Convergence of adaptive BEM driven by functional error estimates

Alexander Freiszlinger joint work with Dirk Pauly, Dirk Praetorius

Introduction

Functional estimates

Galerkin BEM and adaptive algorithm

Numerical experiments

Alexander Freiszlinger

Functional error estimates for BEM (PDE Afternoon)

Introduction

Alexander Freiszlinger

Functional error estimates for BEM (PDE Afternoon)

Model problem

Laplace equation

•
$$\Delta u^{\star} = 0$$
 in $\Omega \subset \mathbb{R}^d$, where $d = 2, 3$

• $u^{\star} = g$ on $\Gamma \coloneqq \partial \Omega$

Fundamental solution

•
$$G(x) = \begin{cases} -\frac{1}{2\pi} \log |x| & \text{if } d = 2\\ \frac{1}{4\pi} \frac{1}{|x|} & \text{if } d = 3 \end{cases}$$

Single Layer potential

•
$$(\widetilde{V}\phi)(x) \coloneqq (G * \phi)(x) = \int_{\Gamma} G(x - y)\phi(y) \, \mathrm{d}y$$

•
$$V\phi := (\widetilde{V}\phi)|_{\Gamma}$$

Boundary integral equation (BIE)

Properties of the single layer potential

•
$$\widetilde{V} \colon H^{-1/2}(\Gamma) \to H^1(\Omega) \implies V \colon H^{-1/2}(\Gamma) \to H^{1/2}(\Gamma)$$

•
$$\Delta(\widetilde{V}\phi)=0$$
 for all $\phi\in H^{-1/2}(\Gamma)$

• V is elliptic on $H^{-1/2}(\Gamma) = (H^{1/2}(\Gamma))^*$, i.e., $\|\phi\|_{H^{-1/2}(\Gamma)}^2 \leq C_{\text{ell}} \langle V\phi \,, \, \phi \rangle_{H^{1/2} \times H^{-1/2}}$

BEM ansatz

•
$$u^{\star} = \widetilde{V}\phi^{\star}$$
 with unknown $\phi^{\star} \in H^{-1/2}(\Gamma)$

- BIE: Solve $V\phi^{\star} = g$
- Lax–Milgram: Unique solvability of BIE

• Approximation $\phi_h \approx \phi^\star$ leads to $u_h \coloneqq \widetilde{V} \phi_h \approx u^\star$

Advantages

- Mesh on the boundary only = dimension reduction
- $\Delta u_h = 0$ independent of discretization, i.e., approximations are harmonic
- Exterior problems

Challenge

- Solve for ϕ^{\star} instead of u^{\star}
- ϕ^* has no immediate physical relevance

 \implies Control $\|\nabla(u^{\star}-u_h)\|_{L^2(\Omega)}$ instead of $\|\phi^{\star}-\phi_h\|_{H^{-1/2}(\Gamma)}$

Functional estimates

Alexander Freiszlinger

Functional error estimates for BEM (PDE Afternoon)

Functional error identity

Theorem

•
$$u, v \in H^1(\Omega)$$
 harmonic, i.e. $\Delta u = \Delta v = 0$

$$\implies \max_{\substack{\boldsymbol{\tau} \in H(\operatorname{div},\Omega)\\\operatorname{div}\boldsymbol{\tau} = 0}} \left[2\langle (u-v)|_{\Gamma} , \, \boldsymbol{\tau}|_{\Gamma} \cdot n|_{\Gamma} \rangle_{\Gamma} - \|\boldsymbol{\tau}\|_{\Omega}^{2} \right] = \|\nabla(u-v)\|_{\Omega}^{2} = \min_{\substack{w \in H^{1}(\Omega)\\w|_{\Gamma} = (u-v)|_{\Gamma}}} \|\nabla w\|_{\Omega}^{2}$$

• Lower bound: Variational argument:
$$||x||_{\mathcal{H}}^2 = \max_{y \in \mathcal{H}} [2\langle x, y \rangle_{\mathcal{H}} - ||y||_{\mathcal{H}}^2]$$

• Upper bound: Energy minimization property of harmonic functions (Dirichlet principle)

Kurz, Pauly, Praetorius, Repin, Sebastian: Numerische Mathematik, 147 (2021)

Computable bounds

• Goal: Find easily computable functions τ_h and w_h depending on mesh \mathcal{T}_h^{Γ} s.t.

$$2\langle g - u_h|_{\Gamma}, \tau_h|_{\Gamma} \cdot n|_{\Gamma}\rangle_{\Gamma} - \|\tau_h\|_{\Omega}^2 \leq \|\nabla(u^{\star} - u_h)\|_{\Omega}^2 \leq \|\nabla w_h\|_{\Omega}^2$$

