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Introduction
This Thesis introduces a lightweight
Retrieval-Augmented Generation (RAG)
evaluation framework that uses two comple-
mentary metrics—an efficient ROUGE-based
score and a more detailed LLM-based
judge—and proposes the RAG Triad ap-
proach for managing unlabeled data. By
offering a structured methodology for both
evaluation and system configuration, this
framework aims to advance a more scientific,
scalable design of RAG systems.

Implementation and Evaluation
RAG systems gained popularity shortly after the rise of
LLMs to general awareness [1]. The basic process is struc-
tured into four parts. (i) First domain data is processed and
stored in a vector index for later retrieval. (ii) Second, the
system receives a query/question and retrieves information
from a vector database [2]. (iii) Third, the query is fused
with the retrieved information via an instructive prompt.
(iv) Fourth, based on query, information and prompt, a
LLM produces the final RAG output [3].

Figure: Naive RAG

The graphic overview below illustrates the evaluation work-
flow: starting with a given dataset, progressing through the
RAG pipeline, entering the evaluation framework and yield-
ing results.

Figure: Evaluation Framework

RAG Triad
The RAG Triad is a innovative performance indicator ad-
dressing the relationships between RAG sub-components
and intermediate results without relying on ground truth
answers or gold standard resources. The hypothesis of the
RAG Triad states that if the intermediate results among
the sub-components of a RAG system — query, resources,
and answer — are sufficiently correct, then the RAG sys-
tem yields sufficiently correct answers.

Figure: RAG Triad

RAG Triad =
1

|Q|
∑
qi∈Q

(
max
ci

CR(qi , ci) + AR(qi , ai) + max
ci

F(ai , ci)

)

Advanced RAG
The advanced RAG pipeline updates the naive RAG
pipeline, enriching the RAG ecosystem with additional
options illustrated in the figure below.

Figure: Advanced RAG

Results Overview
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Figure: Evaluation Results

Conclusion
We evaluated various optimizations in a RAG pipeline, includ-
ing re-ranking, query expansion, context expansion, source
selection, and LLM choice. Re-ranking (semantic or re-
ciprocal rank fusion) improved answer correctness at differ-
ent computational costs, while query expansion introduced
noise and failed to enhance retrieval. Context expansion
added valuable information at minimal cost. The RAG Triad
emerged as a useful metric in the absence of ground truths,
enabling performance assessment of individual pipeline com-
ponents. Overall, the proposed evaluation framework can
handle labeled and unlabeled data, guiding a more efficient
and accurate RAG pipeline design.

References
[1] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,

Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. Retrieval-Augmented Generation for
Large Language Models: A Survey. arXiv:2312.10997
[cs]. Mar. 2024.

[2] Toni Taipalus. “Vector database management systems:
Fundamental concepts, use-cases, and current chal-
lenges”. In: Cognitive Systems Research 85 (June 2024).
arXiv:2309.11322 [cs], p. 101216. issn: 13890417.

[3] Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren
Wang, Yunteng Geng, Fangcheng Fu, Ling Yang,
Wentao Zhang, Jie Jiang, and Bin Cui. Retrieval-
Augmented Generation for AI-Generated Content: A
Survey. arXiv:2402.19473 [cs]. Apr. 2024.

https://github.com/simon-koenig
https://lichess.org/@/simonspieltschach

	References

