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Methodology

Answer-Set Programming

r(𝖷) ∨ g(𝖷) ∨ b(𝖷) ← node(𝖷)
← edge(𝖷, 𝖸), r(𝖷), r(𝖸)

ASP Encoding

← edge(𝖷, 𝖸), g(𝖷), g(𝖸)
← edge(𝖷, 𝖸), b(𝖷), b(𝖸)

ASP Solver

Combinatorial Problem Solution

Solution

Solution

…

￼r(𝟣), g(𝟤), r(𝟥), b(𝟦), g(𝟧)

Answer set

￼g(𝟣), r(𝟤), b(𝟥), r(𝟦), r(𝟧)

Facts
node(𝟣), node(𝟤), node(𝟥),
node(𝟦), node(𝟧), edge(𝟣, 𝟤),
edge(𝟤, 𝟥), edge(𝟤, 𝟧), edge(𝟥, 𝟧),
edge(𝟦, 𝟧), edge(𝟣, 𝟦)

￼g(𝟣), b(𝟤), r(𝟥), r(𝟦), g(𝟧)

Answer set

Motivation
• We study Answer-Set Programming (ASP)  

• ASP is a popular declarative problem-solving paradigm 

• Efficient solves exist, e.g., clingo from Potassco Solutions 

• Its flexible nature makes it attractive for many domains 

Finding high quality solutions for large industrial problems takes a long time 
In practice, good solutions should be provided fast! 

➡ We provide a framework for Adaptive Large-Neighbourhood Search for ASP which 
improves optimisation performance 
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Syntax
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Answer set

ASP programs are finite sets of rules: 

￼ ￼ ￼  ￼  ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼  

￼ , ￼  and ￼  are atoms 

Atoms can be ground or have variables: 	  

An interpretation ￼  is a set of ground atoms, which satisfies a rule if:  

whenever ￼  and ￼ , then ￼  for some ￼

a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

a1, …, ak bk+1, …, bm bm+1, …, bn

𝐼

bk+1, …, bm ∈ I bm+1, …, bn ∉ I ai ∈ I (1 ≤ i ≤ k)

default negation

instantiated during grounding

￼p ￼color( ￼)C

￼  is an answer set of program ￼  if it is a minimal model of the Gelfond-Lifschitz reduct  

Intuition: Assuming everything not in ￼  is false, the rest is stable w.r.t. ￼  

I P

I P

∣ ￼ ￼ ￼  ￼  ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn ∈ P,￼ ￼ ￼  ￼  ￼ ￼ ￼a1 ∨ … ∨ ak ← bk+1, …, bmPI := {
bm+1, …, bn ∉ I }

{
   "strategy": "uniform-roulette-wheel",
   "relaxOperators": [
       {  
           "type": "declarative",
           "rates": [ 0.2, 0.4, 0.6, 0.8 ], 
       } ],
   "searchOperators": [
       {   
           "type": "default",
           "timeouts": [ 5, 15, 30 ],
           "configuration": {}
       } ]
}

player(1..g*p). group(1..g). week(1..w).

{ plays(P,W,G) : group(G) } = 1 :- player(P), week(W).
{ plays(P,W,G) : player(P) } = p :- week(W), group(G).
meets(P1,P2,W):- plays(P1,W,G),
                             plays(P2,W,G), P1<P2.
:~ #count { W : meets(P1,P2,W) } > 1, player(P1), 
           player(P2), P1 < P2. [1,P1]
#show plays/3.

_lns_select(W) :- week(W).
_lns_fix(plays(P,W,G),W) :- _lns_select(W), plays(P,W,G).
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The ALASPO System

Experiments on Industrial Applications
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• Challenging real-life configuration problem 

• It requires to group sensors into zones and 
connecting them to control units 

• Control units need to be connected to a limited 
number of other units such that all communication 
requirements are fulfilled 

• The objective is to minimise the number of control 
units that are used 

• We ran clingo against ALASPO for 5 min on a 
benchmark of 78 instances 

• Using a tailored neighbourhood, ALASPO beats 
clingo

• We have to assign jobs to machines such that capability 
constraints are upheld 

• The objective is to minimise makespan while respecting 
release dates and setup times 

• We used a run time of 15 minutes on a benchmark of 
500 instances 

• ALASPO with a greedy initial solution performs best

• Complex real-world project scheduling problem with 
novel constraints and objectives 

• We used a run time of 30 minutes on a benchmark of 
33 instances 

• Best results are achieved by ALASPO using a relax 
operator written in Python

• The goal is to align shifts so that  over- and 
understaffing of workers is avoided  

• We used a run time of 60 minutes on a benchmark 
of 8 instances 

• ALASPO finds better bounds on all instances

clingo ALASPO

3-04 (0,   413, 50) (0,   353, 45) - (0,   372, 47)

3-06 (0,   286, 44) (0,   222, 43) - (0,   312, 52)

3-11 (0,   821, 74) (0,   713, 65) - (0,   725, 65)

3-20 (0, 1006, 66) (0,   946, 68) - (0,   963, 67)

3-26 (0, 1061, 77) (0, 1037, 78) - (0, 1078, 75)

3-27 (0,   393, 25) (0,   376, 24) - (0,   393, 24)

3-29 (0,   509, 67) (0,   465, 59) - (0,   470, 63)

4-02 (0,   466, 50) (0,   388, 39) - (0,   401, 54)

Comparison of clingo against ALASPO on the 
Partner Units Problem. The x-axis shows the relative 
difference to the best found solution for that 
instance.

Comparison of clingo against ALASPO on the Shift 
Design Problem. The numbers are the three 
components of the lexicographic objective (lower is 
better).

Comparison of clingo against ALASPO on 
the Parallel Machine Scheduling Problem. 
The x-axis shows the relative difference to 
the best found solution for that instance.

Comparison of clingo against ALASPO on 
the Test Laboratory Scheduling Problem. 
The x-axis shows the relative difference to 
the best found solution for that instance.

Product ConfigurationTask Scheduling Model-Based Testing for 
Autonomous Driving 

Adaptive Large-Neighbourhood Search: We change the operators during the run 
depending on the selected strategy