- Idea: Solve auxiliary problems on strip domain ω_h along the boundary
 - Mesh \mathcal{T}_h^{ω} on ω_h
 - Number of dofs in ω_h should be comparable to number of dofs on Γ
 - ω_h varies within adaptive algorithm

Computable lower bound

Auxiliary problem

- Raviart-Thomas space $\mathcal{RT}^q_*(\mathcal{T}^\omega_h) \subset \{ \boldsymbol{\sigma} \in H(\operatorname{div}, \omega_h) \mid \boldsymbol{\sigma} \cdot n = 0 \text{ on } \partial \omega_h \setminus \Gamma \}$
- Piecewise polynomials $\mathcal{P}^q(\mathcal{T}_h^\omega) \subset L^2(\omega_h)$
- Compute FEM-solution $(\boldsymbol{\tau}_h, p_h) \in \mathcal{RT}^q_*(\mathcal{T}^\omega_h) \times \mathcal{P}^q(\mathcal{T}^\omega_h)$ such that

$$\begin{aligned} \langle \boldsymbol{\tau}_h , \, \boldsymbol{\sigma}_h \rangle_{\omega_h} + \langle \operatorname{div} \boldsymbol{\sigma}_h \, , \, p_h \rangle_{\omega_h} &= \langle g - u_h |_{\Gamma} \, , \, \boldsymbol{\sigma}_h |_{\Gamma} \cdot n |_{\Gamma} \rangle_{\Gamma} \quad \forall \boldsymbol{\sigma}_h \in \mathcal{RT}^q_*(\mathcal{T}_h^{\omega}) \\ \langle \operatorname{div} \boldsymbol{\tau}_h \, , \, q_h \rangle_{\omega_h} &= 0 \qquad \qquad \forall q_h \in \mathcal{P}^q(\mathcal{T}_h^{\omega}) \end{aligned}$$

• Note:
$$2\langle g - u_h|_{\Gamma}, \tau_h|_{\Gamma} \cdot n|_{\Gamma}\rangle_{\Gamma} - \|\tau_h\|_{\Omega}^2 = \|\tau_h\|_{\omega_h}^2$$
 and $\operatorname{div} \tau_h = 0$
 $\implies \|\tau_h\|_{\Omega} \le \|\nabla(u^* - u_h)\|_{\Omega}$

Kurz, Pauly, Praetorius, Repin, Sebastian: Numerische Mathematik, 147 (2021)
 Alexander Freiszlinger

Computable upper bound I

- Solution: Allow for data oscillations
 - Employ $H^1(\Gamma)$ -stable projection $J_h \colon H^1(\Gamma) \mapsto \mathcal{S}^q(\mathcal{T}^{\omega}_h|_{\Gamma})$

• Assume additional regularity $g \in H^1(\Gamma)$:

 $C_{\rm osc}^{-1} \| (1 - J_h)(g - u_h|_{\Gamma}) \|_{H^{1/2}(\Gamma)} \le \| h^{1/2} \nabla_{\Gamma} (1 - J_h)(g - u_h|_{\Gamma}) \|_{L^2(\Gamma)} \eqqcolon \operatorname{osc}_h$

$$\implies \min_{\substack{w \in H^1(\Omega) \\ w|_{\Gamma} = g - u_h|_{\Gamma}}} \|\nabla w\|_{\Omega} \le \min_{\substack{w \in H^1(\Omega) \\ w|_{\Gamma} = J_h(g - u_h|_{\Gamma})}} \|\nabla w\|_{\Omega} + C_{\mathsf{osc}} \mathsf{osc}_h$$

Aurada, Feischl, Führer, Karkulik, Praetorius: Applied Numerical Mathematics, 95 (2015)
 Kurz, Pauly, Praetorius, Repin, Sebastian: Numerische Mathematik, 147 (2021)
 Alexander Freiszlinger

- 7 -

NumPI)Es

Computable upper bound II

- 8 -

Auxiliary problem

• FEM space
$$\mathcal{S}^q_*(\mathcal{T}^\omega_h) \subset \{ w \in H^1(\omega_h) \mid w = 0 \text{ on } \partial \omega_h \setminus \Gamma \}$$

• Compute FEM-solution $w_h \in \mathcal{S}^q_*(\mathcal{T}^\omega_h)$ such that

$$\langle \nabla w_h , \nabla v_h \rangle_{\omega_h} = 0 \qquad \quad \forall v_h \in \mathcal{S}_0^q(\mathcal{T}_h^\omega)$$
$$w_h|_{\Gamma} = J_h(g - u_h|_{\Gamma})$$

• Set $\eta_h \coloneqq \|\nabla w_h\|_{\Omega}$

$$\implies \|\nabla (u - u_h)\|_{\Omega} \le \eta_h + C_{\mathsf{osc}} \mathrm{osc}_h$$

Kurz, Pauly, Praetorius, Repin, Sebastian: Numerische Mathematik, 147 (2021)
 Alexander Freiszlinger

Galerkin BEM and adaptive algorithm

Alexander Freiszlinger

Functional error estimates for BEM (PDE Afternoon)

Galerkin discretization

- Mesh \mathcal{T}_h of Ω
- Boundary mesh \mathcal{T}_h^{Γ} induced by \mathcal{T}_h
- Galerkin BEM: Find $\phi_h^{\star} \in \mathcal{P}^p(\mathcal{T}_h^{\Gamma})$ s.t.

