly on every compact subset of Uy, i.e., py, (H(Uz)) is dense in H(Uy).
(2) No connected component of Uz \ Uy is compact.

Proof. (2) = (1) Let K be a compact subset of U; and set L := IA(UI. We claim
that L = EUQ, i.e., Uy \ L has no relatively compact components in Us. In fact, if V'
is a component of Us \ L which is relatively compact in Us then 0V C L C Uy, by
and thus V' & U; (otherwise V' would be a component of Uy \ L which
is relatively compact in Uy). Let a € V N (U \ Uy) and let C be the component of
Us \ Uy containing a. Then V N C # () and so V U C' is connected, whence C' C V.
But C is closed in Uy and V is relatively compact in Us, and hence C' is compact,
contradicting (2). Thus we proved that L = Ly, .

Let f € H(Uy) and € > 0. Then f|r € O(L) and so by [Runge’s theorem (
[I1.1] there exists F' € H(Us) such that |f — F|x < |f — F|; < e. This shows (1
since K and € were arbitrary.

Dl
);

(1) = (2) Suppose that U, \ U; has a compact connected component C. By
there is an open relatively compact neighborhood V of C in Uy with
VN(U\Uy) =0, i.e.,0V CU;. Ifa € C then f(z) = 1/(z—a) belongs to H(Uy).
By (1), there is a sequence of functions F,, € H(Usy) such that F,, — f uniformly
on V. By the maximum principle,

|Fro — Folyr < |Fo — Finlov = 0 as n,m — oo,
and so Fj, converges uniformly on V' to a function F. Again by the maximum

principle, 1 = lim,_,o0 (2 —a)F,,(2) = (z —a)F(z) for all z € V, a contradiction. O

Theorem 11.7 (classical Runge theorem). Let U C C be a domain and let C \
U = Ugyea Ca be the decomposition of C\ U into connected components C,. Lel
A ={a € A: C, compact} and for each o € A’ choose ¢, € Cy. Then each
f € H(U) can be approzimated uniformly on compact subsets of U by rational
functions all of whose poles are contained in the set {cq}acar-

Proof. Let K be a compact subset of U. By |[Lemma 11.3] C\ K has finitely many

connected components Vg, Vq,..., Vy; assume that Vy is the unbounded one. We
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saw in the proof of [Lemma 11.3|(5) that V; Z U for j > 1. So if C is the connected
component of C\ U containing a point z € V; \ U, then C' C V;, and thus C is
compact. Therefore, for each j > 1 there is a; € A" such that Cy; C V.

Consider Up := C\{cay;---,Cay }. Then K C Uy and the connected components
of Up \ K are Vo, Vi\{cay }s-- s Vi \ {¢a, }, none of which is relatively compact in
Up. Thus, by |Runge’s theorem (I) 11.1|7 if f € H(U) and € > 0, then f|z € O(I?)
and there exists F' € H(Up) with |f — F|z < e If gj(2) = Z;ifoo ajn(2 = Ca,)"

denotes the principal part of F' at c,, then F' = h+gy+...+g for h € H(C). There
is a polynomial p with [p — h|z < e. Moreover, if g (z) := Z;i_N ajn(z — ca;)
then |g; — gjv|f( < ¢ for sufficiently large N. Thus, G :=p+g¥ +---+g) isa
rational function whose poles are among the points ¢,,, ..., s, and which satisfies

|G~ flg <IG—=Flg +|F - flg <elk+1)+e

n

The proof is complete. O

Corollary 11.8. Let U C C be a domain. Then {p|y : p polynomial} is dense in
H(U) if and only if C\ U has no compact connected component.

Proof. This follows from [Theorem 11.6[and [Theorem 11.7] O

Let us briefly discuss a result related to Runge’s theorem. Let K C C be
compact and let f : K — C be a function. Under what conditions is f the uniform
limit on K of rational functions with poles in ((A:\K ? There are two obvious necessary
conditions: f € C(K) and f € H(K). The Weierstrass approximation theorem
states that these conditions are also sufficient if K is an interval in R.
[theorem (I) 11.1) asserts that at least functions in O(K) have this property.

We state without proof a striking result of Mergelyan which says that the
mentioned necessary conditions are also sufficient provided that C\ K has finitely
many connected components; for proofs see [13] or [§].

Theorem 11.9 (Mergelyan’s theorem). Let K C C be compact and such that ((AI\K
has only finitely many connected components. Let f : K — C be continuous and
holomorphic in the interior of K. For each € > 0 there is a rational function r with
poles in C\ K such that |f —r|x < €. In particular, if C\ K is connected then r
can be taken to be a polynomial.

Exercise 21. Let Kl = 51(4), K2 = ﬁ1(4Z), K3 = El(—4), and K4 = ﬁl(—4l)
Show that there exists a sequence of entire functions f,, such that f, — j uniformly
on K for j =1,2,3,4.

Exercise 22. Prove that there exists a sequence of polynomials p,, such that p, —
1 uniformly on compact subsets of {z € C : Rez > 0}, p, — —1 uniformly on
compact subsets of {z € C: Rez < 0}, and p,, — 0 uniformly on compact subsets
of iR.

Exercise 23. Prove that there exists a sequence of entire functions f,, such that
fn — 1 uniformly on compact subsets of the open upper half-plane and (f,) does
not converge at any point of the open lower half-plane.

12. The Mittag-Leffler theorem
Recall that C! := C\ {a}, for a € C.
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Theorem 12.1 (Mittag-Leffler theorem). Let U C C be a domain and let A C U
be a discrete subset. Suppose that for each a € A a function p, € H(CZ) is given.

a

Then there exists f € H(U \ A) such that f — p, has a removable singularity at a
for all a € A.

In particular, there is f € H(U \ A) with prescribed principal parts at the
points of A.

Proof. If K C U is compact, then K is compact and U \ K has no components
which are relatively compact in U, see There is a sequence of compact
sets K; = K such that K; C K;11 and Uj21 K;=U.

Set g; := ZaeAij Dq; the sum is ﬁnite,Asince A is discrete. Then g1 —g; =
D acAn(K;si\K;) Pa € O(Kj). Since K; = K; there exists h; € H(U) such that
l9j+1 — 95 — hjlk, <277, by Runge’s theorem (I) 11.1} We define

f1:9j+2(9k+1 — gk —hg) —h1—--—hj_1 on K;\ A
k>j
Then f is well-defined and holomorphic in U \ A, since
91+Z(gk+1 =gk —hg) —h1—-—hj
k>j
=giri+ Y (g1 — gk —Iw) —hi— - — by
k>j+1

The series Zk>j (9k+1—gk—hi) converges uniformly on K; and thus its sum belongs
to H(K;). Moreover, g; — p, is holomorphic at a if « € AN K. O

Theorem 12.2 (inhomogeneous CR-equation (II)). Let U C C be a domain and
let f € C°(U). Then there exists u € C*(U) with

gu _ f (12.1)

0z
Proof. For each compact K C U there is v € C°°(U) with dv/0z = f on a neigh-
borhood of K; apply [Theorem 10.2|to ¢ f, where ¢ € C°(U) and ¢ = 1 on some
neighborhood of K.

Let K; be a sequence of compact sets in U such that K; C IO(jH, K; = I?j
and U = |J; K;. Let v; € C>°(U) be such that 0v;/0z = f on some neighborhood
of K;. Then v;11 —v; € O(Kj), since 0/0Z(vj41 — v;) = 0. By [Runge’s theorem|
(I) 11.1} there exists h; € H(U) such that [vj11 —v; — hj|gx; <277. We define

u::vj+Z(vk+1—vk—hk)—h1 —---—h;j_1 onkKj.
k>

As in the proof of the [Mittag-Leffler theorem 12.1] w is well-defined on U. Since
Ug41 — Uk — hy is holomorphic on K; for k > j and the series Zkzj(vk_l,_l — vk — hg)

converges uniformly on K;, we have u—v; € 7—[(.f('j)7 and hence 0u/0z = 0v;/0Z = f
on K. The result follows, since j was arbitrary. O

Exercise 24. Let U C C be a domain and let f € C*(U). Prove that the equation
Au = f admits a solution u € C*°(U). Here A = 92 + 02 = 4070, is the Laplace
operator. Conclude that if u € C?(U) satisfies Au = 0, then u is actually in C*°(U).
Hint: Check that d;u = J,u and use twice.
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We will now discuss the cohomological form of the [Mittag-Leffler theorem 12.1|
which provides a solution to the first (additive) Cousin problem for domains
in C. In the following we use the convention C*°(@)) = {0} and H(0) = {0}.

Proposition 12.3. Let U be an open set in R™. Let 3l = {U, };c1 be an open cover
of U. Suppose that for any pair (i,7) € I x I there is a function f;; € C>°(U;NUj),
and that for any triple (i,7,k) € I x I x I we have

fik=fij + fix onU;NU; NUj. (12.2)

Then there exists a family of functions {f;}icr with f; € C*°(U;) such that
fi_fj:fij onUiﬁUjforalli,jGI.

Proof. Let {;}ier be a partition of unity relative to 4. The function

@](l‘)fw(x) ifzxeU;N Uj,

0 if.ﬁEUi\(UimU]’),
is in C*°(U;); we denote this function simply by ¢, f;;. Define

fi = Z ijfij on Ui.
Jen{i}

This sum contains only finitely many nonzero terms near any point of U;, since the
family {supp ¢;} is locally finite. Thus f; € C*°(U;). Taking i = j = k in (12.2)

we may conclude that f;; = 0 on U;, and taking k = ¢ we find fi; + fj = fu = 0,
i.e., f” = _fji on Ui n UJ Then7 with ‘ ,

fe—fo=" " @i(fuj = fo;) + efre — o for

JEN{k,0}
= > @ifeet pofee+ orfre = (Z@j)kaz:fw O
JEIN{k,} jEI

Theorem 12.4 (additive Cousin problem). Let U C C be a domain. Let i =
{Ui}icr be an open cover of U. Suppose that for any pair (i,5) € I x I there is a
function f;; € H(U; NU;), and that for any triple (i,7,k) € I x I x I we have

fik = fij + fix  onU;NU; NUg.
Then there exists a family of functions {f;}icr with f; € H(U;) such that
fi—fi=fi; onUNUj forallijel.

Proof. By [Proposition 12.3] there is a family {y;}ic; where ¢, € C°°(U;) and
wi —@; = fij on U; NUj for all 4,5 € I. In particular, Op;/0Z — Op;/0Z = 0 on
U; NU;. So there exists ¢ € C*°(U) such that ¢|y, = dp;/0% for all ¢ € I. By
there is u € C°°(U) satisfying Ou/0% = p on U. Set f; := p; —u on
Ui. Then 6‘]"2/62 =0on Ui7 i.e., fz € H(Ul) IfZ,] € I then fl 7fj =@ —p; = fij
on Uz N Uj. O

implies the|Muittag-Leffler theorem 12.1 Let U C C be a domain and
let A C U be discrete. Let U, be a neighborhood of a € A in U not containing

any other point of A, and let p, € H(U, \ {a}). Let * be some symbol and set
I:=AU{x}, U, :=U\A, p,:=0. Fori,j € I, put f;; := p; —p; on U; NUj.
Then fi; € H(U;NU;). By[Theorem 12.4] there is a family {f;}ics with f; € H(U;)
and f; — f; = pi —p; on Uy NU;. Then there is a function f on U \ A with
f=p;— fion U;\ A. In particular, f = p, — f« = —f« € H(U,) = H(U \ A) and
f—pa=—fo € H(U,) for all a € A. O
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Exercise 25. Let Uy, Us be domains in C and let f € H(U; NUs). Show that there
are functions f; € H(Uy) and fo € H(Us) such that f = f; — fo on U; N Us. For
U ={2€C:Rez<1},Us ={2€C:Rez > —1}, and f(z) = 1/(2%2 — 1), find
explicit functions f1, fs satisfying the above properties.

13. The cohomology form of Cauchy’s theorem

Let U C C be a domain. Let { = {U;};c;r be an open cover of U. Let
J :={(i,j) € I xI:U;NU; # 0}. For every open subset V' C C let us consider
C(V):={f:V = C: f locally constant}. Let

c'w,C):= [ cwinuy.
(i,9)€J
An element of C*(4, C) is called a 1-cochain of the cover {f with values in C. The
1-cochains (c;;),j)es € C* (4, C) which satisfy
Cij+cjk+cki:0 onUiﬂUjﬂUkifUiﬂUjﬂUk;é@
are called 1-cocycles of the cover 4 with values in C. Let Z!(4,C) be the set of

all 1-cocycles. Let us consider the set of 0-cochains C°(i,C) := [],.; C(U;) and
define a mapping

i€l
§: 04U, C) — ZH (U, C)

by assigning ¢ = (¢;)ie; € C°(4, C) the element dc € Z1(4, C) given by

(0¢)ij = ciluinu, — ¢

Set B(4,C) := 6C°(4, C). Observe that Z (4, C) and B! (4, C) are complex vector
spaces and d is C-linear. The quotient vector space

H'(4,C) == Z'(4,C)/B(4,C)

UinU; =Ci —¢j  on U;N U; for (Z,]) e J.

is the first cohomology group of the cover 4 with values in C.
Let U C C be a domain. Let { = {U;};c1 be an open cover of U by connected,
simply connected sets U;. We define a homomorphism of C-vector spaces
Sy s H(U) — HY(U,C)

as follows. Let f € H(U). Then, since U; is simply connected, there is a primitive

F; of f on U;, by [Theorem 4.9, Then F] — F; = f — f = 0 on U; N Uj so that

cij = F; — Fj is locally constant on U; N U;. If U; NU; NU # () then
Cij+cjk+eg =F —Fj+ Fy — Fy + F, — F; =0,

so that (¢ij) (i 5yes € Z'(4,C). We let dy(f) be the class in H' (8L, C) of (¢iz) (i j)e-
To show that this definition is meaningful we need to check that it does not
depend on the choice of the primitives F;. Let {G;}icr be a different choice. Then
G}, — F! = 0 on U;, and since U; is connected, ¢; :== G; — F; is a constant. If
gij = Gl — Gj on Ul ﬂUj, then 9ij —Cij = C; —Cj on UiﬂUj, i.e., (gij _Cij)(i’j)ej S
BY(4,C). So dy is well-defined.
Let us denote by d = dy : H(U) — H(U) the derivative d(f) = f’.

Theorem 13.1 (cohomological form of Cauchy’s theorem). Let U C C be a region
and let $4 = {U; }ier be an open cover of U by connected, simply connected sets Uj.
Then the following sequence is exact

0— C % HU) 2% 1) 2% HY(Y,C) — 0

where iy sends ¢ € C to the constant function z — ¢ on U.
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Proof. Clearly, iy is injective. We have dy (f) = f' = 0 if and only if f is constant
since U is connected, i.e., im(iyy) = ker(dy).

Next we show ker(dy) = im(dy). If f = dy(F) then dy(f) is the class of
Fly, = Fly, = 0 on U; N Uj, thus, dy(f) = 0. That means im(dy) C ker(dy).
Conversely, let f € ker(dy). Let F; be a primitive of f on U; and set ¢;; = F; — F);
on U; NU;. Since 6y (f) = 0 there exists (¢;)icr, where ¢; is (locally) constant on
Ui, such that ¢; — ¢; = ¢;; on U; NU;. Thus, F; —¢; = F; —c¢; on U; NUj, and
consequently, there is a function F on U with F|y, = F; —¢;. Obviously, F € H(U)
and dy (F)|y, = (F; — ¢;) = flu,. Hence f € im(dy).

It remains to prove dy(H(U)) = H' (4, C). Let (¢;;) € Z'(8h,C). Then ¢;; is
locally constant, in particular, ¢;; € H(U; NU;). By there is a family
(Fi)ie[ with F; € ’H(Ul) and F; — Fj = ¢;; on U, N Uj. Since dF; — dFj = dcij =0
on U; NUj, there exists f € H(U) such that f|y, = dF;. Then dy(f) is the class in
H'(4,C) of ((Fi — F)|u,nu,) = (¢ij). This proves the theorem. O

Corollary 13.2 (cohomological characterization of integrability). Let U C C be
a domain. Then every f € H(U) has a primitive if and only if H'(4,C) = 0 for
some open cover L of U by connected, simply connected sets. If this holds for one
such cover, then it holds for any such cover.

Proof. Fix an open cover i of U by connected, simply connected sets. Since dy is

surjective, by H'(U,C) = 0 if and only if ker(dy) = H(U) which is
the case if and only if H(U) = im(dy). O

Corollary 13.3. Let U C C be a simply connected region. Then H'(4,C) =0 for
any open cover b of U by connected, simply connected sets.

Proof. [Theorem 4.9 and [Corollary 13.2] O

We shall see in [Theorem 21.3l that also the converse holds.

14. Infinite products

Before we continue with further applications of Runge’s theorem we need some
background on infinite products.

Let a, € C. An infinite product [],- (1 + a,) is said to converge if
e a, # —1 for almost all n € N,

e if ng > 0 is such that a,, # —1 for n > ng, then limy_, o HnN:nOH(l—i—an)
exists and is nonzero.

If TT72 (1 4 ay,) converges then we define its value to be

%) no N
[T +a) ::H(lJran)-]\}gnoo IT a+an).
n=1 n=1 n=ng+1

This is independent of ng. If [],~ (1 + a,) converges then limy_, ngl(l +ay)
exists and equals the value of []>";(1 + a,). The converse is not true; e.g., a, =
—1/2 for all n.

Exercise 26. Show that if [])~ ,(1+a,) converges then limys y— o0 Hg:M(l +ay)
exists and equals 1. In addition show that this is not necessarily true if we allow
limy 00 Hg:noﬂ(l +ay) = 0 in the definition of the convergence of []>_ | (1+ay,).

Proposition 14.1. The infinite product [, (1 + |an|) converges if and only if
oo lan| converges.
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Proof. Suppose that Y > | |a,| = s < co. Then, since 1 + z < e” for z > 0,

N

N
1<py:= H 14 an|) < H lanl — expz lan| < e’. (14.1)
n=1

n=1 n=1

=

The sequence of partial products py is increasing and hence converges to a nonzero
limit.
For the other direction observe that e* <1+ 2z for 0 <z < 1. So if |a,| < 1,

PN > H eltnl/? — exp - Z |an]-

nl

Thus convergence of py implies convergence of >~ | |ay|. O

Proposition 14.2. Convergence of [[,_,(1 + l|a,|) implies convergence of

[, (1+ay).

Proof. Suppose [[,~ (1 + |a,|) converges. By [Proposition 14.1} |a,| — 0, in par-
ticular, there is ng such that a,, # —1 for n > ng.

For N > ng, set qn := Hg=n0+1(1 +a,) and gy = Hfj:noﬂ(l + |an|). Then,
for N > M > ny,

N N
|(JN—CIM\=|QM|‘ 11 (1+an)_1‘§|(jM|‘ II (1+|an|)—1‘=|QN—§M|;
n=M+1 n=M+1

note that Hfj:MH(l + ap) — 1 is a sum of monomials in the a; and HiV:MH(l +
la,|) — 1 is the same sum, where each a; is replaced by its absolute value |a;|. So
the convergence of the sequence ¢y implies the convergence of the sequence gy .
We may choose M > ng + 1 such that HS:M(l +lan]) —1 < 1/2 for all N > M.
Then, for such N, | HZ:]:M(l—i—an) —1] < 1/2 and therefore | Hg:M(l +an)| > 1/2.
It follows that

M—-1 M—

N
1
|QN|:‘ H (14 an) ’H + an) 5‘ H (1+ay)| >0,
n=no+1 n=M n=ngo
and so [[,~,(1 + a,) converges. O

Let us now consider infinite products of holomorphic functions.
Theorem 14.3. Let U C C be a domain, and f, € H(U). If Y07 |fn| converges
uniformly on compact sets, then the sequence of partial products

N

pn(z) = [J (1 + fu(2))

n=1

converges uniformly on compact sets to a holomorphic limit function f € H(U).
The function f vanishes at a point zo € U if and only if fn(z0) = —1 for some n,
and

ord.,(f) = ZordZO(l + fn)-

Proof. Fix a compact set K C U. Since > -~ |fs| converges uniformly on K,
there is a constant C such that Zgzl |fn] < C for all N uniformly on K. Then
PN = Hg:1(1 +|fn]) < €© for all N uniformly on K, by (T4.1)).
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Let 0 < € < 1 and choose L such that for N > M > L, ZTJLM |frn(2)] < € for
all z € K. Then, by (14.1)),

N
pn(2) = o) < e | [T Q1)) — 1]

n=M+1

Sec(eé—l)—>0 as € — 0.

So the sequence py is uniformly Cauchy on K. This implies that fx is uniformly
convergent on K, by [Proposition 14.2] Since K was arbitrary, the limit function f
is holomorphic on U.

Suppose that f(zp) = 0 for some zy € U. By the definition of the convergence
of infinite products, there is ng such that limy_ Hfz\/:n0+1(1 + fn(z)) does not
vanish at zg. This limit represents a holomorphic function and thus is non-vanishing
in some neighborhood of zy. Since

no N
FE) =TI+ () Jim - [T 1+ ful2))
n=1 n=no+1
the statements about the zeros follow. O

Exercise 27. Let (a,) be a sequence (with repetitions) of points in D\ {0} satis-
fying > (1 — |an|) < co. Show that the so-called Blaschke product

H —Qn, 2 —
lan| 1 —apnz
converges uniformly on every disk D,.(0) with r < 1 and defines a holomorphic

function on D with |f(2)] < 1. Prove that the zeros of f are precisely the a,’s
(counted according to their multiplicities). Hint: Apply [Theorem 14.3

15. The Weierstrass theorem

We will use a variant of [Runge’s theorem (I) 11.1]in which only non-vanishing
functions are allowed.

Lemma 15.1. Let U C C be a domain, and let a,b, a # b, lie in the same connected
component of C\ U. Then there exists f € H(U) such that
=222 e
z2—0b’
Proof. Let g(z) = (z—a)/(z —b). We will show that ¢’/g, which is holomorphic on
U, has a primitive h on U. Then (e~ "g) = e "¢’ — e "h’g = 0 and thus g = ce”
for some ¢ # 0. If C is such that ¢ = e“, then f = h + C is the desired function.
To see that ¢’/g has a primitive on U, let v be any closed curve in U. Then

/ 9 g / - - ! b) dz = 2ri(ind, (a) — ind, (b)) = 0,

zZ—a

since a,b lie in the same connected component of C \ |7|. (]

Proposition 15.2 (variant of Runge’s theorem). Let U C C be a domain, and let
K be a compact subset of U such that K = Ky. Let f € O(K) such that f(z) # 0
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for all z € K. Then for every e > 0 there exists F € H(U) such that F(z) # 0 for
all z €U and |F — flx <e.

Proof. By [Lemma 11.3] C \ K has only finitely many connected components

Vo, Vi,...,V,, where Vj is the unbounded component. As seen in the proof of
Lemma 11.3] V; € U for all j > 1. So there exist a; € V; \ U for all j = 1,...,n.
Let R > 0 be such that K C Dg(0) and set ag := R.

