

A mass, energy, and helicity conserving dual-field discretization of the incompressible Navier-Stokes problem

Master's Thesis Computational Science and Engineering

Carried out at Seminar for Applied Mathematics ETH Zürich Supervised by Prof. Dr. R. Hiptmair, Dr. M. Faustmann, W. Tonnon

Author

Markus Renoldner

- **Bachelor:** Mechanical Engineering
- CSE key areas:
 - Mathematics: PDE, FEM
 - Fluid Mechanics: Hyperbolic and parabolic problems
- **Current occupation:** PhD Student at *EPFL*, Institute of Mathematics
 - Problem: PDE in fusion plasma physics
 - Methods: Well-posedness analysis, FEM
- Get in touch: Ο

Weak formulation

Given $f \in [L^2(\Omega)]^3$, find $(\boldsymbol{u},\boldsymbol{\zeta},\bar{p}) \in H(\operatorname{curl},\Omega) \times H(\operatorname{div},\Omega) \times H^1(\Omega)$ and $(\mathbf{v}, \boldsymbol{\omega}, q) \in H(\operatorname{div}, \Omega) \times H(\operatorname{curl}, \Omega) \times L^2(\Omega)$ such that they satisfy the primal system

$$\begin{split} \left\langle \frac{\partial \boldsymbol{u}}{\partial t}, \tilde{\boldsymbol{u}} \right\rangle + \left\langle \boldsymbol{\omega} \times \boldsymbol{u}, \tilde{\boldsymbol{u}} \right\rangle \\ + \frac{1}{\mathsf{Re}} \left\langle \boldsymbol{\zeta}, \nabla \times \tilde{\boldsymbol{u}} \right\rangle + \left\langle \nabla p, \tilde{\boldsymbol{u}} \right\rangle = \left\langle \boldsymbol{f}, \tilde{\boldsymbol{u}} \right\rangle \forall \tilde{\boldsymbol{u}} \in \mathcal{H}(\mathsf{curl}, \Omega) \\ \left\langle \nabla \times \boldsymbol{u}, \tilde{\boldsymbol{\zeta}} \right\rangle - \left\langle \boldsymbol{\zeta}, \tilde{\boldsymbol{\zeta}} \right\rangle = 0 \qquad \forall \tilde{\boldsymbol{\zeta}} \in \mathcal{H}(\mathsf{div}, \Omega) \\ \left\langle \boldsymbol{u}, \nabla \tilde{\boldsymbol{p}} \right\rangle = 0 \qquad \forall \tilde{\boldsymbol{p}} \in \mathcal{H}^{1}(\Omega) \end{split}$$

as well as the dual system

Space discretization

• $X^{P1} \subset H^1(\Omega)$, Lagrange Elements • $X^{ND} \subset H(\operatorname{curl}, \Omega), Nédelec Elements$ • $X^{RT} \subset H(\operatorname{div}, \Omega)$, Raviart-Thomas Elements • $X^{P0} \subset L^2(\Omega)$, Discontinuous Elements The above spaces together with associated bounded projection operators form the following commuting diagram (*De Rham complex*):

 $\begin{array}{ccc} H^{1}(\Omega) & \stackrel{\nabla}{\longrightarrow} H(\operatorname{curl}, \Omega) \stackrel{\operatorname{curl}}{\longrightarrow} H(\operatorname{div}, \Omega) \stackrel{\operatorname{div}}{\longrightarrow} & L^{2}(\Omega) \\ \downarrow^{/^{P1}} & & \downarrow^{/^{ND}} & & \downarrow^{/^{P0}} \end{array}$ $X^{P1}(\Omega) \xrightarrow{\nabla} X^{ND}(\Omega) \xrightarrow{\operatorname{curl}} X^{RT0}(\Omega) \xrightarrow{\operatorname{div}} X^{P0}(\Omega)$

GitHub repository

Introduction

Incompressible flows can be modeled as a continuum described by the well-known Navier-Stokes equations. This work presents a dual-field Finite Element (FEM) scheme that conserves mass, kinetic energy, and helicity, enabling the study of turbulence phenomena like energy and helicity cascades. Initially developed for periodic domains [2], we extend it to Dirichlet boundary conditions, with the periodic case presented for simplicity. The scheme solves for velocity $\boldsymbol{u}, \boldsymbol{v}$, vorticity $\boldsymbol{\zeta}, \boldsymbol{\omega}$, and pressure p, q twice each, yielding key quantities through simple computations with minimal additional cost.

 $\left\langle \frac{\partial \mathbf{v}}{\partial t}, \mathbf{\tilde{v}} \right\rangle + \left\langle \mathbf{\zeta} \times \mathbf{v}, \mathbf{\tilde{v}} \right\rangle$ $+\frac{1}{\mathsf{Re}}\langle \nabla \times \boldsymbol{\omega}, \tilde{\boldsymbol{v}} \rangle - \langle \boldsymbol{q}, \nabla \cdot \tilde{\boldsymbol{v}} \rangle = \langle \boldsymbol{f}, \tilde{\boldsymbol{v}} \rangle \ \forall \tilde{\boldsymbol{v}} \in H(\mathsf{div}, \Omega)$ $\langle \mathbf{v},
abla imes ilde{oldsymbol{\omega}}
angle = 0 \qquad orall ilde{oldsymbol{\omega}} \in H(\operatorname{curl}, \Omega)$ $\langle
abla \cdot oldsymbol{
u}, \widetilde{q}
angle = 0 \qquad orall \widetilde{q} \in L^2(\Omega)$

A coupling of the dual and primal system occurs through $\omega \in H(\operatorname{curl}, \Omega)$ and $\zeta \in H(\operatorname{div}, \Omega)$.

