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Genericity lteration

Theorem (Woodin)
Let M be a countable model of ZFC and a € R. Assume that

@ M has a Woodin cardinal 4 and

® M is (w1 + 1)-iterable.
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Theorem (Woodin)
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Genericity lteration

Theorem (Woodin)
Let M be a countable model of ZFC and a € R. Assume that

@ M has a Woodin cardinal § and
® M is (w1 + 1)-iterable.
Then there is /w\ummmvm?
@ a countable iteration j : M — M* and Hhis will 2. an elemel\*m;j ’5
@ h C Col(w,i(d)) generic over M*

such that a € M*[h].
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Genericity lteration: Sketch of Proof

@ "0 is Woodin in M" is witnessed by a set of extenders in M

@ build an iteration tree using those extenders
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Iteration Trees
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Genericity lteration

Theorem (Woodin)
Let M be a countable model of ZFC and a € R. Assume that

@ M has a Woodin cardinal § and
® M is (w1 + 1)-iterable.
Then there is
@ a countable iteration i : M — ;:)and
@ h C Col(w,i(d)) generic over M*

such that a € M*[h].
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L(R) = AD

Theorem (Neeman, Woodin)
Let M be a countable model of ZFC such that

@ M has w-many Woodin cardinals g < 01 < §r < ...,
@ M has a measurable cardinal x > sup,_,, 6, and

e M is (a little bit more than) (w1 + 1)-iterable.
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Theorem (Neeman, Woodin)
Let M be a countable model of ZFC such that

+x
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@ M has a measurable cardinal x > sup,_,, 6, and af
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M
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Theorem (Neeman, Woodin)

Let M be a countable model of ZFC such that 1w
other @ M has w-many Woodin cardinals 6y < d1 < d» < ..., "S"P”‘“E‘
\nr%e.cardir\a\ :

@ M has a measurable cardinal K > sup,_,, 6, and gj-
e M is (a little bit more than) (w1 + 1)-iterable. 1%
Then L(R) |= AD. M
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Theorem (Neeman, Woodin)

Let M be a countable model of ZFC such that 1w
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Theorem (Neeman, Woodin)
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Theorem (Neeman, Woodin)

Let M be a countable model of ZFC such that 1w
@ M has w-many Woodin cardinals 6y < d1 < d» < ..., j"suP”‘“E'

@ M has a measurable cardinal x > sup,_,, 6, and gj-
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e M is (a little bit more than) (w1 + 1)-iterable.
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is L(R) = AD interesting?

L(R) is the smallest model of ZF containing all the reals and ordinals.

e AD = Axiom of Determinacy came up in early 60’s,

implies regularity properties for sets of reals

there was no proof for the consistency of AD

a proof was found after 25 years of development in inner model theory

Theorem shows that AD is consistent (relative to ZFC and large cardinals)
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Sketch of Proof - Preparation

o Fix large enough 6.

Find countable elementary submodel of Vj containing everything relevant.

P is the transitive collapse of this model.
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Sketch of Proof - Preparation

o Fix large enough 6.

Find countable elementary submodel of Vj containing everything relevant.
P is the transitive collapse of this model.

@ Q denotes the finite support product Col(w,dp) x Col(w,d1) x Col(w, 7). ..

We show L(R)P = AD. Then L(R) = AD.
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Sketch of Proof - Plan

Find an iteration k : M — N such that
@ thereis H = hg x hy X hy x --- C k(Q) which is generic over N,
o Un<w RN[hoXhlx--~><h,,_1] _ R'D and

©@ PNOnC NN On.
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Sketch of Proof - Plan

Find an iteration k : M — N such that
@ thereis H = hg x hy X hy x --- C k(Q) which is generic over N,
o Un<w RN[hoXh1><~~><h,,_1] _ R'D and

©@ PNOnC NN On.

Then AD is a I (R)-statement

+ a version of the Derived Model Theorem

= L(R)P = AD.
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Step 1: Incorporate one real after the other

We fix an Col(w, RF)-generic enumeration {a, | n < w} of RP.
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Step 1: Incorporate one real after the other

We fix an Col(w, RF)-generic enumeration {a, | n < w} of RP.

Use Genericity Iteration for M, ag and dg.

We get
o countable iteration %! : M — M?! and
e hg C Col(w,i%(dg)) generic over M*

such that ag € M![ho].

Lena Wallner Genericity Iterations and L(R) = AD



Step 1: Incorporate one real after the other
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Step 1: Incorporate one real after the other

We fix an Col(w, RF)-generic enumeration {a, | n < w} of RP.