 $\langle V\phi_h^\star, \psi_h \rangle_{\Gamma} = \langle g, \psi_h \rangle_{\Gamma} \qquad \forall \psi_h \in \mathcal{P}^p(\mathcal{T}_h^{\Gamma})$

Additional assumptions

- Scott-Zhang interpolation operator J_h
- Strip domain ω_h : k-patch of Γ w.r.t. \mathcal{T}_h

Adaptive algorithm

• Input: Initial mesh \mathcal{T}_0 , marking parameter $\theta \in (0,1]$, tolerance $\varepsilon > 0$

Iterate until tolerance is met

- **1** Extract boundary mesh $\mathcal{T}_{\ell}^{\Gamma}$, strip domain ω_{ℓ} and strip mesh $\mathcal{T}_{\ell}^{\omega}$ from \mathcal{T}_{ℓ}
- **2** Compute ϕ_{ℓ}^{\star} by Galerkin BEM
- **S** Compute discretized residual $J_{\ell}(g \widetilde{V}\phi_{\ell}^{\star})$ and data oscillations $\operatorname{osc}_{\ell}(\partial T \cap \Gamma)$
- 4 Compute FEM-solution $w_{\ell} \in \mathcal{S}^q_*(\mathcal{T}^{\omega}_{\ell})$
- **5** Compute error indicators $\eta_{\ell}(T)$ and $\operatorname{osc}_{\ell}(\partial T \cap \Gamma)$ for all $T \in \mathcal{T}_{\ell}$

$$\textbf{G} \text{ Choose minimal } \mathcal{M}_\ell \subset \mathcal{T}_\ell \text{ s.t. } \theta \sum_{T \in \mathcal{T}_\ell} \eta_\ell(T)^2 \leq \sum_{T \in \mathcal{M}_\ell} \eta_\ell(T)^2$$

7 Refine at least all elements in \mathcal{M}_ℓ

Estimator convergence

Theorem

There holds

$$\|\nabla (u^{\star} - u_{\ell}^{\star})\|_{\Omega} \le \eta_{\ell} + C_{\mathsf{osc}} \mathrm{osc}_{\ell} \xrightarrow{\ell \to \infty} 0$$

• A priori convergence of Galerkin schemes: $\phi_{\ell}^{\star} \to \phi_{\infty}$ in $H^{-1/2}(\Gamma)$ $\implies u_{\ell}^{\star} \to u_{\infty}$ in $H^{1}(\Omega)$

• Challenge: Show that $\phi_{\infty} = \phi^{\star}$ and $u_{\infty} = u^{\star}$

• $\operatorname{osc}_{\ell} \to 0$

• Use elliptic regularity to show that $\eta_{\ell} \to 0$ (since ω_{ℓ} varies)

Numerical experiments

Alexander Freiszlinger

Functional error estimates for BEM (PDE Afternoon)

- Lowest order BEM: p = 0
- Lowest order auxiliary FEM-problems: Consider $\mathcal{RT}^0(\mathcal{T}_h^\omega)$, $\mathcal{P}^0(\mathcal{T}_h^\omega)$ and $\mathcal{S}^1(\mathcal{T}_h^\omega)$
- Strip domain: 2-patch of Γ , i.e.,

$$\omega_h \coloneqq \{T \in \mathcal{T}_h \mid \text{there exists } T' \in \mathcal{T}_h \text{ s.t. } T \cap T' \neq \emptyset \neq T' \cap \Gamma\}$$

•
$$\Omega = (0, 1/2)^2$$

•
$$u^{\star}(x,y) = \sinh(2\pi x)\cos(2\pi y)$$

Estimators	
-0-	$\theta = 0.2$
-0-	$\theta = 0.4$
	$\theta = 0.6$
	$\theta = 0.8$