By the [classical Runge theorem 11.7] there is a rational function g which is
holomorphic and non-vanishing on a neighborhood of K and |f — g|x < €, so that

d
9(:) = e[z = b,

where ¢ # 0, m; € Z\ {0}, and b; e C\ K,i=1,...,d.
For 0 <j<mn,let A :={i:b; € V;}. Then

n

o) =ere- e LT (=)

J=04i€A;
where
n
H(z):= H(z —a;)", n;= Z m;.
j=1 i€A;

If i € Aj then a; and b; both lie in V;. By [Lemma 15.1} there exists ¢; ; € O(K)
such that (z — b;)/(z — a;) = €#+1*) on a neighborhood of K. Moreover, there is

b0 € H(Dg(0)) such that z — R = e?°(*) on Dy(0), by [Theorem 4.8 Thus, there

exists £ € O(K) such that
9(z) = cH(2)e",

for z in a neighborhood of K. By |Runge’s theorem (I) 11.1] for every § > 0 there
is L € H(U) with |L — ¢|x < 4. Then

G := cHe"

satisfies |G — g|x < ¢, if ¢ is sufficiently small, and hence |f — G|k < 2e. Since
a; ¢ U, H and thus G, does not vanish in U. O

Next we will see that, if U C C is a domain and A C U is discrete, there is a
holomorphic function f € H(U) which has zeros at the points of A of prescribed
orders and is nonzero elsewhere.

Theorem 15.3 (Weierstrass theorem). Let U C C be a domain and let A C U
be discrete. Suppose that for each a € A an integer mg is given. Then there is a
meromorphic function f on U such that f[y\a is holomorphic and nowhere zero,
and (z —a)~™a f(z) is holomorphic and nonzero at a for all a € A.

Proof. Let K be a sequence of compact sets in U such that K; C kj+1, U= Uj K;,
and Kj = I?j. Set

a€ANK;
Then Fj41/F; belongs to O(K;) and has no zeros on K;. By [Proposition 15.2]
there exists h; € H(U) which has no zeros in U and
Fjn
Fj

Jj= L

b1, < g
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Indeed, we apply [Proposition 15.2|to F;/F; 1 to get h; € H(U) such that
Fj ‘ < 1
Filk, — 2771057

where C; := |Fj;1/Fj|k;. Then Hk>j hiFi41/Fy is holomorphic and non-
vanishing on K, by [Iheorem 14.3l We define f by setting

F
f:FjH(l’;Zlhk)hl---hj,l on Kj.
k>j

=

Then f is meromorphic on U and has the required properties. O

Remark 15.4. For U = C the theorem can be proved by writing down an infinite
product with the required properties. Define Ey(z) := 1 — z and

22 2P
Ep(z):(1—z)exp(z+—+---+—), p=12,...

2 p
These functions are called elementary factors. They are all entire and their
only zero is 1. Let us enumerate the points in A\ {0} by a1, as,as, ... and write

my = mg,. One can show that for a suitable sequence {p,} of positive integers,
e.g., Pn = |mp|n, the infinite product

0 (5 ()

has the required properties. The general theorem can be proved along similar lines;
for details see e.g. [9].

In particular, let f be an entire function. Suppose that f vanishes to order m
at 0, m > 0. Let (a,,) be the other zeros of f listed with multiplicities, i.e., m,, =1
for all n > 1. Then there is an entire function g and a sequence p,, such that

oo
_ .m_g(2) i)
flz)=2"e HEH(CM , z€C.
This result is called the Weierstrass factorization theorem. In fact, the entire
function h(z) = 2™ [[°_, Ep,(z/a,) has the same zeros (with multiplicities) as
f- So f/h has only removable singularities, hence can be extended to an entire
non-vanishing function. Since C is simply connected, there is g € H(C) such that

f = he?, by [Teorem 1.9

Exercise 28. One can show that the second (multiplicative) Cousin problem
is always solvable for domains in C: Let U C C be a domain. Let 84 = {U, };cr be
an open cover of U. Suppose that for any pair (i, j) € I x I there is a function f;; €
H(U;NUj) vanishing nowhere in U; NUj;, and that for any triple (i,7,k) € I xI x I
we have
fik = fij i on U; NU; NUy.

Then there exists a family of functions {f;};er with f; € H(U;) nowhere vanishing
on U; such that

fi/fj:fij onU;NU;j for all 4,5 € 1.
Prove that this implies the [Weierstrass theorem 15.3| Hint: Set 4 (2) := (z —a)™=
for z€ U, :=U\{a} and a € A, and fup := pp/@a-

As a consequence we shall now prove that every region U C C is a domain
of holomorphy, i.e., there is a function f € H(U) which cannot be extended to a
holomorphic function on a domain larger than U.
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Let U C C be a region, and f € H(U). Let a € OU. We say that f is singular
at a if, given any curve v : [0, 1] — C such that y(¢) € U for 0 <t < 1 and (1) = q,
the germ at v(0) of f cannot be analytically continued along . If f € H(U) is
singular at every point of U, we say that OU is a natural boundary of f.

Theorem 15.5 (domain of holomorphy). Let U C C be a region. Then there exists
f € H(U) such that OU is a natural boundary of f.

Proof. Let D,, n > 1, be a sequence of open disks such that D,, C U, {D,} is
locally finite, U = |J,, Dn, and the radius 7, of D,, tends to 0 as n — oo. (The
existence of such a sequence can easily be established using a compact exhaustion
of U.) Choose a sequence of points a,, € D,, n > 1, such that a,, # a,, if n # m.
By the|Weierstrass theorem 15.3} there is a function f € H(U) with zeros precisely
in the set {a,}. We will show that QU is a natural boundary of f.

Let v : [0,1] — C be a curve such that y(t) € U for 0 < ¢ < 1 and (1) =
a € OU. Suppose, for contradiction, that the germ at v(0) of f can be continued
analytically along ~, and let F}, be the germ at (1) so obtained. Let (D, F) be a
representative of F,,, where D = D,.(a) is a small disk centered at a and F' € H(D).
There is € > 0 such that for 1 —e <t <1, y(t) € D and Fy) = fyu). If V is the
connected component of D NU containing {y(¢) : 1 —e <t <1}, then F = fon V.

Let D' = D,5(a) be the open disk with center a and half the radius of D.
Then ~(t) € D’ NV for t sufficiently close to 1, and so D' NV cannot be contained
in the union of finitely many disks D,, (which is relatively compact in U). Thus,
there exists a sequence ny such that D, N (D' NV) # () and the radius of D, is
< r/4 for all k. It follows that D,, C V for all k, since V is connected. Hence
F(an,) = f(an,) = 0, but the sequence ay, is contained in € D3, 4(a) and thus
has an accumulation point in D. Consequently, F' = 0 and, since U is connected,
f=0on U, a contradiction. (]

Exercise 29. Consider the power series

) =32 <1,
n=0

with radius of convergence 1. Prove that the natural boundary of f is OD. Hint:
Let ¢ = 2m¢/2F, where k, ¢ € N, and show that |f(re’?)| — oo as 7 — 1.

A further consequence is the following.

Theorem 15.6 (characterization of meromorphic functions). Every meromorphic
function in a domain U C C is a quotient of two holomorphic functions in U.

Proof. Suppose that f is meromorphic in U. Let A be the set of poles of f in U,
and for each a € A denote by m, the order of the pole of f at a. By the[Welerstrass|
there exists h € H(U) whose zero set is precisely A and m, is the
order of the zero of h at a for each a € A. The singularities of the function g := fh
at the points of A are removable. So g can be extended to a function holomorphic
inU. (]

Finally, let us combine the [Mittag-Leffler theorem 12.1] and the
itheorem 15.3!

Theorem 15.7. Let U C C be a domain, and A C U a discrete subset. Suppose
that we are given for each a € A a neighborhood U, of a in U, a function ¢, €
H(U, \ {a}), and an integer my > 0. Then there exists f € H(U \ A) such that
f — wa is holomorphic at a and ord,(f — @a) > mg for all a € A.
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Proof. By the [Weierstrass theorem 15.3] there is g € H(U) such that g has no zeros
outside A and ord,(g) > m, for all « € A. By the [Mittag-Leffler theorem 12.1}
there is h € H(U \ A) such that h — ¢,/g is holomorphic in some neighborhood V,
of a. We claim that f := gh has the required properties. Clearly, f € H(U \ A).
Moreover, f — @, = g(h — pa/g) € H(Va) and ord,(f — ¢q) > orde(g) > me. O

Furthermore, if we exclude essential singularities:

Theorem 15.8. Let U C C be a domain, and A C U a discrete subset. Suppose
that we are given for each a € A a meromorphic function v, in a neighborhood of
a, and an integer mq > 0. Then there exists a meromorphic function f on U which

is holomorphic and non-vanishing on U \ A and such that ord,(f — pa) > mg for
all a € A.

Proof. Let Ay := {a € A : ¢, # 0} and let n, := ord,(p,) for a € Ay. By
the |Weierstrass theorem 15.3] there is a meromorphic function g on U which is
holomorphic and non-vanishing on U \ A and such that ord,(g) = n, if a € Ap and
ord,(g) > mg if a € A\ Ag. Set ¥, := pa/g for a € Ag. Then 1), is holomorphic at
a and 94 (a) # 0. So there is a small disk D, centered at a and h, € H(D,) such

that 1, = e on D,, by [Theorem 4.8

By [Theorem 15.7] there is h € H(U) such that ord,(h — hy) > |ng|+m, for all
a € Ag. Define f := ge. Evidently, f is holomorphic and non-vanishing on U \ A.

We have

f=¢a=g(e" —tha) = ge" (1 —e"7").
For a € Ay, ord,(ge) = ng and ord, (1 — ea=") > |n,| +m, + 1 so that ord,(f —
©Ya) > Ng + |nal + Mg +1 > mg. Ifa € A\ Ag then ord,(f — pa) = ord,(f) =
ord,(g) > myg. O

16. Ideals in H(U)

Let us consider some consequences for ideals in H(U). We will show that every
finitely generated ideal in H(U) is principal, and that a proper ideal in H(U) is
finitely generated if and only if it is closed.

We denote by (g1,...,9n) = {>p_y fugk : fx € H(U)} the ideal generated by
g1s--->9n € H(U); note that (1) = H(U). An ideal Z is called principal if there
exists g € Z such that Z = (g).

Lemma 16.1. Let U C C be a region. If g1,...,9n € H(U), no gi is identically 0,
and no point of U is a zero of all gy, then (g1,...,g9n) = (1).

Proof. We proceed by induction on n. The case n = 1 is trivial. Let n > 1 and
let g1,...,9n € H(U) have no common zero. By the [Weierstrass theorem 15.3|
there exists f € H(U) such that at every point z € U the order of vanishing of f
is the minimal order of vanishing of the functions ¢1,...,gn—1. Then hy = gi/f,
1 <k <n-1, belong to H(U) and have no common zero. By induction hypothesis,
(h1,...,hp—1) = (1) and so (g1,-..,9n) = (f, gn). Note that g,, does not vanish on
the zero set of f. By there exists ¢ € H(U) such that at each point
of U the order of vanishing of 1 — ¢g,, is at least as large as the order of vanishing
of f. Consequently, there is ¢ € H(U) such that 1 = pg, + ¢ f, which shows that

(915 -59n) = (1). [l

Theorem 16.2 (finitely generated ideals in H(U) (I)). Every finitely generated
ideal in H(U) is principal.
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Proof. By treating connected components separately we may assume that U is
a region. Let Gi,...,G, € H(U). We may assume without loss of generality
that no Gy is identically 0. By the [Welerstrass theorem 15.3] there exists f €
H(U) such that at every point z € U the order of vanishing of f is the minimal
order of vanishing of the functions G1,...,G,. Then the functions g, = G/ f are

holomorphic and have no common zeros. By [Lemma 16.1} (g1,...,9,) = (1) and
hence (G1,...,Gn) = (f). O

Next we will show that a proper ideal in H(U) is finitely generated if and only
if it is closed.

Lemma 16.3. Let X be a C-linear closed subspace of H(U). Suppose that for every
z € U there exists f € X with f(z) # 0. Then there exist two functions g,h € X
which have no common zeros in U.

Proof. For z € U consider X (z) := {f € X : f(z) # 0}. Then X(z) is open in X.
We claim that X (z) is dense in X. Let f € X and g € X with g(z) # 0. Then
fHAge X(2) it A # —f(2)/g(z). Soif A = 0, A # —f(2)/g(2), then f+ \g — f
in #(U). Therefore, X(z) = X.

H(U) is a complete metric space, and since X C H(U) is closed, so is X. Let
{zn} a countable set in U. By Baire’s theorem, (),—; X (z,) is dense in X.

Let 0 # g € X and let {2,,} be the set of zeros of g. Let h € (), X (2,); then
h(zn) # 0 for all n. O

Theorem 16.4 (finitely generated ideals in H(U) (II)). Let U C C be a region,
and let T be a proper ideal in H(U). Then T is finitely generated if and only if T is
closed in H(U).

Proof. Suppose that 7 is finitely generated. By we may assume that
IT=(g)for0#£geZ. Let f, € (g) and suppose that f,, — f uniformly on compact

sets in U. Then f, = h,g for h, € H(U). Let A:={z €U : g(z) =0}.
Let w € U. Let D be a disk centered at w such that D C U and 9D N A = .
Then, by the maximum principle,

|hn - hm|D = |hn - hml(’?D < (zle%fD |g(z)|)_1|fn - fm|8D — 07

as n,m — oo. Thus (h,) converges uniformly on compact sets in U to some
h € H(U) so that f = lim f,, = lim h,,g = hg. Hence Z = (g) is closed.

For the converse, suppose that Z # (0) is a closed ideal in H(U). For z € U
set m, = infrezord.(f). The set {z € U : m, > 0} is discrete, since Z # (0). By
the [Weierstrass theorem 15.3 there exists g € H(U) such that ord,(g) = m, for
all z € U. If f € T then ord,(f) > ord,.(g), for all z € U, so that f/g € H(U).
Consider the closed ideal J := {f/g: f € I} in H(U); that J is closed follows from
the same arguments that showed that principal ideals in H(U) are closed. Note
that for every z € U there is h € J such that h(z) # 0: if f € Z and ord,(f) = m,
then ord,(f/g) = 0.

By [Cemma 16.3] there exist hy, he € J without common zero. By [Lemma 16.1]
there are ki, ke € H(U) with ki1hy + koho = 1, and hence ki (h1g) + ka(hag) = g,
i.e., g € Z. This implies Z = (g), since, for each f € Z, f/g € H(U) as noted
before. O

Remark 16.5. H(U) is not a Noetherian ring. In fact, let (z,) be a sequence in U
without accumulation point in U, and set Z,, := {f € H(U) : f(zm) = 0 for m > n}.
Then Z,, is an ideal in H(U), Z,, C Zp,+1, and Z,, # Z,,11 (by the[Weierstrass theorem|
. Also, the proper ideal | J,,~, Z, is not finitely generated.







CHAPTER 4
Harmonic functions

17. The Poisson integral formula

Let U C C be a domain. A function u € C?(U) is said to be harmonic if

02 0? 0
pu= (L4 Py
= \a2 Ta2)" T aa
Proposition 17.1 (harmonic conjugate). Let U C C be a simply connected region,
and let uw: U — R be harmonic. Then there is a C*°-function v such that u + v :
U — C is holomorphic.

2
=0.

Proof. Consider the C'-function h = ug — tuy. Then ihy = iUgs + Uye = hy, since
Au = 0, so that h is holomorphic. By h has a primitive H = @ + 9.
Then H' = 4, — ity = uy — iu, so that 4, = u, and 4, = u,, and hence t =u+c¢
for a constant ¢. Thus, H — ¢ = u + v is holomorphic. O

The imaginary part v is unique up to an additive constant; for, if u + iv; and
u —+ ivg are holomorphic then ¢(vq — v3) is holomorphic but not open. Any function
v such that u 4+ iv is holomorphic is called a harmonic conjugate of u.

Proposition 17.2 (maximum principle for harmonic functions). If u : U — R
is harmonic on a region U C C and there is a point z € U such that u(z) =
supeey u(C), then u is constant on U.

Proof. Let M :={z € U : u(z) = sup;¢yy u(¢)}. We show that M is open and closed
in U, and hence M = U, in particular u is constant on U. That M is closed follows
from the continuity of u. Let z € M and let D := D,(z) C U. By [Proposition 17.1}
there is h € H(D) with Reh = u. Define f := e”. Then |f(2)| = sup.cy | f(¢)] and
by the maximum principle for holomorphic functions f is constant on D. Then
is constant on D and so M is open. O

By applying the proposition to —u we obtain the minimum principle for har-
monic functions, where sup is replaced by inf in the statement.

Corollary 17.3. Let U C C be a bounded region and let u: U — R be continuous
and harmonic in U. Then maxy v = maxgy u and ming v = mingy u. O

Exercise 30. Prove Liouville’s theorem for harmonic functions: If u : C — R is
harmonic and bounded on C, then w is constant.

Proposition 17.4 (mean value property). Letwu : U — R be harmonic on a domain
U CC, and let D,(a) CU. Then
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Proof. By [Proposition 17.1} there is a holomorphic function % defined in a neigh-
borhood of D,.(a) such that h = u + iv. Then

u(a) +iv(a) = ! /8D( Mdz

277”' a)z—a

1 2

4 1 [ 4
=5 ; u(a—i—re”)dt—i—i%/o v(a +re')dt

which implies the assertion. O

Let u; : D — R, i = 1,2, be continuous and harmonic in D. If u; = uy on 9D,
then u; = us on D, by the jmaximum principle for harmonic functions 17.2] So a
harmonic function u on D that extends continuously to D is completely determined
by its values on the boundary OD. [Proposition 17.4] makes this precise for the
origin. We will now derive a formula for the values of u at every point in D.

To this end observe that, for every a € D, the mapping

zZ—a

$alz) =T —— (17.1)

is an automorphism of ) which extends to a holomorphic and invertible map on a
neighborhood of D satisfying ¢, ! = ¢_, and ¢,(a) = 0.

Exercise 31. Let a € D. Prove that ¢,(2) = (2 — a)/(1 — @z) is holomorphic and
invertible on a neighborhood of D with ¢! = ¢_,. Show that |p,(z)] = 1 for
z € OD.

Theorem 17.5 (Poisson integral formula). Let u be a harmonic function on a
neighborhood of D. Then

1 [ 1—|z?

:%0

Proof. By the |mean value property 17.4 applied to the harmonic function woy_,
we get

) = (wop)0) = 5 [ utpo(eyar = o [ A g

The mapping . restricts to a C'-diffeomorphism 0D — 9D with ¢’ (w) = (1 —
|212)/(1 — zw)?. Thus,

1
u(z) = — w(w)
2mi Jop @2 (w)
1 Toau(e®)(1—ze) 1-|z2
= : ——e''dt
27 Jo et —z (1 —zet)?

1 [ 1— |z

u(eit)

@ (w) dw

= % ;
Exercise 32. Show that if v : U — R is harmonic and h : V' — U is holomorphic,
then u o h is harmonic.

The expression

1 1—1z? 1 et+z
— =T~ ReS
2 |z — €2 2w et —z
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is called the Poisson kernel of the unit disk. In polar coordinates z = re® it takes
the form

1 1—7r?
PO —t) = 271 — 2rcos(f — t) + r2
and reads
u(rei®) = /0 (@0 — 1) d.
For u = 1 we obtain 1= [" P.(§ — t)dt. If 0 < § < 7/2 and § < 9 < 27 — 4, then
0 < Pd) < — L= (17.3)

=271 —cos26
for 0 < r < 1. Indeed, if 7/2 < 9 < 37/2 then cos? < 0 so that 1— 27 cos(¥) +72 >

1. If§ <9 < m/2then 0 < cos ¥ < cos§ and hence 1—2r cos(¥)+r2 > 1—2r cos(d)+
r2=1-cos?§+ (r — cos§)? > 1 — cos? §. Similarly for 37/2 < 9 < 27 — 4.

Exercise 33. Derive a formula analogous to the Poisson integral formula (17.2)
for the upper half plane H, by mapping H biholomorphically to D: if u is harmonic
on H, and continuous and bounded on H, then

1 [ Yy )
Theorem 17.6 (solution of the Dirichlet problem for the disk). Let f be a contin-
wous function on 0D. Then
27 i 1—|z 2 .
U(Z) = % 0 f(e t) ‘Z—|eit||2 dt ZfZ S Da
f(z) if z € OD,

is continuous on D and harmonic on D.

Proof. Let us show first that « is harmonic in . To this end we observe that
1— |22 eit et

|Zieit|2 T oeit — 4 e—it _ %

and thus for z € D,

a(z) = = [ e

:27T 0

it 1 27 " e—it 1 27 "
, dt + — g g dt — — ") dt.
et — z + 2 J, fle )e—”’ -z 2 Jo G

The first integral is holomorphic, the second antiholomorphic, and the third con-
stant in z. Since A = 49?/020%, we find that Au = 0 on D.

Fix tg € R. If z = re’? € D then
27
u(z) — f(e) = / (F(e") — F(e*) P (6 — 1) d.

Let € > 0. By continuity of f, there is § > 0 such that |f(e’) — f(e'0)| < e if
let — ei*o| < §. On the other hand, if |’ — e®0| > § and €' is sufficiently close to
e then |e!=% — 1| > §/2. Thus, by (17.3),

fu(z) — f(e®)] < /{ () — F(e)|P.(0 — ) dt

t:|eit —eito <5}

+/ ) = fe )P0 ) dt
{t:|eit—eito|>45}

<e / P.(6—t)dt
{t:]et —eito| <5}
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+ @)1 - 1?) / F(eit) — f(ei®)] dt

{t:|eit—eito| >4}
2m
<e+C(0)(1- 7’2)(/ |f(e™)|dt + 27r|f(e“0)\) < 2e,
0

if r is sufficiently close to 1. O

Remark 17.7. The condition that f is continuous on 9D can be replaced by
f € LY(9D) (where we identify functions on dD with 27-periodic functions on R
and use the Lebesgue measure). Then w is harmonic on D and if f is continuous at
etto then u(z) — f(e'0) as z — €'0; the proof is essentially the same.

By a change of variables, we can conclude the following. Let f be continuous
on 0D, (a) (or just integrable). Then the function defined by

u(z) i= § Par(D@) - if2 € Dr(a),
f(2) if 2 € ODy(a),

is continuous on D,(a) (at points of D,.(a), where f is continuous) and harmonic
on D,(a), where

2

P, (f)(z):= fla+ret)P, . (z,t)dt (17.4)
0
and ,
1 re’t + (z — a)
P,.(z,t) == —Re ————=.
(1) 27 ere”f(zfa)
Next we shall prove that a continuous function u with the mean value property
is harmonic. Actually, it suffices that for each a € U there is 7, > 0 such that
D, (a) CU and for every 0 <r <1,

1 27 )
u(a) / u(a + re't) dt.
0

T o
Following [8] we say that v has the small circle mean value (SCMV) property
if this holds.

Lemma 17.8. Let U C C be a region, and let u : U — R be continuous with the
SCMV property. If u(z) = sup.cy u(() for some z € U, then u is constant.

