

Adaptive Large-Neighbourhood Search for Optimisation in Answer-Set Programming

Thomas Eiter, Tobias Geibinger, Nelson Higuera Ruiz, Nysret Musliu, Johannes Oetsch, Dave Pfliegler and Daria Stepanova

Motivation

- We study Answer-Set Programming (ASP)
- ASP is a popular declarative problem-solving paradigm
- Efficient solves exist, e.g., clingo from Potassco Solutions
- Its flexible nature makes it attractive for many domains

Answer-Set Programming

Methodology

Parallel Machine Production Planning Task Scheduling Product Configuration Scheduling

Model-Based Testing for Autonomous Driving

Finding high quality solutions for large industrial problems takes a long time In practice, good solutions should be provided fast!

We provide a framework for Adaptive Large-Neighbourhood Search for ASP which improves optimisation performance

The ALASPO System

JSON Configuration F	le	ASP Encoding
<pre>{</pre>	lette-wheel", e", 0.6, 0.8], 30],	<pre>player(1g*p). group(1g). week(1w). { plays(P,W,G) : group(G) } = 1 :- player(P), week(W). { plays(P,W,G) : player(P) } = p :- week(W), group(G). meets(P1,P2,W):- plays(P1,W,G),</pre>
"configuration": {} }] }		_Ins_fix(plays(P,W,G),W) :Ins_select(W), plays(P,W,G).

Adaptive Large-Neighbourhood Search: We change the operators during the run depending on the selected strategy

Experiments on Industrial Applications

Partner Units Problem

Intuition: Assuming everything not in I is false, the rest is stable w.r.t. P

Shift Design

- The goal is to align shifts so that over- and understaffing of workers is avoided
- We used a run time of **60 minutes** on a benchmark of **8 instances**
- ALASPO finds better bounds on all instances

cli	ngo	ALASPO		
3-04 (0, 413	3, 50) (0, 3	53, 45) - (0,	372, 47)	
3-06 (0, 280	6, 44) (0, 2 2	2 2, 43) - (0,	312, 52)	
3-11 (0, 82 ⁻	1, 74) (0, 7 1	13, 65) - (0,	725, 65)	
3-20 (0, 100	6, 66) (0, 9 4	46, 68) - (0,	963, 67)	
3-26 (0, 106	1, 77) (0, 10 3	3 7, 78) - (0, 1	1078, 75)	
3-27 (0, 393	3, 25) (0, 3 7	76, 24) - (0,	393, 24)	
3-29 (0, 509	9, 67) (0, 46	55, 59) - (0,	470, 63)	
4-02 (0, 460	6, 50) (0, 38	38, 39) - (0,	401, 54)	

Comparison of clingo against ALASPO on the Shift Design Problem. The numbers are the three components of the lexicographic objective (lower is better).

Parallel Machine Scheduling

- We have to **assign jobs to machines** such that capability constraints are upheld
- The objective is to **minimise makespan** while respecting release dates and setup times
- We used a run time of **15 minutes** on a benchmark of **500 instances**
- ALASPO with a greedy initial solution performs best

- Challenging real-life configuration problem
- It requires to group sensors into zones and connecting them to control units
- Control units need to be connected to a limited number of other units such that all communication requirements are fulfilled
- The objective is to minimise the number of control units that are used
- We ran clingo against ALASPO for **5 min** on a benchmark of **78 instances**
- Using a tailored neighbourhood, ALASPO beats clingo

Comparison of clingo against ALASPO on the Partner Units Problem. The x-axis shows the relative difference to the best found solution for that instance.

Test Laboratory Scheduling

- Complex real-world project scheduling problem with novel constraints and objectives
- We used a run time of **30 minutes** on a benchmark of **33 instances**
- Best results are achieved by ALASPO using a relax operator written in Python

Comparison of clingo against ALASPO on the Parallel Machine Scheduling Problem. The x-axis shows the relative difference to the best found solution for that instance.

Comparison of clingo against ALASPO on the Test Laboratory Scheduling Problem. The x-axis shows the relative difference to the best found solution for that instance.