

Wiedner Hauptstr. 8-10/138, 1040 Wien https://www.tuwien.at/phy/ifp

# **EINLADUNG zum IFP-SEMINAR**

## Energy-scale Considerations of Unconventional Superconductors ---- implications to condensation and pairing ---

## Yasutomo J. Uemura

Physics Department, Columbia University, New York, USA

| Host:   | Silke Bühler-Paschen                         |
|---------|----------------------------------------------|
| Termin: | Mittwoch, 19.06.2024, 16:00 Uhr              |
| Ort:    | TU Wien, Freihausgebäude                     |
|         | Wiedner Hauptstraße 8-10, 1040 Wien          |
|         | Seminarraum DC rot 07 (roter Bereich, 7. OG) |
|         |                                              |

via ZOOM: https://tuwien.zoom.us/j/63020566887?pwd=RmYvRmVwOGU5YVBrOHpodWRKaHFWQT09

### Abstract:

Discovery of high- $T_c$  cuprate superconductors (HTSC) by Bednorz and Muller, followed by synthesis of A<sub>3</sub>C<sub>60</sub>, iron-pnictides/chalcogenides and other exotic superconducting systems, introduced unconventional superconductors having their mechanisms of condensation and/or pairing distinctly different from those of simpler metals which can be explained by BCS theory. In this talk I will show how one can demonstrate their new mechanisms by examining correlations among key energy-scale parameters, including the transition temperature  $T_c$ , the superfluid density  $n_s/m^*$ , the effective Fermi energy  $\varepsilon_F$ , the excitation energy of the magnetic resonance mode, the onset temperatures of Nernst effect and light-induced transient superconductivity, and the spin fluctuation energy scale  $\hbar\omega_{sf}$ . To discuss condensation mechanisms, we will resort to analogy / comparisons with superfluid <sup>4</sup>He as a representative system undergoing Bose Einstein Condensation (BEC), and further discuss modifications of a simple BEC-BCS crossover picture to include additional effects of competing order. We will draw attention to development of "local phase coherence" among preformed bosonic pairs in the underdoped HTSC systems, at temperatures well above Tc but well below the pair formation temperature T\*. In consideration of a paring mechanism in HTSC, we will propose possible resonance of spin ( $\hbar\omega_{sf}$ ) and charge ( $\epsilon_F$ ) energy scales, and extend that concept for explaining unusual behaviors in the overdoped region of HTSC.



Wiedner Hauptstr. 8-10/138, 1040 Wien https://www.tuwien.at/phy/ifp

#### **References:**

[1] Y.J. Uemura et al., Universal Correlations between Tc and ns/m\* (Carrier Density over Effective Mass) in High-Tc Cuprate Superconductors, Phys. Rev. Lett. 62 (1989) 2317-2320
[2] Y.J. Uemura et al., Basic Similarities among Cuprate, Bismuthate, Organic, Chevrel Phase, and Heavy-Fermion Superconductors Shown by Penetration Depth Measurements, Phys. Rev. Lett. 66 (1991) 2665-2668

[3] Y.J. Uemura, Condensation, excitation, pairing, and superfluid density in high-Tc superconductors: the magnetic resonance mode as a roton analogue and a possible spin-mediated pairing, J. Phys.: Condens. Matter 16 (2004) S4515–S4540

[4] Y.J. Uemura, Dynamic superconductivity responses in photoexcited optical conductivity and Nernst effect, Phys. Rev. Materials 3, 104801 (2019); and references therein.

[5] Y.J. Uemura, Energy-scale considerations of unconventional superconductors-implications to condensation and pairing, Physica C 614 (2023) 1354361:

https://doi.org/10.1016/j.physc.2023.1354361

Supported by:









**F** Österreichischer Wissenschaftsfonds