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Genericity Iteration

Theorem (Woodin)

Let M be a countable model of ZFC and a 2 R. Assume that

M has a Woodin cardinal � and

M is (!1 + 1)-iterable.

Then there is

a countable iteration i : M ! M⇤
and

h ✓ Col(!, i(�)) generic over M⇤

such that a 2 M⇤
[h].
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Genericity Iteration: Sketch of Proof

“� is Woodin in M” is witnessed by a set of extenders in M

build an iteration tree using those extenders
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L(R) |= AD

Theorem (Neeman, Woodin)

Let M be a countable model of ZFC such that

M has !-many Woodin cardinals �0 < �1 < �2 < . . . ,

M has a measurable cardinal  > supn<! �n and

M is (a little bit more than) (!1 + 1)-iterable.

Then L(R) |= AD.
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Why is L(R) |= AD interesting?

L(R) is the smallest model of ZF containing all the reals and ordinals.

AD = Axiom of Determinacy came up in early 60’s,

implies regularity properties for sets of reals

there was no proof for the consistency of AD

a proof was found after 25 years of development in inner model theory

Theorem shows that AD is consistent (relative to ZFC and large cardinals)

Lena Wallner Genericity Iterations and L(R) |= AD



Sketch of Proof - Preparation

Fix large enough ✓.

Find countable elementary submodel of V✓ containing everything relevant.

P is the transitive collapse of this model.

Q denotes the finite support product Col(!, �0)⇥ Col(!, �1)⇥ Col(!, �2) . . .

We show L(R)P |= AD. Then L(R) |= AD.
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Sketch of Proof - Plan

Plan

Find an iteration k : M ! N such that

1 there is H = h0 ⇥ h1 ⇥ h2 ⇥ · · · ✓ k(Q) which is generic over N,

2
S

n<! RN[h0⇥h1⇥···⇥hn�1] = RP
and

3 P \ On ✓ N \ On.

Then
AD is a ⇧1(R)-statement

+ a version of the Derived Model Theorem

) L(R)P |= AD.
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Step 1: Incorporate one real after the other

We fix an Col(!,RP
)-generic enumeration {an | n < !} of RP

.

Use Genericity Iteration for M, a0 and �0.

We get

countable iteration i0,1 : M ! M1
and

h0 ✓ Col(!, i0,1(�0)) generic over M1

such that a0 2 M1
[h0].
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Step 1: Incorporate one real after the other

Repeat this for a1:

Use Genericity Iteration for M1
, a1 and �11 .

We get

countable iteration i1,2 : M1 ! M2
and

h1 ✓ Col(!, i1,2(�11)) generic over M2

such that a1 2 M2
[h1].
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Step 1: Incorporate one real after the other

Repeat this for every n < ! and build the direct limit M 0
.
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Step 1: Recall Plan

Plan

Find an iteration k : M ! N such that

1 there is H = h0 ⇥ h1 ⇥ h2 ⇥ · · · ✓ k(Q) which is generic over N,
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S
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Step 1: Incorporate one real after the other

M 0
and H := h0 ⇥ h1 ⇥ h2 ⇥ . . . satisfy

1 H is M 0
-generic for i(Q) (need more bookkeeping to arrange that)

2
S

n<! RM0[h0⇥...hn�1] = RP

3 the ordinals of M 0
belong to P[han | n < !i] ) P \ On 6✓ M 0 \ On.

We stretch M 0
to obtain whilst keeping and .
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Step 2: P \ On ✓ N \ On

Build a linear iteration on M 0
using i() =: 0 of length ⇠ := P \ On.
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L(R) |= AD

Theorem (Neeman, Woodin)

Let M be a countable model of ZFC such that

M has !-many Woodin cardinals �0 < �1 < �2 < . . . ,

M has a measurable cardinal  > supn<! �n and

M is (a little bit more than) (!1 + 1)-iterable.
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