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Introduction
Cyber threats are evolving rapidly, making anomaly

detection (AD) in system log data increasingly im-
bortant for detection of known and unknown attacks
1]. The configuration of AD algorithms heavily de-
nends on the data at hand. It often involves a com-
nlex feature selection process and the determination
of parameters such as thresholds or window sizes. In
many cases, configuration requires manual interven-
tion by domain experts. This work therefore introduces
the Configuration-Engine (CE), which employs a semi-
supervised approach to automate the configuration pro-
cess or optimize existing configurations. The CE utilizes
statistical methods to identify log line properties to rec-
ognize meaningful tokens for AD methods to monitor.
It categorizes variables by their characteristics and be-
havior over time, then specifies which log parts a detec-
tor should observe, and sets appropriate configuration
parameters.

Note, that this poster is a condensed version of the pa-
per “Semi-supervised Configuration and Optimization
of Anomaly Detection Algorithms on Log Data” that
was created with the contents of my thesis.

Configuration Methods

Since each detector requires different input parameters
it has to be assessed individually which parameter values
are suitable. The first step in finding the right parame-
ters is to assess which variables to choose. This config-
uration step can be automated by mapping the variable
properties to the corresponding detection method and
thereby classifying the variables into certain feature sets
that suit the corresponding detector. The mapping pro-
cess can be generalized for all detectors:

1. Choose detector.
2. Define data characteristic from detection method.
3. Expand characteristic to a measure of stability.

A simple example incorporating these steps is provided
oy the NewMatchPathValueDetector (1) of the AMiner
2| which triggers an alert whenever a new and unknown
value of a specified variable is found in a log line [2].
Consequently, we do not want to pass certain variables
to this detector. Imagine a feature that has a different
value in every occurrence. For this detector any learning
would be irrelevant with this kind of values and it would
trigger false-positives for every occurrence. The corre-
sponding characteristic is therefore based on “unique
occurrence” (3) (see Fig. 1). The suitable measure of
stability hence is the asymptotic decrease of new unique
occurrences of variables over time (4). In other words,
the occurrence of new and unknown values has to sta-
bilize after some time or some number of events.

Configuration Method: Stability

The stability of a variable depends on the considered
characteristic.  We call a variable “stable” regard-
ing that characteristic if the corresponding curve ap-
proaches a constant value within the training period.
Fig. 1 exemplarily shows the behavior of different val-
ues regarding the number of unique occurrences against
the number of occurrences.
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Figure: Unique occurrences per occurrence of a static (red),
stable (green) and random variable (blue).

To check whether a variable is “stable’, a threshold
curve is defined that acts as an upper limit for the curve
f(i), representing the data characteristic we are inter-
ested in. / € Z is the number of occurrences of a vari-
able x. This threshold curve is applied to the derivative
f'(i) representing the change in (i) per occurrence.
-or a stable variable, this curve should therefore ap-
oroach 0 within the period of the training data. For the
detectors covered in this work, we are actually not inter-
ested in the magnitude of change but whether a change
has occurred or not. Consequently, (i) € R should
be an element of the binary space {0, 1} and we define
the boolean conversion (denoted by the subscripted b),
which later allows us to define relative thresholds in the
range [0, 1]:

() — 1 if f(i) #0, (1)

0 otherwise.

Thus, the function f,(i) is 1 if a change in f (/) occurred
at occurrence i or 0 for no change.
Stability is based on the assessment of the mean values
of the segments s,,(/) with m = 0,1,...,n; — 1. n,
being the number of segments. To be precise, the m-th
segment of the function f/(/) is:

fo(i) if . x| < i< M

sml(i) = " (2)

0 otherwise.

The set of stable variables is then defined as:

1
Vitable = {X cV ‘ — Sm(ll) di <60, Vm} (3)

Sml Jr
sm| is the length of each segment m. |s,,| is not uniform
if it is not divisible by ns. Therefore, we define quotient

g = |x| : ns, remainder r = |x| mod ns and:
g+1 itm+1<r,
|Sm| = . (4)
q tm+1>r.

If each of the segment means s,,(/) is below the thresh-
olds ,,, the corresponding variable is classified as “sta-
ble”. The thresholds 6, represent a discrete threshold
curve that serves as an upper boundary for the change
in each segment of f(i). f,(i) € {0,1} represents this
relation as the “relative change per segment”. This is
also convenient for the selection of the thresholds as we
can define them within range [0, 1].

For the characteristic described before ( “unique occur-
rence” ), we take

s xitl (5)

f(l) — ‘{X()7 X1, X2, ..

Experimental Results

We compare the performance of the configurations of the CE against the baseline consisting Conclusion & Outlook

of configurations of three different experts in the field of AD. Furthermore, we optimize

each configuration and show the performance:

Point Anomalies

Collective Anomalies

The CE was evaluated using four different detectors. Evaluations on differ-

ent Apache Access datasets containing attack traces showed that the CE
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Figure: Performance of four different detectors for Apache log datasets (optimized and non-optimized).

achieved an average precision of over 0.94, while maintaining high recall,
competing with the performance of expert-crafted configurations. The op-
timization approach was able to strongly improve the precision of both the
CE's and the experts’ configurations. Furthermore, the CE's configurations
were significantly dissimilar to each other when generated on audit data,
portance of automated configuration.
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