Time-discretization

Given $\left(\boldsymbol{\omega}^{k-1}, \boldsymbol{v}^{k-1}, \boldsymbol{f}, \boldsymbol{\zeta}^{k-\frac{1}{2}}\right)$, seek $\left(\boldsymbol{\omega}^{k}, \boldsymbol{v}^{k}, \boldsymbol{q}^{k-\frac{1}{2}}\right)$ such that they satisfy

$$\left\langle \frac{\mathbf{v}^{k} - \mathbf{v}^{k-1}}{\Delta t}, \tilde{\mathbf{v}} \right\rangle + \left\langle \boldsymbol{\zeta}^{k-\frac{1}{2}} \times \frac{\mathbf{v}^{k} + \mathbf{v}^{k-1}}{2}, \tilde{\mathbf{v}} \right\rangle$$

$$+ \frac{1}{\text{Re}} \left\langle \nabla \times \frac{\boldsymbol{\omega}^{k} + \boldsymbol{\omega}^{k-1}}{2}, \tilde{\mathbf{v}} \right\rangle - \left\langle q^{k-\frac{1}{2}}, \nabla \cdot \tilde{\mathbf{v}} \right\rangle = \left\langle f, \tilde{\mathbf{v}} \right\rangle$$

$$\left\langle \mathbf{v}^{k}, \nabla \times \tilde{\boldsymbol{\omega}} \right\rangle - \left\langle \boldsymbol{\omega}^{k}, \tilde{\boldsymbol{\omega}} \right\rangle = 0$$

$$\left\langle \nabla \cdot \mathbf{v}^{k}, \tilde{q} \right\rangle = 0$$
And given $\left(\mathbf{u}^{k-\frac{1}{2}}, \boldsymbol{\zeta}^{k-\frac{1}{2}}, f, \boldsymbol{\omega}^{k} \right)$, seek $\left(p^{k}, \mathbf{u}^{k+\frac{1}{2}}, \boldsymbol{\zeta}^{k+\frac{1}{2}} \right)$
such that they satisfy
$$\left\langle \frac{\mathbf{u}^{k+\frac{1}{2}} - \mathbf{u}^{k-\frac{1}{2}}}{\Delta t}, \tilde{\mathbf{u}} \right\rangle + \left\langle \boldsymbol{\omega}^{k} \times \frac{\mathbf{u}^{k+\frac{1}{2}} + \mathbf{u}^{k-\frac{1}{2}}}{2}, \tilde{\mathbf{u}} \right\rangle$$

$$+ \frac{1}{\text{Re}} \left\langle \frac{\boldsymbol{\zeta}^{k+\frac{1}{2}} + \boldsymbol{\zeta}^{k-\frac{1}{2}}}{2}, \nabla \times \tilde{\mathbf{u}} \right\rangle - \left\langle \nabla p^{k}, \tilde{\mathbf{u}} \right\rangle = \left\langle f, \tilde{\mathbf{u}} \right\rangle$$

$$\left\langle \nabla \times \mathbf{u}^{k+\frac{1}{2}}, \tilde{\boldsymbol{\zeta}} \right\rangle - \left\langle \boldsymbol{\zeta}^{k+\frac{1}{2}}, \tilde{\boldsymbol{\zeta}} \right\rangle = 0$$

$$\left\langle \mathbf{u}^{k+\frac{1}{2}}, \nabla \tilde{p} \right\rangle = 0$$

The two horizontal sequences of function spaces are *exact*, i.e. the image a differential operators coincides with the nullspace of the following one, e.g.

$$\mathsf{range}(
abla) = \mathsf{ker}(\mathsf{curl}).$$

Properties

On the continuous level, solutions $\boldsymbol{u}, \boldsymbol{\zeta}, \boldsymbol{p}$, and $\mathbf{V}, \boldsymbol{\omega}, \boldsymbol{q}$ conserve energy,

$$\mathcal{E}_{\boldsymbol{u}} := \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{u}, \qquad \mathcal{E}_{\boldsymbol{v}} := \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{v},$$

and helicity

$$\mathcal{H}_{\boldsymbol{u}} := \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{\omega}, \qquad \mathcal{H}_{\boldsymbol{v}} := \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{\zeta}.$$

The *de Rham complex* ensures that symbolic equivalence transformations in the conservation proofs apply to the discrete formulation, see [2, 1]. The timestepping scheme similarly conserves the above integrals. Further properties:

- The time-scheme linearizes the convective terms.
- The dual representation of each unknown gives

The scheme decouples the fields via the vorticities ω and ζ , significantly speeding up computation by solving only one system per time step.

two solutions whose difference can be used as an error indicator.

Figure: Helicity-conservation properties of Dirichlet problem with $\Delta t = 0.05$ and Re $\rightarrow \infty$.

Experimental Results

Manufactured solutions

*:
$$(t, x, y, z) \mapsto \begin{pmatrix} \cos(x) \sin(y) e^{-2t/\operatorname{Re}} \\ -\sin(x) \cos(y) e^{-2t/\operatorname{Re}} \\ 0 \end{pmatrix}$$

References

- Markus Renoldner. A mass, energy, and helicity conserving dual-field discretization of the incompressible Navier-Stokes problem. Master Thesis. 2023. DOI: 10.34726/ 11 hss.2023.110820. URL: https://doi.org/10.34726/hss.2023.110820.
- M. Gerritsma Y. Zhang A. Palha and L. G. Rebholz. "A mass-, kinetic energy- and helicity-conserving mimetic dual-field discretization for three-dimensional incompressible |2| Navier-Stokes equations, part I: Periodic domains". In: Journal of Computational Physics 451 (Feb. 2022), p. 110868. DOI: 10.1016/j.jcp.2021.110868.