Proof. The set M = {z € U : u(z) = sup;cyy u(¢) =: s} is clearly closed and
nonempty. Let us prove that M is open. Let a € M. By assumption, for 0 < r < rg,

1 27\' . 1 27T
s=u(a) = — u(a—|—7’e”)dt§—/ sdt=s
27T 0 27T 0
so that u(a +re’) = sfor all 0 <t <27 and all 0 < r < r,. So M is open. O

Theorem 17.9. Let U C C be a domain, and let f : U — R be continuous with
the SCMV property. Then f is harmonic.

Proof. Let D be a disk such that D C U. By |[Theorem 17.6, there is a harmonic

function up : D — R such that

in(2) = up(z) ifzeD,
HpLE) = f(2) it z€ 0D,

is a continuous function on D. We claim that f = up on D so that f is harmonic
on D, and thus, since D was arbitrary, also on U.
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The function h := f — @p is continuous on D, vanishes on 8D, and fulfills the

assumptions of [Lemma 17.8) on D. Thus h < 0 and h > 0 (by applying the same
reasoning to —h). Thus h =0 and f = up on D. O

Corollary 17.10. If u, : U — R is a sequence of harmonic functions which con-
verges uniformly on compact sets to u : U — R, then u is harmonic.

Proof. 1f D, (a) C U then, by the jmean value property 17.4}

1 2m )
up(a) = %/o un(a+ re') dt.
Letting n — oo the assertion follows from O

Exercise 34. Prove Jensen’s formula: Let f be holomorphic in a neighborhood
of D,.(0) with f(0) # 0. Assume that f does not vanish on 9D,.(0) and let ay, ..., a
be the zeros of f in D,.(0) counted according to their multiplicities. Then

k 27
r 1 )

I 0 log— = — 1 )| dt. 17.5

oB £+ Yo 5 | teslstre®) (7.5)
Hint: Use [Exercise 311 to conclude that
f(z
oo = T
Hg:l Soaj/’l”(z/’r)
where ¢,/ is defined by (L7.1]), is holomorphic in a neighborhood of D,(0) and

has no zeros in ET(O);Apply the mean value property to log |g| which is harmonic
in a neighborhood of D,.(0).

18. The Schwarz reflection principle

Lemma 18.1 (Schwarz reflection principle for harmonic functions). Let V C C be
a region such that VR = (a,b). Let U :={z€V :Imz >0} andlet u:U — R
be harmonic such that for each x € (a,b)

Zh_r)rﬁlv u(z) = 0.

Then the function

u(2) ifzeU,
u(z) =<0 if z € (a,b),
—u(z) ifzeU:={z:2€U},

is harmonic on U U (a,b) UU.

Proof. Obviously, @ is continuous on W := U U (a,b) U U. By [Theorem 17.9} it

suffices to check that @ has the SCMV property. This is clear for points in U, since
u is harmonic, and for points in U, since z — —u(Z) is harmonic. Let z € (a,b).
Let r; > 0 be such that D, (x) C W. Then, for 0 < r < 74,
27 ™ s
/ iz +re)dt = / a(x + re't) dt + / a(x + re' ) dt
0 0 0
= / u(z + re') dt — / u(z +re ™) dt = 0 = 2ma(z).
0 0

The lemma follows. (]
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Theorem 18.2 (Schwarz reflection principle for holomorphic functions). Let V' C
C be a region such that VNR = (a,b). Let U := {z € V : Imz > 0} and let
f:U = C be holomorphic such that for each x € (a,b)

lim Im f(z) = 0.

zZ—T
Let U = {Z : z € U}. Then there exists a holomorphic function F on
UU (a,b) UU such that Fly = f. In particular, F(z) = f(Z) for z € U and
F(z) = limys.—. Re f(2) for each x € (a,b).

Proof. It is easy to see that z — ﬁ defines a holomorphic function on U. If there
is a holomorphic extension F on W := U U (a,b) UU of f, then F(z) = f(Z) on U,
because z — W is holomorphic on W and agrees with F' on (a, b).

Let « € (a,b). Let D be a small disk centered at = and contained in W. Let
v(z) := Im f(2) for z € DNU. Then v is harmonic in D NU and v(z) — 0 as
z = z € (a,b) N D. By the[Schwarz reflection principle for harmonic functions 18.1}
v extends to a harmonic function v on D. Choose u such that %+ 4?0 is holomorphic
on D. Then, on DNU, Im(f — (@ +40)) = 0 and hence f = (@ + C) + iv for some
real constant C.

Thus Fy := (@ + C) + i0 is a holomorphic extension of f to D. Moreover,
z — Fy(Z) is a holomorphic function on D which coincides with Fy on D N R and
thus on D. Tt follows that the function F' defined by setting F(z) = f(z) for z € U,
F(z) = f(2) for z € U and F(z) = limys._, Re f(2) for z € (a,b), is holomorphic
onU. O

Corollary 18.3. Let f € C(D) such that f is holomorphic in D. If f vanishes on
an open arc I of 0D, then f =0 on D.

Proof. If I = 0D we may invoke the maximum principle. Otherwise there is a
point in D\ I, and after applying a rotation we may assume that this point is —1.
Let ¢ : D\ {1} — H be the inverse Cayley transform, p(z) = i(1 — 2)/(1 + 2).
Then g := f o ¢~! is holomorphic on H, continuous on H, and vanishes on the
interval J = ¢(I) C R. Let U C H be an open half disk with U N R C J.
By the [Schwarz reflection principle for holomorphic functions 18.2] g extends to a
holomorphic function on UUJUU. By the identity theorem, g = 0 on U and hence

on H, which implies the assertion. U

Exercise 35. Let f be continuous on D and holomorphic in ID. Assume that f is
nowhere zero on D and |f(z)| = 1 on dD. Prove that the function

F@%:{ﬂ@ if |2 < 1,

VIR i 2] > 1,
is entire, and conclude that f must be constant. Hint: Show first that F' is contin-
uous, then use Morera’s theorem.

19. Harnack’s principle

Proposition 19.1 (Harnack’s inequality). Let u > 0 be a harmonic function on a
neighborhood of Dgr(a). Then, for z € Dr(a),

R—|z—al R+ |z —al
_ < <
o) < (2

-~ R-—- \z—a|u(a)
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Proof. Without loss of generality a = 0. For z € Dg(0),
_ 2,2
R — |7 < R A 2] < R+|z|,
R+ |z| — |Re®* — 2|2 — R—|7|
since R — |z| < |Re — z| < R+ |z|. By the [Poisson integral formula 17.2]

27 2 _ 2
u(z) ! / u(Re”)M dt, ze€ Dg(0),
0

T or |Rett — z|?
we may conclude (in view of the [mean value property 17.4)
R —|7] R+ |7|
u(0) <u(z) < 4(0). (]
Rt (0) < ()7R_|Z| (0)
Theorem 19.2 (Harnack’s principle). Let uq < ug < --- be harmonic functions

on a region U C C. Then either u, — oo uniformly on compact sets or there is a
harmonic function u on U and u, — u uniformly on compact sets.

So, if there is just one point z € U such that {u,(z)}, is bounded, then wu,
converges to a harmonic function u uniformly on compact sets.

Proof. If z € U and u,(z) — oo, then there is ng such that u,,(z) > 0 and hence
there is R > 0 such that Dg(z) € U and u,, > 0 on Dg(z). By
inequality 19.1} for ¢ € Dg/2(2) and n > ng,
R—R/2 1
un(¢) > R+R§2un(z) = gun(z) — 0.

If z € U and u,(z) is bounded, then, provided D(z) C U, by [Harnack’s inequality|

for ( € Dgys(2) and n > m,

R+ R/2
un(C) — um(C) < R-R/2

Then u,, converges to a harmonic function uniformly on Dg/o(2).

(1n(2) = i (2)) = 3(un (=) = wn(2)) = 0.

We have proved that the set of points on which wu,, — co is open as well as the
set on which u,, is bounded. Since U is connected one of these two sets is empty.
Every compact subset K C U is covered by finitely many disks Dp/o(2) and the
theorem follows. O






CHAPTER 5
The Riemann mapping theorem

20. The Riemann mapping theorem

We will use the Arzela—Ascoli theorem. Let (X, d) be a metric space, and
let F be a family of functions f : X — C. Then F is called equicontinuous if for
every € > 0 there is § > 0 such that |f(z) — f(y)| < efor all f € F and all z,y € X
with d(z,y) < 0. We say that F is pointwise bounded if for each z € X the set
{f(x): f € F} is bounded.

Theorem 20.1 (Arzela—Ascoli theorem). Let X be a separable metric space, and
let F be a equicontinuous pointwise bounded family of functions f: X — C. Then
every sequence (fp) in F has a subsequence which converges uniformly on compact

subsets of X.

Proof. Let E := {x1,22,23,...} be a dense subset in X. Set Sy := N5o. Suppose
that £ > 1 and an infinite set Sx—1 C Sp has been chosen. Then {f, (zr) : n € Sg_1}
is a bounded set in C, and thus has a convergent subsequence. Let S, C Si_; be
the set of indices of this subsequence. Inductively, we obtain infinite sets Sy 2 S7 2
So D --- such that lim f, (z;) exists for 1 < j < k if n — oo within Sk.

Let ri be the kth term in Sk, and define S := {ry,rs,73,...}. Then, for every
k, there are at most k — 1 terms of S not contained in Sy. It follows that lim f,, (x)
exists for every x € E as n — oo within S.

Let K C X be compact, and let € > 0. By equicontinuity, there is 6 > 0 such
that

|fn(z) — fa(y)] <e

if d(z,y) < §. We may cover K be open balls By, ..., B, of radius /2. Since E is
dense in X, there exist z; € B; N E for 1 <14 < m. Thus lim f,(x;) exists for every
1 <i<masn— oo within S, whence

|fn(xz) - fm(xz)‘ <e€

for 1 <i < m provided that n,m € S and n,m > N, for some integer N. If x € K|
then « € B; for some ¢, and hence d(z,z;) < 6. Consequently,

|fn(@) = [ (@) < [ fal@) = fa@a)| + [fa(@s) = fo(@i)| + [ frn (@) — fr(@)] < 3e€
if n,m € S and n,m > N. O

Let U C C be a region and Y a complete metric space. Then C(U,Y") denotes
the set of continuous mappings f : U — Y. A subset F C C(U,Y) is called
a normal family if every sequence of members of F has a subsequence which
converges uniformly on compact subsets of U. (The limit function is not required
to be in F.) We are mostly interested in the case Y = C. Later we shall also deal
with the case Y = C.

Theorem 20.2 (Montel’s theorem). Let F C H(U) be uniformly bounded on each
compact subset of the region U. Then F is a normal family.

51
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Proof. By assumption, for each compact K C U there is M > 0 such that |f(z)| <
My for all f € F and all z € K. Let K,, be a sequence of compact sets in U such
that K,, C Io{nH, and U = Uj K. There exist 0, > 0 such that D5, (2) C K, 41
for all z € K,,. Let z,w € K, such that |z — w| < &,. Then, by Cauchy’s integral
formula,

F(2) ~ flw) = o FO) (7~ ) de

- 27TZ aDzsn(Z) C*Z B C*’UJ

Cw £
= mm(ém%@>@—zx<—w>“'

Since |¢ — z| = 20, and | — w| > 6, for ¢ € ||, we may conclude that

Mk, .,

1£(2) = )] < =5

for all f € F and all z,w € K,, with |z — w| < d,. That means that, for each K,
the restrictions of the members of F to K,, form an equicontinuous family.

Let (fx) € F be any sequence. The [Arzela—Ascoli theorem 20.1| implies that
there is a subsequence which converges uniformly on K;. Applying the same ar-
gument again we find a subsequence of this sequence that converges uniformly on
K, etc. By a diagonal argument we find a sequence g; € F that is a subsequence
of each of the sequences formed above. Thus g; converges uniformly on each kK,
and therefore on every compact K C U. O

|z — w| (20.1)

Remark 20.3. This implies that H(U) has the Heine—Borel property: every
closed bounded subset is compact. Thus H(U) is a so-called Montel space. A
Montel space is a Hausdorff locally convex space which is barrelled and has the
Heine—Borel property. (The space H(U) is a Fréchet space and hence barrelled.)

Exercise 36. Let F be the family of all f € H(D) such that f(z) = 2 + a22? +
azz® + -+ with |a,| < n for all n. Show that F is a normal family.

Exercise 37. Let U C C be a region such that C\ U has interior points. Let
20 € U. Prove that F = {f € H(D) : f(D) C U and f(0) = z9} is compact in
H(D). Hint: If a € C\ U, then z — 1/(z — a) maps U biholomorphically on a
subset of a disk with finite radius.

Exercise 38. Consider the family .7 = {f € H(D) : f injective, f(0) =0, f/(0) =
1} of schlicht functions.

(1) Let f € .. Let r be the maximal radius such that D,.(0) C f(D). Prove
that r < 1.

(2) Choose a € 9D,.(0) with a ¢ f(D) and set g := f/a. Then D C g(D) and
1 ¢ g(D). Conclude that there is a holomorphic function ¢ : g(D) — C*
such that ¢(2)% = z — 1 for all z € g(D).

(3) Set h:= pog. Show that w € h(D) implies —w ¢ h(D).

(4) Let (f,,) be a sequence of functions in ., and let ay,, gn, hy, be as defined
in (1), (2), (3) relative to f,,. Use [Exercise 37| to conclude that (h,) and
(fn) have convergent subsequences.

(5) Conclude that .# is compact in H (D). Hint: To see that the limit function
is injective use the [argument principle 8.2

Theorem 20.4 (Riemann mapping theorem). Fvery simply connected region U #
C is biholomorphic to D.
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The plane U = C has to be excluded, by Liouville’s theorem.

Proof. Let U # C be a simply connected region and let wy ¢ U. Define F := {f €
H(U) : f injective, f(U) C D}. It suffices to prove that some f € F is surjective
onto D.

First we show that F # ). Since U is simply connected there is v € H(U)
such that ¥?(z) = z —wy for all z € U, by Clearly, v is injective and
there are no points z; # z9 in U such that ¥(z1) = —(22). By the open mapping
theorem, ¥(U) contains a disk D,.(¢) where 0 < r < |¢|]. Thus D,(—c)Ny(U) =10
and f(z) :=r/(¥(2) + c) belongs to F.

Next we claim: If f € F is such that f(U) # D and zy € U, then there is
1€ F with | f{(z0)| > |f'(20)]. We will use the functions

z—a
()Oa(Z) = ﬁ, a € D,

which are automorphisms of D with inverse p_,. Let f € F and a € D\ f(U).
Then ¢, o f € F and ¢, o f does not vanish on U. So there exists g € H(U) such

that g2 = @, o f, by [Theorem 4.8 It follows that g € F. Moreover, if f; := pgoyg
where 3 = g(20), then also f; € F. Setting s(z) = 22 we have

f=¢-a0sog=¢p_aosop_gofi.

Thus, for F'= p_, 0 so@_g, we obtain,

f'(20) = F'(0) f1(20)-

Since F(D) C D and F is not injective, the Schwarz lemma (see below)
implies that |F’(0)| < 1, and the claim follows. Indeed, application of the Schwarz
lemma to @5, o F gives [, ) (f(20))F'(0)] <1 and since ¢ (a) = (1 — la?)~t,
we have [F'(0)| <1 —|f(20)]* < 1.

Fix z9 € U and set n := sup;cx|f'(20)|. By the claim, any f € F with
n = |f'(20)| satisfies f(U) = D. To finish the proof we must show the existence of
such an f. The family F is uniformly bounded by 1 on U, and so it is a normal
family, by [Montel’s theorem 20.2| There is a sequence f, € F such that | f; (z0)| = 1
as k — oo. This sequence has a subsequence (again denoted by f;) which converges
uniformly on compact subsets of U to f € H(U) and |f’(z0)| = n. Since F # 0 we
have > 0 and so f is not constant. From fx(U) C D for all k¥ we may conclude
f(U) € D, and by the open mapping theorem, f(U) C D. To see that f is injective
fix c € U and set a = f(c) and ap = fr(c). Then each function f; — ay is nowhere-
vanishing in U \ {c}, since fi is injective. By [Hurwitz’ theorem 8.5 also the limit
function f — a is nowhere-vanishing in U \ {c}, i.e., f is injective. Hence f € F and
the proof is complete. O

Exercise 39. Prove the Schwarz lemma: Let f : D — D be holomorphic with
f(0) = 0. Then |f(z)| < |z| for z € D and |f'(0)] < 1. If for some ¢ € D* we

have either |f(c)| = |¢| or |f'(0)| = 1, then f is a rotation, i.e., f(z) = az for some
a with |a| = 1. Hint: Use the maximum principle for the holomorphic function

Exercise 40. Let f : D — D be holomorphic. Show that, if f has two fixed points,
then f(z) = z for all z € D. Give an example of a holomorphic function f: D — D
without fixed point.
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Exercise 41. The pseudo-hyperbolic distance between two points z,w € D is
defined by

zZ—w

p(z,w) = T
Let f: D — D be holomorphic. Show that
p(f(2), f(w)) < p(z,w), 2zweD,
and that equality holds if f € Aut(D). Hint: Use the Schwarz lemma (Exercise 39).

Exercise 42. Prove the Schwarz—Pick lemma: Let f : D — D be holomorphic.

then (=)
"(z 1
- f ) = T- o]

z € D.

Hint: Use [Exercise 411

Exercise 43. For w € C and z € D we define the hyperbolic length of w at z
by

vl

Hw”Z T 1— |Z|2

The hyperbolic distance of two points 21,z € D is defined by

1
d(zh 22) :=inf {/ H’yl(t)H'y(t) dt : v e Cl([oa ”7]]))’7(0) = 2177(1) = 22}.
0
Use the Schwarz—Pick lemma to prove that, for holomorphic f : D — D,

d(f(zl)’ f(Zg)) < d(zh Z2)7 21,22 € D.
Show that equality holds if f € Aut(DD).

Exercise 44. Show that the hyperbolic distance of 0 and s € (0, 1) is given by

1 1+s
d(0,s) = -1 .
(0,5) = 5 log 7—
Derive a formula for the hyperbolic distance of two arbitrary points 21,20 € D.
Hint: Find an automorphism ¢ of D such that ¢(z1) = 0 and ¢(z2) € (0,1).

21. Characterization of simply connected regions

We need a preparatory results which is of independent interest.

Lemma 21.1. LetT = {v1,...,vn} be a finite collection of oriented intervals (line
segments) [a,b], a,b € C. Suppose that for all z € C,
{y €T : v starts at z}| = |{y € ' : v ends at z}|. (21.1)

Then v1 +v2 + -+ + N 15 a cycle.

Proof. Choose 1 = [ap,a1] € I'. Assume that distinct members S1,...,0; of T’
have been chosen such that 8; = [a;_1,4a;], for 1 < i < k. If ap = ag we stop.
Otherwise a; # ag and if precisely r of the intervals §1,..., 8% end at aj then only
r — 1 of them start at a;. By , there exists an interval ;1 € I' that starts
at ap. Since I' is finite, we must return to ag after finitely many, say n, steps.
Then 1 + B2 + - - - + B, forms a closed path. The remaining members of I' form a
collection IV that still satisfies . So the construction can be repeated for I".
It follows that the members of I' can be numbered in such a way that they form
finitely many closed paths. Their sum is a cycle. ]
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Proposition 21.2. Let U C C be a domain and K C U a compact subset. There
is a cycle v in U\ K such that the Cauchy formula

6= 5 [ X ac (21.2)

holds for every f € H(U) and every z € K.

Proof. Let n := dist(K,U¢)/2 > 0. Consider the (closed) squares of side length
n formed by the lattice nZ2. Let Q1,..., Q. be those squares which intersect K;
they are all contained in U. Let ¢, denote the center of @ and let ¢; + d be one
of its vertices. If we set

Vee,j = [Ck + ijd, Cr + ij+1d]

then 9Qy = Y_;_, Yk;- Clearly, indaq, (2) is either 1 if z € Qy or 0 if 2 & Q. Let
= {1 <k<m,1<j <4} Then " satisfies (21.1). Let us remove all

members of I" whose opposites also belong to . The collection I of the remaining

members still satisfies (21.1]). Let v be the cycle constructed from I' by [Lemma 21.1

By construction, v is a cycle in U \ K. Indeed, if F is an edge of some @ that
intersects K then the two squares in whose boundaries F lies intersect K. So I'
contains two opposite intervals with range F/, and hence these intervals do not occur
inT.
By construction, ind,(z) = >";~, indsg, (2) if z is not in the boundary of any

Qy, and thus

. 1 ifze@kforsomelgkgm,

mdw( ): . ..

0 if z lies in no Q.

If z € K, then z ¢ || and z is a limit point of the interior of some Q. Since ind,
is constant in each component of C\ ||, we may conclude

. 1 ifzekK,
ind, (2) = {0 if 2 ¢ U.

In particular, v is homologous to zero in U and the statement follows from the
[homology torm of Cauchy’s theorem 6.2] O

Theorem 21.3 (characterization of simply connected regions). Let U C C be a
region. The following are equivalent:

(1) U is homeomorphic to D.
(2) U is simply connected.
(3) C\ U has no compact connected components.
(4) C\ U is connected.
(5) Any closed curve in U is homologous to 0 in U, i.e., ind,(z) = 0 for all
ze€C\U.
(6) Any f € H(U) can be approximated by polynomials, uniformly on compact
sets.
(7) For any open cover 4 of U by connected, simply connected sets, we have
H'(4,C) =0.
(8) Any f € H(U) has a primitive.
(9) If f € H(U) is nowhere zero, then there exists g € H(U) with e = f.
(10) If f € H(U) is nowhere zero, then there exists g € H(U) with g> = f.

Proof. = Suppose that ¢ : U — D is a homeomorphism, and let v : [0,1] —
U be a closed curve in U. Then H(s,t) := ¢ 1(sp(y(t))) defines a homotopy
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H :[0,1]> — U, where H(0,t) = ¢=1(0), H(1,t) := ~(t), and H(s,0) = H(s,1)
because v(0) = v(1). Thus U is simply connected.

= = @) = was shown in [Theorem 4.8] |Theorem 4.9 and
mark 4,101

= Clearly, C is homeomorphic to D, for instance, via z — z/(1 + |z]).
If U # C, then the (proof of the) [Riemann mapping theorem 20.4] gives even a
biholomorphism between U and D.

< (8)) is the [cohomological characterization of integrability 13.2]

= That .
and the proof of |
and has a primitive, by (8).

path v in U.

= If C \ U is not connected, then C \ U is the union of two nonempty
disjoint closed sets H and K. If we assume that co € H, then C\ H = U U K and
K is compact. By [Proposition 21.2] there is a cycle v in U = (C\ H) \ K such that
ind,(z) =1 for all z € K, which contradicts ().

(4) = (3) Suppose that C\ U has a compact connected component C. By
here is a neighborhood N of C in C\ U which is open and closed in
C\ U, and relatively compact in C. Since N is closed in C\ U, and hence also in
C, N is compact. N is open in C \ U, since it is open in C\ U. N is also closed in

= (8) follows from the homology form of Cauchy’s theorem|
Theorem 4.9] Conversely, if ¢ € C\ U, then 1/(z —¢) € H(U)
Then 27t ind, (c) = fv 1/(z —c¢)dz = 0 for every closed

C \ U, since it is compact. Being both open and closed, N is the union of connected
components of C\ U, none of which can contain co. This contradicts .