Use Genericity Iteration for M, ag and dg.
-0 —.3
We get 5 L 1 0=
e countable iteration /%! : M — M* and g1 110G =08
L
e hg C Col(w,i%'(dg)) generic over M*
SiT 2 +1%1%)=9;
such that ag € M![ho]. /
g+
H \lo\ﬂ/ H/I
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Step 1: Incorporate one real after the other

Repeat this for a;:
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Step 1: Incorporate one real after the other

Repeat this for a;:

Use Genericity Iteration for ML, a; and 5%.
We get
@ countable iteration i1? : M* — M? and
e hy C Col(w,iY?(6})) generic over M?

such that a; € M?[hy].
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Step 1: Incorporate one real after the other

Repeat this for a;:

Use Genericity Iteration for ML, a; and 5%.

We get

@ countable iteration i12 : M! — M? and

e hy C Col(w,iY?(6})) generic over M?

such that a; € M?[hy].

Lena Wallner

Genericity Iterations and L(R) = AD

__"4:1(‘,-;)

+i6

1)




Step 1: Incorporate one real after the other

Repeat this for a;:

Use Genericity Iteration for ML, a; and 5%.
We get
@ countable iteration i1? : M* — M? and
e hy C Col(w,iY?(6})) generic over M?

such that a; € M?[hy].
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Step 1: Incorporate one real after the other

Bk £ 1o keep a0
W WO =S

__"'4,1("-;)

Repeat this for a;:

Use Genericity Iteration for ML, a; and 5%. o
4

We get I,
9] /

@ countable iteration i12 : M! — M? and a;_ 1

+i6

e hy C Col(w,iY?(6})) generic over M? 5, & 3] Lo
such that a; € M?[hy]. 5 | /
M %/7 Mﬂ \L,'f/, HL
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Step 1: Incorporate one real after the other

Bt we wonk to keep 0\
Repeat this for a;:

improved. +i*3(37)
Use Genericity Iteration for ML, a; and 5%. o
2T 2
We get a‘b 1 S {d-'f)
with. et (("*)>3 /
@ countable iteration i12 : M! — M? and a;_ L I
o h C Col(w, i"?(61)) generic over M[h.d < | 3l L)
4
such that a; € M?[hy]. s 1 /
Q1€H1Lho7‘\'\1:| ’
M <01 Mﬂ \L/'f// HL

\U_/
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Step 1: Incorporate one real after the other

Repeat this for every n < w
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Step 1: Incorporate one real after the other

Repeat this for every n < w
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Step 1: Incorporate one real after the other

Repeat this for every n < w and build the direct limit M.

S o ____.3]

B;‘—- a_': L i—— 5:': _/“
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Step 1: Recall Plan

Find an iteration k : M — N such that Sk N=M" andl H=hgrhox—_.
Q thereis H = hy x hy x hy x --- C k(Q) which is generic over N,
@ U, RNhoxhxxhn1] — RP and

©@ PNOnC NN On.
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Step 1: Recall Plan

Find an iteration k : M — N such that Sk N=M' ond H=hexh.x__.
Q thereis H = hy x hy x hy x --- C k(Q) which is generic over N,
[2) Un<w RN[hoXh1><~--><hn71] — RP and /i Qo\\gucg Qmmq EOO)K\‘BQP‘"g

u\‘gum‘b
©@ PNOnC NN On.
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Step 1: Recall Plan

Find an iteration k : M — N such that Sk N=M" andl H=hgrhox—_.
Q thereis H = hy x hy x hy x --- C k(Q) which is generic over N,
/i {Noun foma book\:eep\vg

RN[hoxh1><~--><h,,,1] — RP d
Q U =R™and eyt
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Step 1: Recall Plan

Find an iteration k : M — N such that Sk N=M" andl H=hgrhox—_.
Q thereis H = hy x hy x hy x --- C k(Q) which is generic over N,
/i {Noun foma book\:eep\vg

RN[hoXhlx..-th,l] _ ]RP d
9 U R and =

[S] G iwibial seps
PAOnCNNO fuppen in P
_ = m b(xj e consruchion
ofdlinals oj) M belov%fo ‘PLeanlnew>]

= TaOn $H'n0n 4
= M'is not the model that we me\m\;\g Lo )
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Step 1: Incorporate one real after the other

M’ and H := hg x hy X hy X ... satisfy
@ H is M'-generic for i(Q) (need more bookkeeping to arrange that)
Q Un<w RM’[hOX...hn_l] _ RP
@ the ordinals of M’ belong to P[{a, | n < w)] = PN On < M' N On.

We stretch M’ to obtain @ whilst keeping @ and @.
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Step2: PN On C NN On

Build a linear iteration on M’ using i(x) =: &’ of length £ := PN On.
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Step2: PN On C NN On

Lena Wallner Genericity Iterations and L(R) = AD



L(R) = AD

Theorem (Neeman, Woodin)
Let M be a countable model of ZFC such that

@ M has w-many Woodin cardinals g < 01 < §r < ...,
@ M has a measurable cardinal x > sup,_,, 6, and
e M is (a little bit more than) (w1 + 1)-iterable.

Then L(R) = AD.
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