 $\begin{array}{ccc} \theta = 0.4 \\ \hline \bullet & \eta + \operatorname{osc} \\ \hline \bullet & \eta \\ \hline \bullet & \operatorname{osc} \\ \hline \bullet & \approx \|\nabla(u^* - u^*_{\ell})\|_{\Omega} \end{array}$

$$\theta = 0.4$$

$$\eta$$

$$\theta = 0.4$$

$$\eta$$

$$\eta$$

$$\eta$$

IV NumPDEs

Alexander Freiszlinger

- 18 -

Alexander Freiszlinger

- 19 -

Alexander Freiszlinger

- 20 -

Alexander Freiszlinger

- 21 -

Alexander Freiszlinger

- 23 -

- lacksquare Ω is the rotated and shrinked L-shaped domain
- Reentrant corner at (0,0)
- $u^{\star}(r,\theta) = r^{2/3}\cos(2\theta/3)$ in polar coordinates

L-shaped Domain

Estimators	
-0-	$\theta = 0.2$
-0-	$\theta = 0.4$
	$\theta = 0.6$
	$\theta = 0.8$

Alexander Freiszlinger

- 25 -

L-shaped Domain

 $\begin{array}{ccc} \theta = 0.4 \\ \hline & & \eta + \mathrm{osc} \\ \hline & & \eta \\ \hline & & \mathrm{osc} \\ \hline & & \approx \| \nabla (u^{\star} - u^{\star}_{\ell}) \|_{\Omega} \end{array}$

L-shaped Domain

$$\theta = 0.4$$

$$- 0 \qquad \eta$$

$$- 0 \qquad \text{osc}$$

- Control $\|\nabla(u^{\star} u_h)\|_{\Omega}$ instead of $\|\phi^{\star} \phi_h\|_{H^{-1/2}(\Gamma)}$
- Functional error estimates for BEM with known constants 1: $\tau_h \leq \|\nabla(u^* u_h)\|_{\Omega} \leq \eta_h$
- Independent of approximation $\phi_h \approx \phi^*$
- Adaptive algorithm guarantees convergence

Outlook

Extensions

- **Exterior** Domains
- Direct Ansatz
- Non-vanishing volume term, Poisson problem

Goals

- Iterative solver
- Matrix compression
- ▶ 3*D*-experiments

Thank you for your attention!

🖹 Kurz, Pauly, Praetorius, Repin, Sebastian

Functional a posteriori error estimates for boundary element methods *Numerische Mathematik*, 147 (2021)

Freiszlinger, Pauly, Praetorius

Convergence of adaptive boundary element methods driven by functional a posteriori error estimates (2024+)

Alexander Freiszlinger

Functional error estimates for BEM (PDE Afternoon)

Strip domain

- Difficulty: Strip domain ω_{ℓ} varies with each step of algorithm
 - Usual tools for convergence analysis do not apply
 - Not clear if $(w_\ell)_{\ell \in \mathbb{N}}$ bounded in $H^1(\Omega)$
- Solution: Connect the norms on ω_ℓ and Γ

Theorem

For
$$1 < r < \infty$$
 and $g \in W^{1/r',r}(\Gamma)$, there exists $v \in W^{1,r}(\omega_{\ell})$ s.t.

$$\begin{aligned} v|_{\Gamma} &= g\\ v|_{\partial \omega_{\ell} \setminus \Gamma} &= 0\\ \|v\|_{L^{r}(\omega_{\ell})} \lesssim \|g\|_{L^{r}(\Gamma)}\\ \|\nabla v\|_{L^{r}(\omega_{\ell})} \lesssim \|h_{\ell}^{-1/r'}g\|_{L^{r}(\Gamma)} + |g|_{W^{1/r',r}(\Gamma)} \end{aligned}$$

Elliptic regularity

• Goal: Show that $(w_\ell)_{\ell\in\mathbb{N}}$ is bounded in $W^{1,r}(\Omega)$ for some r>2

• Immediate consequence:
$$\|\nabla w_\ell\|_{L^2(T)}^2 \leq |T|^{1-2/r} \|\nabla w_\ell\|_{L^r(T)}^2 \xrightarrow{|T| \to 0} 0$$

Theorem

There exists $r_0 > 2$ s.t. for all $r \in [2, r_0)$ there is $-1/2 \leq s_r < 1/2$ and $p_r \geq 1$ s.t.

$$\|\nabla w_{\ell}\|_{L^{r}(\omega_{\ell})} \lesssim \|\phi^{\star} - \phi_{\ell}^{\star}\|_{H^{s_{r}}(\Gamma)}^{p_{r}} < +\infty.$$

For
$$r=2$$
, one can choose $s_r=-1/2$, $p_r=1$

$$\implies \|\nabla w_{\ell}\|_{L^{2}(\omega_{\ell})} \lesssim \|\phi^{\star} - \phi_{\ell}^{\star}\|_{H^{1/2}(\Gamma)} \qquad (= \mathsf{Efficiency})$$