& @ Corollary 11.8
@© = Let f € H(U) and let v be a closed curve in U. There is
a sequence of polynomials p, which converges to f, uniformly on |y|. Then

fv fdz =1lim, fv pn dz = 0. The proof of implies (). O

22. Continuity at the boundary

A Jordan curve or simple closed curve is an injective continuous function
v :8' — C. The celebrated Jordan curve theorem asserts that, if v is a Jordan
curve, then C\ |y| is the union for two disjoint open sets, one is unbounded and
the other is homeomorphic to . We will take this result for granted.

A bounded region U C C whose boundary is a Jordan curve is called a Jordan
domain. A Jordan domain is simply connected, cf. We will prove
in this section that a biholomorphic mapping ¢ : Uy — U; between Jordan domains
extends to a homeomorphism ¢ : U, = U,.

Lemma 22.1. Let U be a Jordan domain bounded by the Jordan curve ~y. There is
a function n defined for small r > 0 with n(r) — 0 as r — 0 such that if a,b € ||
with |a — b| < r then there is a unique arc of v having endpoints a,b and diameter

< n(r).

Proof. Since v : S' — |y| is an bijective continuous mapping between compact
Hausdorff spaces, it has a continuous inverse. So there is g > 0 such that |y(¢) —
¥(¢")| < ro implies |¢ — ('] < 2. Let o be the unique shorter arc of S having
endpoints ¢,¢’. Let p := v oo. By continuity of y~!, we have diam(|p|) — 0
uniformly for |y(¢) —v(¢")] = 0. For 0 < r < ro we set

n(r) := sup{diam(|p|) : [7(€) =~(¢")| <7}
Then 7n(r) — 0 as r — 0, and if r; < 7 is such that n(r1) < diam(|y|)/2 then the
statement of the lemma holds for r < ry. O
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If a,b € |y| with |a — b| sufficiently small then we say that the unique arc of v
with endpoints a, b having diameter < n(Ja — b|) is the smaller arc of v joining a
and b.

Theorem 22.2 (Carathéodory’s theorem). Let Uy, Us C C be Jordan domains. If
¢ : Uy — Uz is a biholomorphic mapping, then ¢ extends to a homeomorphism
Q: U, — Us.

Proof. Let us first assume that U; = D. Fix ( € 9D. We will construct a continuous
extension of ¢ to (. Let v, denote the arc 9D, ({) N D for 0 < r < 1. The curve
© o7, has length

ta(r) )

L= [ reirat
ti(r)

where 0 < t1(r) < t2(r) < 27 are the solutions of | + re®®| = 1. Let M denote

the area of p(D/2(¢) N D), which is finite since U, is bounded. Then, by the

Cauchy—Schwarz inequality,

1/2 )2 1/2 t2(r)
/ ﬁdr:/ (/ |’ (¢ + ré )|rdt) —dr
0 mr t1(r) wr

1/2 tQ(T) tz(’r’) 1
/ / l¢' (¢ + re’ )|2rdt/ rdt—dr < M < co.
tl t

1(r) wr
Since 1/r is not integrable at O, there must exists a sequence r,, — 0 such that
L(ry,) — 0.

Let a,, b, denote the endpoints of ¢ o+, ; they exist since each L(r,) < oo.
Since ¢ : D — U, is a homeomorphism, we have a,,, b, € 0Us,.

Set T'y, := |p o~ |. If a, # b, let 7, be the smaller (in the sense specified
after of the two boundary arcs of Uy connecting a,, and b,. Then
I, U7, forms a Jordan curve. If a,, = b,, then I';, U {a,,} is a Jordan curve. In
either case it surrounds a bounded region W,, by the Jordan curve theorem. Let
V, := D,. () ND. Then either p(V,,) = W,, or ¢(V,,) = Uz \ W,. We claim that
o(Vy,) = Wy, if n is sufficiently large.

TN TN
\\/ b{i - / \

In fact, let 7, := D\ V,, and let n be fixed. If w € W, then w = ©(2)
for some 2z € V, UT,. If 2 € V, then p(V,) = W, by connectivity. If z € T,
then ¢(7T,) € W,. Let us prove that this is impossible for large n. Observe that
area(p(Vi)) = [[,, |¢'[*dxdy — 0 as n — oo, and thus area(p(T,)) — area(Us).
We have |a,, — b,| < L(ry,) so that diam(r,) < n(L(r,)) — 0, bym It
follows that the entire Jordan curve I',, U 7, and thus also W,,, lies in the disk
centered at a, with radius L(r,) 4+ n(L(ry)). Consequently, area(W,,) — 0 so that
o(Tn) £ W

So we have proved that ¢(V;,) = W, if n is sufficiently large, as well as
diam(W,,) — 0 and area(W,,) — 0 as n — oo.

Let 6; : [0,1] — D, i = 1,2, be any curves such that 6;(t) € D, for t € [0, 1),
and 6;(1) = ¢. We claim that the limits lim,_,1 ¢(d;(¢)), i = 1, 2, exist and coincide.
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Let € > 0. Choose N sufficiently large that diam(Wy) < e. If ¢ is sufficiently
close to 1, then ¢(d;(t)) € Wi and hence |¢(d1(t)) — ¢(d2(¢))| < €. Thus the limits
lim;_,1 (8;(t)) exist and coincide with the unique point in (), W,.

This provides the continuous extension of ¢ to dD: if ( € 9D choose a curve
§ :[0,1] — D such that 6(t) € D, for t € [0,1), and §(1) = ¢, and define $(¢) :=
lim; 1 ©(4(t)); the limit exists and is independent of § by the previous paragraph.

Let us check injectivity of ¢ : D — Us. It is enough to check that ¢ is injective
on ID, since ¢ : D — U, is injective and @(0D) C OUs. Let ¢, ¢’ € 0D and
&(¢) = ¢(¢’). Consider R:={r¢:0<r <1}U{r{ :0<r <1}. By assumption
¢(R) is a Jordan curve, let W be its interior. If V4, V5 are the connected components
of D\ R, then either (V1) = W or ¢(Va) = W. Suppose without loss of generality
that (V1) = W and let p denote the segment on 0D which bounds Vj. Then
P(p) € WNoUy = {p(¢)}, ie., ¢ is constant on u. By the Schwarz reflection
principle, see ¢ is constant, a contradiction.

Thus we have shown that ¢ : D — U, extends to a bijective continuous mapping
¢ : D — Us, thus, it is a homeomorphism. In the general case, when ¢ : U; — Uy,
let o; : D — U;, i = 1,2, be biholomorphic mappings, which exist by the
fmapping theorem 20.4, Then ¢; extends to a homeomorphism @; : D — U,.
Similarly, the mapping ¢5 1o o ¢y extends to a homeomorphism D — D. This
implies the theorem. U

Remark 22.3. The theorem extends without problems to Jordan domains in the
extended plane C.

Exercise 45. Let U C C be a bounded simply connected region with real analytic
boundary, i.e., the boundary is locally the graph of a function given by a convergent
power series. Let f : D — U be biholomorphic. Prove that f has a holomorphic
extension to some neighborhood of D. Hint: The problem is purely local. Use a
change of variables to reduce to the case that both boundaries are flat and apply
the Schwarz reflection principle.

23. Biholomorphisms of annuli

By the|Riemann mapping theorem 20.4] there are, up to biholomorphism, only
two domains that are homeomorphic to the disk, namely, the disk and the plane.
If we allow holes, then the situation becomes more involved. We demonstrate this
by looking at annuli. If ¢ > 0 and 1 < 72 then clearly the annuli A, ,,(0) and
Acryer, (0) are biholomorphic under the mapping z — cz. Surprisingly, these are
essentially the only circumstances under which two annuli are biholomorphic.

Theorem 23.1. Let A; = {z € C : 1 < |z| < R;}, i = 1,2, where R; > 1.
Then Ay, Ay are biholomorphic if and only if Ry = Ry. Moreover, Aut(A;) =
{ez, Rie' )z : t € R}.

Proof. Suppose that f : Ay — Ay is a biholomorphism. Then also ¢ = Ra/f :
A1 — Ay is a biholomorphism. We claim that

(1) |f(2)] has a limit as |z| — 1 which is either 1 or Ry,
(2) iflim,|q [f(2)] = 1 then |f(2)] = Rz as|z| = Ry, and iflim|,|_,; |f(2)] =
Ry then |f(2)] — 1 as |z| — R;y.

Set I := fif lim; 1 [f(2)] = 1 and F := g if lim|, | [f(2)| = Ra. Then |F(z)| —
1as|z| = 1and |F(z)| = R2 as |z] = Ry.
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Consider the function u(z) := log|F(z)| — clog|z| for z € A;, where ¢ =
log Ro/log Ry > 0. Then u is harmonic on A; and extends continuously by 0 to
0A;. By the [maximum principle for harmonic functions 17.2] v = 0 on A;. Thus,

|F(2)] = |z|¢ for z € A;. Let D = D,.(a) C Ay. Let h € H(D) be a branch of
the logarithm, i.e., z = ¢"*) on D, by Then |F(z)e=“"*)| = 1 on
D so that F(z) = e®*)%¥ on D for some real constant §. Analytic continuation
of the germ F, of F at a along the curve () = ae', 0 < t < 2, leads back to
F,, since F' is holomorphic on A;, while analytic continuation of the germ h, of h
at a along ~ leads to h, + 2mi. It follows that e?™¢ = 1 so that ¢ = n € Z and
27" € H(A;). Consequently, F(z) = e?2". Since F is injective, only n = +1
are possible, and since |F(z)] — Rz as |z| — R; we have n = 1. Thus, either
f(z) =€z or Ry/f(2) = g(z) = 2. Since |f(2)| — Rz as |z| — Ry in the first
case and |f(z)| — 1 as |z| = R in the second, the theorem follows.

It remains to prove the claim. Since f : A; — A is biholomorphic, if a sequence
zn in A; converges to the boundary of A; (i.e., it has no interior accumulation
point) then so does the sequence f(z,) in As. In particular, for small € > 0, the set
f{#z:1<|z] <1+ €}) does not intersect {z : |z| = (1 + R2)/2}. There is ng such
that, for n > ng, f(z,) is contained in a fixed component of {z : |z| # (1+ Rz2)/2}.
This implies (1). Let us assume that lim|,_ [f(2)| = 1. By the same reasoning
as before, | f(z)| has a limit as |z] — Ry which is either 1 or Ry. By the maximum
principle, only the second possibility can occur. The claim is proved. (|






CHAPTER 6
Elliptic functions and Picard’s theorem

24. Elliptic functions

Let f be meromorphic in C. Let per(f) be the set of all periods of f (including
0); recall that w is a period of f if f(z+ w) = f(z) for all z. Clearly, per(f) is a
module over Z (i.e., if wy,wy € per(f) and ny,ne € Z then nqwy + nowy € per(f)),
so we call per(f) the period module of f.

The identity theorem implies that per(f) is discrete unless f is constant.

Lemma 24.1. For a discrete module A C C over Z we have three possibilities:
(1) A={0},
(2) A =Zw for some w € C*,
(3) A =Zwy + Zwsy for some wy,we € C* such that wy/wy &€ R.

Proof. If A # {0} then there exists wy € A with minimal absolute value, since A is
discrete. Suppose that there is an element wo € A which is not an integer multiple
of wy, and we may assume that wy has minimal absolute value. If wo/wy € R, then
there is an integer n such that n < wy/w1 < n+1 and hence 0 < |nw; —wq| < |wi],
which contradicts minimality of wy.

Let us show that A = Zw; + Zws. Since we/wy € R, we have C = Rw; + Ruws.
Let w = Ajwy + Aawg € A. There exist integers my,ms such that |A; — m;| < 1/2,
i =1,2. Wehave w' := (A1 —mq)wi+(Aa—mz)wy € A and |w'| < |wy]/24|ws|/2 <
|wa|, where the first inequality is strict, because ws/wy € R. By the way we was
chosen, w’ must be an integer multiple of wy, and thus w € Zw; + Zws. Il

We assume henceforth that the third alternative occurs: N = Zwi + Zwsy for
some wi,wy € C* such that wa/w; € R.

A basis of the module A is any pair (wy,ws) such that every w € A has a
unique representation w = njw; + naws. If (wq,ws) and (wf,w)) are two bases,
then there exist integers a, b, ¢, d such that

()= € 0) ()

The same is true for the complex conjugates:
wy W\ [fa b\ (w1 W
wh wy)  \e d) \ws wWy)°
Since (w],w}) also is a basis, there are integers o', ¥, ¢/, d' such that

wy w1\ _ [d VY (w] W

wy Wa) \c d)\wh wh)’
wy Wi\ _ a b a b w1 Wi
wWo W2 —\d c d Wo  Wao

Consequently,
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Now wywy — wiwe # 0, since otherwise any two elements in A would have a real

ratio, and thus
a b\ (fa by (1 0
d d)\ec d) \0 1)

Since the entries are integers, the determinant is +1. Linear transformations of this
type with integer coefficients and determinant +1 are said to be unimodular. So
any two bases of a module A are connected by a unimodular transformation.

The so-called modular group is the group of Mdébius transformations
az+b
(z) = cz+d’
with a,b,c,d € Z and ad — bc = 1. It is a discrete subgroup of the automorphism
group Aut(H) = {z — (az +b)/(cz+d) : a,b,c,d € R, ad — bc = 1} of the upper
half plane, and is isomorphic to PSL(2,Z) = SL(2,Z)/{£+1d}.

Proposition 24.2 (canonical basis). There is a basis (w1, ws) such that T :=
wo /wn satisfies

(1) Im7 >0,

(2) —1/2 <Ret < 1/2,
(3) > 1,

(4) ReT >0 if |7| = 1.

The ratio T is uniquely determined by these conditions, and there is a choice of 2,
4, or 6 corresponding bases.

The set of all 7 satisfying (1)—(4) (depicted below) is called the fundamental
domain of the modular group; strictly speaking it is not a domain since it is
not open.

Proof. Select wy, wo as in the proof of Then |wi| < |wsl|, |wa| <
|wy + ws|, and |wa| < |wy — wa|, or equivalently, |[7| > 1 and |Re7| < 1/2. If
Im7 < 0 replace (w1, ws) by (—w1,ws), which makes Im7 > 0 without changing
the condition on Re7. If ReT = —1/2 replace (wy,ws) by (w1, w; + we), and if
|7| =1, ReT < 0 replace (wy,ws) by (—ws,wi).
Next we show uniqueness of 7. We saw that two bases differ by a unimodular
transformation. Hence if the new ratio is 7/ then
o at +b

_— —bec==+1 24.1
o d ad — be , ( )
and hence
T+ — +ImT
Cer +df’

where the sign is the same as that of ad — bc. Suppose that 7 and 7’ are in the
fundamental domain. We must show that 7 = 7/. If 7,7’ are in the fundamental
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domain, then Im 7' = Im7/|cT + d|? and thus ad — bc = 1. By symmetry, we may
assume that Im7’ > Im 7 and hence |er + d| < 1. Since ¢, d are integers, very few
cases must be checked.

First let ¢ = 0 and d = +1. Then we have ad = 1 and hence a = d = 1 or
a=d=—-1. By (24.1), 7/ = 7+b. Since 7 and 7’ satisfy (2), [b| = |Re7’—Re1| < 1
which implies b= 0. So 7/ = 7.

Suppose that d = 0. In this case bc = —1 and hence either b = 1, ¢ = —1 or
b= —1,c=1. In any case |cT + d| < 1 becomes || < 1, and so |7| = 1, by (3).
By (41), 7' = +a —1/7 = £a — 7. We have |a| = |[Re7’ + Re7| < 1, by (2).
Consequently, either 7/ = 7 = €/™/3 or a = 0. In the latter case 7/ = —7 which can
only happen if 7" = 7, in view of (4).

Finally, let ¢ # 0 and d # 0. Then |ed| > 1 and thus, by (2) and (3),

ler +d|? = AT+ d* +2cdReT > 2 +d* — |ed| = (|c| — |d])* + |ed| > 1.

Our assumption |cr 4 d| < 1 implies that equality holds everywhere in this com-
putation. That means |7| = 1 and ReT = 1/2, or equivalently, 7 = ¢!"/3. Since
|er +d| =1 we have Im 7’ = Im 7, whence 7/ (subject to (1)—(4)) must equal 7.
The canonical basis (wy,ws) can always be replaced by (—w, —ws). There are
other bases with the same ratio 7 if and only if 7 is a fixed point of . This
happens only for 7 = 4 which is a fixed point of 7 — —1/7 and 7 = ¢™/3 which is
a fixed point of 7+ —(7 +1)/7 and of 7 — —1/(7 4+ 1). So there is a choice of 2,
4, or 6 corresponding bases. O

Let f be a meromorphic function in C. Let A be a module with basis (w1, ws),
where wy/w; € R (not necessarily canonical), and assume that A C per(f). Then
f is called an elliptic or doubly periodic function.

Let a € C and let P, be the parallelogram with vertices a, a + wy, a + wa,
a + w1 + ws. Then P,, where part of the boundary is included, represents the
quotient space C/A of the equivalence relation z; ~ zo if and only if 23 — 25 € A.
So we may regard f as a function on P,; cf. the figure on p.

Theorem 24.3 (properties of elliptic functions). Let f be an elliptic function with
period module A.

(1) If f has no poles then f is constant.

(2) The sum of residues of f is zero.

(3) If f is non-constant, then the number of poles of f equals the number of
zeros of f.

(4) Ifay,...,an are the zeros and by, ..., b, the poles of f, then > a;—> b; €
A.

Proof. (1) If f has no poles, then f is bounded on P, and thus on C. The assertion
follows from Liouville’s theorem.
(2) We may choose a € C so that no poles of f lie on 9FP,. By the
the sum of the residues at the poles in P, equals
1
— d
2 Jpp, T E

which vanishes, because by periodicity of f the integrals over opposite side of P,
cancel against each other.
(3) The function f’/f is elliptic. The poles and zeros of f are simple poles of

f'/f, and the orders are the residues of f’/f counted positive for zeros and negative
for poles. Thus (3) follows from (2).
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(4) We may assume that there are no zeros and poles of f on P,. Moreover,

we may assume that all a;, b; lie in P,, by taking the right representatives. By the
[residue theorem 8.1| (cf. [Exercise 10)) and periodicity of f,

1 2f'(2)
2w bi=gn | iy
1
o Tm <(/[a,a+w1] - /[a+w27a+w1+w2] )

f'(z)
" </[a+w1,a+w1+w2] - /[a7a+w2] >> Zf(zj *
z

_ ’ /
_ w_z/ F'(2) g, 1 '),

2mi la,a+w1] f(Z) 2mi la,atw2] f(Z)
= —ws indf([a,a+w1])(0) + wy indf([a,a+w2])(0) e A. O

Corollary 24.4. If f is a non-constant elliptic function, then f and f — c have
the same number of zeros for every c € C.

Proof. f and f — c have the same number of poles. O

25. The Weierstrass p-function

Let A be a module with basis (w1, ws), where wo /w; ¢ R. The simplest elliptic
functions are of order 2. They have either a double pole with residue zero, or two
simple poles with opposite residues.

Suppose that f has a double pole at the origin with residue zero. By multiplica-
tion with a constant we may assume that the singular part of f is z=2. If f is ellip-
tic and has only this singularity (up to periodicity), then f must be even. Indeed,
f(2) = f(—2) has the same periods and no singularity, so f(z) — f(—z) = const = 0,
by setting z = wy /2. Thus the Laurent development of f at 0 has the form

272t ag2® tagt o, (25.1)
if we assume without loss of generality that ag = 0.

We will show the existence of an elliptic function with this Laurent develop-
ment. Let A* := A\ {0} and define

o(2) = 2—12 + 3 (ﬁ - %) (25.2)

We claim that the series converges uniformly on compact subsets of C\ A. We have
1 _i‘_’z@w—z)
(z—w)? w? w2(z — w)?
Since wy/wy ¢ R, there is a constant K > 0 such that |njwy +nows| > K(|n1|+|nsa|)
for all integers n1,ny. There are 4n pairs (n1,ng) of integers with |n1| + |na| = n,

whence
1 4 X1
Z|w|3 Sﬁ2ﬁ<oo‘
n=1

] = O(|w|™®)  as jw| — oo.

The claim is proved.
By termwise differentiation,
2 2 1
"(2) = —= — —_— =2 —_— 25.3
R P P T

which is obviously elliptic. This implies that p(z+w1) — p(2) and p(z+w2) — p(2)
are constant. Since p is even, by (25.2), choosing z = —w;/2 and z = —wy/2
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implies that the constants are zero. That means that @ has the periods wy,ws. We
may conclude that p has the Laurent expansion at the origin.

The function g is called the Weierstrass p-function. Since p is even and
periodic, p(w; —2z) = p(z) and hence @' (w; —z) = —p'(2), in particular, p'(w;/2) =
0 for ¢ = 1,2. Similarly, p'((w1 + w2)/2) = 0. The half-periods w; /2, w2 /2, and
(w1 4+ w2)/2 are precisely the three simple zeros of g’ which is of order 3. Let us
set

er = p(w1/2), e2 = p(w2/2), ez = p((w1 + w2)/2). (25.4)
Then the equation p(z) = e; has a double root at w;/2, and since p has order 2
there are no other roots in the fundamental parallelogram. Similarly, p(z) = es has
only a double root at ws/2, and p(z) = e3 has only a double root at (w; + ws)/2.
We may conclude that e, es, e3 are distinct, for otherwise g would have at least
four roots contradicting the fact that it assumes each value with multiplicity 2.

We claim that

(9'(2))” = 4(p(2) — e1)(p(2) — e2)(p(2) — e3). (25.5)
Indeed, f(z) := (p(2) — e1)(p(z) — e2)(p(z) — e3) vanishes in the fundamental
parallelogram precisely at the points wi/2, wy/2, and (w; + we)/2 of order 2,
respectively. Also (p)? has double zeros at these points. Moreover, f as well as
(p)? has poles of order 6 at the points in A. It follows that (p')?/f is holomorphic
and elliptic, thus constant, by That this constant equals 4 follows
from and . Thus is proved.

We remark that takes the form

(¢'(2))* = 49(2)” = g2p(2) — g3, (25.6)
where go = 60G2, g3 = 140G3, and Gy, == Y., cr. w2 cf. [1, p. 275]. We shall
see in [Proposition 34.1| that (z,y) = (p(2), p'(z)) parameterizes the elliptic curve
y* =42’ — g2x — gs.

The differential equation for w = p(z) can be solved explicitly:

dw
zZ—zZ0 = 5 y
v VAw® — gow — g3

where v is the image under p of a path from 2y to z that avoid zeros and poles
of p/(z) and where the sign of the square root is chosen such that it equals g’'(z).
Integrals of this type appear in the computation of the arc length of an ellipse and
are called elliptic integrals.

Proposition 25.1 (universality of p). Fvery elliptic function with period module
A is a rational function of o and ¢’.

