
Adaptive Large-Neighbourhood Search for Optimisation in Answer-Set Programming
Thomas Eiter, Tobias Geibinger, Nelson Higuera Ruiz, Nysret Musliu, Johannes Oetsch, Dave Pfliegler and Daria Stepanova

Methodology

Answer-Set Programming

r(𝖷) ∨ g(𝖷) ∨ b(𝖷) ← node(𝖷)
← edge(𝖷, 𝖸), r(𝖷), r(𝖸)

ASP Encoding

← edge(𝖷, 𝖸), g(𝖷), g(𝖸)
← edge(𝖷, 𝖸), b(𝖷), b(𝖸)

ASP Solver

Combinatorial Problem Solution

Solution

Solution

…

￼r(𝟣), g(𝟤), r(𝟥), b(𝟦), g(𝟧)

Answer set

￼g(𝟣), r(𝟤), b(𝟥), r(𝟦), r(𝟧)

Facts
node(𝟣), node(𝟤), node(𝟥),
node(𝟦), node(𝟧), edge(𝟣, 𝟤),
edge(𝟤, 𝟥), edge(𝟤, 𝟧), edge(𝟥, 𝟧),
edge(𝟦, 𝟧), edge(𝟣, 𝟦)

￼g(𝟣), b(𝟤), r(𝟥), r(𝟦), g(𝟧)

Answer set

Motivation
• We study Answer-Set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solves exist, e.g., clingo from Potassco Solutions

• Its flexible nature makes it attractive for many domains

Finding high quality solutions for large industrial problems takes a long time
In practice, good solutions should be provided fast!

➡ We provide a framework for Adaptive Large-Neighbourhood Search for ASP which
improves optimisation performance

Parallel Machine
Scheduling

Production Planning

Syntax

Semantics

Answer set

ASP programs are finite sets of rules:

￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼

￼ , ￼ and ￼ are atoms

Atoms can be ground or have variables: 	

An interpretation ￼ is a set of ground atoms, which satisfies a rule if:

whenever ￼ and ￼ , then ￼ for some ￼

a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

a1, …, ak bk+1, …, bm bm+1, …, bn

𝐼

bk+1, …, bm ∈ I bm+1, …, bn ∉ I ai ∈ I (1 ≤ i ≤ k)

default negation

instantiated during grounding

￼p ￼color(￼)C

￼ is an answer set of program ￼ if it is a minimal model of the Gelfond-Lifschitz reduct

Intuition: Assuming everything not in ￼ is false, the rest is stable w.r.t. ￼

I P

I P

∣ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼ ￼a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn ∈ P,￼ ￼ ￼ ￼ ￼ ￼ ￼a1 ∨ … ∨ ak ← bk+1, …, bmPI := {
bm+1, …, bn ∉ I }

{
 "strategy": "uniform-roulette-wheel",
 "relaxOperators": [
 {
 "type": "declarative",
 "rates": [0.2, 0.4, 0.6, 0.8],
 }],
 "searchOperators": [
 {
 "type": "default",
 "timeouts": [5, 15, 30],
 "configuration": {}
 }]
}

player(1..g*p). group(1..g). week(1..w).

{ plays(P,W,G) : group(G) } = 1 :- player(P), week(W).
{ plays(P,W,G) : player(P) } = p :- week(W), group(G).
meets(P1,P2,W):- plays(P1,W,G),
 plays(P2,W,G), P1<P2.
:~ #count { W : meets(P1,P2,W) } > 1, player(P1),
 player(P2), P1 < P2. [1,P1]
#show plays/3.

_lns_select(W) :- week(W).
_lns_fix(plays(P,W,G),W) :- _lns_select(W), plays(P,W,G).

ASP EncodingJSON Configuration File

ALASPO

Solution Partial
Solution

relax(N)

reconstruct(S)

Search Config. S Neighbourhood N

ASP Solver

Construction
Heuristic

Strategy
Search
Portfolio

Neighbourhood
Portfolio

select

 𝚫costs, 𝚫time

The ALASPO System

Experiments on Industrial Applications

Parallel Machine Scheduling

Partner Units Problem

Test Laboratory Scheduling

Shift Design

• Challenging real-life configuration problem

• It requires to group sensors into zones and
connecting them to control units

• Control units need to be connected to a limited
number of other units such that all communication
requirements are fulfilled

• The objective is to minimise the number of control
units that are used

• We ran clingo against ALASPO for 5 min on a
benchmark of 78 instances

• Using a tailored neighbourhood, ALASPO beats
clingo

• We have to assign jobs to machines such that capability
constraints are upheld

• The objective is to minimise makespan while respecting
release dates and setup times

• We used a run time of 15 minutes on a benchmark of
500 instances

• ALASPO with a greedy initial solution performs best

• Complex real-world project scheduling problem with
novel constraints and objectives

• We used a run time of 30 minutes on a benchmark of
33 instances

• Best results are achieved by ALASPO using a relax
operator written in Python

• The goal is to align shifts so that over- and
understaffing of workers is avoided

• We used a run time of 60 minutes on a benchmark
of 8 instances

• ALASPO finds better bounds on all instances

clingo ALASPO

3-04 (0, 413, 50) (0, 353, 45) - (0, 372, 47)

3-06 (0, 286, 44) (0, 222, 43) - (0, 312, 52)

3-11 (0, 821, 74) (0, 713, 65) - (0, 725, 65)

3-20 (0, 1006, 66) (0, 946, 68) - (0, 963, 67)

3-26 (0, 1061, 77) (0, 1037, 78) - (0, 1078, 75)

3-27 (0, 393, 25) (0, 376, 24) - (0, 393, 24)

3-29 (0, 509, 67) (0, 465, 59) - (0, 470, 63)

4-02 (0, 466, 50) (0, 388, 39) - (0, 401, 54)

Comparison of clingo against ALASPO on the
Partner Units Problem. The x-axis shows the relative
difference to the best found solution for that
instance.

Comparison of clingo against ALASPO on the Shift
Design Problem. The numbers are the three
components of the lexicographic objective (lower is
better).

Comparison of clingo against ALASPO on
the Parallel Machine Scheduling Problem.
The x-axis shows the relative difference to
the best found solution for that instance.

Comparison of clingo against ALASPO on
the Test Laboratory Scheduling Problem.
The x-axis shows the relative difference to
the best found solution for that instance.

Product ConfigurationTask Scheduling Model-Based Testing for
Autonomous Driving

Adaptive Large-Neighbourhood Search: We change the operators during the run
depending on the selected strategy

