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Introduction
Incompressible flows can be modeled as a continuum

described by the well-known Navier-Stokes equations.
This work presents a dual-field Finite Element (FEM)
scheme that conserves mass, kinetic energy, and helic-
ity, enabling the study of turbulence phenomena like
energy and helicity cascades. Initially developed for pe-
riodic domains [2]|, we extend it to Dirichlet boundary
conditions, with the periodic case presented for simplic-
ity. The scheme solves for velocity u, v, vorticity ¢, w,
and pressure p, g twice each, yielding key quantities
through simple computations with minimal additional
cost.
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Figure: Simulated solution u € H(curl, Q)

Weak formulation
Given f € [LX(Q)],
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(u, ¢, p) € H(curl, Q) x H(div, Q) x HY(Q)
(v,w,q) € H(div, Q) x H(curl, Q) x L(Q)

such that they satisfy the primal system
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Space discretization

O XFlc HYQ), Lagrange Elements

O X"P < H(curl,Q), Nédelec Elements

O XFR' < H(div,Q), Raviart-Thomas Elements
(

O XM c [%(Q), Discontinuous Elements

The above spaces together with associated bounded
projection operators form the following commuting
diagram (De Rham complex):
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(V- v,§) Vg € LX(Q)
A coupling of the dual and primal system occurs through

w € H(curl,Q) and ¢ € H(div, Q).
Time-discretization
Given (wk_l, k=1 f,Ck_%), seek (wk, kK gk—

such that they satisty
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And given ( u*2, Ck_%, f,wk), seek (Pka Uk+%a q

such that they satisfy
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The scheme decouples the fields via the vorticities w and
C, significantly speeding up computation by solving only
one system per time step.
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+—e (C,V x )y + (Vp,a) = (f, i) Vi € H(curl, Q)
V x u,5> _ <¢,5> —0 V¢ e H(div, Q)
(u, Vp) =0 Vp € HY(Q)
as well as the dual system
<%,\7>+<CX V)
+Rie (VXw,V)—(q,V-v)=(f, V) Vv € H(div,
(v,V X @) — (w,®) =0 V& € H(curl, Q)

a> —(Vp*, a) = (f, a) .

The two horizontal sequences of function spaces are
exact, i.e. the image a differential operators coincides
with the nullspace of the following one, e.g.

) range(V) = ker(curl).

Properties

On the continuous level, solutions wu,(,p, and
W, g conserve energy,

E, = / u- u, E :/ cV,
(2 (2
and helicity
Hu::/u-w, H ::/ - C.
(2 (2

The de Rham complex ensures that symbolic equiva-
ence transformations in the conservation proofs ap-
oly to the discrete formulation, see [2, 1]. The time-
> stepping scheme similarly conserves the above inte-

grals. Further properties:

O The time-scheme linearizes the convective
terms.

O

he dual representation of each unknown gives
two solutions whose difference can be used as
an error indicator.
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Figure: Helicity-conservation properties of Dirichlet problem
with At = 0.05 and Re — oc.

Experimental Results
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Manufactured solutions

We use the Taylor-Green vortex solution

e—2t/Re
e—2t/Re

cos(x) sin(y)
— sin(x) cos(y)
0

us(t,x,y,z) —

with vorticity field w* := V x u*, and forcing term

1
f* =u" xw +—V x w".
Re
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