Proof. The proposition will follow from the claim that every even elliptic function
with period module A is a rational function of g. In fact, we may write
fG)+f(=2) | f(z) - f(==
F(2) = forenl?) + foaa(z) o= LEHIED | TEV T2

as a sum of an even and an odd part. Since foqq/g’ is even, the statement of the
proposition follows from the claim (applied to foven and foaa/¢’)-

Let us prove the claim. Suppose that f is an even elliptic function. If f has a
zero or pole at 0 it must be of even order, since f is an even function. Thus, there
is an integer m such that fe"™ has no zero or pole at the points in A. Hence we
may assume without loss of generality that f has no zero or pole on A.

We saw before that p(z) — p(a) has a zero of order 2 if a is a half-period, and
two simple zeros at +a otherwise. If a is a zero of f, then so is —a, since f is
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even. We have a — (—a) = 2a € A if and only if a is a half-period; in this case
the zero is of even order. Consequently, if ai, —a1, a2, —as, ..., am, —a;, (counted
with multiplicities) are the zeros of f, then (p(2) — p(a1)) - (p(2) — p(am)) has
exactly the same zeros as f. A similar argument applies to the poles of f. We may

conclude that
(9(2) = p(a1)) -~ (p(2) — p(am))
(p(2) = p(b1)) -+ (p(2) — 0(bm))
is elliptic and has the same zeros and poles as f. So f/g is holomorphic and elliptic,

therefore constant, by [Theorem 24.3] The claim is proved. (]

g(z) =

26. Modular functions and the little Picard theorem

Recall that the modular group G is the group of Mébius transformations f(z) =
(az +b)/(cz + d), where a,b,c,d € Z and ad — bc = 1. This is a subgroup of the
automorphism group of the upper half plane H. A modular function is a function
f + H — C which is invariant under the action of some nontrivial subgroup of G,
i.e., there is a nontrivial subgroup K of G such that

(fop)(z)=f(z), forallpe K, zecH.
We concentrate on the subgroup I' of G generated by the two elements

z
o(z) = CPL T(2) =2+ 2.

Consider the set
W:={zeH:-1<Rez<1,|2z2+1]>1, |22 —-1] > 1}.

ae

Proposition 26.1. W is a fundamental domain for the action of ' on H, that is:

(1) If f.g €T, [ # g, then f(W) N g(W) = 0.
(2) H= UfeF fW).

Furthermore, T = {f(2) = (az +b)/(cz + d) € G : a,d odd, b,c even}.

Proof. Let I := {f(z) = (az+b)/(cz+d) € G : a,d odd, b, c even}. It is easy to
check that I'" is a subgroup of G. Since 0,7 € I'' we have I C I". Let (1’) be the
statement obtained from (1) by replacing I" with IV. Then I" = IT” will follow from
(1') and (2).

(1') Let g,h € T/, g # h, and set f := gt oh. If 2 € g(W) N h(W), then
g Yz) € Wn f(W). So it suffices to prove W N f(W) =0 if f € I, f # 1d. If
f(z) = (az+b)/(cz + d), then

Im z

(26.1)

We consider three cases.
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If ¢ = 0 then ad = 1 and hence a = d = +1. Then f(z) = z + 2n for some
integer n # 0. Evidently, W N f(W) = 0.

If ¢ = 2d then ¢ = +2 and d = £1 (using ad — bc = 1). Then f(z) = o(z) +2m
for some m € Z. Observe that o(W) C Dj/5(1/2) which implies the assertion.

If ¢ # 0 and ¢ # 2d, we claim that |cz +d| > 1 for all z € W. Then, by
([26.1), Im f(2) < Imz for every z € W. If 2 € W N f(W) then we could apply
the same argument to f~! and conclude that Imz = Im f~1(f(2)) < Im f(2), a
contradiction. So let us show that |cz + d| > 1 for all z € W. Suppose, for some
z €W, lez+d| <1. Then W N Dy (—d/c) # 0. Since —d/c # —1/2, the open
disk D /|.|(—d/c) must contain one of the points —1,0, 1 which is clear by a glance
at the above picture. Hence |cw +d| < 1 for w = —1 or 0 or 1. But cw +d is an
odd integer, a contradiction.

(2) Let U := Ujep f(W). Clearly, U C H. Note that (W) C U for all
n € Z, where 7"(z) = z + 2n. Since o maps the circle |2z + 1| = 1 onto the circle
|2z — 1| =1, U contains all points z € H with

|2z — (2m +1)| > 1 for all m € Z. (26.2)

Fix w € H. Choose fo € I" such that |cw + d| is minimal; this is possible since
as Imw > 0 there are only finitely many ¢, d such that |cw + d| lies below a given

bound. By (26.1)),
Im f(w) < Im fo(w), forall feTl.

Putting z = fo(w) this becomes
Im f(z) <Imz, forall feTl.

In particular, for

z—2n z—2n

—-n _ —1 —-n —
(oot )(Z)_722—4n+1 and (07 o7 ™)(2) Tt antl

we obtain, with (26.1)),
2z —4n+1]>1 and [2z—4n—1|>1, foralln€Z.
Thus z satisfies (26.2) and so z € U. Therefore, w = f(jl(z) eU. O

We will now construct a particular modular function, the so-called elliptic
modular function.

Proposition 26.2 (elliptic modular function). There exists A € H(H) with the
following properties:

(1) Ao f =X for every f €T.

(2) A is ingective on W.

(3) A(H) =C\{0,1}.

(4) R is a natural boundary of .

In particular, A : H — C\ {0, 1} is a covering map.

Proof. Set W+ := {2 € W : Rez > 0}. By the [Riemann mapping theorem 20.4]
there is a biholomorphic mapping g : W — H. By |Carathéodory’s theorem 22.2|
and g extends to an bijective continuous mapping g : W — HL
Composing with a suitable automorphism we can assume g(0) = 0, g(1) = 1, and
g(c0) = oco. By the [Schwarz reflection principle for holomorphic functions 18.2}
we may extend g across the y-axis by setting g(—x + iy) = g(z +4y). Then g is
continuous on W and holomorphic in W with g(W) = C\ R>¢. Moreover, g is
injective on W and g(W) =C\ {0,1}.
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Since g is real on the boundary of W, we have
9(=1+iy) = g(1 +iy) = g(1 +iy) = g(r(-1 +1iy)), y >0,
and
g(—2 + L") =g(3 + Leim-0)) = g(3 + %61'(”%)) =g(o(-1+1e"), O<t<m.
We define A : H — C by setting
Az)i=g(f M=), forall e f(W), f T

by |[Proposition 26.1} each z € H lies in f(W) for precisely one f € I'. Then the
properties (1)—(3) are obvious, and A is holomorphic in the interior of each f(W). It
follows that A is holomorphic in H, by an application of Morera’s theorem: it suffices
to show that if ¢ is continuous in a region U and holomorphic in U \ L = Uy U Us,
where L is a line segment or a circular arc and U;, U, are regions, then ¢ is
holomorphic in U. Up to a Mdbius transformation, we may assume that L is a line
segment. The integral of ¢ over every closed curve v homologous to zero in Uy or
U, vanishes, and, by continuity of ¢, this still holds if part of v lies in L. If A is
a triangle in U, then [, oa ¢ dz is the sum of at most two such path integrals, and
Morera’s theorem implies the assertion.

Let us prove (4). Observe that the set {f(0) : f € T} = {b/d : b,d €
Z, b even, d odd} = A71(0) is dense in R. So if A could be extended to a neighbor-
hood of z € R then z would be an accumulation point of the zero-set of A, hence
A =0, a contradiction. O

Theorem 26.3 (little Picard theorem). If f is an entire function such that the
range of f omits two distinct complex numbers «, 5, then f is constant.

That the range of f can omit one point is shown by f = exp.

Proof. We may assume that « = 0 and 8 = 1, by replacing f by (f —a)/(5 — «).
By |[Proposition 26.2) A : H — C\ {0, 1} is a covering map. By there
is a holomorphic function g : C — H such that f = Ao g. Then g is constant,
by Liouville’s theorem after composing with the Cayley mapping. Thus also f is
constant. (I

Exercise 46. Deduce from thelittle Picard theorem 26.3|that every periodic entire
function has a fixed point.

Exercise 47. Let f and g be entire functions satisfying e/ + e9 = 1. Prove that f
and g are both constant.

27. The big Picard theorem

The following theorem is a strengthening of [Montel’s theorem 20.2]

Theorem 27.1 (Montel-Carathéodory theorem). Let U C C be a domain and let
F CH(U) be such that f(U) C C\{0,1} for all f € F. Then F is a normal family
in C(U, @) More precisely: if (f,) is a sequence in F, then there is a subsequence
of (fn) which either converges uniformly on compact sets to a holomorphic function
f:U — C or converges uniformly on compact sets to cc.

Proof. It suffices to show that F|p is normal in C(D, (E) for each disk D C U. Let
(fn) be a sequence in F. By [Montel’s theorem 20.2} it is enough to prove that there
is either a subsequence that is uniformly bounded on compact subsets of D or a
subsequence that converges to oo uniformly on compact subsets of D. Let ¢ be the
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center of D. By passing to a subsequence we may assume that f,(c) = « € ((Aj,
since C is compact.

Assume first that o # 0,1,00. By |[Proposition 26.2] there is a holomorphic
covering map g : D — C\ {0,1} (compose A with the Cayley mapping). Let V be
a neighborhood of o and W C D such that p|w : W — V is a biholomorphism.
We may assume that f,(c) € V for all n. By for each n there is
a holomorphic mapping g, : D — D such that g,(¢c) € W and pog, = f, on
D. Since (gy,) is uniformly bounded, there is a subsequence g,, which converges in
H(D) to a holomorphic function g, by [Montel’s theorem 20.2} Clearly, |g(z)| < 1
for all z € D. We claim that actually |g(z)| < 1 for all z € D. If there is z € D
such that |g(z)| = 1 then g is constant, by the open mapping theorem, say g = d
with |d| = 1. But then gy, (c) — d and gn, (c) = ply' (fur () = uly (a), whence
ply (@) € D, a contradiction.

If K C D is compact, then |g|x < r < 1. Hence |gn, |k < |gn, — 9l + |9l <7
for k sufficiently large. Since u is bounded on D,.(0), we may conclude that (f,,)
is uniformly bounded on K. The theorem follows.

Let us consider the remaining cases. Assume a = 1. By there
are functions h,, € H(D) such that h2 = f,. Since f,(c) — 1 we can choose the

branch of the square roots so that h,(c) — —1. Clearly, h, (D) C C\{0,1}. Thus,
by the above, there is a subsequence (h,, ) which is uniformly bounded on compact
subsets of D. Then also (f,,) has this property.

The case a = 0 can be reduced to the previous case by setting h,, =1 — f,.

If & = oo then set h,, = 1/ f,. The preceding case implies that there is a subse-
quence (hy,, ) which converges uniformly on compact subsets of D to a holomorphic
function h. The functions h,, have no zeros while h(c) = 0, whence h = 0, by
[Hurwitz” theorem 8.5| This means that f,, — oo uniformly on compact subsets of
D. O

Recall that the Casorati—Weierstrass theorem says that in a neighborhood
of an essential singularity a holomorphic function assumes a dense set of values.
Actually, by the big Picard theorem, all values except possibly one are assumed.

Theorem 27.2 (big Picard theorem). Let D = Dg(a). Let o, € C, o # 5. If
f:D\{a} — C\{«, B} is holomorphic, then the singularity at a is either removable
or a pole.

Proof. We may assume that « = 0 and § = 1, by replacing f by (f —a)/(8 — ).
Moreover, we may suppose that a = 0. Define f, : D\ {0} — C\ {0,1} by
fn(2) == f(2/2™). By the [Montel-Carathéodory theorem 27.1} {f,} is a normal
family in C(D \ {0},C). So there is a subsequence (f,, ) that converges uniformly
on compact subsets of D \ {0} to a holomorphic function g : D\ {0} — C.

Fix 0 <r < Randlet C:={z:|z| =r} C D\ {0}. Then f,, — ¢ uniformly
on C. If co ¢ im g, then there is a constant M such that |f,, (2)] < M if |z| = r,
or equivalently, |f(z)| < M if |z| = r/2™. By the maximum principle, |f(z)] < M
for z near 0, and so 0 is a removable singularity of f.

If oo € img, then g = 0o, by the [Montel-Carathéodory theorem 27.1] Hence
1/fn, — 0 uniformly on C, and thus for every e¢ > 0, there is kg such that
|1/ fn,(2)] < € for all |z| =r and k > ko. Then |1/f(z)| < € for all |z| = /2™ and
k > ko. By the maximum principle, |f(z)| — oo as |z| = 0 so that 0 is a pole of

f. O
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The big Picard theorem implies the little Picard theorem. Let f be an entire func-
tion. If f is bounded near oo then it is bounded on C and Liouville’s theorem
implies that f is constant. So, if f is non-constant, it has either a pole or an es-
sential singularity at oco. If it has a pole at infinity, then f is a polynomial and the
fundamental theorem of algebra implies that f assumes all complex values. If f
has an essential singularity at infinity, then by the big Picard theorem f assumes
all complex values except possibly one. O



CHAPTER 7
Subharmonic functions and the Dirichlet problem

28. Subharmonic functions

Let X = (X, d) be a metric space. A function u : X — RU{—o0} is said to be
upper semicontinuous (usc) if for each a € X
limsupu(z) < u(a),
T—a
or equivalently, for every 3 € R, the set u=!([—o0, 3)) is open in X.

Let us collect a few facts on usc functions. Let u : X — RU{—o0} be usc. Then
u is bounded above on every compact K C X. In fact, K C |J,>1{z € X : u(z) <
n} and hence K is contained in a finite union of the open sets {z € X : u(z) < n}.

Assume that w is bounded above and let M := supy u(z). Then {z € X :
u(x) = M} is closed in X. Indeed, {z € X :u(x) =M} ={z € X :u(z) > M} is
the complement of the open set {x € X : u(x) < M}.

If X is compact then there is zp € X such that u(xg) = supy u(z). Namely,
if M := supy u(z), then there is a sequence z, € X such that u(z,) > M — 1/n.
Since X is compact there is a subsequence z,, which converges to some zo € X.
Then M > u(zg) > limsup,,_, o u(zp,) > limsup,,_, .o M — 1/n;, = M.

If uy, ug are usc, then so are u; + ug, max{uy, us}, and Auy, for each constant
A > 0; note that, for any 3 € R, the set {z : max{ui,u2}(z) < 8} = ;o {7 :
u;(x) < B} is open.

If {u;}ier is an arbitrary family of usc functions on X, then u := inf;cyu; is
usc. In fact, for any 8 € R, the set {z : u(zx) < S} = U,c{z : wi(x) < B} is open.
In particular, if (u,) is a sequence of usc functions such that wu, > w41, then the
pointwise limit u := lim,, o uy, is usc; we shall write u,, | u.

Lemma 28.1 (approximation by continuous functions). Let u : X — RU {—oo},
u # —oo, be usc. Then there exists a sequence (un)n>1 of continuous functions
such that u, | u.

Proof. We may assume that u is bounded above. In fact, since u is locally bounded
above there is a continuous function v on X such that v < v. Then v — v is usc
and bounded above. If v,, | u — v then v, +v | u.

Let M € R such that uw < M. Define, for n > 1,

up(x) := sup(uly) — nd(z,y)), =€ X.
yeX

Since u(y) > —oo for some y € X, we have u,(z) > —oo for all z € X. Clearly,
up, < M. We have u,(x) > u(zr) — nd(z,z) = u(x) and u, > upyq is immediate
from the definition.

Let us prove that u, () — u(z). Assume first that u(z) > —oo. Since u is usc,
for every € > 0 there is § > 0 such that u(y) < u(x)+e€if d(z,y) <. If d(z,y) > 4,
then u(y) —nd(z,y) < M —nd < —nd/2 if n is sufficiently large. Thus, if n is large,

u(r) < up(z) < max{u(z) + €, —nd/2} = u(x) + €

71
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and so u,(x) = u(z). If u(z) = —oo then for any N > 0 there is 6 > 0 such that
u(y) < —N if d(z,y) < §. Thus, u,(z) < max{M —nd,—N} = —N for large n,
and so u,(z) = —oo.
It remains to show that w,, is continuous. Let ¢ > 0. There is y € X such that
un(z) < u(y) — nd(x,y) + € and hence, for z, 2’ € X,
un () = un(2') < n(d(@’, y) — d(z,y)) + € < nd(z,2’) + ¢

Since € > 0 is arbitrary, u,(z) — un(2') < nd(z,z’). Interchanging z,2’ we may
conclude that |u, () — u,(2)] < nd(z,z'). O

Exercise 48. Let u be usc and u > 0. Show that v(z) := logu(z) if u(z) # 0 and
v(x) := —oo if u(z) = 0 is usc.

Let U C C be a domain and let u : U — RU {—o00} be usc. Then w is called
subharmonic if:

(1) w# —oo on any connected component of U.
(2) Let V€ U and let h : V — R be continuous and harmonic on V. Then
u(z) < h(z) for all z € OV implies u(z) < h(z) for all z € V.

Subharmonicity is the complex-analytic analogue of convexity: on R the ana-
logue of the Laplacian is d?/dt? and the solutions of d?h/dt?> = 0 are the affine
linear functions. The analogy with convex functions is apparent.

Exercise 49. Let u be a subharmonic function on Dg(0) such that u(z) = u(|z])
for z € Dg(0). Prove that r — u(r), r € (0, R), is a convex function of logr: if
L(r) :=alogr + b, r € (0,R), and ry,7r2 € (0, R) are such that u(r1) < ¢(r1) and
u(ra) < €(rg), then u(r) < £(r) for all r € (r1,72). Hint: £(z) := £(|z|) is harmonic
on Dg(0)\ {0}.

Theorem 28.2 (characterization of subharmonicity). Let U C C be a domain and

let w be usc on U. Suppose that uw # —oo on any connected component of U. If u
is subharmonic on U, a € U and r > 0 such that D,(a) C U, then

u(z) < Pa,r(u)(z), z € Dy(a),

cf. (17.4); in particular,
1 27 )
u(a) < —/ u(a + re't) dt. (28.1)
27T 0
Conversely, if for every a € U there exists rq > 0 such that (28.1)) holds for all
0 <7 <rg, then u is subharmonic.

Proof. Assume that u is subharmonic on U. By [Cemma 28.1] there is a sequence
of continuous functions u, | u. By [Theorem 17.6‘ hy, := Py r(uy) is continuous on
D,.(a), harmonic on D,.(a), and h,, = u, > u on dD,(a). Since u is subharmonic,

u(z) < hy(z) = /0 ’ un(a+re')P, . (2,t)dt, z € D,(a).

By the monotone convergence theorem,
2
u(z) < / u(a +re’)P, (2, t) dt = Py,.(u)(2),
0

in particular, (28.1).

For the converse, let V € U and let h be continuous on V and harmonic on V.
Suppose that « < h on OV. For contradiction, assume that there is z € V' such that
u(z) > h(z). Let f:=u—hon V. If M := maxy f then K :={2 €V : f(z) = M}



28. SUBHARMONIC FUNCTIONS 73

is a compact subset of V, in particular, K is a proper subset of V. Let w € 0K.
For some small r > 0 there is a point on dD,(w) at which f is strictly less than
M. Since f is usc, f is less than M on an open arc J of 9D, (w). Thus,

2m

1 _
flwy=M > — flw+re')dt

27T 0
1 27 ) 1 2 )

=5 ; u(w + re') dt — g/o h(w + re't) dt
1 27 .

=5 ; u(w + re't) dt — h(w),

since h is harmonic. This contradicts (28.1)). O

This theorem implies that subharmonicity is a local condition: if w is usc on
U and each a € U has a neighborhood V such that u|y is subharmonic, then u is
subharmonic.

Corollary 28.3. Let uy,us be subharmonic on U. Then uj +us and max{uy, us}
are subharmonic. If X > 0 then A\uy is subharmonic.

Proof. Follows from O
Corollary 28.4. If f: U — C is harmonic, then |f| is subharmonic.

Proof. Use the [mean value property 17.4] and [Theorem 28.2] O

Corollary 28.5. Let (uy)n>1 be a sequence of subharmonic functions on U such
that up | u and u £ —oo on any connected component of U. Then u is subharmonic
on U.

Proof. Follows from and the monotone convergence theorem. O

Corollary 28.6. If u is subharmonic on U and ¢ : R — R is nondecreasing and
conver and p(—o0) = limy_,_ o p(t), then @ ou is subharmonic on U.

Proof. Note that ¢ is continuous (since convex) and {z € R : p(z) < B} is either
empty if ¢(—o00) > S, of the form (—o0, a) if p(—o00) < B < p(00), or Rif 5 > p(00),
since ¢ is nondecreasing. Consequently, ¢ o u is usc.

If D,(a) CU and fozﬂ u(a + re') dt > —oo, then

1

p(u(a)) < @(% /027T u(a—i—re“)dt) < % /OQW o(u(a+re)) dt,

by Jensen’s inequality (e.g. [13] p. 62]). If fo% u(a + re't) dt = —oo, then u(a)
—00, since u is subharmonic. Since ¢ is nondecreasing, ¢(—o00) = p(u(a))
o(u(a + re')) and hence p(u(a)) < 5= fOQﬂ o(u(a + re't)) dt.

CIA

For instance, ef is subharmonic if f is, and f? is subharmonic provided that
f > 0 is subharmonic.

Exercise 50. Let u : U — R be harmonic and let ¢ : R — R be convex (not
necessarily nondecreasing). Show that ¢ o u is subharmonic. Give an example of a
subharmonic u and a convex ¢ such that ¢ o u is not subharmonic.

Exercise 51. Let f be holomorphic on some domain U C C. Use to
show that u = log|f]| is subharmonic on U.
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Exercise 52. Let {u;};cs be an arbitrary family of subharmonic functions on U.
Suppose that u(z) := sup;c; ui(2), z € U, is usc and u(z) < oo for all z € U. Prove
that v is subharmonic.

Exercise 53. Deduce Hadamard’s three circles theorem: Let f be holomor-
phic on Dg(0). Let 0 <7y <712 < Rand M; := sup|,|—,, [f(2)], i = 1,2. Then, if
r € (r1,ra),
A(r —X(r
Sup ) < My a0,
where
logre — logr
Ar) = ——————.
(r) logre —logry

Hint: Apply w to u(z) = sup,cg log | f(ze')].

Theorem 28.7 (maximum principle for subharmonic functions). Let U C C be a
bounded region. Let u be subharmonic on U. If

M := sup limsupu(z),

wedl z—w

then u(z) < M for all z € U unless u is constant.

Proof. We may assume that M < 4oco. Define

u(w) ifweU,
pw) =1 . .
imsup,_,,, u(z) if we oU.

