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Introduction
In this work, we introduce a hybrid quantum-
classical model based on parameterized quantum cir-
cuits (PQCs) for reinforcement learning (RL) in high-
dimensional observation spaces, using the Atari 2600
games Pong and Breakout as testbeds. We show that
our model solves Pong and achieves a performance com-
parable to a classical baseline in Breakout. We also
present an in-depth analysis of the design choices driv-
ing performance gains, highlighting that reward rescal-
ing and output-layer learning-rate adjustments signifi-
cantly affect learning. We attribute these findings to
the distinct Q-function landscapes learned by hybrid
and classical models. This research extends previous
studies that first demonstrated the learning capabili-
ties of quantum and hybrid models in an approximate
Q-learning setting [1, 2, 3] in simple benchmarking en-
vironments from the OpenAI Gym.

Quantum Machine Learning
Given an initial n-qubit quantum state |ψ⟩ := |0⟩⊗n,
a PQC applies the following parameter-dependent uni-
tary transformation U(x ,θ) to its qubits:

U(x ,θ) =
L∏

l=1

Vl(θ)Ul(x). (1)

The Ul(x) encode parts of the feature vector x ∈ Rd

into the quantum state, and the Vl(θ) depend on ad-
justable parameters θ ∈ Rk that are optimized by
classical hardware. The expectation value of a mea-
surement observable on the resulting state defines a
deterministic quantum machine learning model:

⟨M⟩x ,θ = ⟨ψ(x ,θ)|M|ψ(x ,θ)⟩ =: fθ(x). (2)

We incorporate classical convolutional layers to pre-
process high-dimensional input into fewer, informative
features for the PQC. We define the hybrid model as:

Qhybrid = Lwout

(
fθ
(
Lwin

(x̃)
))
. (3)

Here, Lwin
: Rnin → Rnq maps raw inputs x̃ to a lower

dimension; fθ : Rnq → Rnq is the PQC from Eq. 2; and
Lwout

: Rnq → Rnout is a classical post-processing layer
that yields the final output. The parameters θ, win,
and wout are jointly optimized on classical hardware.

Performance Evaluation
We evaluate the hybrid quantum-classical model’s per-
formance within the Q-learning framework, comparing
it to a classical reference model. The agent learns an
approximation Q(s, a;θ) of the optimal Q-function,
which represents expected future rewards for a given
state-action pair. From this Q-function, an optimal
policy is derived. The loss, minimized via gradient de-
scent, incorporates the temporal difference (TD) error
and stabilizes training using a target model Q̂:

L(θ) =
(
rt + γmax

a′
Q̂(st+1, a

′;θ−)− Q(st, at;θ)
)2
,

(4)
Experiments were conducted in Pong and Breakout,
starting with baseline comparisons between the hybrid
and classical models. To explore the influence of certain
design choices, we up-scale the environment rewards
by factors of 10 (settings 1c and 1a) and 100 (settings
1f and 1b) and adapt the post-processing layer learn-
ing rate by corresponding factors of 100 and 1000 for
both models. Performance is measured as the total
undiscounted reward per episode, averaged over mul-
tiple runs to ensure statistical significance. To ensure
a fair comparison, the classical reference model incor-
porates a bottleneck analogous to the hybrid model’s
pre-processing layer by adding a layer with an equiva-
lent number of neurons.
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Discussion and Conclusion
The hybrid model solves the game of Pong and demonstrates competitive performance in Break-
out compared to the classical model. In Breakout, up-scaling the rewards in the environment
and higher learning rates in the hybrid model’s post-processing layer significantly enhance its
performance (settings 1c and 1f), achieving rewards over 100, while the classical model shows no
such benefit (settings 1a and 1b), likely due to differences in the form of the predicted Q-value
hypersurfaces. These results contributes to the understanding of near-term quantum learning
models and makes an important step towards their deployment in real-world RL scenarios. Fu-
ture research could explore the robustness of the proposed architecture in noisy simulators and,
ultimately, on real quantum devices.
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