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Introduction
Incompressible flows can be modeled as a continuum
described by the well-known Navier-Stokes equations.
This work presents a dual-field Finite Element (FEM)
scheme that conserves mass, kinetic energy, and helic-
ity, enabling the study of turbulence phenomena like
energy and helicity cascades. Initially developed for pe-
riodic domains [2], we extend it to Dirichlet boundary
conditions, with the periodic case presented for simplic-
ity. The scheme solves for velocity u, v , vorticity ζ,ω,
and pressure p, q twice each, yielding key quantities
through simple computations with minimal additional
cost.

Figure: Simulated solution u ∈ H(curl,Ω)

Weak formulation
Given f ∈

[
L2(Ω)

]3
,

find (u, ζ, p) ∈ H(curl,Ω)× H(div,Ω)× H1(Ω)
and (v ,ω, q) ∈ H(div,Ω)× H(curl,Ω)× L2(Ω)
such that they satisfy the primal system〈
∂u
∂t

, ũ
〉
+ ⟨ω × u, ũ⟩

+
1

Re
⟨ζ,∇× ũ⟩ + ⟨∇p, ũ⟩ = ⟨f , ũ⟩ ∀ũ ∈ H(curl,Ω)〈
∇× u, ζ̃

〉
−
〈
ζ, ζ̃

〉
= 0 ∀ζ̃ ∈ H(div,Ω)

⟨u,∇p̃⟩ = 0 ∀p̃ ∈ H1(Ω)

as well as the dual system〈
∂v
∂t

, ṽ
〉
+ ⟨ζ × v , ṽ⟩

+
1

Re
⟨∇ × ω, ṽ⟩ − ⟨q,∇ · ṽ⟩ = ⟨f , ṽ⟩ ∀ṽ ∈ H(div,Ω)

⟨v ,∇× ω̃⟩ − ⟨ω, ω̃⟩ = 0 ∀ω̃ ∈ H(curl,Ω)

⟨∇ · v , q̃⟩ = 0 ∀q̃ ∈ L2(Ω)

A coupling of the dual and primal system occurs through
ω ∈ H(curl,Ω) and ζ ∈ H(div,Ω).

Time-discretization

Given
(
ωk−1, v k−1, f , ζk−1

2

)
, seek

(
ωk, v k, qk−

1
2

)
such that they satisfy〈

v k − v k−1

∆t
, ṽ

〉
+

〈
ζk−1

2 × v k + v k−1

2
, ṽ

〉

+
1

Re

〈
∇× ωk + ωk−1

2
, ṽ

〉
−
〈
qk−

1
2,∇ · ṽ

〉
= ⟨f , ṽ⟩〈

v k,∇× ω̃
〉
−
〈
ωk, ω̃

〉
= 0〈

∇ · v k, q̃
〉
= 0

And given
(
uk−1

2, ζk−1
2, f ,ωk

)
, seek

(
pk,uk+1

2, ζk+1
2

)
such that they satisfy〈

uk+1
2 − uk−1

2

∆t
, ũ

〉
+

〈
ωk × uk+1

2 + uk−1
2

2
, ũ

〉

+
1

Re

〈
ζk+1

2 + ζk−1
2

2
,∇× ũ

〉
−
〈
∇pk, ũ

〉
= ⟨f , ũ⟩〈

∇× uk+1
2, ζ̃

〉
−
〈
ζk+1

2, ζ̃
〉
= 0〈

uk+1
2,∇p̃

〉
= 0

The scheme decouples the fields via the vorticities ω and
ζ, significantly speeding up computation by solving only
one system per time step.

Space discretization
X P1 ⊂ H1(Ω), Lagrange Elements

XND ⊂ H(curl,Ω), Nédelec Elements

X RT ⊂ H(div,Ω), Raviart-Thomas Elements

X P0 ⊂ L2(Ω), Discontinuous Elements

The above spaces together with associated bounded
projection operators form the following commuting
diagram (De Rham complex):

H1(Ω)
∇−→ H(curl,Ω)

curl−→ H(div,Ω)
div−→ L2(Ω)

↓I P1 ↓IND ↓I RT ↓I P0

X P1(Ω)
∇−→ XND(Ω)

curl−→ X RT0(Ω)
div−→ X P0(Ω)

The two horizontal sequences of function spaces are
exact, i.e. the image a differential operators coincides
with the nullspace of the following one, e.g.

range(∇) = ker(curl).

Properties
On the continuous level, solutions u, ζ, p, and
v ,ω, q conserve energy,

Eu :=
∫
Ω

u · u, Ev :=

∫
Ω

v · v ,

and helicity

Hu :=

∫
Ω

u · ω, Hv :=

∫
Ω

v · ζ.

The de Rham complex ensures that symbolic equiva-
lence transformations in the conservation proofs ap-
ply to the discrete formulation, see [2, 1]. The time-
stepping scheme similarly conserves the above inte-
grals. Further properties:

The time-scheme linearizes the convective
terms.

The dual representation of each unknown gives
two solutions whose difference can be used as
an error indicator.
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Figure: Helicity-conservation properties of Dirichlet problem
with ∆t = 0.05 and Re → ∞.

Experimental Results
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Manufactured solutions

We use the Taylor-Green vortex solution

u∗ : (t, x , y , z) 7→

 cos(x) sin(y)e−2t/Re

− sin(x) cos(y)e−2t/Re

0



with vorticity field ω∗ := ∇× u∗, and forcing term

f ∗ := u∗ × ω∗ +
1

Re
∇× ω∗.

References
[1] Markus Renoldner. A mass, energy, and helicity conserving dual-field discretization of the incompressible Navier-Stokes problem. Master Thesis. 2023. doi: 10.34726/

hss.2023.110820. url: https://doi.org/10.34726/hss.2023.110820.

[2] M. Gerritsma Y. Zhang A. Palha and L. G. Rebholz. “A mass-, kinetic energy- and helicity-conserving mimetic dual-field discretization for three-dimensional incompressible
Navier-Stokes equations, part I: Periodic domains”. In: Journal of Computational Physics 451 (Feb. 2022), p. 110868. doi: 10.1016/j.jcp.2021.110868.

https://doi.org/10.34726/hss.2023.110820
https://doi.org/10.34726/hss.2023.110820
https://doi.org/10.34726/hss.2023.110820
https://doi.org/10.1016/j.jcp.2021.110868

	References