We claim that ¢ is usc on U. It suffices to show that limsup,, ,, p(w) < p(a) if
a € OU. Let U > w, — a. There exist z, € U such that |z, — w,| < 1/n and
©(zn) = ulzn) > @(wy) — 1/n. Hence
p(a) = limsupu(z) > limsup u(z,) > limsup(p(w,) — 1/n) = limsup ¢(w,,).
z—a

n—oo n— oo n—oo

Now suppose that u(z) > M = sup,cay e(w) for some 2z € U. If M :=
sup,, . @(w) then the set A := {z € U : u(z) = M} is nonempty; in fact, the usc
function ¢ attains its maximum on the compact set U. Moreover, A is closed in U;
see the remarks at the beginning of the section. Let us show that A is also open.

Let @ € A and let D,(a) C U. Then, by the [characterization of subharmonicity|

28.2,

1 2 ) ~
M:u(a)g—/ u(a +re')dt < M
0

™

and hence u(a 4 re't) = M for 0 < t < 27 and small 7 > 0, i.e., A is open. Since
U is connected, A = U, that is u is constant. [l

There is no minimum principle for subharmonic functions.

Proposition 28.8. Let u be subharmonic on U. Then u cannot be —oo on any
nonempty open subset of U.

Proof. Let A := {z € U : u(z) = —oo}. Suppose that V := A # . We will
show that V is closed in U. This leads to a contradiction, since u % —oo on any
connected component of U, by the definition of subharmonicity.

Let a € V and D,(a) C U such that dD,.(a) NV # 0. Since V is open,
a+rett € V for t is some open interval I C [0,27], whence u(a + re’') = —oo for
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t € I. Thus, since u is locally bounded above (being usc),
2m
P, (u)(z) = / u(a +re')P, . (z,t)dt = —c0, for z € D,(a).
0

Since w is subharmonic, u(z) < P, .(u)(z) for z € D,(a), and so D,(a) C V. Thus
V is closed in U. 0

Let us prove that a subharmonic function is locally integrable.

Proposition 28.9. Let u be subharmonic on U and let Dg(a) C U. Then if
0 < € < R then there is M = M(¢, R, a,u) such that

27
/ lu(a +re)|dt < M, fore<r<R.
0

Moreover, u € L, (U), i.e., for every compact K C U,

//K |u(z)] dx dy < oo.

Proof. Let u(a + re*) = u™(t) — u=(t) be the decomposition into positive and
negative part. Since u being usc is bounded above on Dr(a), there is a constant
C > 0 such that 0 < u™(¢) < C for all t and » < R. By [Proposition 28.8 there is
z € D./3(a) such that u(z) > —oo. By the[characterization of subharmonicity 28.2}

u(z) < /0 "W (@) — um () Pan (2 8) dt.

By [Harnack’s inequality 19.1}

r—l|z—al <Py () < r+ |z —al
r+ |z —al ’ r—|z—al
which implies 1/3 < 27P, . (z,t) < 3if e <r < R and |z — a|] < ¢/2. Then

1 2m 2m

§/ u”(t)dt < 3/ ul (t) dt — 2mu(z) < oo
0 0

since u™ () < C. This implies the first assertion.

Every z € U has a neighborhood of the form A¢ r(a) = Dg(a) \ D.(a), where
Dr(a) CU. Since

2m
// \dmdy—/ / u(a +re't)| dt dr < oo,
eR(a)

the second statement follows. O

Next we show that subharmonic functions can be approximated by smooth
subharmonic functions on relatively compact subsets. We need the following lemma.

Lemma 28.10. Let u be subharmonic on Dg(a). Then ¢(r fo u(a + rett) dt,
for 0 <r < R, is increasing.

Proof. We may assume that a = 0. We extend the definition of ¢ to complex
values by putting ¢(z fo u(ze') dt, for 2 € Dr(0); observe that p(2) = ¢(]2]).
We will show that go is subharmomc on Dg(0). Then the statement follows from
the jmaximum principle for subharmonic functions 28.7} suppose that there are
0 <71 < re < R such that ¢(re) < ¢(r1). Then by the maximum principle ¢ is
constant on D, (0).

Let us first check that ¢ is usc on Dg(0). If u is continuous so is ¢. In general,
there is a sequence of continuous functions u,, such that u, | u, by
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Then ¢, (z) = fo% un(ze™) dt is continuous and ¢, | ¢, by the monotone conver-

gence theorem. Consequently, ¢ is usc, by
Next we prove that ¢ is subharmonic on Dg(0). Let z € Dg(0). By the
|characterlzat10n of subharmonicity 28.2 we must check that, for small » > 0,

< 5- fo (z +re')ds, ie.,
2w ) 1 2w 27 ) )
/ u(ze™)dt < — / / u((z +re')e') dt ds. (28.2)
0 27 Jo 0

If z = 0 then, since u is subharmonic,

/O 7 w(0) d = 2mu(0) < /0 (e ds,

and (28.2) holds. If z # 0 then, by|Pr0p0sition 28.9 0% 027T |u((z+ret)elt)| dtds <

oo, and so m holds, by Fubini’s theorem and [Theorem 28.2]

2m 2 2w 1 2m ) )
/ (z +re*)e) dtds = / / u(ze' + retCH) ds dt

_/0 u(ze') dt. O

Theorem 28.11 (approximation by smooth functions). Let U C C be a domain
and let u be subharmonic on U. For any V € U there is a sequence of subharmonic
functions u, € C®(V) such that u, | u.

Proof. Let ¢ € C°(C) be a radially symmetric nonnegative function with supp ¢ C
D such that [[.pdrdy = 1. Then ¢.(z) := e 2p(z/€), € > 0, is nonnegative,
supp e € Dc(0), and [[. pe dx dy = 1.

Let 0 < e < dist(V,C\U). Set uc := uxp, i.e., uc(w) = [[o u(w—2)¢c(z) dx dy,
which is well-defined since u is locally integrable, by |Prop051t10n 28.9l Then u, €
C>(U). Replacing z by —ez and using radial symmetry of ¢ we get

1 2m
// (w+ €ez)p )dxdy—/ pgp(p)/ u(w + epe™) dt dp.
0 0

We claim that u, is subharmonic in V. Let a € V and r > 0 small. Then
1 27 27 T ) )
— / pp(p) / u(a +re* + epe't) dt dp ds
2m 0 0 0
1 27 1 27 ) )
= / pp(p) / — / u(a + epe™ +re*®) dsdt dp
0 o 2mJo

1 27
> / pw(p)/ u(a + epe') dt dp = uc(a),
0 0
which implies the claim, by

We have u, < ue if € < €, because, for fixed w and p, € f027r u(w + epe’t) dt

is increasing, by |[Lemma 28.10

Finally, we show that, for w € V, u.(w) — u(w) as € — 0. Since u is subhar-
monic,

te(w) = / po(p) / "u(w + epet) di dp > u(w) 2 / po(p)dp = ufw).

Since u is usc, for § > 0 there is ¢y > 0 such that

ue(a + re’®) ds

u(w + epe’™) <u(w)+6 f0<e<e,0<p< 1.
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Thus
27 ) 1
ue(w) = / p) [ utw s cpet)dtdp < (u(w) +8)2m [ pplo)dp = ulw) + 8
0 0
if 0 <e<ep. If u(w) = —o0, replace u(w) + 6 by —1/4. O

We end this section with a characterization of C? subharmonic functions. We
need the following maximum principle.

Lemma 28.12 (maximum principle). Let U C C be a domain and let u € C?*(U)
be real valued. Suppose that Au > 0 on U. Then, for any open V € U, we have
uw(z) < supy,ecpy w(w) for all z € V.

Proof. Let us first assume that Au > 0 on U. Let V € U and let zy € V be such
that u(z9) = sup,, i u(w). Assume, for contradiction, that u(z) < sup,,coy u(w)
does not hold for all z € V. Then zy € V and, consequently, Au(zp) < 0, a
contradiction.

In the general case, Au > 0 on U, consider u.(z) := u(z)+e¢|z|?, for e > 0. Then
Auc = Au+4e > 0 on U, and thus, for V € U, we have u.(z) < sup,eqy te(w)
for all z € V. Letting € — 0 implies the statement. (|

Theorem 28.13 (characterization of C? subharmonic functions). Let U C C be
a domain and let u € C?(U) be real valued. Then u is subharmonic if and only if

Au>0onU.

Proof. Assume that u € C?(U) satisfies Au > 0 on U. Let V € U and let h be
continuous on V, harmonic on V, and such that u < h on V. Since A(u — h) =
Au>0on V, for every W € V, we have u(z) — h(z) < sup,cow (u(w) — h(w)) for
z e W, by We may infer u(z) — h(z) < sup,,cpy (w(w) — h(w)) <0
for z € V, by letting W run through an exhaustion of V' by relatively compact sets.
Thus u is subharmonic.

Let u € C?(U) be subharmonic. Suppose that Au(z) < 0 for some z € U. Then
there is a neighborhood V' of z such that Au < 0 on V so that —u is subharmonic
on V by the first part of the proof. By the[characterization of subharmonicity 28.2]
u is harmonic on V' and hence Au = 0 on V, a contradiction. (]

We state without proof the following generalization of this result; see [11, p.
231] for a proof.

Theorem 28.14. Let U C C be a domain and let u € Li (U) be real valued. Then
there exists a subharmonic function @ on U such that @ = u a.e. if and only if
Au > 0 in the sense of distributions.

Here Au is the linear mapping C°(U) — C defined by

(Au, o) r=/ u(Ap) dx dy,
C
and Au > 0 in the sense of distributions means that (Au, @) > 0 for all ¢ > 0,
p € C(U).

Exercise 54. Let U,V be regions in C and let f : V — U be a non-constant holo-
morphic mapping. Show that, if v is subharmonic on U, then u o f is subharmonic

on V. Hint: Usefapproximation by smooth functions 28.11]and the
% bl e fnctions 2813

2
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29. The Dirichlet problem

The goal of this section is the solution of the Dirichlet problem: Let U C §
be any bounded domain and let f € C(9U). Is there a continuous function u on U
which is harmonic on U such that ulgy = f7

We will say that the Dirichlet problem on U with boundary values f is solvable
if this question has an affirmative answer. If the Dirichlet problem on U with
boundary values f is solvable for all f € C(9U), then we say that the Dirichlet
problem is solvable on U.

Exercise 55. Solve the Dirichlet problem on the strip S = {z € C: 0 < Rez < 1}
for the boundary function f which is 0 on {z : Rez =0} and 1 on {z : Rez = 1}.

Hint: Check that z — fxp(iwz is a biholomorphism between S and H which
extends continuously to S. Use

The following example shows that the the Dirichlet problem is not always solv-
able.

Example 29.1. Let U =D\ {0} and let f(z) =1 for z € D and f(0) = 0. Then
f is continuous on OU = 0D U {0}. Suppose that the Dirichlet problem on U with
boundary values f has a solution u. Note that u(z) = u(e®z) for any fixed t € R;
this is because u(e'z) is a solution of the Dirichlet problem with boundary values
f as well and since there is at most one solution.

The Laplace operator in polar coordinates reads
10/ 0 1 02

A= (ro )+ 5o 29.1

ror\' or +r2892 (29.1)

and since u is independent of 6,

Thus 70u/dr = ¢ for some ¢ € C and therefore u = clogr + d for some d € C. But
u cannot agree with f on oU.

Exercise 56. Prove that the Laplace operator in polar coordinates is given by the

formula (29.1).

The domain in the example is typical for having no solution of the Dirichlet
problem. We will show that the Dirichlet problem on U can be solved, if each
connected component of QU contains more than one point.

Given a function w on U and D := D, (a) such that D C U, let us define a
function Pp(u) on U by setting

_Ju on U\ D,
Pp(u) := {Pa,r(u) on D.

Lemma 29.2. Ifu is subharmonic on U then so is Pp(u).

Proof. Assume first that w is also continuous on U. By the [characterization of|
[subharmonicity 28.2] it suffices to check that for b € 9D and small p > 0,

1 2w

Pp(u)(b) < 5— [ Po(u)(b+ pe’) dt
T Jo
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We have Pp(u)(z) = u(z) if z € D, and u < Pp(u) on D, since v is subharmonic.
So u < Pp(u) on U and u(b) = Pp(u)(b), whence

1 2m

Fo(u)(b) = u(b) < %/0 Culb+ petydi < % | oo+ pet)dt,

as required.

In the general case, let V € U be an open neighborhood of D, and let u,, be
a sequence of C'*° subharmonic functions on V' such that u, | u, which exists by

Theorem 28.11} Then Pp(u,,) is subharmonic on V and Pp(uy,) | Pp(u), by the
monotone convergence theorem. So Pp(u) is subharmonic, by [Corollary 28.5| O

Let U C C be a bounded domain and let f € C'(0U) be real valued. The family
of functions
P=P;:= {u € C(U) : u is subharmonic, limsupu(z) < f(a) for all a € 5‘U}
z—a

is called the Perron family of f. Note that OU is compact so that f is bounded
below by some m € R. Thus u(z) = m belongs to ;.

Theorem 29.3 (Perron). Let U C C be a bounded domain and let f € C(OU) be
real valued. Then the function
hf(z) := sup u(z), zeU,
u€Py

is harmonic on U. It is called the Perron function of f.

Proof. Let D := {D = D,(a) : D C U}. By |Lemma 29.2} if u € s then also

Pp(u) € Py for all D € D.

Let a € U and let (uy) be a sequence of functions in Py such that u,(a) —
hy(a). Replacing u, by maxi<ij<n, u; we may assume that vy <wug <--- on U.

Let D = D,(a) € D and set v, := Pp(uy). Since v, € P we have v,(a) <
hy(a). Since u, < vy, (cf. and up(a) — hy(a), also v,(a) = hy(a).
Moreover, u,, < uy41 implies v, < v,41. By |[Harnack’s principle 19.2] v,, converges
to a harmonic function h, uniformly on compact subsets of D. Clearly, h < hy on
D and h(a) = hy(a).

We claim that h = hy on D. Since D was arbitrary, this will show that hy
is harmonic on U. To prove the claim let z € D and let (wy) be a sequence of
functions in 9B such that w,(z) — hy(z). Replacing w,, be max{v,,w,} we may
assume that v, < w, on U. Setting p, := Pp(maxi<;<,w;) we have p, > vy,
Pnt+1 = Pny Pn € By, Pu|p is harmonic, and p,(2) — hy(z) (similarly as before).
By [Harnack’s principle 19.2] p,, converges to a harmonic function p, uniformly on
compact subsets of D. Moreover, h < p < hy and h(a) = p(a) = hg(a). The
[maximum principle for harmonic functions 17.2 applied to h — p implies that h = p
on D, and consequently h(z) = p(z) = hy(2). O

If the Dirichlet problem on U is solvable with boundary values f, and H is
the solution, then I = hy. For, H < hy because H € Py;. On the other hand, if
u € Py then limsup,_,,(u(z) — H(z)) < f(a) — f(a) = 0 for all a € OU. Thus,
u < H on U, by the maximum principle for subharmonic functions 28.7, and hence
hf < H.

Thus, to solve the Dirichlet problem, we have only to look for conditions under
which hy converges to f at OU.

Let U C C be a bounded domain. A point a € JU is a peak point of U if

there is an open set @ € V C C and a continuous subharmonic function p on U NV
such that:
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(1) p(z) = 0 as z — a.
(2) limsup,_,,; p(z) <0if b€ (AU)NV and b # a.
3) p(z) <0forzeUNYV.

Then p is called a peaking function or barrier at a.

Lemma 29.4. If a is a peak point of U, then, given o, € R and a small neigh-
borhood W of a, there is a continuous subharmonic function w on U such that:

(1) u(z) = a as z — a.
(2) limsup,_,,u(z) <« for allbe (QU)NW.
(3) w(z) < B forzeU\W.

Proof. We may suppose that § < a. Let V' and p be as in the definition of a peak
point. Let W be a relatively compact neighborhood of @ in V. Then there is § > 0
such that p(z) < —d for z € (OW) NU. For some N > (o — 3)/9 set

ul(z) = B itz U\W,
" la+max{f—a,Np(z)} ifzeUNW.

Then w is subharmonic on U N W and v = 8 in a neighborhood of (OW)NU, thus
u is subharmonic and continuous on U. It is then easy to check that u satisfies
u(z) = o as z = a and limsup,_,, u(z) < « for all b € (OU)NW. O

Proposition 29.5. Let U C C be a bounded domain and let a € U be a peak
point of U. If f € C(OU), then hy(z) — f(a) as z — a.

Proof. Let M > 0 be such that |f|sy < M. Let € > 0. Let V be a neighborhood
of a such that |f(w) — f(a)| < e for all w € (QU)N V.

By there is a continuous subharmonic function u on U such that
u(z) = f(a) as z — a, limsup,_,, u(z) < f(a) for allb € (OU)NV, and u(z) < —M
for z € U\ V. Then v := u—e¢ belongs to PB. In fact, limsup,_,,, v(z) < —M —e <
f(w) if w e (OU)\ V and limsup,_,,,v(z) < f(a) —e < f(w) if w € (QU)NV.
Consequently, v < hy and so

hi(z) >v(z) =u(z) —€e— f(a) —¢ asz—a.
Since € > 0 is arbitrary, liminf,_,, h¢(2) > f(a).

By there is a continuous subharmonic function s on U such that
s(z) = —f(a) as z — a, limsup,_,;, s(z) < —f(a) for all b € (QU) NV, and s(z) <
—M for z € U\ V. Let uw € PBy. Then limsup,_,,(u(z) + s(z)) < f(w) — f(a) <e
if we (0U) NV and limsup,_,,,(u(z) + s(z)) < f(w) — M <0if w e (9U) \ V.
By the [maximum principle for subharmonic functions 28.7, u + s < € on U. Hence
hy <e—sonU, and so

hi(z) <e—s(z) > e+ f(a) asz—a.
Since € > 0 is arbitrary, limsup,_,, hy(2) < f(a). O

Conversely, we have the following proposition.

Proposition 29.6. Let U C C be a bounded domain and let a € OU. Assume that,
for every f € C(OU), we have hy(z) = f(a) as z — a. Then there is a harmonic
function w on U such that u(z) — 0 as z = a and limsup,_,u(z) < 0 for all
b€ dU, b # a. In particular, a is a peak point of U.

Proof. Let f(w) :=|w —a|, w € OU. Then f € C(0U). The function z — |z — a|

belongs to Py (cf. [Corollary 28.4). Thus, |z — a] < hy(z) for all z € U, and so
liminf, ;s hy(z) > 0 for all b € OU, b # a. By assumption, hf(z) — f(a) = 0
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as z — a. It follows that u := —hy is as required, since hy is harmonic, by
Theorem 29.3] O

Thus, we have proved the following theorem.

Theorem 29.7 (solution of the Dirichlet problem (I)). Let U C C be a bounded
domain. The Dirichlet problem is solvable on U if and only if every boundary point
of U is a peak point.

In the rest of the section we will give geometric conditions which imply the
existence of peaking functions.

Proposition 29.8 (Bouligand). Let U C C be a bounded domain and let a €
OU. Suppose that there is an open neighborhood V' of a in C and a continuous
subharmonic function p on U NV such that p(z) <0 for z€ UNV and p(z) — 0
as z — a. Then there is a harmonic function h on U such that h(z) = 0 as z = a
and limsup,_,, h(z) < 0 for all b € U, b # a. In particular, a is a peak point of
U.

Note that, in the hypothesis of the proposition, condition (2) of the definition
of a peaking function p is dropped.

Proof. Let f(w) := |w —al|, w € OU. The proof of [Proposition 29.6 shows that it
suffices to prove that hy(z) — 0 as z — a; then h := —hy is a function with the
required properties.

By assumption, there is an open neighborhood V of a in C and a continuous
subharmonic function p on U NV such that p(z) < 0 for z € UNV and p(z) — 0
as z — a. Let D,.(a) CV. Let 0 <e<rand p>0. Set [ = I(¢) := dD.(a)NU.
Let C be a compact subset of I such that the measure of I\ C is < p. Consider
the function x on 0D.(a) defined by x(¢) = M := sup,ecqy f(w) if { € I\ C and
x(¢) = 0 otherwise; then x € L'(0D.(a)). The function

2m
v(z) ::/ x(a+ee™)P, (2, t)dt, z€ D(a),
0

is harmonic and > 0 on D(a), and

1 [ ; M
v(a) = —/ x(a + ee™)dt < P
27T 0 27T
Set 0 := —supgec p(¢). Then § > 0, since C' is a compact subset of U NV.

Let u € B (i.e., u is continuous subharmonic on U and limsup,_,,, u(2) < f(w)
for all w € 9U) and define a subharmonic function s on D.(a) N U by setting
M
s(z) =u(z) —e+ Fp(z) —v(2).
We claim that
limsup s(z) <0 for all w € (D.(a) NU). (29.2)

z—w
We consider three cases which correspond to the decomposition 9(D¢(a) NU) =
(De(@)noU)U I\ C)uC.
Let w € Dc(a) NAU. Since u € Py, limsup,_,, u(z) < f(w) = |w —a| < e
Moreover, limsup,_,,, p(z) < 0 and liminf,_,, v(z) > 0 which implies (29.2).
Let w e I\ C C U. We have v(z) — M as z — w, by [Remark 17.7] and thus,

since p < 0 and u < M on UNV (by the maximum principle),
limsup s(z) < u(w) —e — M <0.

zZ—w
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Let w € C C U. Then p(z) < —§ and thus, since v > 0,

limsup s(z) < u(w) — e+ %(75) <0.

zZ—rw 6
Thus the claim is proved.

Now, by (29.2) and the jmaximum principle for subharmonic functions 28.7]
s<0on D.(a)NU, ie.,

u(z) + %p(z) <wv(z)+e€ forz€ D(a)NU.

Since this holds for all u € B¢, we get

hy(z)+ %p(z) <wv(z)+e forze€ D(a)NU.

)
Letting z — a we find
. pM
limsuphs(z) <wv(a) +e < — +e.
z—a 2w

Since hy > 0 and €, p were arbitrary, this implies hy(z) — 0 as z — a, and the
proposition follows. O

Theorem 29.9 (solution of the Dirichlet problem (II)). Let U C C be a bounded
domain such that no connected component of C\ U reduces to a point. Then the
Dirichlet problem is solvable on U.

Proof. Let a € 9U and suppose that the connected component of C\ U containing
a does not reduce to {a}. We will show that a is a peak point. This implies the

theorem, by

Let b # a lie in the connected component of C \ U containing a. Then there
exists f € H(U) such that e/*) = (2 —a)/(z —b), by Let V := D,(a).
If r > 0 is sufficiently small then |[(z —a)/(z —b)| < 1 for z € V. If we set
p(2) :=Re(1/f(2)) = (Re f(2))/|f(2)|?, z € UNV, then p(z) < 0 and

7 (2)] = |Ref(2)] = ‘log‘%H — 00 asz—a,

so that p(z) — 0 as z — a. [Proposition 29.8|implies that a is a peak point. O




CHAPTER 8
Introduction to Riemann surfaces

This chapter is intended as a short introduction to the basics on Riemann
surfaces. The main goal is to convey the idea that Riemann surfaces are natu-
ral domains for holomorphic and meromorphic functions and to interpret some of
the results in earlier chapters in this more general framework. The literature on
Riemann surfaces is vast; we recommend [2], [6], and [7] for further reading.

