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Introduction
In this work [1], we extend the mass conserving mixed
stress element (MCS) introduced in [2] by additionally
approximating the strain rate tensor ε. This extension
is referred to as the mass-conserving mixed stress-strain
rate element (MCS-S) and enables the inclusion of
arbitrary non-Newtonian constitutive relations given in
implicit form

G(τ , ε) = 0.

Constitutive Relations
Newtonian fluids are characterized by a linear
relationship between the deviatoric stress tensor τ and
the strain rate tensor ε given by the constitutive
relation

Gn(τ , ε) := τ − 2µε = 0,

where µ is the dynamic viscosity. In real-world
applications, however, the constitutive relation is a
non-linear function of the strain rate tensor ε and
possibly other quantities such as the temperature T or
the pressure p. These fluids are referred to as
non-Newtonian fluids, and two commonly used
constitutive relations are outlined below:

Ostwald-de-Waele (Power-law)
This constitutive relation is based on two
empirical parameters K > 0, 1 < r < 2 and reads
as

Go(τ , ε) := τ − 2K (2|ε|)r−2ε.

Above model finds applications in the modelling
of shear-thinning fluids such as blood, polymer
melts, and lubricating grease, where an increasing
shear rate leads to a decreasing viscosity.

Bingham
This constitutive relation belongs to the class of
viscoplastic fluids, which are characterized by an
internal stiffness preventing any deformation until
a certain stress threshold τy is exceeded. The
relation reads as

Gb(τ , ε) :=

τ −
(
2µ +

τy
|ε|

)
ε |τ | > τy ,

ε = 0 |τ | ≤ τy ,

but due to the non-differentiability at ε = 0, we
consider the regularized version

Gκ
b(τ , ε) := τ −

(
2µ +

2τy√
κ2 + 4|ε|2

)
ε,

with limits

lim
κ→0

Gκ
b = Gb, lim

κ→∞
Gκ

b = Gn.

Governing Equations
The incompressible, stationary Stokes equations in a
bounded domain Ω ⊂ Rd with d = 2, 3, are given by

G(τ , ε) = 0 in Ω,

−div(τ ) +∇p = f in Ω,

div(u) = 0 in Ω.

Here, u is the velocity field, p is the mechanical pres-
sure, τ is the deviatoric stress tensor, ε is the strain
rate tensor, and f is a given body force.

Discrete Variational Formulation
Find ((εh,uh,ωh), (τh, ph)) ∈ Yh × Xh such that

(G(τh, εh), ξh)Ω = 0 ∀ξh ∈ Ξh,

(εh + ωh,ρh)Ω + b2h(ρh,uh) = 0 ∀ρh ∈ Σ⊕
h ,

b2h(τh, vh) + (div(vh), ph)Ω = (f , vh)Ω ∀vh ∈ Vh,

(ζh, τh)Ω = 0 ∀ζh ∈ Wh,

(div(uh), qh)Ω = 0 ∀qh ∈ Qh,

with Yh := Ξh × Vh × Wh and Xh := Σ⊕
h × Qh. The

discrete spaces and the slightly non-conforming bilin-
ear form b2h(τh,uh) are defined in [1], which also pro-
vides a comprehensive proof of the well-posedness of
the discrete variational formulation in the linear New-
tonian context.
The choice of discrete spaces uh ∈ H(div ,Ω) and
ph ∈ L20(Ω), together with div(Vh) ⊂ Qh, ensures that
the discrete velocity field uh is pointwise divergence-free
and therefore retains the mass conservation property of
the (MCS) element.
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Figure: Representation of non-Newtonian constitutive relations

Numerical Experiments
We consider a flow in a rectangular channel Ω = (0, 1)× (−1, 1) induced by a prescribed body-force f . In this setting there exists an analytic solution and we compare the
L2-error in the velocity u, deviatoric stress tensor τ and strain rate tensor ε of the ( MCS-S) against the Taylor-Hood ( T H) and the Scott-Vogelius ( SV)
element.
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Figure: Ostwald-de-Waele results for a power-law exponent r = 1.4
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Figure: Bingham results for a yield stress τy = 0.2
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