30. Definitions, basic properties, and examples

Let X be a 2n dimensional manifold. A complex structure on X is an open
cover {U;}ier of X together with homeomorphisms ¢; : U; — V;, V; open in C",
such that the transition mappings

i 095 o, winuy) 05 (Ui NU;) = (U N U;)

are holomorphic for all i,5 € I. Two complex structures on X are said to be
equivalent if their union is again a complex structure.

A complex manifold is a 2n dimensional manifold X equipped with an equiv-
alence class of complex structures on X. Then n is the complex dimension of
X. Given an open subset U C X and a homeomorphism ¢ : U — V onto an
open set V' C C", then (U, ¢) is called a chart on X, if (U, ¢) U {(U;, i) }ier is a
complex structure, where {(U;, ¢;)}ies is in the given equivalence class on X. The
components @', ..., " of p are called local coordinates on U.

Let X, Y be complex manifolds with a complex structures {(U;, ¢;)}ier,
{(Vj,%;)}jes, respectively. A continuous mapping f : X — Y is said to be holo-
morphic if

Yo fop; i oi(Uin fH(V;)) = (V)
is holomorphic for alli € I, j € J. A mapping f : X — Y is a biholomorphism if
there is a holomorphic mapping g : Y — X such that fog=1dy and go f = Idx.
The set of holomorphic mappings f : X — Y is denoted by H(X,Y). We set
H(X) = H(X,C), where C is equipped with the complex structure (C,Id).

A Riemann surface is a connected complex manifold X of complex dimension
1 having a countable base for its topology; the last condition is actually automati-
cally satisfied by a theorem of Radé.

Note that a holomorphic mapping between Riemann surfaces is a biholomor-
phism if and only if it is a homeomorphism.

Many results for holomorphic functions defined in domains in C persist on
Riemann surfaces:

Theorem 30.1. Let X, Y be Riemann surfaces and let f € H(X,Y). Then:

(1) (Principle of analytic continuation). If there is a nonempty open subset §)
of X such that flq = const =y, then f =y on X.
(2) (Open mapping theorem). If f is not constant, then f is an open mapping.

83
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(3) (Maximum principle). If f € H(X) and there is a € X such that | f(x)] <
|f(a)| for all x € X, then f is constant.

(4) If fr € H(X) converges uniformly on compact subsets of X to f, then
feHrHX).

(5) (Montel’s theorem). If F C H(X) is bounded on compact subsets of X,
then any sequence of functions in F has a subsequence which converges
uniformly on compact subsets of X.

(6) (Riemann’s theorem on removable singularities). If f € H(X \ {a})
is bounded in a neighborhood of a, then there is F € H(X) such that

Flx\{ay = f-

Proof. (1) Let A:={x € X : f =y near z}. Then A is open and  C A. Since
X is connected, it suffices to show that A is closed. Let z € A, and choose charts
(U, @), (V,4) such that x € U and f(x) € V. Let W be the connected component of
e(UNf~Y(V)) C C containing ¢(z). Since A is open, any open set in X containing
x intersects A in a nonempty open set. Thus p(A) N is a nonempty open set,
and F := 1o f o p~! is holomorphic on W and constant 1(y) on @(A4) N W. By
the identity theorem, F' = ¢ (y) on W. Thus z € A.

(2) Let 2 C X be open, z € . Choose charts (U, ), (V, 1) such that © € U
and f(z) € V. Let Qg be the connected component of QN U N f~1(V) containing
x. By (1), fla, is not constant so that F := 1 o f o ¢~! is not constant on ¢(Qp).
By the open mapping theorem in C, F(©(€0)) is open in C and thus f(€) is open
inY. So f() is a neighborhood of f(x).

(3) The condition means that f(X) € Djf(4)(0). So f(X) is not open, and the
statement follows from (2).

(4), (5), (6) follow easily from their corresponding version in C. O

Exercise 57. Prove the items (4), (5), and (6) of [Theorem 30.1

Corollary 30.2. Any holomorphic function on a compact Riemann surface is con-
stant.

Proof. If f € H(X) then f(X) is compact in C. So [Theorem 30.1[(2) implies that
f is constant. O

Let X be a Riemann surface defined by the complex structure {(U;, ¢;)}icr. If
U C X is open, then {(UNU;, ilunu,) tier is a complex structure on U, called the
induced complex structure. So each connected component of U is a Riemann
surface.

Example 30.3 (connected components of O). Let O be the sheaf of germs of holo-
morphic functions on C, and let 7 : O — C be the mapping given by 7(f,) = a.
We saw in that 7 is a local homeomorphism and O is a two dimen-
sional manifold. Let {U;};cr be an open cover of O such that m; := 7|y, is a
homeomorphism onto 7(U;). Then {(U;, m;)}icr is a complex structure on O, since
the transition maps m; o 7Tj_1|7rj(UmUj) are the identity maps. So any connected
component of O is a Riemann surface in a natural way.

Example 30.4 (Riemann sphere). The one point compactification C=cCu {0}
is homeomorphic to S? = {x € R3 : |2| = 1} via the stereographic projection. Let
Uy :=Cand Uy := C*U{oo}. Let p1 :=1Id : Uy — C and let o5 : Uy — C be defined
by pa2(z) = 1/z if z € C* and ¢3(c0) = 0. Then ¢, @2 are homeomorphisms, and
the transition map o1 0 oy ' : Yo (U NUs) — o1 (U NUy) is the mapping z — 1/2
from C* to itself. This complex structure makes the Riemann sphere C to a
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compact Riemann surface, also called the complex projective line and denoted
by P*.

Exercise 58. The complex projective line is the quotient space P! := C?\ {0}/ ~,
where (21, 22) ~ (w1, ws) if and only if there exists A € C* such that (z1,22) =
A(wy,we). It is endowed with the quotient topology, i.e., the largest topology
for which the quotient projection C2\ {0} — P! is continuous. The equivalence
class of (z1,29) is denoted by [21,22]. Show that P! is a complex manifold which
is biholomorphic to the Riemann sphere. Hint: Show that ¢; : P*\ {[1,0]} —
C,[2,1] = z, and @9 : P*\ {[0,1]} — C,[1,2] — z, define two charts which cover
P'. Compute the transition map ¢; o ;'

Example 30.5 (complex tori). Let wi,wy € C* be such that Im7 > 0, where
7 = wa /w1, and let A = Zw; + Zwsy. Then A is a subgroup of C and acts on C by
Az) = z+X, A € A, z € C. Consider the equivalence relation on C defined by z ~ w
if z—w € A and the corresponding quotient space X = C/A. Then X is Hausdorff
and the quotient map 7 : C — X is a covering map. Let {V;}; be an open cover of
C by disks such that m; := 7|y, is a homeomorphism onto U; := 7(V;). We claim
that {(U;,7; ')}, is a complex structure on X. Let 2 € U; N U; and 2, = 7; *(z),
Zj = w{l(x). Then A = z; — z; € A. The transition map 7; ' o7; : 7T;1(Ui nU;) —
T, YU n U;) is the mapping z — z + A. The Riemann surface X defined by this
complex structure is a complex torus. The mapping 7 : C — X is holomorphic.
A model of X is obtained by identifying opposite side of the parallelogram with
vertices 0, wi, wo, and wi + ws.

. .
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Let X7 = C/A;1, X5 = C/As be two biholomorphic complex tori, where A; =
Z + Z7m, and Ay = Z + Z75. What can be said about the relationship of 71,757 If
f: X1 — X, is a biholomorphism, then there is a biholomorphism f : C — C such
that the following diagram commutes.

f

C——C

X1 HXQ

This follows from |Corollary 4.7, Then f induces a group isomorphism % : Ay — A
by A+ foXo f~t Since f € Aut(C), f(z) = az + b for some a € C*, b € C.
Therefore, there are k, ¢, m,n € Z such that

a=9(1) =k+Llry, ar =9Y(11) =m+nm

and since ¢ is an isomorphism the matrix (% £) is invertible, thus kn — fm = +1.
It follows that
m + Nty

= k+£7_2
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and since 71,75 € H, we have kn — ¢m = 1. Conversely, if 71, 75 are related in this
way then they correspond to biholomorphic complex tori. By [Proposition 24.2]
we have shown that the set of equivalence classes of complex tori up to biholomor-
phism (called moduli space) is in one-to-one correspondence with the fundamental
domain of the modular group, depicted on p.

Example 30.6 (orbit spaces H/T'). Let I be a discrete fixed point free subgroup
of Aut(H) = {z — (az +b)/(cz+d) : a,b,c,d € R, ad — bc = 1}. The orbit space
X = H/T is Hausdorff and the quotient map = : H — X is a covering map. In

analogy to[Example 30.5] there is a natural complex structure on X (with z — ~(2),
v € T, as transition maps) which makes X to a Riemann surface and the projection

7w : H — X holomorphic. A particular example was discussed in

Exercise 59. Prove: f(z) = (az+b)/(cz + d) € Aut(H) is fixed point free in H if
and only if |a 4+ d| > 2.

Remark 30.7. The uniformization theorem states that any simply connected
Riemann surface is biholomorphic to either C, C, or H; note that this is a general-
ization of the [Riemann mapping theorem 20.4] See e.g. [6].

Let X, Y be connected topological spaces and let p : Y — X be a covering map.
Then p : Y — X is called a universal covering of X if it satisfies the following
universal property: for every covering map ¢ : Z — X, where Z is connected, and
all yo € Y, 29 € Z with p(yo) = q(z0) there is a unique mapping f : Y — Z such
that p = go f and f(yo) = 20. There is up to isomorphism at most one universal
covering of X.

Let X be a connected manifold. If Y is a connected, simply connected manifold
and p : Y — X is a covering map, then p is the universal covering of X. If X
is a connected manifold, then there always exists a connected, simply connected
manifold X and a covering map p : X — X; thus p : X — X is the universal
covering of X. If X is a Riemann surface, then X has a unique complex structure
which makes it a Riemann surface and the mapping p : XX holomorphic.

Let X be a Riemann surface and let p : X — X be its universal covering. Let
G be the group of homeomorphisms g : X — X such that p=pog, i.e., the group
of deck transformations. Then G is isomorphic to the fundamental group 7 (X)
and it acts properly discontinuously and fixed point freely on X. With respect to
the complex structure on X , G is actually a group of holomorphic automorphism
of X.

By the uniformization theorem we have only three candidates for X , namely
C, ((A:, or H. Each of these domains has the property that its automorphism group
is a group of Mobius transformations. It follows that every Riemann surface X is
biholomorphic to D/G, where D is either C, @, or H and G is a group of Mobius
transformations isomorphic to 71 (X) which acts properly discontinuously and fixed
point freely on D.

31. Meromorphic functions

Let X be a Riemann surface, let a € X, and let U be a neighborhood of a in
X. Let f € H(U \ {a}). We say that a is a removable singularity of f if there
exists F' € H(U) with Fly\(qy = f. We say that a is a pole of f if [f(z)| — oo
as £ — a. If a is neither a removable singularity nor a pole, then a is called an
essential singularity of f.
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Let A be a discrete subset of X and let f € H(X \ A). We say that f is
meromorphic on X if each point of A is either a removable singularity or a pole
of f. Let B C A be the set of poles of f. Then f defines a holomorphic mapping
f: X\ B — C, and induces a mapping F': X — C by

Fla) = {f(x) if 1 € X\ B,

00 ifx € B.
Proposition 31.1. The mapping F : X — C is holomorphic.

Proof. F is continuous since |f(z)| — oo as © — b for each b € B. Let D;(00) :=
{z € C:|z] >1}. Then U := F~(D;(c0)) is open in X. It suffices to check
that F : U — C is holomorphic, that is, that g := ¢ o F' is holomorphic, where
¢ : Di(00) — D with ¢(z) = 1/z if z # oo and ¢(c0) = 0. This follows from
Riemann’s theorem on removable singularities [30.1)(6), since g(z) — 0 = g(b) as
x—bforallbe B. g

If, conversely, F : X — C is a non-constant holomorphic mapping and B :=
F~1(c0), then f = F|x\ g is holomorphic on X'\ B, meromorphic on X, and B is the
set of its poles. Thus, non-constant meromorphic functions are just non-constant
holomorphic functions into C.

Meromorphic functions can be added and multiplied. If f is meromorphic on
X and f # 0 then 1/f is meromorphic on X. So the set M(X) of meromorphic
functions on a Riemann surface X forms a field, the so-called function field of X.

Let f € M(X) and a € X. The order of f at a is defined by
Orda(f) = Ordtp(a)(f © 3071)7

where (U, ¢) is any chart with a € U. It is well-defined, since the order is invariant
under biholomorphisms. If ord,(f) = k > 0 then a is a zero of order k, if ord,(f) =
—k < 0 then a is a pole of order k.

Proposition 31.2 (function field of the Riemann sphere). The function field M(@)
consists precisely of the rational functions.

Proof. Clearly, every rational function is in M(C). Let f € M(C), f # 0. Let
at,...,a, € C be the poles of f in C and let —k; = ord,, (f); there are finitely

many since C is compact. The function g = f H?:1(Z — a;)* is meromorphic on

C and has no poles in C. Then w ~ g(1/w) is meromorphic in a neighborhood of
w = 0. Thus, there is M > 0, p > 0 such that

lwNg(1/w)] < M for 0 < |w| < p,
where N = —ordo(g(1/w)). Hence
lg(2)| < M|z|N  for 1/p < |w| < oo.
Since g is entire, it must be a polynomial (by the Cauchy inequalities). Thus f is

a rational function. O

Proposition 31.3 (function field of complex tori). Let A = Zw; + Zws, where
wy,wy € C* with T := wy/wy € H. Let C/A be the corresponding complex torus.
The function field M(C/A) is in one-to-one correspondence with the elliptic func-
tions with period group A.

Proof. Let f € M(C/A). We may assume that f is non-constant. Thus f: C/A —
Cis holomorphic and hence f := for : C — Cis holomorphic, where 7 : C — C/A
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is the quotient map. Thus f is meromorphic and A-invariant, i.e., A C per( -
Conversely, every elliptic function f with period group A induces a meromorphic
function on C/A. O

32. Holomorphic mappings between Riemann surfaces

Let X,Y be Riemann surfaces and let p € H(X,Y) be non-constant. Then p
is open and every fiber p~1(y), y € Y, is discrete, by A function
feH(X) (or f € M(X)) can be considered as a multi-valued function on Y:
ify €Y and p~t(y) = {x; : i € I}, then f(x;), i € I, are the different values of f
at the point y.

Example 32.1 (Riemann surface of the logarithm). Consider p = exp : C — C*.
Then f =1d: C — C corresponds to the multi-valued logarithm log : C* — C. A
geometric model for the Riemann surface of the logarithm is obtained as follows:
the preimage p~1(C~) of the set C~ = C \ R<q has infinitely many components
Sn, n € Z, on which p is bijective onto C~. We may think of the components S,
to be all copies of C~ and stacked one above the other. Then the second quadrant
edge of S, is glued to the third quadrant edge of S, 1 for all n, which results in
an infinite spiral, the Riemann surface of the logarithm. On this Riemann
surface the logarithm is a single-valued function.

A point = € X is called a branch point or ramification point of p if there
is no neighborhood U of x such that p|y is injective.

Lemma 32.2. Let X, Y be Riemann surfaces and let p € H(X,Y) be non-constant.
Then p has no branch points if and only if p is a local homeomorphism.

Proof. This follows easily from the fact that p is continuous and open. O

For instance, exp : C — C* has no branch points.

Example 32.3 (Riemann surface of the square root). Let p : C — C be the
mapping z + z2. Then 0 € C is a branch point of p. Here f = Id : C —
C corresponds to the multi-valued square root. Let us look at the graph X :=
{(z,w) € C? : w = 2%} of p. Then the projection pr; : X — C, (z,w) > z,
defines a biholomorphism between X and C; it is the single-valued square root
function z = \/w. As in we may construct a geometric model of the
Riemann surface of the square root by gluing the components of the preimage
p~1(C\ Ry) which consist of two sheets S; and Ss, both copies of C \ Ry. Here
the second quadrant edge of S; is is glued to the third quadrant edge of S; and the
second quadrant edge of S, is is glued to the third quadrant edge of S;.

Evidently, we can treat p(z) = 2", for any integer n > 2, in the same way.

Proposition 32.4 (local form of holomorphic maps). Let X,Y be Riemann sur-
faces and let f € H(X,Y) be non-constant. Let a € X and b= f(a). Then there is
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an integer n > 1 and charts (U, @), (V,9) on X, Y, respectively, such that a € U,
la)=0,beV, () =0, f({U)CV and

Yofop tipU)—=(V):zm 2"

Proof. Let F := 1o fop~l. Then F(0) = 0 and so there is a positive integer
n such that F(z) = 2"g(z), where g(0) # 0. Thus, there is a neighborhood of 0
and a holomorphic function on this neighborhood such that A™ = g. The mapping
a(z) := zh(z) is a biholomorphism from an open neighborhood of 0 onto an open
neighborhood of 0. Replacing the chart ¢ by a o ¢ the statement follows. O

The number n is the ramification number or multiplicity of f at a, we
write mq(f). The mapping f : X — Y is said to take the value b € Y, m times
(counting multiplicities) if m = 3_, 1 4y ma(f).

A continuous mapping f : X — Y between manifolds is called proper if the
preimage of every compact set is compact. Any proper mapping is closed, i.e., maps
closed sets to closed sets.

Exercise 60. Prove that a proper mapping f : X — Y between manifolds is
closed.

Let X,Y be Riemann surfaces. A proper non-constant holomorphic mapping
f:+X =Y is called a branched covering.

Theorem 32.5 (degree). Let X,Y be Riemann surfaces, and let f : X =Y be a
branched covering. Then there is a positive integer n such that f takes every value
beY, n times. The number n is called the degree of f.

Proof. The set of branch points A of f is closed and discrete by [Proposition 32.4}
Since f is proper, also B = f(A) is closed and discrete. Set Y’ := Y \ B and
X" = X\ f7YB). Then f|x, : X’ — Y’ is a holomorphic covering map with
a finite number, say n, of sheets: by the [uniqueness of liftings 1.1] of curves, any
two fibers f~1(y) have the same cardinality, which is finite since f is proper. Let
be B, f71(b) = {z1,..., 2} and m; = my,(f). By [Proposition 32.4] there exist
disjoint neighborhoods U; of x; and V; of b such that for each ¢ € V} \ {b} the set
f7(c) NUj consists of exactly m; points. We claim that there is a neighborhood
V CVin---NV, of bsuch that f=5(V) CUU---UUy (take V=Y \ f(X\ (V1N
.-+ N Vk)) which is open since f is closed). Then, for every ¢ € V NY’, the fiber
f~(c) conmsists of my + - -+ + my points. Thus n =my + --- + my,. O

Corollary 32.6. Let X be a compact Riemann surface X and let f € M(X) be
non-constant. Then f has as many zeros as poles (counted according multiplicities).

Proof. The mapping f: X — Cis proper, since X is compact. Apply[Theorem 32.5
O

For the special case of complex tori we already proved this in
cf. |Proposition 31.3|

Corollary 32.7 (fundamental theorem of algebra). Any polynomial p(z) = agz"™+
a12" 1+ +a, € Clz], ag # 0, has n roots (counted according multiplicities).

Proof. p € M(@) has a pole of order n at co. O

Let us state without proof that every covering map of D* := D\ {0} is either
isomorphic to the covering given by the exponential mapping or else by the nth
power; for a proof see [7, Theorem 5.10].
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Theorem 32.8. Let X be a Riemann surface and let p : X — D* be a covering
map. Then one of the following occurs:

(1) If p has an infinite number of sheets, then there is a biholomorphism ¢ :
X — {z € C:Rez <0} such that p = e?.
(2) If p has n sheets, then there is a biholomorphism ¢ : X — D* such that
p=¢"
Corollary 32.9. Let X be a Riemann surface and let p : X — D be a branched
covering such that p : p~1(D*) — D* is a covering map. Then there is an integer
n > 1 and a biholomorphism ¢ : X — I such that p = ™.

Proof. By the previous theorem and [Theorem 32.5| there exists n > 1 and a biholo-
morphism ¢ : p~1(D*) — D* such that p = ¢". We claim that p~!(0) consists of
only one point @ € X. Then, by setting p(a) := 0, ¢ extends to a biholomorphism

¢ : X — D such that p = ¢", by [Theorem 30.1{(6).

Suppose that p~1(0) consists of & > 2 points a1, ..., ax. Then there are disjoint
open neighborhoods U; of a; and r > 0 such that p~1(D,.(0)) C U; U --- U Uy.
Set Dy(0) := D,(0) \ {0}. Then p~'(D;(0)) is homeomorphic to D¥,,,(0), and
thus connected. Every a; is an accumulation point of p~1(D?(0)), and hence also
p~1(D,(0)) is connected, a contradiction. O

33. Construction of Riemann surfaces by analytic continuation

Let us now consider the construction of Riemann surfaces by analytic continu-
ation of function germs.

Let X be a Riemann surface. In analogy to we define the sheaf of
germs of holomorphic functions on X: we set Ox := I—'a:eX Ox o, where Ox ,
is the set of germs at x € X. A germ of a holomorphic function at z € X is an
equivalence class with respect to the equivalence relation

(U, f) ~ (V,g) :< IW such that x e W CU NV and f|W = g|W,

where U, V, W C X are open neighborhoods of = and f, g are holomorphic. Endow-
ing Ox with the topology generated by the fundamental system of neighborhoods

& 1)
N(U, f):={fs € Ox : fr is the germ at x € U defined by (U, f)}

makes Ox to a Hausdorff space and the projection 7 : Ox — X, n(f,) =z, to a
local homeomorphism; this can be seen as in [Lemma 2.2| and [Lemma 2.3]

Let f; € Ox, and let v : [0,1] — X be a curve with v(0) = z. An analytic
continuation of f, along < is a lifting 4 of v to Ox such that 5(0) = f,. By
uniqueness of liftings 1.1} the analytic continuation of a germ is unique if it exists.
The [general monodromy theorem 4.1] implies that if g, 1 are homotopic curves
in X from a to b and f, € Ox,, is a germ which admits an analytic continuation
along every curve in a homotopy {7s}se[0,1] connecting yo and 1, then the analytic
continuations of f, along 7y and ~; result in the same germ. In particular, if
X is simply connected and f, € Ox , admits an analytic continuation along every
curve starting in a, then there exists a unique globally defined holomorphic function
f € H(X) such that f, is the germ at a of f.

In general, if X is not simply connected, by considering all germs that arise by
analytic continuation from a given germ we obtain a multi-valued function. Let us
make this precise.

First we make the following observation. Suppose that X,Y are Riemann
surfaces and p : Y — X is a holomorphic mapping which is a local homeomorphism.
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Since p is locally biholomorphic, it induces an isomorphism p* : Ox ) — Oyy
(where p*(f) = fop). Let p. : Oy,y = Ox p(y) denote the inverse of p*.

Let X be a Riemann surface, a € X, and f, € Ox . By an analytic contin-
uation (Y,p, f,b) of f, we mean the following data: Y is a Riemann surface and
p:Y — X is a holomorphic mapping which is a local homeomorphism, b € p~!(a),
and f € H(Y) is such that p.(fy) = f,. An analytic continuation (Y, p, f, b) of f, is
called maximal if it has the following universal property: if (Z,q,g,c) is another
analytic continuation of f, then there is a holomorphic mapping ¢ : Z — Y such
that p(c) = b, *(f) = g, and ¢*(p) = ¢. By [uniqueness of liftings 1.1] a maximal
analytic continuation is unique up to isomorphism.

y 2o x

[N

C ~5 Z
We will show that there always exists a maximal analytic continuation.

Theorem 33.1 (maximal analytic continuation). Let X be a Riemann surface, a €
X, and fo € Ox.q. Then there exists a mazimal analytic continuation (Y,p, f,b)

of fa-

Proof. Let Y be the connected component of Ox containing f,. Thenp:Y — X,
fz — x, is a local homeomorphism. There is a natural complex structure on Y
which makes it a Riemann surface and p : Y — X holomorphic; this follows from
the arguments in Let f:Y — C be defined by f(h) := evym)(h),
ie, h €Y is agerm at p(h) and f(h) is its value. Then f € H(Y) and p.(fn) =h
for every h € Y, in particular, for b := f,, we have p.(fy) = fo- Thus (Y,p, f,b) is
an analytic continuation of f,.

Let us show maximality. Let (Z,q,g,c) be another analytic continuation of
fa- Let z € Z. The germ q.(g.) € Ox 4(») arises by analytic continuation along a
curve from a to ¢(z), and hence there is precisely one h € Y such that g.(g.) = h.
Define a mapping ¢ : Z — Y by setting ¢(z) := h. Then ¢(c) = b, ¢*(f) = g, and
©*(p) = ¢ O

34. Elliptic curves

Consider the elliptic curve

w? =4(z —e1)(z — e2)(z — e3) =: p(2), (34.1)
where e1,e9,e3 € C are pairwise distinct. Then p'(e;) # 0 for all ¢ = 1,2,3. We
will construct a compact Riemann surface on which the function w = +/p(z) is

single-valued. Set
X :={(z,w) € C*: w? = p(2)}.

Let (z9,wg) € X be such that wg # 0. Then zy # e;, i = 1,2,3, and we may
take (z,w) +— z as a local coordinate in a neighborhood of (zp,wp). At a point
(20,0) € X, z9p = e; for some ¢ and hence p'(z9) # 0. By the implicit function
theorem, there is a holomorphic function f defined in a neighborhood of 0 such
that z = f(w) near (29,0) and zp = f(0). Thus we may take (z,w) — w as a local
coordinate in a neighborhood of (zp,0). This defines a complex structure on X
and the projection p = pr; : X — C, pr;(z,w) = z is holomorphic. The Riemann
surface X has two sheets, since to a general value of z correspond two values of w.
(Note that also pr, : X — C is holomorphic.)
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Let us complete X to a Riemann surface X over C. Let P2 be the complex
projective plane, i.e., P2 = C3\ {0}/ ~, where (21, 22, 23) ~ (w1, w2, w3) if there
is A € C* such that (z1, 22, 23) = A(wy, wa, ws). We denote by [21, 22, 23] the equiv-
alence class of (z1, 22, 23) and say that [z1, 22, 23] are homogeneous coordinates.
Define

X = {[z,w, 1] € P?: w?t = 4(z — e1t)(z — ext)(z — est)}.
We identify X with {[z,w,t] € X : ¢ = 1}. The complement X \ X consists of a
single point, at infinity with the homogeneous coordinates [0,1,0] (setting ¢ = 0
gives 23 = 0 thus z = 0). Let this point be denoted by co. In a neighborhood of
00, we can take X3 [z,w,t] = z/w € C as a local coordinate. In fact, replacing
[2,w,t] by [¢/,w,¥] = [z/w, 1,t/w] gives

t' =4z —e1t') (2" — eat’) (2’ — est’),

and by the implicit function theorem, ¢’ is a holomorphic function of 2’ in some
neighborhood of (#/,¢) = (O 0). This defines a complex structure on X and a
holomorphlc projection p : X — C which coincides with pon X and sends co € X
to 0o € C. The Riemann surface X is the compactification of X and p : X > C
is a two- sheeted branched covering with branch points ey, ez, €3, 00. A geometric
model of X is obtained by slicing two copies of C along some path from e; to e
and some path from e3 to oo, say, and identifying the boundaries crosswise.

Topologically, the resulting surface is a torus, which is illustrated in the figure

W (AL
S

Proposition 34.1. Let A = Zwy + Zwsy, where Imws/wy > 0, and assume that
e1, ea, es satisfy (25.4)) for the associated Weierstrass p-function. Then the mapping
p:C/A— X,

p(2)/9'(2),1,1/¢'(2)] if z=0,

is a biholomorphism.
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Proof. Since p satisfies the differential equation (25.5)), ¢ maps C/A into X. We
have the following commuting diagram.

c/A—2-X

N}

Then ¢ is surjective, since p is surjective, by Let us show that
¢ is injective. Let z,2’ € C be such that 2’ — z ¢ A and p(z) p(2"). Assume
first that 22 ¢ A. We have 2/ 4+ 2z € A, since p(—2) = p(2), because p is even,
but g assumes every value exactly twice. Consequently, p'(z) # ¢'(2’) and hence
o(z) # ¢(2'), since otherwise ©'(2) = p/'(—2') = —p’(z’) = —p’( ), as g’ is odd,
and hence @’ (z) = 0, which contradicts 2z € A; recall that the zeros of ¢’ are wy /2,
wa/2, and (wy + w2)/2. In the case that 2z € A we also have 2z’ € A, because
p(—2") = p(2'), since p is even, and p assumes every value exactly twice. Thus,
z,2 € {w1/2,w2/2, (w1 + wa)/2} modulo A. But e; = p(w1/2), e2 = p(ws/2),
es = p((w1 + wa)/2) are pairwise distinct, which implies 2z’ — z € A. This implies
that ¢ is injective.
Thus ¢ : C/A — Xisa holomorphic bijective mapping from a compact space
to a Hausdorff space. It follows that ¢ is a homeomorphism, and hence a biholo-
morphism. O

Also the converse is true: For every Riemann surface X of an equation w? =

4(z — e1)(z — e2)(z — e3), where eq, e, e3 are distinct and satisfy e; + es + e = 0,
there is a discrete subgroup A = Zw; + Zws, where Im ws /wy > 0, such that X can
be realized as in the proposition.






List of exercises

Exercise 1. Let n be a positive integer. Prove that C* — C*, z +— 2™, is a covering
map. Determine the lifting 5 of y(t) = 2™, t € [0, 1], with (0) = 1.

Exercise 2. Prove [Lemma 2.1]

Exercise 3. Show that the mapping 7 : O — C does not have the curve lifting
property and hence is not a covering map. Hint: Consider the germ ¢ at 1 of the
function z — 1/z, and show that the curve 7 : [0,1] — C, v(¢t) = 1 — ¢, does not

admit a lifting 4 to O with 4(0) = ¢. Use

Exercise 4. Let f € H(C). Show that N(C, f) is the connected component in O
of the germ fy at 0 of f. Hint: Use that an open subset X in the manifold O is
connected if and only if X is pathwise connected.

Exercise 5. Show that concatenation of curves defines a binary operation on the
set of all homotopy classes and turns it into a group 71 (X, a).

Exercise 6. Use the homotopy form of Cauchy’s theorem 4.4] to conclude that
ind,, (2) = ind,, (2), if 71, 72 are closed homotopic curves in C}.

Exercise 7. Let f be holomorphic in a neighborhood of the disk Dg(a). Prove
that for each r € (0, R) there is a constant C' > 0 such that

[l (D, (@) < CllfllL2(Dr(a))

whete |[fll () = sup.cy |F(2)] and |2y = (fys [f(2)]? dody)'/2. Conelude
that a sequence (f,,) € H(U) which is a Cauchy sequence with respect to the norm
|| - |2y converges uniformly on compact subsets of U to a holomorphic function.

Exercise 8. Prove that Y~ «, converges to a complex number « if and only

if for each € > 0 there is N € N5 such that |Zi:_k an, —a| <eif k,{ > N.

Exercise 9. The function f(z) = 627 (2 + 1)~*(2z — 2)~! is holomorphic in C\
{0,—1,2}. Tt has three Laurent expansions about 0. Compute them.

Exercise 10. Prove: Let f be meromorphic in U with zeros a; and poles by, and
let v be a cycle which is homologous to zero in U and does not pass through any
of the zeros or poles. Then

1 zf

IS) dz = Zindv(aj)aj - Zindy(bk)bk,
j k

2mi ., f(

where multiple zeros or poles are repeated according to their order.

Exercise 11. Deduce the fundamental theorem of algebra from Rouché’s theorem:
any polynomial P(z) = 2™ + a,,_12" " + -+ + ap has n roots counted with their
multiplicities.

95
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Hint: Integrate 1/(1 + 22) along the closed path formed by the segment [0, R], the
arc Re®, t € [0, 7], and the segment [—R, 0].

Exercise 12. Show that

Exercise 13. Show that the function z — 7 cot(nz) is meromorphic in C with a
simple pole with residue 1 at each integer n.

Exercise 14. Let f(z) = P(z)/Q(z) be a rational function such that deg@ >
deg P + 2. Let aq,...,a,, be its poles, all of them of order 1, and by,...,b,, the
respective residues, and assume that a; € Z for all 4 = 1,...,m. Let v, be the
counter-clockwise oriented boundary of the square with vertices (n + 1/2)(£1 £ 1),
where n is a positive integer. Prove that there exist positive constants C, K > 0
independent of n such that |7 cot(rz)| < C on |y,| and |f(z)| < K|z|72 if |2| is
sufficiently large. Conclude that

lim f(z)mcot(rz)dz =0,

and that
nhﬁrr;o k; flk)=— Z;bmcot(wai).

Note that lim,, /o ZZ/:fn f(k) exists, since |f(z2)| < K|z|72 for large |z|, and
hence the last identity is equivalent to

Z flk)=— Z b cot(ma;).
i=1

k=—o0

Exercise 15. Use to show that > 2 1/(n?+1) = (1 + 7 coth(r))/2.

Exercise 16. Let f € C¥(C). Show that u(z) = =1/ [[.. f(¢)/(¢ — z) dédn tends
to 0 as |z| — co. Prove that u is the only solution of du/0z = f with this property.
Hint: All other solutions are of the form u + v, where v is entire.

Exercise 17. Let f € C*(C) and let u be a solution of du/0z = f with compact
support. Let D be a large disk which contains supp u. Prove that

//Df(z)dz/\dE:O.

Conclude that there are functions f € C*(C) such that no solution u of Ou/dz = f
has compact support. Hint: Use Stokes’ theorem.

Exercise 18. Suppose that f € C°(C) satisfies [[ f(2)z" dzdy = 0 for every
integer n > 0. Prove that the solution of has compact support. Hint:
Expand the kernel 1/(¢{ — z) into a geometric series for ¢ in some disk D containing
supp f and z ¢ D.

Exercise 19. Show that d defined by (11.2)) is a metric on H(U) and that (H(U), d)
is a complete metric space. Prove that a sequence in H(U) converges uniformly on
every compact subset of U if and only if it converges for the metric d.

Exercise 20. Prove that the mapping f — f’ from H(U) to itself is continuous.

Exercise 21. Let Ky = D1(4), Ko = D1(44), K3 = D1(—4), and K4 = D;(—44).
Show that there exists a sequence of entire functions f,, such that f,, — j uniformly
on Kj for j =1,2,3,4.
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Exercise 22. Prove that there exists a sequence of polynomials p,, such that p, —
1 uniformly on compact subsets of {z € C : Rez > 0}, p, — —1 uniformly on
compact subsets of {z € C: Rez < 0}, and p,, — 0 uniformly on compact subsets
of iR.

Exercise 23. Prove that there exists a sequence of entire functions f, such that
frn — 1 uniformly on compact subsets of the open upper half-plane and (f,,) does
not converge at any point of the open lower half-plane.

Exercise 24. Let U C C be a domain and let f € C°°(U). Prove that the equation
Au = f admits a solution u € C*°(U). Here A = 9 + 9; = 400, is the Laplace
operator. Conclude that if u € C?(U) satisfies Au = 0, then u is actually in C*°(U).
Hint: Check that 8zt = 0,u and use twice.

Exercise 25. Let Uy, Us be domains in C and let f € H(U; NUs). Show that there
are functions f; € H(Uy) and fo € H(Us) such that f = f; — fo on U; N Us. For
U ={2€C:Rez<1},Us ={2€ C:Rez > —1}, and f(z) = 1/(2%2 — 1), find
explicit functions f1, fs satisfying the above properties.

Exercise 26. Show that if Hzozl(l +ay,) converges then limp; N0 Hf:sz(l +ay)
exists and equals 1. In addition show that this is not necessarily true if we allow

limpy 00 Hr]:]:n0+1(1 +ay,) = 0 in the definition of the convergence of [~ (1+ay).

Exercise 27. Let (a,) be a sequence (with repetitions) of points in D\ {0} satis-
fying >~ (1 — |a,|) < co. Show that the so-called Blaschke product

converges uniformly on every disk D,.(0) with r < 1 and defines a holomorphic
function on D with |f(z)] < 1. Prove that the zeros of f are precisely the a,’s

(counted according to their multiplicities). Hint: Apply [Theorem 14.3

Exercise 28. One can show that the second (multiplicative) Cousin problem
is always solvable for domains in C: Let U C C be a domain. Let $4 = {U, };cr be
an open cover of U. Suppose that for any pair (i,j) € I x I there is a function f;; €
H(U; NU;) vanishing nowhere in U; NUj;, and that for any triple (i,7,k) € I xI x I
we have

fir = fijfir onUyNU; NUg.

Then there exists a family of functions { f;};er with f; € H(U;) nowhere vanishing
on U; such that

fi/fj:fij on UiﬂUj for all 4,5 € I.
Prove that this implies the [Weierstrass theorem 15.3] Hint: Set ¢,(2) := (z —a)™e
for z € U, :=U\{a} and a € A, and fup := pp/@a.

Exercise 29. Consider the power series

o0
f) =32 <1,
n=0
with radius of convergence 1. Prove that the natural boundary of f is OD. Hint:
Let ¢ = 2m¢/2% where k,¢ € N, and show that |f(rei?)| — co asr — 17.

Exercise 30. Prove Liouville’s theorem for harmonic functions: If u : C — R is
harmonic and bounded on C, then w is constant.
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Exercise 31. Let a € D. Prove that ¢,(2) = (¢ — a)/(1 — @z) is holomorphic and
invertible on a neighborhood of D with ¢! = ¢_,. Show that |p,(z)] = 1 for
z € OD.

Exercise 32. Show that if u : U — R is harmonic and A : V' — U is holomorphic,
then w o h is harmonic.

Exercise 33. Derive a formula analogous to the Poisson integral formula (17.2)
for the upper half plane H, by mapping H biholomorphically to D: if u is harmonic
on H, and continuous and bounded on H, then

1 [ Yy .

Exercise 34. Prove Jensen’s formula: Let f be holomorphic in a neighborhood
of D,.(0) with f(0) # 0. Assume that f does not vanish on 9D, (0) and let a1, ..., ak
be the zeros of f in D,.(0) counted according to their multiplicities. Then

k 2
r 1 .

1 log — = — 1 | dt. 17.5

oB £+ Y ox 5 | toslstre®) (175)
Hint: Use [Exercise 31] to conclude that
flz
g(z) = =% ( ) )
Hg:l gDaj/,r.(Z/T)
where ¢,/ is defined by (L7.1)), is holomorphic in a neighborhood of D,.(0) and

has no zeros in 5T(O).7Apply the mean value property to log |g| which is harmonic
in a neighborhood of D,.(0).

Exercise 35. Let f be continuous on D and holomorphic in D. Assume that f is
nowhere zero on D and |f(z)| = 1 on OD. Prove that the function

_Jf® if [2] <1,
F(z) = {l/f(l/z) if 2] > 1,

is entire, and conclude that f must be constant. Hint: Show first that F' is contin-
uous, then use Morera’s theorem.

Exercise 36. Let F be the family of all f € H(D) such that f(z) = 2 + a2z +
azz® + -+ with |a,| < n for all n. Show that F is a normal family.

Exercise 37. Let U C C be a region such that C\ U has interior points. Let
20 € U. Prove that F = {f € H(D) : f(D) C U and f(0) = z9} is compact in
H(D). Hint: If a € C\ U, then z — 1/(z — a) maps U biholomorphically on a
subset of a disk with finite radius.

Exercise 38. Counsider the family . = {f € H(D) : f injective, f(0) =0, f'(0) =
1} of schlicht functions.

(1) Let f € .. Let r be the maximal radius such that D,(0) C f(D). Prove
that r < 1.

(2) Choose a € 0D,.(0) with a € f(D) and set g :== f/a. Then D C g(D) and
1 ¢ g(D). Conclude that there is a holomorphic function ¢ : g(D) — C*
such that p(z)? = z — 1 for all z € g(D).

(3) Set h := pog. Show that w € h(D) implies —w ¢ h(D).

(4) Let (f) be a sequence of functions in ., and let a,,, gn, hy, be as defined
in (1), (2), (3) relative to f,. Use [Exercise 37| to conclude that (h,) and

(fn) have convergent subsequences.
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(5) Conclude that . is compact in H (D). Hint: To see that the limit function
is injective use the [argument principle 8.2

Exercise 39. Prove the Schwarz lemma: Let f : D — D be holomorphic with
f(0) = 0. Then |f(z)|] < |z| for z € D and |f'(0)] < 1. If for some ¢ € D* we

have either |f(c)| = |c| or |f'(0)] =1, then f is a rotation, i.e., f(z) = az for some
a with |a| = 1. Hint: Use the maximum principle for the holomorphic function

Exercise 40. Let f : D — D be holomorphic. Show that, if f has two fixed points,
then f(z) = z for all z € D. Give an example of a holomorphic function f: D — D
without fixed point.

Exercise 41. The pseudo-hyperbolic distance between two points z,w € D is
defined by

zZ—w

plaw)i= |7,
Let f: D — D be holomorphic. Show that
p(f(2), f(w)) < p(z,w), z,weD,
and that equality holds if f € Aut(D). Hint: Use the Schwarz lemma (Exercise 39)).

Exercise 42. Prove the Schwarz—Pick lemma: Let f : D — D be holomorphic.

Then
|f'(2)] 1

< , ze€D.
L=[f(z)? = 122

Hint: Use [Exercise 411

Exercise 43. For w € C and z € D we define the hyperbolic length of w at z
by

|w]
1—1]z*

The hyperbolic distance of two points z1, z3 € D is defined by
1
(21, 22) += inf / 7 (0)ley dt = 7 € CH([0,1],D),4(0) = 21,7(1) = 22 }-
0

Use the Schwarz—Pick lemma to prove that, for holomorphic f: D — D,

d(f(zl)a f(ZQ)) < d(zh ZQ)a Z1,22 € D.
Show that equality holds if f € Aut(DD).

lwll. :==

Exercise 44. Show that the hyperbolic distance of 0 and s € (0, 1) is given by
1+s

1—s’

Derive a formula for the hyperbolic distance of two arbitrary points z1,zo € D.
Hint: Find an automorphism ¢ of D such that ¢(z1) = 0 and ¢(z2) € (0,1).

1
d(0,s) = 3 log

Exercise 45. Let U C C be a bounded simply connected region with real analytic
boundary, i.e., the boundary is locally the graph of a function given by a convergent
power series. Let f : D — U be biholomorphic. Prove that f has a holomorphic
extension to some neighborhood of D. Hint: The problem is purely local. Use a
change of variables to reduce to the case that both boundaries are flat and apply
the Schwarz reflection principle.

Exercise 46. Deduce from the|little Picard theorem 26.3|that every periodic entire
function has a fixed point.
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Exercise 47. Let f and g be entire functions satisfying e/ + e9 = 1. Prove that f
and g are both constant.

Exercise 48. Let u be usc and u > 0. Show that v(x) := logu(x) if u(x) # 0 and
v(x) := —oo if u(z) = 0 is usc.

Exercise 49. Let u be a subharmonic function on Dg(0) such that u(z) = u(|z|)
for z € Dgr(0). Prove that r — u(r), r € (0, R), is a convex function of logr: if
Ur) :==alogr +b, 7 € (0,R), and r1,r2 € (0, R) are such that u(ry) < £(r1) and
u(ra) < £(rg), then u(r) < £(r) for all r € (r1,72). Hint: £(z) := £(|z|) is harmonic
on Dp(0)\ {0}.

Exercise 50. Let v : U — R be harmonic and let ¢ : R — R be convex (not
necessarily nondecreasing). Show that ¢ o w is subharmonic. Give an example of a
subharmonic v and a convex ¢ such that ¢ o u is not subharmonic.

Exercise 51. Let f be holomorphic on some domain U C C. Use to
show that u = log|f| is subharmonic on U.

Exercise 52. Let {u;}icsr be an arbitrary family of subharmonic functions on U.
Suppose that w(z) := sup;c; u;(2), z € U, is usc and u(z) < oo for all z € U. Prove
that u is subharmonic.

Exercise 53. Deduce Hadamard’s three circles theorem: Let f be holomor-
phic on Dg(0). Let 0 <71 <712 < R and M; := sup|,|—,, |f(2)|, i = 1,2. Then, if
re (’I“l,’l"g),
A(r —X(r
sup [£()] < My 7037,

where

1 —1
A(r) = ogre — logr

~ logry —logry’
Hint: Apply m to u(z) = sup,cg log | f(ze™)].

Exercise 54. Let U,V be regions in C and let f : V — U be a non-constant holo-
morphic mapping. Show that, if v is subharmonic on U, then u o f is subharmonic

on V. Hint: Use[approximation by smooth functions 28.11]and the

2

Exercise 55. Solve the Dirichlet problem on the strip S = {z € C: 0 < Rez < 1}
for the boundary function f which is 0 on {z: Rez =0} and 1 on {z : Rez = 1}.

Hint: Check that z — exp(imz) is a biholomorphism between S and H which
extends continuously to S. Use

Exercise 56. Prove that the Laplace operator in polar coordinates is given by the

formula (29.1).
Exercise 57. Prove the items (4), (5), and (6) of [Theorem 30.1

Exercise 58. The complex projective line is the quotient space P! := C2?\ {0}/ ~,
where (z1,22) ~ (w1, ws) if and only if there exists A € C* such that (z1,22) =
A(wy,we). Tt is endowed with the quotient topology, i.e., the largest topology
for which the quotient projection C2\ {0} — P! is continuous. The equivalence
class of (z1,22) is denoted by [z1, 22]. Show that P! is a complex manifold which
is biholomorphic to the Riemann sphere. Hint: Show that ¢; : P*\ {[1,0]} —
C,[2,1] = z, and @9 : P\ {[0,1]} — C,[1, 2] = z, define two charts which cover
P!'. Compute the transition map ¢ o <p2_1.
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Exercise 59. Prove: f(z) = (az+b)/(cz + d) € Aut(H) is fixed point free in H if
and only if |a 4+ d| > 2.

Exercise 60. Prove that a proper mapping f : X — Y between manifolds is
closed.
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